
NETWORK PERFORMANCE EVALUATION IN A WEB BROWSER

Artur Janc, Craig Wills and Mark Claypool
Department of Computer Science
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609, USA

email:{artur,cew,claypool}@cs.wpi.edu

ABSTRACT

The Web browser is increasingly used for emerg-
ing applications such as online games and streaming au-
dio/video. End users seeking better quality for these appli-
cations need methods to ascertain network performance in
a simple manner. This work investigates methods for mea-
suring network performance through a Web browser and
Flash plug-in while requiring only the minimal user partic-
ipation of navigating to a Web page. A focus of the work
is to complement explicit measurement techniques with
new implicit measurement techniques we develop that al-
low performance measurements to arbitrary servers on the
Internet and allow the measurement of delay jitter.

Results from the new techniques are compared
against existing techniques for measuring download, up-
load, round-trip times and delay jitter across different oper-
ating system and browser environments. The results show
that JavaScript and Flash techniques can be used to reli-
ably estimate client download throughput and RTTs to ar-
bitrary hosts, which could lead to customized tests and re-
ports specifically for multimedia, game and other applica-
tion sites of interest to users.

KEY WORDS
network measurement, Web browsers.

1 Introduction

The increase in network capacity to the home has prompted
the growth of emerging applications such as streaming au-
dio and video and network games. While traditional appli-
cations are relatively forgiving of modest latencies and a
wide range of bandwidths, multimedia applications, partic-
ularly streaming videos, perform best with high bandwidth,
and interactive multimedia applications, such as network
games and VoIP, require low amounts of latency and delay
jitter.

However, as the use of home and public networks has
grown the performance provided to users of traditional and
multimedia applications is not well understood. Network
researchers have means to measure performance from well-
known platforms such as PlanetLab [7], but this platform of
nodes are largely located at university and research labs and

not representative of the networking vantage points seen
by most users on the Internet. Platforms such as NETI@-
home [11], DIMES [10] and DipZoom [14] allow measure-
ments from any node in the Internet, but the platforms pro-
vide little incentive for the general populace to participate.

As an alternate, we have a current project to develop
a user-centered network measurement platform, called
How’s My Network (HMN), that provides incentives via
games and feedback so the public perceives benefits in par-
ticipating. The goal is to develop accessible measurement
tools for users in a form that will not only provide mean-
ingful performance feedback on applications of interest to
users, but also help researchers understand performance
from the vantage points of most users on the Internet.

Providing appropriate incentives while limiting im-
pediments for use is a challenge. Our assumption is that
any approach requiring the installation and use of a soft-
ware tool is too big of an impediment for most users.
Therefore we have chosen to focus on the Web browser as
a platform for performance measurement. Web browsers
have become a standard home user application, support-
ing traditional text-based use, like email and file transfer,
while increasingly being used to access streaming media,
such as Internet radio and social networking videos. Flexi-
ble plugin environments capable of supporting multimedia
are commonplace in nearly all Web browsers. Due to their
ubiquitous and flexible nature, Web browsers make a nat-
ural candidate for an end-user network performance plat-
form.

The challenge for this platform choice is whether the
browser provides enough capabilites to perform a range of
performance measurements. In related work, we are inves-
tigating the potential of a signed Java applet for home net-
work measurement [8]. Signed Java applets provide many
capabilities, but require users to accept a certificate in order
to be used.

In this work, we examine the more constrained en-
vironments of JavaScript and Flash for determining end-
user network performance characteristics. The advantage
of these environments is they are available in most browsers
and require no user intervention. Unfortunately, the “sand-
box” environment of JavaScript and Flash present several
challenges to network measurements. Specifically, they
have: 1) a lack of direct access to the network layer, mean-

ing only HTTP (and thus only TCP, no UDP or ICMP) traf-
fic, and browser scripts receive no information about packet
timings; 2) scripts that can only connect directly to the orig-
inal server, making it difficult to gather performance infor-
mation from the client to a wide-range of Internet servers;
and 3) no reliable persistent storage on the client is allowed,
meaning performance data must be transmitted, analyzed
and displayed immediately.

