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Abstract

This paper seeks to identify improvements that reduce

audioconference CPU load. A major contribution is the

comparison of the performance benefits of five potential

audioconference improvements: faster CPU, faster com-

munication, better compression, Digital Signal Processing

(DSP) hardware, and Silence Deletion. To compare audio-

conference CPU load, we develop a model that identifies

components of a typical audioconference. We hypothesize

that silence deletion will improve the scalability of audio

more than any of the above four improvements. We param-

eterize our model with measurements of the actual compo-

nent performance. Overall, we find audioconference CPU

loads with silence deletion scale better than audioconfer-

ence CPU loads with any of the other four improvements.

Techniques based on DSP hardware alone do not scale as

well as silence deletion alone. However, DSP based

silence deletion and compression together scale better

than any other technique. These results hold even when

using compression and even for ten times faster proces-

sors, networks and DSP hardware.

1  Introduction

Today, there are many computer applications that use

audio. Electronic mail includes audio along with text

[Thom85]. Multimedia editors enhance text documents

with audio annotations [Cave90]. Internet Talk Radio

spreads audio across the world. Movies, containing audio

in addition to video, are starting to grace consoles every-

where [Rowe92]. And audioconferences synchronously

link workstations [Ried93, Mash93, Schu92].

Why are audioconferences becoming so important?

Hearing is one of our is one of our strongest senses. Thus,

sound is one of our most powerful forms of communica-

tion. If we wish to use the flexibility and power of comput-

ers to support communication and collaboration, then they

must support audio data.

Audioconferences frequently support other collabora-

tive tasks that are themselves CPU-intensive. Therefore,

efficient CPU use is essential. Our goal is to identify

improvements that reduce audioconference CPU load. The

major contribution of this paper is an experimentally-

based comparison of the CPU performance benefits of five

potential audioconference improvements:

• Faster CPU. How much do faster processors benefit

audioconference CPU load?

• Faster communication. How much do more efficient

network protocols and faster network speeds benefit

audioconference CPU load?

• Better compression. How much do improved compres-

sion techniques benefit audioconference CPU load?

• Hardware support. How much does Digital Signal Pro-

cessing (DSP) hardware reduce audioconference CPU

load?

• Silence deletion. How much does removing the silent

parts from a conversation reduce audioconference CPU

load?

We focus particularly on a comparison of the first four

areas to silence deletion. Silence deletion detects silence,

only transmitting the sound of the person who is presently

speaking. Although silence deletion algorithms take addi-

tional processing time, they may yield a net savings by

reducing the amount of data that must be communicated.

Therefore, we hypothesize silence deletion will improve

the scalability of audioconferences more than any of the

other four improvements.

Our analysis can help direct research in networks, mul-

timedia and operating systems to techniques that will have

a significant impact on audioconferences. In addition, our

approach may generalize to video and other forms of mul-

timedia.

Section 2 of this paper describes related work in dis-

tributed multimedia. Section 3 introduces our model of

audioconference CPU load. Section 4 details micro experi-

ments that measure the CPU load of each component. Sec-

tion 5 describes macro experiments that test the accuracy

of the predictions based on the micro experiments. Section

6 analyzes the experiments and projects the results to

future environments. And Section 7 summarizes our con-

clusions and future work.

Silence Is Golden? - The Effects of Silence Deletion on the CPU Load of an Audio

Conference

Mark Claypool, claypool@cs.umn.edu

John Riedl, riedl@cs.umn.edu

Department of Computer Science, University of Minnesota

+1 612-624-7372



2

2  Related work

2.1  Audioconference experiments
There has been a variety of experimental audioconfer-

ence work. Casner and Deering perform a wide-area net-

work audioconference using UDP multicast [Casn92].

They find disabling silence suppression increases average

bandwidth and eliminates the gaps between packets that

give routers a chance to empty their queues. They recog-

nize that experimenters need better tools to measure audi-

oconference performance. Our model may be one of the

tools they seek. They conjecture that ubiquitous multicast

routing support can greatly reduce network and CPU

loads. In addition, they described several on-going experi-

ments in which readers can participate.

Terek and Pasquale implement an audioconference

with an Xwindow server [Tere91]. They describe the

structure and performance of their system. In particular,

they describe a strategy for dealing with real-time guaran-

tees.

