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ABSTRACT
The power and connectivity of today's Internet presents the
opportunity for interactive multimedia applications across the
world. However, today's Internet has been predominantly
designed for TCP traffic, wherein the end hosts recognize lost
packets as congestion and reduce their transmission rates
appropriately.  Unfortunately, TCP is not the protocol of choice
for multimedia applications, because TCP's lossless
transmission is stricter than required by multimedia flows and
TCP adds considerable network jitter, greatly decreasing
multimedia quality.  UDP, the alternate transport protocol to
TCP, does not respond to packet loss as a measure of
congestion, often resulting in UDP flows that get an unfair
share of their network bandwidth. In this work, we demonstrate
that a proper network protocol can be built on top of UDP,
providing well-behaved performance in the face of congestion.
Moreover, we demonstrate such protocols provide far better
multimedia performance than does TCP. Another contribution
we make is NS simulator implementation of our multimedia
network protocol.

1. INTRODUCTION
The Internet is moving from a traditional data communication
network for transferring text-based messages such as email and
web traffic, to an underlying communication network for
multimedia applications such as Internet phone, video
conferencing and video on demand.  The volume of traffic
from both traditional and multimedia applications is increasing
tremendously, placing renewed emphasis on congestion control
and traffic fairness.

A major approach to avoiding congestion is through the use of
active queue management, wherein a router signals impending
congestion by dropping packets.  The most well-known active
queue management mechanism is Random Early Detection
(RED). RED uses a weighted-average queue size and
thresholds to detect impending congestion, and randomly drops
incoming packets as the average queue size exceeds a
minimum threshold (Floyd and Jacobson 1993).  Active queue
management requires that the end-hosts recognize dropped
packets and respond by reducing their rate of transmission.  In
the Internet, TCP recognizes packet loss as an indicator of
network congestion, and reduces transmission rate (Floyd
1994).  To date, active queue management appears promising
since by far the predominant transport protocol on the Internet
is TCP (Traffic Workload Overview 1999).

However, multimedia applications have different performance
constraints than do traditional applications (Claypool and Riedl

1999). Traditional applications are very sensitive to lost
packets, hence use TCP to guarantee that lost packets are
retransmitted (Balakrishnan et al. 1999).  Multimedia
applications, on the other hand, can tolerate some data loss, but
are very sensitive to variance in packet delivery, called jitter
(Claypool and Tanner 1999).  In the absence of jitter and
packet loss, video frames can be played as they are received,
resulting in a smooth playout, as depicted in Figure 1-top.
However, in the presence of jitter, interarrival times will vary,
as depicted in Figure 1-bottom.  In Figure 1-bottom, the third
frame arrives late at r2.  In this scenario, the user would see the
frozen image of the most recently delivered frame (frame two)
until the tardy frame (frame three) arrived.  The tardy frame
(frame three) would then be played only briefly in order to
preserve the timing for the subsequent frame (frame four).
Detecting and retransmitting lost packets causes considerable
jitter, making TCP unattractive to multimedia applications.

       
Figure 1.  The above figures model packet video
between sender and receiver.  Each si is the time at
which the sender transmits video frame i. Each ri is the
time at which the receiver receives frame i .

Unfortunately, most non-TCP flows (often termed misbehaved
flows) use UDP and get an unfair share of network bandwidth
when there is congestion.  This unfairness occurs because
many non-TCP flows do not reduce transmission rates while
the TCP flows are forced to transmit data at their minimum
rates (Parris et al. 1999).  Even worse, typical active queue
management policies apply the same drop rate to each flow.
This has led to new active queue management mechanisms
such as Fair Random Early Drop (FRED) (Lin and Morris
1997), that add per-active-flow accounting to RED, isolating
each flow from the negative effects of others. FRED strictly
punishes unresponsive or misbehaving flows to have an equal
share of output bandwidth, while assuring that packets from
flows that consume less than their fair share are transmitted
without loss.

However, per-active-flow accounting is expensive in terms of
router load and may slow down the routing speed as the
number of flows increases.  Even worse for multimedia
applications, FRED punishes all non-TCP-like flows, which
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discourages multimedia applications from using any transport
protocol besides TCP, despite the severe degradation TCP can
cause to multimedia quality.

In this paper, we demonstrate that a well-behaved rate-based
flow control mechanism can be built on top of UDP, providing
significantly better quality for multimedia applications than
does TCP while ensuring fairness to TCP applications.  We
demonstrate this for a generic rate-based streaming media
application as well as for an MPEG-1 video client-server
application.  In addition, we demonstrate how a rate-based
UDP flow can provide much better multimedia performance
than can TCP.