Despite these challenges, this paper presents the de-
sign of a Web browser-based testing platform, able to ascer-
tain network performance measures relevant to a range of
applications and present results to the client while storing
the results for long-term analysis by network researchers.
Network measurement techniques are implemented to ac-
tively measure the network conditions of the connecting
client. The presented work has two main goals.

First, to assess the potential for a Web browser to
measure network characteristics of interest to traditional
and multimedia applications. Commercial “speedtest” ser-
vices [3, 6], which typically use Flash, are available but re-
port only download and upload throughput and the round-
trip time (RTT) from a client to a speedtest server. How-
ever these services do not provide measurements to the
Web, streaming and game servers actually being accessed
by users nor do they provide measurements on network jit-
ter. In addition, aggregate data about a users’ network per-
formance is limited. In contrast, we have developed solu-
tions that overcome these limitations.

Second, the work seeks to compare and validate per-
formance measurements across a range of operating sys-
tem and browser environments. Users access the Internet
via a variety of environments and it is important to un-
derstand if there is consistency in measurements amongst
these environments. In achieving this goal, the accuracy of
Web browser-based measurement techniques are not only
compared with each other, but with standard measurement
tools.

“Our work makes a number of contributions in better
understanding home network performance for traditional
and emerging Internet applications such as network games
and streaming media. Specifically we have:

1. designed, implemented and evaluated several script-
ing techniques to estimate upload/download through-
put and RTTs in JavaScript and Flash;

2. compared the relative accuracy of these techniques
against each other across different operating system
and browser environments;

3. developed implicit measurement techniques that allow
reliable measurements of download throughput and
RTT to arbitrary third-party servers;

4. successfully tested a technique to measure the jitter of
a “streaming” Web server with clients in JavaScript
and Flash; and

5. performed a distributed set of browser-based network
measurement tests along with analysis of the results.

The remainder of this paper is organized as follows:
Section 2 outlines the approaches developed for measure-
ment; Section 3 describes the platform for testing these ap-
proaches; Section 4 presents the results from controlled and
open user testing; and Section 5 concludes with a summary
of the work along with directions for the future.

2 Approach

This study focuses on the capabilities provided by the
JavaScript and Flash environments to evaluate end-user
network performance characteristics. JavaScript and Flash
have become ubiquitous in the recent years due to a large
number of Web 2.0 applications based on both technolo-
gies, and have reached adoption rates of over 95% among
Internet users [2, 12]. JavaScript and Flash are also avail-
able for almost every browser (Internet Explorer, Firefox,
Safari, Chrome) on every major operating system (Win-
dows, Linux, Mac), and are supported by many mobile de-
vices, including PDAs and mobile phones.

Investigation of both the JavaScript and Flash net-
work interfaces to transfer data to and from Internet hosts
enables an estimate of the client’s download and upload
throughput, and send/receive timing provide RTT. Based
on the specifics of the invocation of network communica-
tion, available methods are divided into two categories:ex-
plicit where the browser provides an object with methods
to retrieve data from a network URL using HTTP; andim-
plicit where the browser dynamically includes or tests the
availability of resources (such as images or scripts) caus-
ing subsequent retrieval of data, possibly from a third-party
server.

Table 1 summarizes the performance measurement
capabilities of the four techniques we developed using ex-
plicit and implicit approaches with JavaScript and Flash.
Explicit techniques to measure upload/download through-
put and RTT are present in existing speedtest services.
However as shown in the table, we have extended the ex-
plicit techniques to allow the measurement of delay jitter
with the origin server. In addition, we have developed im-
plicit techniques for both JavaScript and Flash that allow us
to measure download throughput and RTT measures to be
obtained for both the origin and third-party servers. Details
of these techniques are outlined below with additional de-
tail available in [5]. The code for these methods has been
packaged and is available from a public source code repos-
itory [4].

