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Abstract.

Powerful, low-cost clusters of personal computers, such as Beowulf clusters,
have fueled the potential for widespread distributed computation.  While these
Beowulf clusters typically have software that facilitates development of distrib-
uted applications, there is still a need for effective distributed computation that
is transparent to the application programmer.  The PANTS Application Node
Transparency System (PANTS), enables transparent distributed computation.
The system employs a fault-tolerant communication architecture based on mul-
ticast communication that minimizes load on busy cluster nodes.  PANTS runs
on any modern distribution of Linux without requiring any kernel modifica-
tions.  The initial design and implementation of the load balancing algorithm
used only a measurement of CPU usage to make distribution decisions.  While
CPU usage is the typical metric used in load distribution, other system re-
sources such as disk and memory can become loaded and be a performance
bottleneck.  In this work, we examine PANTS in the context of load distribution
algorithms, build new load indices, develop benchmarks, and evaluate perform-
ance.  We find our load indices can reduce workload running times by 1/2 of
the time of the original PANTS indices.

1. Introduction

Cluster computing offers several benefits to application programmers and to users.  A
large class of computations can be broken into smaller pieces and executed by the
various nodes in a cluster.  However, sometimes on a cluster it can be beneficial to
run an application that was not designed to be cluster-aware.  A main goal of our re-
search is to support such applications.

We have developed a system called PANTS1 for distributed applications running in a
cluster environment.  PANTS automatically detects which nodes of the cluster are
overloaded and which are underloaded, and transfers work from overloaded nodes to
underloaded nodes so that the overall application can complete more quickly.
PANTS runs on a Beowulf cluster, which is a cluster of PC-class machines running a
free/open-source operating system, in our case Linux, and connected by a standard lo-
cal area network.  Two fundamental design goals of PANTS are that its operation

                                                  
1 PANTS stands for PANTS Application Node Transparency System.
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should be transparent to the programmer and to the user of the distributed application,
and that PANTS should impose only minimal overhead on the system.

PANTS is designed to be transparent to the application as well as the programmer.
This transparency allows an increased range of applications to benefit from process
migration.  Under PANTS, existing multi-process applications that are not built with
support for distributed computation can run on multiple nodes by starting all the proc-
esses of the application on a single node and allowing PANTS to migrate the individ-
ual processes of the application to other nodes.  As far as the application is concerned,
it is running on a single computer, while PANTS controls what cluster computation
resources it is using.

The PANTS design provides a method for minimal inter-node communication and for
fault tolerance.  In a Beowulf system, communication over the network can often be
the performance bottleneck.  With this in mind, PANTS keeps the number of mes-
sages sent between machines low and also uses a protocol that does not exchange
messages with nodes that are busy with computations.  Built-in fault tolerance allows
the cluster to continue functioning even in the event that a node fails.  In the same
way, nodes can be added or removed from a cluster without having to restart PANTS.

Early research results showed PANTS provided a near linear speedup for computa-
tionally intensive applications [DHV00, CF01].  Unfortunately, programs that impart
load on the CPU of a machine are not the only applications that are desirable to run on
Beowulf clusters.  An application could read or write many files to disk imparting
load on the I/O subsystem, maintain large data structures loading memory, or cause
system events such as interrupts and context switches.  For example, compiling the
Linux kernel is a typical example of an application that requires some CPU resources,
but does not significantly load the CPU while imparting heavy load on the I/O re-
sources of a system.  Thus, load measurement can also be based on I/O in terms of
number of blocks read and written to the disks, memory load in terms of total pages
read and written per second, context switches per second, or interrupts per second.
Load can also be measured as a mix of all of these criteria.  When just looking at CPU
usage as the only measurement of load, a system compiling the kernel would not
“load" the system, while there would be a performance benefit if the load measure-
ments included I/O use.