Gonsalves predicts that without software or protocol

overhead, a three Mbps Ethernet could support 40 simulta-

neous 2-way 64Kbps conversations [Gons83]. Thus, if our

results show what is needed to enable the CPUs to handle

the conversation loads, the networks can.

Riedl, Mashayekhi, Schnepf, Frankowski and Clay-

pool measure network loads of audioconferences using

silence deletion [Ried93]. They find silence deletion sig-

nificantly reduces network loads. We analyze how silence

deletion affects CPU loads.

2.2  Measuring CPU load
Jeffay, Stone and Smith discuss a real-time kernel

designed for the support of multi-media applications

[Jeff92]. They achieve some real-time guarantees through

utilizing close to eighty percent of the CPU. Our results

may indicate methods that can trim audioconference CPU

loads, while achieving the same guarantees.

Lazowska parameterizes queuing network perfor-

mance models to assess the alternatives for diskless work-

stations [Lazo86]. He uses a counter process to measure

CPU loads. We use a similar process (see Section 4.1 of

the present document).

Riedl, Mashayekhi, Schnepf, Frankowski and Clay-

pool measure the CPU load of an audio conference with

no floor control and no silence deletion using a counter

process [Ried93]. They show the CPU loads quickly

become prohibitive under increasingly large audioconfer-

ences.   We provide further analysis and a component

breakdown of the CPU load.

2.3  Analyzing UDP
Cabrera measures throughput for UDP and TCP for

connected Sun workstations [Cabr88]. In analyzing the

call-stack for UDP in detail, he determines the checksum

at the receiving end takes the most CPU time; this check-

sum may not be needed for adequate quality sound.

Kay and Pasquale measure delay at the CPU end for

sending UDP packets for a DEC 5000 [Kay93]. They find

checksumming and copying dominate the processing time

for high throughput applications.

Bhargava, Mueller and Riedl, divide communications

delay in Sun’s implementation of UDP/IP into categories

such as buffer copying, context switching, protocol layer-

ing, internet address translation, and checksum implemen-

tation [Bhar91]. They find socket layering and connection

are the most expensive categories. We use their analysis of

their kernel buffering techniques in defining our experi-

ment.

2.4  Using silence deletion
Rabiner views voice as a measure of energy and pre-

sents an algorithm for discovering the endpoints of words

[Rabi75]. Henning Schulzrinne implements an audiocon-

ferencer with silence deletion [Schu92]. We adapt and

build upon their view of voice and silence deletion algo-

rithms.

2.5  Digital audio compression
Pan surveys techniques used to compress digital audio

signals [Pan93]. He discusses µlaw, Adaptive Differential

Pulse Code Modulation (ADPCM) and Motion Picture

Experts Group (MPEG), compression techniques which

are not specifically tuned to human voice. Gerson and Jas-

iuk describes techniques to improve performance of Code

Excited Linear Prediction (CELP) Type coders, compres-

sion techniques tuned to human voice [Kroo92]. We pre-

dict the CPU load of audioconferences using such

compression techniques.

3  Model

Figure 1 depicts our model of an audioconference CPU

load. Our model is based on the components of reading,

silence deletion, sending, receiving, mixing and writing.

Reading is the CPU load for taking the digitized sound

samples from the audio device. Silence deletion is the

CPU load for applying one of the deletion algorithms to

the read sample. Sending is the CPU load for packetizing

the sample and sending it to all other stations. Receiving is

   Read                   Silence         Send               Receive Mix  Write

+ + + +

(microphone) (speaker)

FIGURE 1. Our model of audioconference CPU load, that
includes reading from the audio device, silence deletion, sending
and receiving packets, mixing sound packets that should be
played simultaneously and writing to the audio device.

+

Deletion
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the CPU load for processing all incoming packetized sam-

ples. Mixing is the CPU load for combining sound packets

that arrive simultaneously. Writing is the CPU load for

delivering the incoming samples to the audio device. Our

model asserts we can predict audioconference CPU load

from the sum of the above components.

Silence deletion removes silent parts from speech.

Experiments have shown that silence deletion substan-

tially reduces network load for two reasons: [Ried93]

• In a typical N person conversation, at any given time

one person is talking and N-1 are silent. With silence

deletion, only the talking person’s packets are sent;

each workstation must send only 1/N of the packets on

average. Without silence deletion, all packets are sent;

each workstation sends N of the packets. A linear

increase in participants results an N2 increase in net-

work load.