2.1 Explicit Communication Methods

Recent versions of JavaScript and Flash provide objects
that facilitate asynchronous retrieval of content from the

Table 1. Network Performance Measurement Capabilities by Technique

Technique Origin Server Third-party Server

Technique Category Dwnld Tput Upload Tput RTT Jitter Dwnld Tput Upload Tput RTT

JavaScript:
XHR

Explicit X X X X

JavaScript:
DOM

Implicit X X X X

Flash: URLRe-
quest

Explicit X X X X

Flash: loadPoli-
cyFile

Implicit X X X X

origin server.1 Such objects are commonly used to request
data from the server “in the background”, in response to
or in anticipation of a user’s action. In JavaScript this ca-
pability is provided by the XMLHTTPRequest object, also
calledXHR, mandated by a W3C standard [13] and avail-
able in all major browsers. In Flash, the same functional-
ity is provided via multiple interfaces in theflash.net
package, including theURLRequest and URLLoader
classes [1]. We refer to this family of functions and objects
asURLRequest.

Both JavaScript and Flash go through four phases:
1) instantiating the request object; 2) setting appropriate
parameters—the only required parameter that must be set
is the URL, and typically the type of the HTTP request,
such as GET or POST; 3) setting function handlers to re-
ceive events about the request status—in JavaScript, the re-
quest object’sonreadystatechange handler receives
updates at each phase of the request as it is processed, while
in Flash, theaddEventListener function of a URL-
Loader object allows the setting of function handlers for
various event types; and 4) sending the request.

By recording two timestamps, just before sending the
request and just after the response has been fully received,
the communication duration can be measured and used to
determine throughput and RTT to the origin server. The
RTT is obtained by first requesting a small object to estab-
lish a persistent connection and then retrieving the small
object again, which is done in a single round trip.

An important limitation of XHR and URLRequest is
that they can only send requests back to the origin server
as defined by the same-origin policy [9]. While useful net-
work information can be gathered with this constraint, it
limits the generality of the explicit communication tech-
niques.

2.2 Implicit Communication Methods

If measurement techniques can be developed that are not
constrained by the same-origin policy then performance
measurements could be customized to the specific interests

1The origin server is the host from which the current page (HTML
document) was received.

of users. Using this observation as motivation we success-
fully developed two implicit measurement techniques.

The JavaScript Document Object Model (DOM) al-
lows scripts to dynamically insert resources into the current
document. In addition, the DOM can receive events related
to user actions (such asonclick, onmouseover) and
page/resource load status (such asonload, onunload,
onerror), where the programmer can define JavaScript
handlers for such events. Combining the functionalities
allows measurement of the time from request to response
through three steps: 1) record the start time; 2) dynami-
cally insert a resource in the page with a customonload
handler, invoked when the resource has finished download-
ing; and 3) record the end time in theonload handler and
calculate the duration of the download process.

Flash provides a similar method to request exter-
nal resources by treating them as policy files, requested
through theloadPolicyFile() function (LPF). While
Flash expects URLs used with this function to be policy
files, the function can retrieve any known object. Using
this functionality we: 1) record the start time; 2) invoke
loadPolicyFile() (done in background) on a known
URL; 3) retrieve URL withURLRequest; and 4) record
the end time whenURLRequest fails due to security fail-
ure becauseloadPolicyFile() completes and does
not grant the needed access.

These implicit communication mechanisms are not as
obvious to implement and are more susceptible to program-
ming errors than well-described applications of the explicit
methods. Moreover, these methods do not provide any in-
formation about the current state of the request, and do not
signal any intermediate events. However, a significant ad-
vantage of implicit techniques over explicit techniques is
their ability to retrieve resources from external domains,
making it possible to determine the download throughput
and RTT between the client and any Web server on the In-
ternet.

2.3 Measuring Packet Jitter

In addition to analyzing the browser’s potential to measure
throughput and RTTs, we also evaluated its capability for
gathering delay jitter for scenarios where data is streamed

across the network.
While browsers have no mechanism for sending or re-

ceiving UDP traffic to emulate a streaming UDP protocol,
it is possible for an HTTP server to send data at regular in-
tervals to simulate streaming using TCP at an application-
controlled rate. Combined with the ability of explicit com-
munication mechanisms to receive updates about the status
of a request as it is being processed, it is possible for the
browser to receive information when a new chunk of data
has arrived.

