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Abstract—Understanding how new TCP congestion control
algorithms interact with the default TCP Cubic over a wide-range
of network conditions is important for moving congestion control
research forward. Unfortunately, lacking are studies over actual
satellite Internet networks where high latencies pose challenges to
TCP performance. This paper presents results from experiments
over a commercial satellite Internet link assessing TCP congestion
control algorithm performance for Cubic when competing with
algorithms using four different approaches: loss-based (Cubic),
bandwidth-estimation based (BBR), utility function-based (PCC)
and satellite optimized (Hybla). Analysis shows: 1) the default
Cubic algorithms are fair to each other; 2) Cubic dominates PCC
during steady state; 3) Hybla dominates Cubic during start-up;
and 4) BBR dominates Cubic during both start-up and steady
state.

I. INTRODUCTION

TCP congestion control algorithms are critical for many

network links and most Internet connections in order to

achieve high utilization while avoiding network overload.

While TCP has been the dominant Internet transport protocol

for some time [1], the congestion control algorithms deployed

by TCP have evolved. Currently, TCP Cubic [2] is the default

congestion control algorithm for most major operating systems

(e.g., in Linux as of 2006, Apple MacOS as of 2014, and

Microsoft Windows as of 2016), but there are dozens of

alternatives proposed to improve performance. However, many

congestion control algorithms are designed and developed

without considering their performance alongside other con-

gestion control algorithms – of particular importance is how

new algorithms contend with TCP Cubic over the wide-range

of network conditions in use.

Our specific interests are for satellite Internet networks, an

essential part of modern network infrastructures given their

ubiquitous network connectivity for remote areas and espe-

cially in emergencies when traditional (i.e., wired) connections

may not be available. The number of satellites in orbit is

over 2100, a 67% increase from 2014 to 2019 [3], and recent

research has improved satellite transmission capacities more

than 20x, to a total planned capacity for geostationary satellites

of over 5 Tb/s. While throughput gains for satellite Internet are

promising, satellite latencies remain a challenge. The physics

involved for round-trip time Internet communication between

terrestrial hosts using a geostationary satellite accounts for

about 550 milliseconds of latency at a minimum [4].

Despite their importance, there are few published studies

measuring network performance over actual satellite Internet

networks [5], with most studies just using either simulation [6]

or emulation with satellite parameters [7], [8]. While our previ-

ous work has assessed TCP congestion control in isolation [9],

what is needed to advance congestion control algorithm re-

search are studies of the interaction between TCP congestion

control algorithms over satellite Internet, particularly alternate

algorithms competing for bandwidth with TCP Cubic.

This paper presents results from experiments that measure

the performance of TCP congestion control algorithms –

default loss-based (Cubic [2]), bandwidth estimation-based

(BBR [10]), utility function-based (PCC [8]), and satellite-

optimized (Hybla [11]) – over a commercial satellite Internet

network. We consider the aforementioned four algorithms

(Cubic, BBR, PCC and Hybla) competing with TCP Cu-

bic, a common network default. The network testbed and

experiments are done over the Internet but designed to be

as comparable across runs as possible by interlacing runs of

each protocol serially to minimize temporal differences and by

doing 10 bulk downloads for each test condition to provide for

a large sample.

Analysis of the results shows Cubic is fair when competing

with another Cubic flow over our satellite Internet link, equally

sharing the network in all phases of a download. In contrast,

BBR dominates Cubic owing to BBR’s disregard for packet

losses that restrict Cubic’s throughput. In turn, Cubic domi-

nates PCC, likely because the latter reduces data rates with

latency. Hybla dominates Cubic in the start-up phase since it

more quickly ramps up data rates with high latency, but is

fair during steady state. Overall, the BBR-Cubic throughput

differences are the largest (about a 100 Mb/s difference out of

120 Mb/s total), with the Hybla-Cubic start-up differences a

close second (about 80 Mb/s out of 120 Mb/s).

The rest of this report is organized as follows: Section II

describes research related to this work, Section III describes

our testbed and experimental methodology, Section IV an-

alyzes our experiment data, and Section V summarizes our

conclusions and suggests possible future work.

II. RELATED WORK

This section describes work related to our paper, including

TCP congestion control (Section II-A), comparisons of TCP



congestion control algorithms (Section II-B), and TCP perfor-

mance over satellite networks (Section II-C).

A. TCP Congestion Control

There have been numerous proposals for improvements to

TCP’s congestion control algorithm since its inception. This

section highlights a few of the papers most relevant to our

work, presented in chronological order.