• Pilot tests suggest about 1/3 to 2/3 of the digitized

speech data can be identified as pauses between words

or sentences. Silence deletion may remove these

pauses.

Although silence deletion algorithms themselves take

additional processing time, they may yield a net savings in

total CPU load by decreasing the CPU costs of the com-

munication.

We consider four common silence deletion algorithms

[Clay93]:

1. HAM uses the energy in each byte (b[n]).

It removes chunks with enough consecutive byte ener-

gies below a threshold. HAM decreases a counter for

each byte with energy below the threshold. When the

counter reaches zero, the chunk is not sent on. Any

byte above the threshold resets the counter to a maxi-

mum value.

2. Exponential also uses the energy in each byte. It

removes all exponentially weighted byte energies that

are below a threshold. The most recent bytes are

weighted most heavily. Exponential decreases a

counter value according to the decay value. When the

counter drops below the threshold, the bytes are not

sent on. The decay determines the exponential change.

When decay is small, the counter fluctuates quickly.

When decay is large, the counter fluctuates slowly. Our

pilot tests indicate that this algorithm often yields poor

sound quality.

3. Absolute uses the average energy over many bytes to

determine silence.

e n( ) b n[ ]=

It removes all chunks with energy less than a threshold.

It is effective when signal-to-noise ratio is very high.

This may occur in a recording studio or with very high

fidelity magnetic tape. However, it is not practical in

real-world situations[Rabi75]. Pilot tests of our own

showed that this algorithm does, indeed, often yield

poor sound quality.

4. Differential uses the changes in energy of each byte.

All chunks with changes below a threshold are inter-

preted as silence. The algorithm keeps a counter of the

number of non-changes. If there are too few changes

(the counter gets higher than a threshold), then differ-

ential does not send the chunk on. When a change is

encountered, the counter is reset to zero.

4  Micro experiments

4.1  Design
Our micro experiments were designed to measure the

CPU load of audioconference components. We chose two

Sun workstations, the 20 Mhz SLC and the 40 Mhz IPX, to

test if the components of the audioconference scale with

processor speed.

We used a process that increments a double variable

in a tight loop to measure the CPU load of the individual

components. We did not use the Unix time command

because the reporting of per-process CPU consumption by

most operating systems is unreliable. Often, the system

gives an incorrect account of interrupt level processing and

fails to capture processor degradation from DMA

[Lazo93]. In our pilot tests, the counter process attributed

10 out of 200 seconds to sending packets, while the time

command only credited 0.3 seconds, a factor of 30 discrep-

ancy.

To obtain a baseline, we ran the counter process on a

bare machine. This gave us the CPU potential for the

machine. The difference in the bare count and the count

with another process is the process-induced load. To verify

that the counter process does indeed accurately report

loads of CPU bound processes with which it runs concur-

rently, we ran the counter process with 1, 2, 3 and 4 other

counter processes. We expect the counter value to be

(count on bare machine) × 1/(N+1), where N

is the number of other counters running. Figure 2 shows

the result of this experiment. The predicted values were

within the confidence intervals for the measured values.

To obtain the CPU load for each component of the

model, we ran the counter process in conjunction with a

P n( ) 1

size
( ) b i[ ]

i 1=

size

∑=

e n( )∆ b n[ ] b n 1−[ ]−=
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process for each of the components of the audioconfer-

ence: read, deletion, send, receive, mix and write (see

[Clay93] for the process descriptions).

4.2  Data collection
Since the counter process measurements are sensitive

to other processes, we performed the experiments on

machines in single user mode. In single user mode, the

CPU runs a bare minimum of system processes and no

other user processes.

We ran the counter process for 200 seconds to amortize

start-up costs. To determine the number 200, we ran the

counter process for increasing times and recorded the stan-

dard deviation of its counts. The standard deviations level

out just before 200. At this point, the standard deviation is

only 0.001% of the mean. Thus, we chose one 200 second

counter run as one iteration. Pilot tests indicated that five

iterations for each machine at each packet size were

needed to achieve reasonable confidence intervals.

The process we used to measure the deletion algorithm

was memory intensive to avoid I/O costs. In order to avoid

measuring unwanted paging, we recorded the total page

faults during the experiments.The number of page faults

during the deletion iterations is almost always three, which

we accepted as the baseline case. We decided to discard

cases that had more than three page-faults, as they incur

extra CPU load from paging. In our experimental runs,

this situation never occurred.