Using intermediate event features in JavaScript and
Flash, packet reception variability in a simulated streaming
protocol can be measured by recording times at which data
is received by the browser. Such information can be useful
for predicting performance of video and VoIP applications,
which are increasingly being streamed over Web platforms.

For the server-side component of the jitter test we im-
plemented a basic Web server in Python. The server sends
data in a “streaming” manner by breaking data into fixed-
size chunks and sending at periodic intervals. The TCP
NO DELAY option is used to ensure that packets are sent
immediately after data is written to the network socket.

The client script, which requests a resource from the
streaming server, must be able to receive events about in-
coming data as it is being transferred. Therefore, only the
explicit download techniques—XMLHTTPRequest and
URLRequest—have the potential to provide the necessary
information; due to browser incompatibilities in the imple-
mentation of events in the JavaScript XMLHTTPRequest
object,2 our jitter client is implemented in Flash.

Flash allows programmers to set handlers for events
related to the status of theURLRequest object, including
ProgressEvent.PROGRESS, which is triggered when
new data is available during a download process. By han-
dling progress events Flash can determine the times when
data is received from the server. By comparing this infor-
mation to the server’s log of timestamps when data was
sent the variability of data availability can be determined,
and hence packet arrival times, assuming receive buffering
is minimal.

3 Measurement Platform

As shown in Figure 1, our measurement test system is im-
plemented as a Web-based application available on a server
on the WPI campus network. A client connecting to the test
Web site is served the script files (in Flash and JavaScript),
and a static HTML page for displaying results. Implicit
techniques may cause content to be retrieved from third-
party servers.

For throughput and RTT measurements, tests are set
to repeat every five minutes to allow for several tests runs
over time if the user so chooses. A single test consists of a
measurement of the download and upload throughput (us-

2Internet Explorer does not support intermediate event notifications for
XMLHttpRequest objects. This feature is supported in Firefox.

ing 2MB of data in each case) and the RTT (using a 1 byte
file) for each of the available techniques (XHR, URLRe-
quest, DOM and LPF), to either the server or a third-party
host. After each individual measurement, the client sends
a summary log of the result to the server and performs the
next test. As throughput and RTT results are gathered, the
HTML page provides the user with information about each
test result. A long-term goal of our work is to provide this
information in a manner that shows users how it will impact
the performance of their applications of interest.

Figure 1. Test Platform System Design

Table 2. Operating System and Browsers Used in Con-
trolled Study

OS Browser and Version Flash Version

Windows XP Internet Explorer 7.0 9.0
Windows XP Mozilla Firefox 2.0 9.0
Windows XP Google Chrome 0.9 9.0

Ubuntu Linux 8.04 Mozilla Firefox 3.0 9.0

For jitter tests, the client initiates the request for a
streaming resource and keeps track of intermediate events
related to the transfer. After the download process is com-
plete, the client sends a list of timestamps corresponding
to these events to the server. The server combines its own
log of packet sending times and the user-submitted data to
display statistics and graphs of packet reception variability
to the user.

4 Results

With the measurement platform in place, two sets of tests
are performed: 1) a controlled test using many platforms
from a single residential location; and 2) an open test where
users were invited to execute the tests from any platform
and any Internet location.

4.1 Controlled Tests

To perform initial validation in a controlled environment,
we executed a test in several browsers using all of the de-

veloped measurement techniques as well as standard non-
browser measurement methods as a measure of the “true”
value during the period of measurement.

The client hosts were located on the US West Coast
in a campus residential network connecting to the server
on the WPI academic network. The clients used four
browser/OS combinations as shown in Table 2.

Tests were repeated every 12 minutes for a three-hour
period starting at midnight PST. Care was taken to en-
sure that no two tests were executed at the same moment
by spacing out the start time of the measurements in each
browser.