Caini and Firrincielli [11] propose TCP Hybla to overcome

the limitations traditional TCP flows have when running over

high-latency links (e.g., a satellite). TCP Hybla modifies the

standard congestion window increase with: a) an extension to

the “additive increase”; b) adoption of the SACK option and

timestamps [12], which help in the presence of loss, and c)

using packet spacing to reduce transmission burstiness. The

slow start (SS) and congestion avoidance (CA) algorithms for

Hybla are:

SS : cwnd = cwnd + 2ρ − 1 (1)

CA : cwnd = cwnd+
ρ2

cwnd
(2)

ρ =
RTT

RTT0

(3)

where RTT0 is typically fixed at a “wired” round-trip time

of 0.025 seconds. Hybla is available for Linux as of kernel

2.6.11 (in 2005).

Ha et al. [2] develop TCP Cubic as an incremental improve-

ment to earlier congestion control algorithms. Cubic is less

aggressive than previous TCP congestion control algorithms

in most steady-state cases, but can probe for more bandwidth

quickly when needed. Cubic’s window size is dependent only

on the last congestion event, providing for more fairness to

flows that share a bottleneck but have different round-trip

times. TCP Cubic has been the default in Linux as of kernel

2.6.19 (in 2007), Windows 10.1709 Fall Creator’s Update (in

2017), and Windows Server 2016 1709 update (in 2017).

Cardwell et al. [10] develop TCP Bottleneck Bandwidth

and Round-trip time (BBR) as an alternative to Cubic. BBR

uses the maximum bandwidth and minimum round-trip time

observed over a recent time window to build a model of the

network and set the congestion window size (up to twice the

bandwidth-delay product). BBR has been deployed by Google

servers since at least 2017 and is available for Linux TCP since

Linux kernel 4.9 (end of 2016).

Dong et al. [8] propose TCP PCC that continuously observes

performance based on measurements in the form of mini

“experiments.” Different actions taken in these experiments

are compared using a utility function, adopting the rate that

has the best performance. The authors compare PCC against

other TCP congestion control algorithms, including Cubic and

Hybla, and emulate a satellite network based on parameters

from a satellite Internet system. PCC is not generally avail-

able for Linux, but we were able to obtain a Linux-based

implementation from Compira Labs.1

1https://www.compiralabs.com/

B. Comparison of Congestion Control Algorithms

Cao et al. [13] analyze measurement results of BBR and

Cubic over a range of different network conditions. They

produce heat maps and a decision tree that identifies conditions

which show performance benefits from BBR over using Cubic.

They find it is the relative difference between the bottleneck

buffer size and bandwidth-delay product that dictates when

BBR performs well.

Ware et al. [14] model how BBR interacts with loss-based

congestion control protocols (e.g., TCP Cubic). Their validated

model shows BBR becomes window-limited by its in-flight

cap which then determines BBR’s bandwidth consumption.

Their models allow for predictions of BBR’s throughput when

competing with Cubic with less than a 10% error.

Turkovic et al. [15] study the interactions between con-

gestion control algorithms. They measure performance in a

network testbed using a “representative” algorithm from three

main groups of TCP congestion control – loss-based (TCP

Cubic), delay-based (TCP Vegas [16]) and hybrid (TCP BBR)

– using 2 flows with combinations of protocols competing with

each other. They also do some evaluation of QUIC [17] as an

alternative transport protocol to TCP. They observe bandwidth

fairness issues, except for Vegas and BBR, and find BBR is

sensitive to even small changes in round-trip time.

C. TCP over Satellite Networks

Obata et al. [5] evaluate TCP performance over actual (not

emulated, as is typical) satellite networks. Specifically, they

compare a satellite-oriented TCP congestion control algorithm

(STAR) with TCP NewReno and TCP Hybla. Experiments

with the Wideband InterNetworking Engineering test and

Demonstration Satellite (WINDS) system show throughputs

around 26 Mb/s and round-trip times around 860 milliseconds.

Both TCP STAR and TCP Hybla have better throughputs over

the satellite links than TCP NewReno.

Wang et al. [18] provide a preliminary performance evalu-

ation of QUIC with BBR on a network testbed that emulates

a satellite network (capacities 1 Mb/s and 10 Mb/s, RTTs

200, 400 and 1000 ms, and packet loss rates up to 20%).

Their results confirm QUIC with BBR has some throughput

improvements compared with TCP Cubic for their emulated

satellite network.

Utsumi et al. [7] develop an analytic model for TCP Hybla

for steady-state throughput and latency over satellite links.

They verify the accuracy of their model with simulated and

emulated satellite links (capacity 8 Mb/s, RTT 550 ms, and

packet loss rates up to 2%). Their analysis shows substantial

improvements to throughput over that of TCP Reno for loss

rates above 0.0001%

Our work extends the above with the study of interactions

between 4 congestion control algorithms – Cubic, BBR, Hybla

and PCC – on an actual, commercial satellite Internet network.

III. METHODOLOGY

In order to evaluate competition between TCP congestion

control algorithms over a satellite Internet link, we use the



Fig. 1. Satellite measurement testbed.

following methodology: setup a testbed (Section III-A), bulk-

download data using each congestion control algorithm versus

default TCP Cubic (Section III-B), and then analyze the results

(Section IV).