In this work we examine PANTS in the context of load distribution algorithms, to de-
vise new methods of capturing load metrics and also to measure the performance of
new metrics and policies we have devised.  We design and implement new ways to
measure load in PANTS including I/O usage, memory usage, context switches, and
interrupts, as well as improving the way CPU usage is measured over past imple-
mentations. To test and verify correctness of the new measures of load we built a mi-
cro benchmark for each new load metric and used a real-world application as a
benchmark: a distributed compilation of the Linux kernel.
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2. PANTS

2.1 PANTS Load Distribution Algorithm

An important aspect of any process migration scheme is how to decide when to trans-
fer a process from a heavily loaded node to a lightly loaded node.  Many load-
distribution algorithms for distributed systems have been proposed; there is a sum-
mary in [FW95].  We have implemented a variation of the multi-leader load-
balancing algorithm proposed in [FW95].

In this algorithm, one of the nodes is required to be the leader.  The leader can be any
node in the cluster and is chosen randomly from among all of the nodes through a
voting procedure.  The leader has three basic responsibilities: accept information from
lightly-loaded (“available”) nodes in the cluster, use that information to maintain a list
of available nodes, and return an available node to any client that requests it.  The al-
gorithm is fault tolerant; it utilizes the election procedure to select a new leader in
case the leader node fails.

An available node is one that is lightly loaded, as measured by some load metric, such
as CPU utilization.  When any node in the cluster becomes available, it sends a mes-
sage to the leader, indicating that it is free to accept new work.  If a node becomes un-
available, for example, if it begins a new computation, it sends another message to the
leader.  Thus, the leader always knows which nodes are available at any time.  If a
node wants to off-load work onto another node, it need only ask the leader for an
available node, then send the process to that node.  If one of these non-leader nodes
fails it will simply be removed from the list of free nodes that the leader maintains.
This makes PANTS fault-tolerant of failure by any nodes in the cluster.

The actual implementation is a variation of the multi-leader policy described in
[FW95] and implemented in [DHV00].  In many other load-balancing algorithms, ei-
ther nodes that are available or nodes that need to off-load work broadcast their status
to all the nodes in the cluster. These broadcast messages frequently need to be han-
dled by machines that are heavily loaded (“busy machines”).  The multi-leader algo-
rithm avoids these “busy-machine messages” by sending messages only to the leader
multicast address.

We modified the policy in [FW95] to simplify the implementation and improve fault
tolerance, at the cost of a small increase in the amount of network traffic. In PANTS,
there are two multicast addresses.  One of the addresses is read only by the leader;
both available nodes and nodes with work to off-load send to the leader on this ad-
dress.  Because the leader is contacted via multicast, the leader can be any node in the
cluster, and leadership can change at any time, without needing to update the clients.
Available nodes receive on the other multicast address when the leader needs to dis-
cover, for the first time, which nodes are available.  Because multicast is used to
communicate with available nodes, busy nodes are not even aware of the traffic.
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Fig. 1: PANTS Multicast Communications

Figure 1 depicts the multicast communication among PANTS nodes.  There are four
nodes in this Beowulf cluster, one of which is the leader.  Nodes A and C are “free”
nodes, being lightly loaded and Node B is a “busy” node.  All nodes can communicate
with the leader by sending to the leader multicast address.  The leader communicates
with all free nodes, A and C in this example, by sending to the free node multicast ad-
dress.  Node B is not “bothered” by messages to the free nodes since it is not sub-
scribed to that multicast address.

Previously, PANTS monitored the load at a node by periodically checking the CPU
usage through the /proc file system.  The time that the CPU spent processing user,
system, nice, and idle process types in the last 5 seconds are obtained. The user, sys-
tem, and nice times are summed and divided by the total, obtaining a percentage
which is then compared against a static threshold set at compile time.

2.2 PANTS Implementation

PANTS is composed of two major software components, the PANTS daemon and
prex, which stands for PANTS remote execute.  The PANTS daemon is responsible
for coordinating the available resources in the cluster.  It communicates among nodes
to determine which nodes are available to receive processes.  prex intercepts the
execution of a process, queries the PANTS daemon for an available node and re-
motely executes the process to distribute load among the nodes in the cluster.