Download throughput results were obtained for each
of the four developed techniques on each of the four
browser & OS platforms. Validation was done by using
thewget tool from the Linux client to download the same
file from the Web server. The mean results for each method
and their 95% confidence intervals are shown in Figure 2.

Figure 2. Means and Confidence Intervals for Controlled
Download Throughput

Examination of the individual results indicates that,
while there is variability within the results for each method,
the download throughput is similar across methods. It is
also noteworthy that the implicit techniques do not show
significant differences from the explicit technique nor from
the baselinewget measurements. These results suggest
that download throughput to third-party hosts can be deter-
mined as accurately as to the origin server.

Upload throughput measurements were done by using
the two explicit techniques (XMLHTTPRequest and URL-
Request) to send a request for a small (1 byte) file with
2MB of POST data in each of the four tested browsers. Val-
idation was done by usingwget to request the same small
resource and using the--post-file option to attach a
2MB file as a POST variable. The results for each method
and their confidence intervals are presented in Figure 3.

The results, while consistent for each technique, show
significant differences between measurement techniques.
Confirmation that the duration of the upload is consistent

Figure 3. Means and Confidence Intervals for Controlled
Upload Throughput

with data obtained from the network layer ruled out errors
in our techniques or overhead in the browser. Uploads from
the Linux platform use a TCP window size of 128KB while
uploads from Windows use a window size of 32KB. This
difference helps explains the difference in results for Fire-
fox in Figure 3, but not differences between browsers on
the same Windows OS. Ongoing work is to better under-
stand these differences.

Round-trip time was measured using the four devel-
oped mechanisms in each tested browser by requesting a
1 byte file from the Web server. The baseline test used
thetcpping program from the Linux client to determine
the time necessary to establish a TCP connection with the
server. The mean results and confidence intervals are given
in Figure 4.

Figure 4. Means and Confidence Intervals for Controlled
RTT

As with download throughput results, the mean values
obtained for most measurements techniques fall within a
narrow range. The RTT measured usingtcpping shows,

predictably, the lowest RTT to the server, as it only mea-
sures the time to establish a connection and does not re-
quest any resources from the Web server. An important ob-
servation is that Flash techniques report, on average, higher
RTTs than JavaScript techniques. However, those results
are still within a 20% margin (about 25ms) from the mini-
mum RTT reported bytcpping. The results indicate that
all techniques are generally useful for determining the RTT.

4.2 Open Tests

After establishing the correspondence between throughput
and RTT metrics obtained using the developed browser
techniques and results obtained via standard tools, a larger-
scale study was conducted to determine relative differences
between the measurement methods themselves over a range
of client environments.

Users were invited to participate in the study with
volunteers both accessing the test server via the WPI net-
work as well as various Internet Service Providers (ISPs).
For each client, the tests measured download and upload
throughput to the test server, RTT to the server, and RTT
to selected third-party hosts using each of the four imple-
mented techniques. Once started, tests were repeated ev-
ery five minutes until the user decided to close the browser
window containing the test page. Incomplete test results
(with less than one full execution of the test suite) were dis-
carded. The analyzed results are based on data from about
20 users on the WPI network and 15 non-WPI broadband
users of whom 13 connected from a known major broad-
band ISP (Verizon, Charter, Comcast or Covad). A to-
tal of 3610 individual measurements were obtained from
WPI-based users (1441 download, 731 upload, and 1438
RTT measurements). Broadband users performed 3393
tests (1390 download, 660 upload, and 1343 RTT measure-
ments). The results presented are for broadband users only,
with complete results for all users available in [5].

In analyzing results we examined the correlation of
the four techniques across the set of measurements. Fig-
ure 5 shows the comparison of all download throughput
values obtained with both JavaScript and Flash with a best
fit line having a slope of 1.02 +/- 0.07 (95% confidence in-
terval). These results are also broken down to compare the
download throughput for explicit and implicit techniques
in JavaScript and Flash. For JavaScript the slopes are 1.04
+/- 0.10 and for Flash the slopes are 1.05 +/- 0.10, indicat-
ing that there are no systematic differences between explicit
and implicit techniques for broadband download through-
put. Similar to controlled testing, the open client results
indicate that for broadband clients there are no significant
differences in the average download throughputs between
the techniques.