The sound chunk size and the threshold levels deter-

mine how the deletion algorithms perform. We fixed them

such that they deleted about 1/3 to 2/3 of live, audiocon-

ference speech (in accordance to the sound pilot tests men-

tioned above). We confirmed that the speech with the

sound deleted was still very understandable.

The kernel changes between large and small buffers at

various packet sizes has a direct influence on packet send-
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FIGURE 2. IPX loads with increasing counter processes. The
points are from 5 samples each with 95% confidence intervals.
The largest interval is 8% of the measure value. The curving
line is the predicted value.

ing and receiving times [Bhar91 and Clay93]. User mes-

sages are copied into buffers in kernel space. The kernel

may use one large buffer and one copy for certain mes-

sages, while it uses several smaller buffers and several

copies for a slightly smaller buffer. To avoid possible non-

linearities, we collected data on 515 to 2000 byte packets,

which we assume covers most audioconference packet

sizes.

4.3  Results
The 200 second counts on bare machines are shown in

Table 1.

 Figure 3 shows the line equations obtained from the

counter measurements for the deletion algorithms on the

IPX. We can obtain similar graphs for the SLC and for

other components of the model (See [Clay93]), but to

avoid redundancy we do not do so here.

TABLE 1. Bare Counts for SLC and IPX with a 95%

Confidence Interval (Indicated by the Left and Right

Endpoints).

Machine Bare Count Left Endpoint Right Endpoint

SLC 123924595 123920808 123928381

IPX 340539937 340204150 340875723

FIGURE 3. CPU time for deletion algorithms on the IPX. The
four deletion algorithms are shown for their time to process 300
seconds worth of sound. All points are shown with 95%
confidence intervals.
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Table 2 shows the values for the line equations for

each of the audioconference components for each machine

type.

They per-packet and per-byte terms above

pertain to the equations:

   Load(component) = per-packet + per-byte * bytes

The equations are the CPU costs for each component

of an audioconference from which we can project the cost

of a complete audioconference (see Section 5).

5  Macro experiments

5.1  Design
In order to test the ability of our model to predict audi-

oconference CPU loads, we measured the performance of

a simple audioconferencer, Speak. Speak is two person,

uses UDP, can employ any of the four deletion algorithms,

and has little extra user-interface overhead.

 We used Internet Talk Radio (ITR) files rather than

real conversants. This made our experiments more repro-

ducible and gave us a large conversation sample space

from which to chose. Since the ITR files have one person

speaking most of the time, the silence deletion algorithms

typically deleted only 10% of the packets. The actual

audio data used in these experiments does not matter,

since our model is parameterized by the amount of silence

deleted.

We did experiments on the five possible silence dele-

tion methods on the SLC and two such methods on the

IPX.   A shell script initiated a remote Speak process and a

local Speak process. One two hundred second conversa-

tion was one data point. We repeated each data point 5

times. We predict the load from the speak processes by

using the micro experiment results. From the conversation

length, the read size and the sample rate, we calculate the

total packets read. By profiling the sound files with the

deletion algorithms, we know the number and size of the

packets sent, received and written. Because sound only

TABLE 2. Values for SLC and IPX Line Fits. Units are in

milliseconds.

Operation

SLC

per-packet

SLC

per-byte

IPX

per-packet

IPX

per-byte

Read 0.810 0.0145 0.597 0.00169

Absolute 0.00 0.00302 0.000 0.000164

Differential 0.00 0.00563 0.000 0.00300

Exponential 0.00 0.0130 0.000 0.00489

Ham 0.00 0.00454 0.000 0.00245

Send 0.807 0.000194 0.210 0.000100

Receive 0.910 0.000129  0.187 0.000103

Mix 0.00 0.00546 0.000 0.00245

Write 1.26 0.0137 0.726 0.00103

arrives from one other Speak process, there is no mix com-

ponent.

5.2  Results
Table 3 shows the results of the seven macro-experi-

ments.

 The discrepancy in predicted and actual values may be

due to the unforeseen costs that occur when putting micro

components together. In most cases, the predicted values

are within 10% of the actual values. We therefore consider

the projected results presented in Section 6 to be signifi-

cant only if the differences are larger than 10%.