Using the multicast policy described in Section 2.3, the PANTS daemon can respond
quickly to a request from prex for an available node.  prex is made up of a library
object called libprex.o and a remote execution program called prex.  The li-
brary object is designed to intercept programs when they are initially executed and
then send them to the prex program.

The way libprex works with the C library allows it to intercept processes trans-
parently.  To enable libprex, the Linux environment variable LD_PRELOAD is set
to reference the libprex library object.  Doing this causes the library functions in
libprex to override the usual C library functions.  When programs call the
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execve() function to execute a binary (for example, when a user executes a binary
from a command line shell), our version of execve() inside libprex is used in-
stead of the original one.  Inside of our execve() function, the real C library
execve() is invoked to execute prex, whose arguments are the process name,
followed by the original arguments for that process.  prex can then use rsh to re-
motely execute the process.

Several user-defined bits within the flag area of the ELF binary's header signal
whether the process should be migrated.  These bits can be set using a simple com-
mand line utility.  When prex is invoked for a process, the process is checked for
migratability, which is determined by flags set within the binary.  If the binary is mi-
gratable, prex queries the local PANTS daemon to determine if the local machine is
busy with other computations.  If the process is not migratable, or the local machine is
not busy, the binary is executed on the local machine by calling the original version of
execve().  If the local machine is busy, prex queries the local PANTS daemon
for an available node.  If a node is returned, prex calls rsh to execute the process
on that node.  If all nodes are busy, the process is executed locally.

Fig. 2:  prex Functionality

Figure 2 depicts the functionality of prex.  When a process calls execve() and the
environment variable LD_PRELOAD is set, libprex.o intercepts the libc.o
version of execve().  If the executable file is migratable, libprex.o invokes
prex to communicate with the PANTS daemon to find a free node and migrate the
process.  If the executable is not migratable, libprex.o invokes the normal
libc.o version of execve().

Research has also been completed [STW01] which demonstrated that PANTS is com-
patible with the distributed interprocess communications package DIPC [KK].  The
use of DIPC requires the programmer to include DIPC-specific code in the program,
and thus compromises our transparency goal of not requiring any special code for the
distributed application.  However, the use of DIPC does allow the programmer to use
a wider range of interprocess communication primitives, such as such as shared mem-
ory, semaphores, and message queues, than would otherwise not be available.
    



      James Nichols and Mark Claypool6

2.3 Current Configuration

Our PANTS Beowulf cluster is composed of seven 600MHz Alpha machines. The
physical memory ranges from 512MB on the NFS file server to 64MB on several of
the node machines, and all machines have at least 128MB of additional disk swap
space. Each machine is equipped with a PCI Ultra-Wide SCSI controller and hard
drives, and a 100Base-T network card. The network is arranged in a star topology
with a switch in the middle, and one machine providing a gateway to the outside
world through an additional network card and IP-Masquerading software.

All of the machines in the cluster run RedHat Linux 7.1, the last release to support the
Alpha architecture. The Linux kernel is version 2.4.18 and each kernel image is com-
piled with NFS support.  The cluster shares a common /home directory which is
shared via NFS from the file server. This common file system is necessary to facilitate
rsh execution of child processes and provides a simple means of sharing data.  The
NFS server machine is equipped with extra RAM and SCSI hard disks and its kernel
image has a larger maximum read/write NFS block size than the default.  The
read/write block size settings on remote machines are also increased for better per-
formance.  To see a listing of all the processes running on each system in the cluster
see [JN02], however it is the minimal required for system functionality. For more de-
tails of the PANTS implementation and the configuration of our cluster, including the
logs of configuration for each node, see [JN02].