Our design and implementation are carried out in NS, a popular
Wide Area Network simulator developed at the University of
California, Berkeley but used by many others for a wide
variety of network research (see VINT in References).  NS
supports most of the common IP network components,
including TCP (Tahoe, Reno and Vegas) and UDP transport
agents, and several queue management mechanisms, including
RED.  Unfortunately, NS considerably lacks support for
multimedia applications, only providing a basic mechanism to
build Constant Bit Rate (CBR) media streams.  NS does not
support streaming Variable Bit Rate (VBR) multimedia, such
as an MPEG client-server or Real Video. VBR applications are
required for responsive multimedia applications that must
maintain their strict timing constraints.  Thus, a further
contribution of this work is the NS-compatible source code for
two flow-controlled multimedia applications.

The rest of this paper is laid out as follows: Section 2 describes
our approach in the design and implementation of flow-
controlled multimedia; Section 3 details experiments
examining the behavior of our protocol and applications when
running with other TCP flows; Section 3 also presents a
simulation result showing that TCP is not the transport agent of
choice for multimedia applications because it results in poor
performance; and Section 4 summarizes our conclusions and
lists some possible future work.

2. RESEARCH APPROACH
We designed and implemented two slightly different
multimedia traffic generators (or multimedia applications) that
respond to network congestion, extended from media scaling
techniques proposed in (Delgrossi et al. 1993).  The two traffic
generators have the same congestion control and avoidance (or
flow control) mechanism, while the traffic they generate in
response to congestion notification from the network is
different.  The first generator, MM-APP, reduces or increases
transmission rate by decreasing or increasing the transmission
interval with a fixed frame size.  The second one, MPEG-APP,
changes the transmission rate by selecting frames to transmit
from an input MPEG trace file, where the frame sizes can vary
while the transmission interval of frames are fixed in terms of
frames per second.

Scale
Value

Media Encoding and
Transmission Policy Set

Avg. Transmission
Rate (Kbps)

4 A 1100
3 B 900
2 C 700
2 D 500
1 E 300

Table 1.  Example Media Scale Assignment

The multimedia applications use sender and receiver behavior.
Before transmitting the actual data, the sender and the receiver
agree on five scale values (0 to 4), each of which is assigned to
a different media encoding method and transmission policy
(i.e. which frame to transmit) pair.  The scale value 0 is
assigned to a set from which a predetermined minimum
sustainable media quality can be achieved, the next value is
assigned to sets from which a better media quality can be
achieved, and so on.  It is assumed that the media encoding and
transmission policy sets are carefully chosen so that the
transmission rates resulting from the sets increase linearly as
the scale value increases.  Table 1 shows an example
assignment.

Thus, the sender has five discrete and linearly increasing
transmission rates assigned to the scale values, and starts from
scale 0 transmitting at the lowest rate.  The receiver detects
congestion (or lack of it), determines the next transmission rate
of the sender in terms of scale value, and notifies the sender of
this scale value.  The sender, being notified of the scale value,
simply changes the transmission rate by using media encoding
and transmission policy assigned to the scale value.

In detecting congestion, the receiver uses frame loss as the
network congestion indicator.  There are two circumstances
where the receiver claims frame loss.  The first is when the
receiver gets a frame whose sequence number is greater than
the expected sequence number.  The second is when the
receiver does not receive any frames within a timeout interval.

Proper setting of the timeout interval is critical.  A timeout
interval that is set too short will claim false frame losses, which
will make the sender reduce the transmission rate needlessly.
On the other hand, a timeout interval that is set too long will
fail to detect multiple sequential frame loss effectively such
that the sender reduces transmission rate later than other
competing connections, which could result in an unfair portion
of bandwidth.  In our implementation, the Round Trip Time
(RTT) of the connection is greater than the longest possible
frame transmission interval:

RTT > Max_Intrvl: TOI = RTT
RTT ≤ Max_Intrvl: TOI = Max_Intrvl + α
(where 0 < α < RTT)

The receiver, when detecting congestion, reduces its scale
value to half (integer division) and notifies the sender of this
value by sending a small packet.  When the receiver detects no
network congestion within a RTT from the last checkpoint, it
increases the scale value by one and notifies the sender of this
value.  This design of drop scale to half at congestion, and
increase one scale up at a RTT is motivated by the fast
recovery algorithm that is found in Reno TCP implementations
(Floyd and Fall 1996) and the TCP-friendly definition (Floyd
and Fall 1998).

Now that the congestion control part of the multimedia traffic
generators has been described, we next present the specifics of
how MM_APP and MPEG_APP generate traffic associated
with transmission scales.