The upload throughput comparison for the XML-
HTTPRequest and URLRequest explicit techniques is
shown in Figure 6. The results indicate that for broadband
clients, URLRequest upload reports slightly higher upload
rates than XMLHTTPRequest (1.13 +/- 0.08).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

D
o

w
n

lo
a

d
 t

h
ro

u
g

h
p

u
t

fo
r

J
a

v
a

S
c

ri
p

t
[K

B
/s

]

Download throughput for Flash [KB/s]

FF-Win
Chrome-Win
Opera-Win
FF-Mac
FF-Linux
IE7-Win

Best fit line
y = x

Figure 5. Comparison of Download Throughput Measured
by JavaScript and Flash Methods for Broadband Connec-
tions

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

U
p

lo
a

d
 t

h
ro

u
g

h
p

u
t

fo
r

F
la

s
h

/U
R

L
R

e
q

u
e

s
t

[K
B

/s
]

Upload throughput for JavaScript/XHR [KB/s]

FF-Linux
IE7-Win
FF-Mac

Chrome-Win
FF-Win

Best fit line
y = x

Figure 6. Comparison of Upload Throughput Measured by
XHR and URLRequest for Broadband Connections

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
o

u
n

d
-t

ri
p

 t
im

e
 f

o
r

J
a

v
a

S
c

ri
p

t
[m

s
]

Round-trip time for Flash [ms]

FF-Win
Chrome-Win
Opera-Win
FF-Mac
FF-Linux
IE7-Win

Best fit line
y = x

Figure 7. Comparison of RTT Throughput Measured by
JavaScript and Flash Methods for Broadband Connections

Comparisons between explicit and implicit methods
within Flash and JavaScript for measuring RTT indicate
that is no significant difference between the mechanisms.
However, Figure 7 shows there exists a large difference be-
tween average RTT results as reported by JavaScript and
Flash. RTT results reported by JavaScript are on average
almost 30% lower than by Flash techniques with a best-fit
slope of 0.74 +/- 0.06.

As part of the open study, RTT was analyzed to
three third-party servers:boston.com, unl.edu and
youtube.com. These three servers were selected be-
cause of their geographic location (U.S. East Coast, U.S.
Midwest and U.S. West Coast), to provide different latency
conditions for test clients, most of which connected from
the East Coast. For this experiment results were gathered
only using implicit techniques as the same-origin policy
prohibits making explicit requests to third-party hosts.

Correlation of results for broadband users using the
JavaScript and Flash implicit techniques shows the DOM
technique reports smaller round-trip times forboston.
com (slope 0.71 +/- 0.10) as shown in Figure 8. We found
similar results forunl.edu (slope 0.76 +/- 0.08) and
youtube.com (slope 0.83 +/- 0.08). We suspect that a
large part of the discrepancy is caused by a constant over-
head inherent in the Flash LPF technique. The effect of this
overhead lessens as the RTT increases.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
o

u
n

d
-t

ri
p

 t
im

e
 f

o
r

F
la

s
h

/l
p

f
[m

s
]

Round-trip time for JavaScript/DOM [ms]

FF-Linux
IE7-Win
FF-Mac

Chrome-Win
FF-Win

Best fit line
y = x

Figure 8. Round-Trip Time toboston.com for Broad-
band Hosts

4.3 Jitter

Jitter results were analyzed for streaming data from the test
server at WPI to our controlled client connecting from a
campus residential network on the U.S. West Coast. A
10KB file was divided into 40 chunks of 250 bytes, spaced
at 100ms. The transfer was performed using the Flash
URLRequest technique under conditions with no interfer-
ence and with a competing concurrent file download from
the origin server.

As the results in Figure 9 show for the no-interference
scenario, there is almost no variation in the reception times
for all packets, indicatinggood network conditions. On the
other hand, as shown in Figure 10, the results with inter-
ference show that about 30% of packets were delayed, with
15% delayed by over 50ms.