3. Methodology and Approach

Since CPU usage is not the only applicable load metric when classifying different
types of load we implemented services to measure the load on the system by looking
not only at CPU usage, but I/O usage, context switches, interrupts, and memory us-
age. We then developed micro benchmarks to stress the system and evaluate each
metric for verification purposes.  Finally, we use a real world application to evaluate
the performance of the algorithm.

3.1 Load Metrics

The load metrics include CPU usage, I/O measurement, number of context switches,
memory pages read and written, and overall interrupts generated on the system. These
numbers are read from /proc/stat into a data structure and are then time stamped.
In Linux /proc is a special file system that provides an interface to read the values
of certain kernel variables and data structures.  The metrics are summarized in Table

Table 1: Load Metrics
CPU (%) jiffies

I/O blocks/sec

Context switches switches/sec

Memory page operations/sec

Interrupts Interrupts/sec
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1, for details of how the metrics are implemented see [JN02].  Each metric has a
threshold value that is used to determine the availability of the node. If the measure-
ment produced by the metric is over this threshold the node is considered loaded and
will return an unavailable status to the leader node.   The node will not be listed as
available until the loads are under the thresholds, and the leader node is then informed
of the node's availability.

3.2 Micro-Benchmark

To verify the correctness of our load metrics and to refine our understanding of the
way that PANTS shares load, we use tests with fine control over the CPU usage, in-
terrupts thrown, disk usage, memory usage, and context switching. We create micro
benchmarks for this purpose to allow us to test specific actions of PANTS in con-
trolled situations. For any given test, different amounts of different kinds of work can
be assigned to the system, and the sharing of load can be studied for tuning and analy-
sis purposes.

The micro benchmarks create a task that consists primarily of one of the types of load
we have measured and reports how fast the assigned tasks were completed.  The types
of load created and measured by the benchmarks are CPU usage, I/O to the disk drive
or drives, and memory usage. Because PANTS works by relocating processes before
executing them, these benchmarks start a number of processes on one node, and then
allow PANTS to remotely execute them. Each benchmark test begins with several
minutes of idle time to allow the systems to reach their baseline measurements.

When the benchmarks begin, they write a time stamp to a logfile to mark the start of
their execution. The controlling process will then begin spawning a number of identi-
cal child processes at fixed intervals. These child processes generate the actual load of
the benchmark, and are flagged migratable so they can be passed to a remote node for
execution. When all the child processes are done, the logfile is again time stamped to
mark the end of execution.  We analyze the these log files to collect performance sta-
tistics.

The CPU test consists of a parent process that spawns four child processes at five
minute intervals. Each of these child processes performs a large number of floating
point operations (FLOPs). FLOPs were chosen for this benchmark because they are
frequently used for some distributed computing. This benchmark shows system load
conditions under a system that is loaded primarily with CPU intensive processes,
while ignoring other types of load.

The I/O test is designed to load the disks of a machine while leaving the CPU rela-
tively unloaded. A copy of a large directory structure (384MB including files and di-
rectories) is created on the local hard disk of each machine. The parent process then
spawns four child processes at five minute intervals. Each child process copies the di-
rectory structure to a new location on the local hard disk. Many small files are in-
volved requiring more writes than one large sequential file of the same size; new files
and directories must be written as well as the actual data contained in the files.
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The memory usage test consists of a parent process which spawns four child proc-
esses at five minute intervals. Each of these child processes use the malloc() func-
tion to allocate 100MB of memory, and calls the mmap() function to map an existing
section of memory into this allocated area. After the memory is allocated and mapped
it is released using the free() function. This process is repeated ten times in each
child process, creating a rise and fall of virtual memory. None of the systems involved
have 100MB of free physical memory, so each machine must page memory in and out
of its swap space during each cycle to provide enough virtual memory to fit the allo-
cated structure.

3.3 Application Benchmark

To further evaluate the performance of PANTS we used a real-world application as a
benchmark.  The application is a distributed compilation of the Linux kernel, exe-
cuted by the standard Linux program make.  This distributed compilation exemplifies
an application which imparts significant load on the I/O and memory resource with
modest load on the CPU.