As briefly mentioned earlier, MM_APP directly associates
transmission rates to scale values without targeting a specific
media encoding and transmission policy.  It assumes that every
media encoding and transmission policy pair associated to the
scale values generates traffic with a fixed frame size.  In other
words, it assumes that the transmission intervals are the only
factors that cause the rate changes.  Therefore, the resulting
traffic can be characterized by CBR traffic of a fixed frame
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size and various transmission intervals associated with the
scale values.  Although MM_APP is not tied to a specific
multimedia application, it is useful in that it is easy to change
the transmission rate associated to each scale value and then
test the media scaling scheme, thus eliminating the effect of a
specific traffic characteristic of a particular application.

MPEG_APP, on the other hand, simulates a very specific
client-server video application that is based on the MPEG-1
encoding scheme (Mitchell et al. 1997).  It implements five
sets of MPEG-1 encoding and transmission policies and
associates them with scale vales - in fact, it only changes the
frame transmission policy leaving the encoding scheme
unchanged.  MPEG-1 encodes video at a given frame rate and
picture quality, generating a stream of frame types I, P and B,
associated with a typical Group of Pictures (GOP), such as
IBBPBBPBB.  Among the three frame types, only I-frames can
be decoded on their own. The decoding of a B-frame relies on
a pair of I-frames and/or P-frames that come before and after
the B-frame and the decoding of a P-frame relies on an I-frame
or P-frame that comes before the P-frame. MPEG_APP
supports MPEG-1 streams using the common GOP patterns
IBBPBBPBB and IBBPBBPBBPBB.  Table 2 shows the
transmission policies on the two stream patterns, which is
carefully selected keeping the dependencies in mind (Walpole
et al. 1997).

Scale Transmission Policy (Pattern 1)
4 I B B P B B P B B I

3 I   B P   B P   B I

2 I     P     P     I

1 I     P           I

0 I                 I

Scale Transmission Policy (Pattern 2)
4 I B B P B B P B B P B B I

3 I   B P   B P   B P   B I

2 I     P     P     P     I

1 I     P                 I

0 I                       I

Table 2.  MPEG Transmission Policy Associated
with Scale Values

MPEG_APP reads in an MPEG-1 trace file that contains frame
information for a stream with the maximum frame rate (scale
4) as input along with the maximum frame rate and the longest
possible frame transmission interval that is used for congestion
detection at the receiver side. At every scale transmission
interval, MPEG_APP reads the frame information from the
input file, and determines whether or not to transmit this frame
using the current scale value and the transmission policy
associated with the scale value.

Figure 2(a) shows an example input file that contains frame
information for a 30 frames per second IBBPBBPBB pattern
stream in which the sizes of the I-, P- and B-frames are 11 KB,
8 KB and 2 KB, respectively.  The frame sizes used in this
example are the mean frame size of each type obtained while
playing a short high quality MPEG-1 news clip.  Figure 2(b)
shows each transmission policy assigned to scale values with
the estimated average transmission rate for the input trace file.
Figure 2(c) visualizes the estimated transmission rate in Figure
2(b).  The almost linearly growing estimated average
transmission rates shows that the assignment of the
transmission policies to the scale values works well with the
given example MPEG-1 stream.  This is because the linear

increment of scale results in linear increment of transmission
rate and the exponential decrement of scale results in
exponential decrement of transmission rate.

I 11000
B 2000
B 2000
P 8000
B 2000
B 2000

P 8000
B 2000
B 2000
I 11000
. .
. .
. .

Figure 2(a).  Input Trace File (in bytes)

Maximum Frame Rate (Scale 4) = 30 frame/sec

Scale Transmission Policy
(Pattern 1)

Estimated Average
Trans. Rate (Kbps)

4 I B B P B B P B B I 1056
3 I   B P   B P   B I 896
2 I     P     P     I 736
1 I     P           I 544
0 I                 I 352

Figure 2(b).  Transmission Policies and Associated Rates

Figure 2(c).  Estimated Average Transmission Rate
of  the Example in Figure 2(b).

3. EXPERIMENTS
We ran a series of simulations to validate the NS
implementation of MM_APP and MPEG_APP, and to measure
their fairness when competing for bandwidth with TCP flows
under RED queue management.  Here, we present the results of
a simulation that exhibits the behavior of MM_APP and
MPEG_APP. The simulation is designed to show the effect of
available bandwidth and end-to-end delay on fairness.  Figure
3 shows the network topology and the application flows used
for the simulation.

Figure 3.  Network Topology and Flows
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Each link that connected a source or destination node and a
network node had 10 Mbps link capacity and 5ms of delay.
The link that connected the two network nodes has 6 Mbps of
link capacity and 20ms of delay.  The network node n1 used
RED queue management, for which the parameter set used was
chosen from one of the sets that are recommended by (Floyd
and Jacobson 1993).