6  Analysis

The CPU loads in the macro experiments compared to

the CPU loads predicted by adding the components of the

micro experiments suggests that our model may be a rea-

sonable way to predict the CPU load of audioconferences.

It is difficult and expensive to run experiments with many

people on a large number of workstations. Instead, from

our micro experiments we extrapolate our results to con-

versations that have more silence and audioconferences

that have more participants. Furthermore, we adjust the

pieces of our model to compare the performance benefits

of four potential audioconference improvements: faster

CPU, faster communication, better compression, and Digi-

tal Signal Processing (DSP) hardware. We also compare

the benefits of better silence deletion algorithms.

All analysis can be done for both the SLC and IPX and

with any of the four silence deletion algorithms. To avoid

repetition, we do our extrapolations on one machine type

(IPX) with one deletion algorithm (Differential). We use

the fastest CPU we studied to improve the quality of our

extrapolations to even faster machines. Our results are

largely independent of the type of silence deletion.

6.1  Increasing participants
What happens when we have an increasing number of

audioconference participants? We can extrapolate the

TABLE 3. Predicted and Measured Loads from the Macro

Experiments with 95% Confidence Intervals (Indicated by Left

and Right Endpoints). Loads are in seconds. Maximum load is

200 seconds.

Machine Algorithm Predicted Actual

Left

Endpoint

Right

Endpoint

SLC Absolute 45.55 44.84 44.76 44.91

SLC Differential 54.92 49.02 48.93 49.11

SLC Exponential 54.08 50.00 49.91 50.09

SLC HAM 49.34 48.45 48.45 48.46

SLC None 49.92 46.49 46.44 46.55

IPX Differential 10.63 12.50 12.49 12.56

IPX None 6.96 8.81 8.78 8.85
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loads at each workstation to an N person audioconference.

The load depends upon the number of participants, the

total conversation time, the packet size, the percentage of

packets deleted and the percentage of sound removed from

the remaining packets. The load without silence deletion

does not have the deletion algorithm component. The load

with silence deletion does not have the mix component

since we assume only one person speaks at a time and the

deletion algorithm removes all sound of those who are not

speaking.

Figure 4 shows the predicted load for an audioconfer-

ence without silence deletion and an increasing number of

participants. The audioconference components are dis-

played, each line representing the sum of the particular

piece and the pieces below it. The total load is the value of

the line labeled write since it is the sum of all the com-

ponents. The communication components, send, receive

and mix, all increase as the number of participants

increases. The mix component increases the fastest,

accounting for approximately 70% of the CPU load with 8

participants.

Figure 5 shows the predicted load for an audioconfer-

ence with silence deletion and an increasing number of

participants. Again, the audioconference components are

all displayed. There is no mix component since we assume

only one participant is speaking at a time. The communi-

cation components are only approximately 2% of the total

load for all audioconferencing. The read and write from

the audio device account for about 50% of the audiocon-

ference load, which seems disproportionately high com-

pared to the communication components. The silence

deletion component is also large, accounting for just under

50% of the audioconference load. Section 6.3.4 investi-

gates the effects of reducing this component through soft-

ware optimization or DSP hardware.

Figure 6 shows the total loads with silence deletion

and the total loads without silence deletion. Here and in all

subsequent graphs, only the total loads are displayed. For

three or more participants, silence deletion reduces CPU

load compared to not using silence deletion.

6.2  Increasing silence
What happens when the conversation has more silence

in it? The amount of silence will vary, as conversation

characteristics such as speakers and topics change. The

percentage of bytes in packets after deletion has an incon-

sequential effect on CPU load because most cost is per-

packet [Bhar92], but the percentage of packets after dele-

tion may have a greater effect.

Figure 7 shows the result of our extrapolations to an

increasing amount of silence. For a two person audiocon-

ference, the CPU load without silence deletion is always

less than the load with silence deletion. Thus, for a two person audioconference, there is never a CPU benefit from

FIGURE 4. The IPX CPU load without silence deletion. The
graph reads from the bottom. Each piece is the sum of the
pieces below it. Thus, the total load is indicated by the write
piece at the top. The maximum load is 200 seconds.
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using silence deletion, even when 100% of the packets are

removed. This is because it takes less CPU time to send a

packet once than it does to remove silence from it. For 4

and 8 person audioconferences, the load without silence

deletion is always greater than the load with silence dele-

tion. Thus, for audioconferences of 3 or more, any silence

deletion results in a reduction in CPU load over no silence

deletion. The largest part of this effect is that there is only

one person speaking at a time, and even basic silence dele-

tion algorithms delete all of the speech of silent partici-

pants.