The specific results here are not necessarily impor-
tant, but they show that the jitter measurement technique
has potential for evaluating network conditions outside of
the often-measured throughput and RTT metrics; the tech-
nique also provides an opportunity to detect transient net-
work interruptions and give insight into the performance of
streaming data within the Web browser environment.

Figure 9. Packet Streaming without Interference

5 Conclusions

In summary, we developed new implicit techniques for the
measurement of download throughput and RTT that can be
used between a client and arbitrary Web servers on the In-
ternet. We found that these implicit techniques perform on
par with explicit techniques. This result suggests that the
JavaScript DOM and Flash LPF techniques can be used to
reliably estimate client download throughput and RTTs to
arbitrary third-party hosts, which could lead to customized
tests and reports specifically for multimedia, game and
other application sites of interest to users. We also de-
veloped a technique for measuring delay jitter over TCP
within the browser and showed that to be effective.

We were also able to compare the performance of
measurement techniques across a variety of operating sys-
tem and browser environments. We found the throughput
and RTT measurements within 20% of expected baseline
values. The developed techniques provide significant vari-
ation in upload throughputs between browsers on the same

Figure 10. Packet Streaming with Interference

client host, indicating that they are not generally sufficient
to determine a connecting client’s network upload band-
width.

For broadband users, all developed techniques per-
form equally well in the case of upload and download using
the same browser. The average RTT measured in Flash is
higher than the RTT measured in JavaScript.

There are a number of directions for future work.
Further measurements of the techniques with more clients
would provide even stronger validation and may yield a
better understanding of differences in the upload through-
puts. Longer term, this work can be built upon to provide
an interface and results that are more meaningful to users
with the use of games and videos to attract users as well as
provide feedback and visualization for retaining them.

References

[1] Adobe. ActionScript 3.0 Language and Com-
ponents Reference: URLLoader, Jan 2009.
http://livedocs.adobe.com/flash/
9.0/ActionScriptLangRefV3/flash/
net/URLLoader.html.

[2] Adobe Systems Incorporated. Flash Player Ver-
sion Penetration, Sep 2008. http://www.
adobe.com/products/player_census/
flashplayer/version_penetration.
html.

[3] Broadband reports.com speed test.http://www.
dslreports.com/stest.

[4] A. Janc. nettest.http://code.google.com/
p/nettest/.

[5] A. Janc. Network measurement using Web sand-
box environments. Master’s thesis, Computer Science
Dept., Worcester Polytechnic Institute, January 2009.

[6] Ookla. Speedtest.net - The Global Broadband Speed
Test, Jan 2009.http://speedtest.net.

[7] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir.
Experiences building PlanetLab. InProceedings
of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, Seattle, WA USA,
November 2006.

[8] A. Ritacco, C. E. Wills, and M. Claypool. How’s my
network? a Java approach to home network measure-
ment. InProceedings of the IEEE International Con-
ference on Computer Communications and Networks,
San Francisco, CA USA, August 2009.

[9] J. Ruderman. The same origin policy, 2001.
http://www.mozilla.org/projects/
security/components/same-origin.
html.

[10] Y. Shavitt and E. Shir. DIMES:
let the Internet measure itself, 2005.
http://www.arxiv.org/abs/cs/0506099v1.

[11] C. R. Simpson, Jr., D. Reddy, and G. F. Riley. Em-
pirical models of TCP and UDP end-user network
traffic from NETI@home data analysis. In20th
ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS 2006), pages 166–
174, May 2006.

[12] W3 Schools: Browser Statistics, Jan 2008.
http://www.w3schools.com/browsers/
browsers_stats.asp.

[13] W3C. The XMLHttpRequest Object,
Apr 2008. http://www.w3.org/TR/
XMLHttpRequest/.

[14] Z. Wen, S. Triukose, and M. Rabinovich. Facilitating
Focused Internet Measurements. InSIGMETRICS:
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems,
New York, NY, USA, June 2007. ACM Press.