To make the compilation distributed via PANTS we had to make slight modifications
to the compiling process. First, we marked the gcc compiler binary as migratable,
which allows PREX to remotely execute gcc on remote nodes. Second, we modified
the standard Makefile included with the Linux source tree to use a script program
(my_gcc) as the compiler. This script program simply made any file references
passed from make into absolute paths.  Relative paths to files are not translated prop-
erly by rsh when sent to remote nodes, as the working directory is where the binary
is located on the remote filesystem.

The my_gcc script then uses an execve() of the real gcc giving it the absolute
file names it determined as arguments. PREX then intercepts this execve() call,
checks and sees that gcc is migratable, and then hands the process to the PANTS
system. We also modified ld, the link editor program used by make. We modified it
to wait until all the files were present on the NFS mount before it attempted to link
them.  This added a small measure of robustness to the compilation, but in practical
use we feel it is unnecessary as a properly equipped and configured NFS server can
keep up with the demand placed on it during the compile.

The Linux kernel source tree was located on the NFS mount and all output files were
sent to this same location.  This made all of the files available to all the nodes.  The
build was started from a node in the cluster by simply typing make vmlinux from
the NFS mounted Linux kernel directory.  The Linux kernel version was 2.4.18.  The
kernel build was configured to compile a kernel image identical to those on which the
machines in the cluster currently ran.  Overall, 432 files were compiled, with the
mean source file size being 19KB.
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4. Results

Results are obtained from the log files produced by the PANTS daemon providing in-
formation for CPU, memory, disk, context switching, and interrupts at five second
intervals.  We measured the load on an idle machine and obtained baseline measure-
ments for each metric, summarized in Table 2 along with the thresholds we used for
the experiments in Section 4.2.

4.1 Micro benchmark results

Once we implemented our new load measurements we devised a process to validate
our measurement techniques.  We wanted several “micro benchmarks” that were sim-
ple programs designed to stress a particular system resource.  The micro benchmarks
were run on unloaded systems, only running basic system services.   These services
included the inetd daemon, which is responsible for rsh, the system logging
deamon, crond, swapd, and a few other services.  To see a listing of all the proc-
esses running on each system in the cluster see [JN02].

The CPU benchmark displayed the typical behavior of the PANTSD system.  As each
node surpassed 95% CPU utilization it was removed from the list of free nodes and
did not take any more processes. The total load of the benchmark was divided evenly
between all four nodes.  Figure 3 shows the average load cluster wide for each metric
during the benchmark.    

CPU micro benchmark - average load
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Fig. 3:  CPU micro benchmark

Table 2: Load Metrics
Metric Baseline Threshold

CPU (%) 0% 95%

I/O (blocks/sec) 250 1,000

Context switches (switches/sec) 950 6,000

Memory (pages/sec) 0 4,000

Interrupts (interrupts/sec) 103K 115K
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The memory benchmark was first run with only the CPU metric enabled and the CPU
threshold at 90%.  The figures for this and the remaining benchmarks are not shown.
The parent node never became unavailable, as CPU utilization stayed around 7%.
However, memory usage on the parent node was extremely heavy, and the machine
became unresponsive to user control for most of the test.  While the memory load is
high, high I/O load is incurred because the memory metric is page faults per second
and page faults by their nature effect the load on the I/O subsystem.    The standard
deviation for the memory metric across all nodes in this benchmark  is  approximately
12,000 page  faults/sec,  which  is  expected  as   no  load   is   being  distributed so
there is significant variation.