6.3  Potential audioconference improvements
We adjust the components of our model to compare the

performance benefits of four potential ways technology

could be used to improve audioconference performance:

faster CPU, faster communication, better compression,

and Digital Signal Processing (DSP) hardware.

6.3.1  Faster CPU

What happens when the processor becomes faster?

Faster processors decrease the per-byte times and the per-

packet times of all components. Figure 8 shows the effects

of faster processors for a 6-person audioconference.

Notice that even the conversations without silence dele-

tion use less than 5% of the CPU with an 8 times faster

processor. With a fast enough CPU, the load from audio-

conferences may be insignificant with or without silence

deletion. Similar results will hold for 4 to 8 participants.

6.3.2  Faster communication

What happens when the network protocols become

more efficient? A more efficient network protocol

decreases the amount of CPU time required to send and

receive the sound packets. Figure 9 shows the predicted

effect of an 8 times faster network protocol. Since the

CPU load of the network protocol is so slight, the audio-

FIGURE 7. Affect of percentage of packets removed on
conversations with silence deletion for 2, 4, and 8 participants.
For comparison, conversations without silence deletion are
plotted (horizontal lines).
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conference CPU load does not improve much despite a

significant decrease in network protocol load.

What happens when multicasting is used in place of

unicasting? With multicasting, only one send is required

for each sound packet regardless of the number of partici-

pants. Thus, the send component decrease by a factor of N-

1. However, the receive, mix and write components remain

unchanged. Figure 10 shows the predicted effect of multi-

casting on audioconferences with and without silence dele-

tion. Since the CPU load for sending packets is small

compared to the mix and write components, multicast

routing reduces CPU load only slightly.

6.3.3  Better compression

How do forms of compression other than silence dele-

tion affect audioconference CPU loads? Compression

reduces the packet size but not the number of packets. The

silence deletion algorithms we used are fairly simple. We
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assume they are a lower bound on the CPU complexity of

most compression and decompression algorithms. We esti-

mate the CPU load of compression from the CPU load of

silence deletion and use a range of values for the amount

audio is compressed. Audioconference loads with other

forms of compression will have full-sized packets for

reading and compressing, and reduced packets for send-

ing, receiving, mixing and writing. In addition, they will

have an additional uncompressing component.

Figure 11 shows the predicted effects of other forms of

compression. Only algorithms that compress sound bytes

by 70% or more perform better than silence deletion for

more than 4 people. It appears unlikely that compression

algorithms better than this can be expected to run in real-

time. Audioconference CPU load using compression

scales worse than audioconference CPU load using silence

deletion in every case.

FIGURE 10. Audioconference CPU load with and without
silence deletion for multicasting. The loads under unicasting
are shown for comparison. With silence deletion, the two lines
overlap. Maximum load is 200 seconds.
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FIGURE 11. The effects of other forms of compression on
audioconference CPU load. For comparison, CPU load with
silence deletion is displayed. The maximum load is 200 seconds.

6.3.4  Digital signal processing hardware

In Section 6.1, we observe that the silence deletion

component accounts for almost half the CPU load. A DSP

chip might completely remove the load of silence deletion

from the CPU. Such hardware silence deletion could be

available at the user level through memory mapping, per-

forming silence deletion at near-zero CPU cost. Or, the

chip could be in the kernel, removing silence before the

user makes the read call, reducing the number of bytes in

each read call. Figure 12 shows the predicted effects of the

two hardware silence deletion designs. Hardware silence

deletion always reduces CPU load compared to no silence

deletion. In addition, hardware silence deletion halves

CPU load compared to software silence deletion. There is

no significant difference between the two hardware dele-

tion implementations.

What happens when we have both compression and

silence deletion in hardware? DSP chips could completely

remove the load of silence deletion and compression from

the CPU. Since we observed that a zero-cost user level call

to the DSP or the DSP in the kernel perform similarly

(Figure 12), we only present data for the DSP in the ker-

nel. Figure 13 shows the CPU load for hardware silence

deletion and compression. Having both silence deletion

and compression in hardware decreases total CPU load by

60%.