For traffic sources, 6 FTP, 2 MM_APP and 2 MPEG_APP
traffic generators were used, where FTP used TCP Reno and
the others used UDP as the underlying transport agent.  All the
TCP agents were set to have a maximum congestion window
size of 20 packets and maximum packet size of 1500 bytes.
The UDP agents were also set to have a maximum packet size
of 1500 bytes.  The MM_APP traffic generators used the
transmission rates shown in Table 1, that is 300, 500, 700, 900,
1100 Kbps, for scale 0 to 4 transmission rates, respectively.
The MPEG_APP traffic generators used the transmission
policies and the trace file shown in Figure 2, which generated
traffic rates of 352 Kbps to 1056 Kbps.

The simulation started with five FTP applications, 1 MM_APP
and 1 MPEG_APP, and after 15 seconds the remaining traffic
sources joined. For the first 15 seconds, the available
bandwidth share for each connection was about 857 Kbps, and

for the next 10 seconds, the share went down to 600 Kbps.
Figure 4 shows the results of the simulation. For the throughput
measurements, we omitted the first 5 seconds to eliminate the
startup effect of unstable TCP and RED behaviors on the
fairness at the initial stage.

In Figure 4, one can see that all types of traffic receive a fair
share of network bandwidth.  Even during the second part of
the simulation, seconds 15-25, the multimedia streams do
become noticeably greedier, but still do not completely starve
out the TCP flows.  The existing unfairness is mainly caused
by the average reduction of TCP's congestion window size, and
the widely fluctuating and higher RED's average queue length.
When there is extreme congestion, RED drops packets from all
flows, and the TCP flow's window-based mechanisms will
only transmit packets on timeout, while the rate-based
mechanism of MM_APP and MPEG_APP, will transmit more
frequently.

The simulation shows that multimedia applications that use a
rate-based flow control mechanism can be greedier than TCP
agents that use window-based flow control mechanism under
conditions of extreme congestion.  Despite this drawback, there
are very strong reasons that interactive multimedia applications
today do not want to use TCP as underlying transport agent.

5 – 15 (Sec) 15 – 25 (Sec)
FTP-TCP1 733.2 505.2
FTP-TCP2 888.0 464.4
FTP-TCP3 717.6 552.0
FTP-TCP4 958.8 412.8
FTP-TCP5 841.2 428.4
FTP-TCP6 367.2

MM-UDP1 868.8 669.6
MM-UDP2 727.8

MPEG-UDP1 809.6 826.8
MPEG-UDP2 647.2

Fair Share 857.1 600.0

Average Per-flow Throughput
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Figure 4. Simulation Test of MM_APP and MPEG_APP

This simulation is set to have the FTP applications over TCP and the flow-controlled multimedia
applications to fairly share the output bandwidth for the first 10 seconds (5 to 15 seconds).  For
the next 10 seconds three more sources join decreasing the available bandwidth.
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Figure 5 that shows the TCP and MM_APP jitter, as measured
by the inter-packet arrival time. TCP's bursty transmission
policy that transmits data packets up to the minimum of
congestion and receiver side window without using any
particular transmission scheduling introduces high jitter
compared to a continuous transmission policy.  Furthermore,
from time to time, TCP's timeouts add huge jitter peaks.  Delay
sensitive interactive multimedia application may not stand for
the high jitter, since they need to play out the multimedia data
at a specific time interval.  They could use relatively large
buffers to ameliorate the effect of jitter, however this gives
extra delays that might not satisfy the users of the application.
In addition, the fact that TCP does not separate flow control
from loss recovery discourages multimedia applications from
using it (Balakrishnan 1999), since this gives possibly
unbounded transmission delays for a multimedia packet,
possibly rendering the packet useless after a specific period due
to the retransmission attempts for the previous packets.

4. CONCLUSION
In this paper, we have presented the design and evaluation of
flow-controlled multimedia over UDP.  Our well-behaved
applications use a rate-based flow control mechanism based on
media scaling, but still result in fair bandwidth allocation, as
does TCP.  We also demonstrated that TCP is not the transport
agent of choice for multimedia applications by showing its poor
performance on jitter and delay that is due to its transmission
policy.

There exist many possible areas for future work, including
building NS applications that support other media encoding
types, such as H.261 or MPEG2.  Implementing MM_APP and
MPEG_APP in code and experimenting on the real Internet
may provide additional insight as to application behavior. User
studies carefully measuring the impact of flow-controlled
multimedia on top of UDP versus TCP may provide additional
evidence as to the merits of our approach, as well as indicate
additional means by which the network flow control
mechanisms may be improved.
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