The memory metric was then enabled for the second run, with the threshold set at
10,000 pages/second. After the first process was spawned the parent node was loaded
with 50,000 pages/second, switched to the unavailable state and was removed from
the free node list. The second process was then passed to another node, which imme-
diately became unavailable when it was loaded at 100,000 pages/second. The third
process was passed to another node, and the fourth to the leader node.  The memory
load average is increased as the previously idle nodes are now participating, and the
standard deviation is much lower at 575 page faults/sec.  The load on the I/O system
is dramatically lower for two reasons: the load on memory is not as high so not as
many disk accesses are necessary to swap pages; furthermore some machines in the
cluster have more memory than others and not as many swaps are required on these
machines.

The disk benchmark was first run with only the CPU metric enabled and the CPU
threshold.  CPU utilization stayed between 4% and 8% for the duration of the run.
The parent machine was fairly responsive to user input until the second process was
spawned, at which time it stopped responding to other commands until the test com-
pleted.  For this experiment, the average for I/O load is low, but the standard devia-
tion is very large.

For the second run the disk threshold was set to 10,000 blocks/second in addition to
the CPU threshold.  Immediately after the first process was spawned the parent node
was loaded at 20,000 blocks/second and became unavailable. The second process was
passed to another node, which immediately displayed over 100,000 blocks/second and
also immediately became unavailable. The third process was passed to another node,
and the fourth process to the leader.  The cluster wide load average is considerably
increased, but the standard deviation, and indicator of variation in load
amongst nodes in the cluster is greatly decreased, as the load is more evenly
distributed.  Using these simple micro benchmarks to generate certain types of load
we verify that our metrics are measuring the load on the system correctly.

4.2 Application Benchmark Results

To evaluate the performance of the distributed compilation of the Linux, we obtained
timing measurements for several variations of the compilation for comparison pur-
poses.  Our first variation was a compile where the files were stored on the local hard
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disk and no PANTS load distribution.  The second was a compile of the kernel tree
which was stored on the NFS mounted disk.  The next three were all compiles where
the source was mounted over NFS with PANTS running.  In the first of these three the
gcc binary was flagged do not migrate, in the second PANTS used the default load
metrics, and finally PANTS used our new load metrics and policy.  Five compile
times were averaged to obtain the results shown.

Local Compilation - CPU Usage (Paris)
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Fig. 4: CPU Usage: Local Compilation

Figure 4 depicts the CPU usage over time on one of the nodes for a local disk compi-
lation, which shows some load being imparted on the CPU, but rarely is the utilization
above 95%, the CPU load threshold.  The compilation with PANTS running but mi-
gration disabled was achieved by flagging the gcc binary as not migratable. This
evaluation was done to give baseline results and an idea of the overhead involved
with running the PANTS daemon.  We conclude that there was very little overhead
incurred: the compile with PANTS running took 5 seconds longer out of a total of
1520 seconds than an NFS compile. This overhead is the slight delay induced by
prex‘s checking the gcc binary for migratability, which was done at least 432
times, once for each .c source code file, during the course of the compile. Addi-
tional checks were made of the make binary, and the utilities that make uses, such
as ld and ar.

CPU Usage - PANTS Default
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Figure 5: CPU Usage: PANTS default
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Disk Usage - PANTS Default
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Figure 6: Disk Usage: PANTS default

The next evaluations were with PANTS running using the default load metrics. Spe-
cifically, as noted in section 2.1, the CPU metric was the only one being used and the
threshold was set at 95%.  As shown in Figure 5, the CPU usage during a compile
rarely goes above 95%, and only at these times are process migrated.  This lack of
migration yields no throughput increase or load distribution throughout the cluster.  In
Figure 6, it is clear that the disk is being heavily loaded.  In addition to the disk usage,
the memory is being loaded and there are also a large number of context switches and
interrupts generated during the compilation.
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Figure 6: Cluster CPU Load Average

Using our new load metrics and policy the compile time is dramatically decreased be-
cause of load distribution.  Figures 6-10 show a system level perspective of the results
with our new metrics and policies. The figures compare the average CPU usage, I/O,
memory, and context switch load using the PANTS default policy and the new policy
and metrics we created.  In these figures, the standard deviation is decreased consid-
erably, and the maximum and minimum values are brought closer to the average, il-
lustrating better load sharing.
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Figure 11:  Summary of Linux Kernel Compilation Results