In Section 6.1, we note that in conversations without

silence deletion the mixing component accounts for over

70% of the CPU load. Hardware mixing can be done with

a DSP chip or on a multi-channel audio-board. When mix-

ing is done in hardware, the CPU does not have to mix.

The CPU writes all incoming sound packets to the audio

device, so the load of writing then scales with the number

of participants. Figure 14 shows the predicted effects of

hardware mixing. Hardware mixing significantly reduces

FIGURE 12. Audioconference CPU load with silence deletion
done in hardware, compared with software and without silence
deletion. The two different hardware deletion designs, having a
zero-cost user level call, or having the hardware in the kernel,
are presented. The maximum load is 200 seconds.
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non-silence deletion audioconference CPU loads. How-

ever, such loads still increase rapidly with the number of

participants, becoming larger than the loads under silence

deletion at four or more people.

We observed in the micro experiments (section 4) that

the audio component appeared comparatively large. Mea-

surement of three classes of Suns’ audio devices show that

the audio device efficiency is improving disproportion-

ately to CPU speed (Figure 15). Perhaps the audio device

will eventually be made to read and write as efficiently as

sending and receiving packets (a 10 fold increase).

Figure 16 shows the CPU load for an 8 times faster audio

device. For audioconferences with silence deletion, a

faster audio device can reduce total Sun CPU load by

almost one-half.

6.3.5  Improved silence deletion algorithms

The above experiments and equations all used cases

with a deletion algorithm that removed only 15% of the

FIGURE 13. Audioconference CPU load with hardware silence
deletion and hardware compression. For comparison, software
and hardware silence deletion and software and hardware
compression are shown. All hardware implementations have
the DSP chip in the kernel. Maximum load is 200 seconds.
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FIGURE 14. Audioconference CPU load with packet
combining done in hardware compared with packet combining
done in software. The silence deletion conversations are
unaffected by hardware mixing. Maximum load is 200 seconds.
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with silence deletion

packets. Our pilot tests suggest that, theoretically, deletion

algorithms could remove as much as 60% of speech pack-

ets. Figure 17 shows the predicted effects of increasing the

amount of silence deleted from the speaker’s speech.

Improving the deletion algorithm to remove as much as

90% of the packets improves the CPU load by only

approximately 10%. The biggest reduction in load is in

removing the silence of the non-speakers; doing better

than that improves CPU load only a little.

7  Conclusions

Our goal was to identify improvements that reduce

audioconference CPU load. We developed a model for

audioconference CPU load and presented experimentally-

based analysis on the effects of improving each component

of the model.

FIGURE 15. Read times per byte for different classes of
machines. We would expect the slopes to scale according to the
20-25-40 Mhz clock speeds but they actually scale in a 20-48-
171 ratio. The improved performance on the IPC and IPX may
be due to better audio hardware. The dashed lines represent
extrapolations beyond the measured data.
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FIGURE 16. Effects of an 8 times faster audio device on CPU
loads. For comparison, loads under the current device are
shown. Maximum load is 200 seconds.
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Based on our analysis of individual components,

silence deletion appears to improve the scalability of audio

more than all other improvements. This result holds even

when using compression and even for ten times faster pro-

cessors, networks and Digital Signal Processing (DSP)

hardware. Further, the simple silence deletion algorithms

we studied achieve 90% of the potential benefit from

silence deletion for audioconference CPU load. Simple

silence deletion algorithms are sufficient because the big-

gest reduction in CPU load from silence deletion is in

removing the silence of the non-speakers which even the

basic algorithms do well.

Sending and receiving packets are already relatively

low-cost, so reducing the cost further has relatively low

benefit.With or without silence deletion, better network

protocols, faster networks and even multicasting reduce

load only slightly. Techniques based on DSP hardware

alone do not scale as well as silence deletion alone. How-

ever, DSP based silence deletion and compression together

scale better than any other technique. Silence deletion

done in a DSP chip can reduce CPU load by 50%. Com-

pression and silence deletion in a DSP chip can reduce

CPU load by an additional 30%.

There are important issues still to explore in the CPU

performance of multimedia on packet-switched networks,

including uses of audio other than audioconferences, total

CPU load of workstations and routers over wide-area net-

works and CPU load of videoconferences.

8  References
[Bhar91] Communication in the Raid Distributed Database Sys-

tem, Bharat Bhargava, Enrique Mafla, and John Riedl, Interna-
tional Journal on Computers and ISDN Systems, 21(1991).

[Cabr88] User-Process Communication Performance in Net-
works of Computers, Luis-Filipe Cabrera, Edward Hunter,

FIGURE 17. Audioconference CPU load with different
amounts of silence deleted. The 15% is based on a fairly poor
algorithm. 60% is the maximum observed during our pilot
tests. We consider 90% deletion to be a conservative upper
bound on silence deletion algorithms. The maximum load is
200 seconds.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

L
o
a
d
 
i
n
 
S
e
c
o
n
d
s
 
(
2
0
0
 
M
a
x
)

Number of Participants

deleted 15%
deleted 60%
deleted 90%

Michael J. Karels, and David A. Mosher, IEEE Transactions on
Software Engineering, Vol. 14, No. 1, January 1988.

[Casn92] First IETF Internet Audiocast, S. Casner, S. Deering,
ACM SIGCOMM, Computer Communication Review, pages
92-97, 1992.

[Cave90] A Visual Design for Collaborative Work: Columns for
Commenting and Annotation, Todd Cavalier, Ravinder Chand-
hok, James Morris, David Kaufer, and Chris Neuwirth, Pro-
ceedings of HICSS, IEEE 1990.

[Clay93] Silence is Golden? - The Effects of Silence Deletion on
the CPU Load of an Audioconference, Mark Claypool and John
Riedl, University of Minnesota Department of Computer Sci-
ence TR, July 1993.

[Gons83] Packet-Voice Communication on an Ethernet Local
Computer Network: an Experimental Study, Timothy A Gon-
salves, ACM 1983.

[Jeff92] Kernel support for live digital audio and video, K. Jef-
fay, D.L. Stone and F.D. Smith, Computer Communications,
Vol. 15, No. 6, pages 388-95, July/August 1992.

[Kay93] Measurement, Analysis, and Improvement of UDP/IP
Throughput for the DECstation 5000, Jonathan Kay and Joseph
Pasquale, University of California, San Diego, Department of
Computer Science TR 1993.

[Kroo92] A High-Quality Multirate Real-Time CELP Coder,
Peter Kroon and Kumar Swaminathan, IEEE Journal on
Selected Areas in Communications, Vol. 10, No. 5, June 1992.

[Lazo93] File Access Performance of Diskless Workstations,
Edward D. Lazowska, John Zahorjan, David R. Cheriton and
Willy Zwaenepoel, ACM Transactions on Computer Systems,
Vol 4, No. 3, p. 238-268, August 1986.

[Mash93] Distributed Collaborative Software Inspection, Vahid
Mashayekhi, Janet Drake, Wei-Tek Tsai, and John Riedl, IEEE
Software, p. 66-75, September 1993.

[Pan93] Digital Audio Compression, Davis Yen Pan, Digital
Technical Journal, Vol. 5, No. 2, p. 28-40, Spring 1993.

[Rabi75] An Algorithm for Determining the Endpoints of Isolated
Utterances, L. R. Rabiner and M. R. Sambur, The Bell System
Technical Journal February 1975.

[Ried93] SuiteSound: A System for Distributed Collaborative
Multimedia, John Riedl, Vahid Mashayekhi, James Schnepf,
Mark Claypool, and Dan Frankowski, IEEE Transactions on
Knowledge and Data Engineering, August 1993.

[Rowe92] A Continuous Media Player, Lawrence A. Rowe and
Brian C. Smith, Proc. 3rd Int. Workshop on Network and OS
Support for Digital Audio and Video, November 1992.

[Schu92] Voice Communication Across the Internet: A Network
Voice Terminal, Henning Schulzrinne, University of Massachu-
setts Department of Electrical Engineering, August 6, 1992.
Nevot is available via anonymous ftp.

[Tere91] Experiences with Audio Conferencing Using the X Win-
dow System, UNIX, and TCP/IP, R. Terek and J. Pasquale,
USENIX, Summer 1991, pages 405-417.

[Thom85] Diamond: A Multimedia Message System Built on a
Distributed Architecture, Robert H. Thomas, Harry C. Frisked,
Terrence R. Crowley, Richard W. Schaaf, Raymond S. Tomlin-
son, Virginia M. Travers and George G. Robertson, IEEE Com-
puter, December 1985.