Several metrics show interesting behavior:  the I/O and memory load average went
down using our new policy.  This may seem counter intuitive, but can easily be ex-
plained by the fact that some machines in the cluster have more RAM then others and
so do not have to use swap space or have few page faults.  There still remains some
amount of variance in the load between different machines in the cluster using our
new policy.  This is due to the fact that there is some load that cannot be migrated
from the originating node.  This load includes that of running the make program and
managing over 400 rsh remote executions.

In Figure 11, we compare the average time it took for each compilation method.
From a user's perspective, our new metrics and polices result in a 54% reduction in
the compilation time over the default policy, which just measured the load on the
CPU.  Furthermore, we decrease the time of the local disk compilation by 56%, and
the NFS compilation by 56%.
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5. Conclusions

Distributed computation has grown in popularity recently, earning attention from sci-
entists and corporations.  Accompanied with the dramatic growth of Linux, Beowulf
clusters provide a cost effective solution to today's large computation needs.  PANTS
and its use of transparent load sharing takes another step in the direction of ever more
powerful cluster technology.  PANTS is designed to run on any system running a
modern distribution of Linux regardless of the underlying hardware architecture.
Transparency, reduced busy node communication, and fault tolerance make PANTS a
viable solution for more effective use of a Beowulf cluster.

In this work we designed and implemented ways to measure additional types of load
beyond that of typical CPU utilization and incorporated their use into the PANTS load
sharing algorithm.  We developed micro benchmarks to test and verify our new load
metrics and to gain insight into how the system was behaving when loaded.  Finally,
we used a real world application as a benchmark, the performance of a distributed
compilation of the Linux kernel with PANTS.

When using the default PANTS load metric and policy, only examining CPU load, we
found that there was very little process migration. Subsequently, there was no in-
crease in throughput and no sharing of load throughout the cluster.  Using our new
metrics and policy we achieve better throughput, decreasing the length of the compile
by more than 50% from the default policy. From a system level perspective, we low-
ered the standard deviation from the average cluster-wide load for each of the metrics
considerably sharing load very well amongst the nodes in the cluster.  Including I/O,
memory, context switches, and interrupt load metrics has many benefits when used in
load distribution.

6. Future Work

When PANTS makes a decision to run a process on a particular node the job runs to
completion.  A job may end up running on a loaded node perhaps because no other
nodes were free or a bad load distribution decision was made, preemptive migration
allows this situation to be corrected.  Preemptive migration is the term used to de-
scribe the act of stopping a process that has started execution, moving it to another
machine, and resuming the execution.  Some load distribution algorithms make use of
preemptive migration to allow overloaded nodes to send processes currently running
to other nodes.  The primary advantage of this preemptive migration is that if a job is
running on a busy node while another is less loaded the load can still be distributed.
PANTS may benefit from using preemptive migration, but we have not yet imple-
mented this feature because most migration techniques and implementations are ar-
chitecture bound.  Finally, further analysis is required to compare the relative cost of
migration using preemption and non-preemption.

Including a network component of the load metrics may be beneficial to PANTS.  The
current metrics may overlap network usage somewhat, as context switches and inter-
rupts are caused by network activity.  This metric could be as simple as parsing in-
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formation retrieved by the ifconfig command, or a slightly more elegant approach
by making use of the /proc/net information.  Perhaps the most benefit can be
found in the use of adaptive thresholds.  Currently, the thresholds used by PANTS are
static, although they can be modified without restarting the daemon.  If the thresholds
were adaptive PANTS might be able to respond more appropriately when the load on
the system fluctuates.  The current work in progress is to investigate adaptive thresh-
olds along with some heuristic based load distribution to send processes to nodes that
perform better at processing a particular type of workload.
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