A. Testbed

We set up a satellite link and configure our clients and

servers so as to allow for repeated tests. Our setup is designed

to enable comparative performance measurements by keeping

all conditions the same across runs as much as possible, except

for the change in TCP congestion control algorithm.

Our testbed is depicted in Figure 1. The client is a Linux PC

with an Intel i7-1065G7 CPU @ 1.30GHz and 32 GB RAM.

There are two servers, the first configured to use the default

TCP Cubic and the second configured to use one of: TCP

Cubic, TCP BBR, TCP Hybla or TCP PCC. Each server has

an Intel Ken E312xx CPU @ 2.5 GHz and 32 GB RAM. The

servers and client all run Ubuntu 18.04.4 LTS, Linux kernel

version 4.15.0. The servers connect to the WPI LAN via Gb/s

Ethernet. Our university (WPI) campus network is connected

to the Internet via several 10 Gb/s links, all throttled to 1 Gb/s.

The client connects to a Viasat satellite terminal (with

a modem and router) via a Gb/s Ethernet connection. The

terminal communicates through a Ka-band outdoor antenna

(RF amplifier, up/down converter, reflector and feed) through

the Viasat 2 satellite2 to the larger Ka-band gateway antenna.

The terminal supports adaptive coding and modulation using

16-APK, 8 PSK, and QPSK (forward) at 10 to 52 MSym/s

and 8PSK, QPSK and BPSK (return) at 0.625 to 20 MSym/s.

The connected Viasat service plan provides a peak data rate

of 144 Mb/s. Given minimum satellite round-trip times and

the peak data rate, the bandwidth-delay product (BDP) of our

satellite link is approximately 140 Mb/sec × 0.6 sec = 10.5

MBytes.

The gateway does per-client queue management for traffic

destined for the client, where the queue can grow up to

36 MBytes allowing a maximum queuing delay of about 2

seconds at the peak data rate. Queue lengths are controlled

by Active Queue Management (AQM) that starts to randomly

2https://en.wikipedia.org/wiki/ViaSat-2

drop incoming packets when the queue grows over half of the

limit (i.e., 18 MBytes).

Wireshark captures all packet header data on each server

and the client.

The performance enhancing proxy (PEP) that Viasat deploys

by default is disabled for all experiments in order to assess the

performance of the TCP congestion control algorithms and not

the specific PEP implementation.

B. Downloads

We compare the performance of the four congestion control

algorithms (Cubic, BBR (version 1), PCC and Hybla) compet-

ing with the default TCP Cubic by using bulk-downloads via

iperf3 (v3.3.1) for each flow. Cubic, BBR and Hybla are

used without further configuration. PCC is configured to use

the Vivace-Latency utility function [19].

For all hosts, the default TCP buffer settings are changed on

both the server and client so that flows are not flow-controlled

and instead are governed by TCP’s congestion window. These

include setting tcp_mem, tcp_wmem and tcp_rmem to 60

MBytes, all well above the BDP.

The client initiates connections to both servers via iperf,

starting simultaneous downloads for 120 seconds. After the

downloads complete, the client continues to the next test

condition. After cycling through each condition, the client

pauses for 1 minute. The cycle runs a total of 10 times –

thus, providing 10 network traces of 2 minutes for each test

condition pair over the satellite link. We analyze results from

a weekday in May 2021.

Our previous work [20] (focused on performance of non-

competing flows) assessed baseline performance for the link

(i.e., without any added traffic) and shows the vast majority

(99%) of round-trip times are from 560 and 625 milliseconds

(median 597 ms, mean 597.5 ms, standard deviation 16.9 ms),

and average packet loss rates are about 0.05%, with most of

these (77%) single-packet losses.

IV. ANALYSIS

This section first presents comparative TCP download per-

formance for a single TCP Cubic flow competing with an-

other flow consider throughput, delay (round-trip time), and

loss (retransmissions) [21]. We summarize with fairness and

throughput differences.

A. Cubic versus Cubic

We start with TCP Cubic competing with TCP Cubic as

a baseline for comparative performance. Cubic is the default

congestion control algorithm in Linux and Windows (see

Section II-A), and infers that segments needing retransmission

are lost and a signal of congestion.

Figure 2 depicts the results. The stacked graphs are aligned

temporally on the x-axis based on the time since the session

started. From the top-down, the graphs are throughput, round-

trip time, congestion window (cwnd) and retransmission per-

cent. Each line is the mean across 10 runs, computed once per

3https://software.es.net/iperf/



second, with the shading showing 95% confidence intervals

around the means.

Fig. 2. Cubic versus Cubic

From the graphs, both Cubic throughputs closely follow

the same pattern through the first 20 seconds whereupon the

second TCP flow (orange) gets somewhat less throughput on

average until about 60 seconds in when both flows again

get about the same throughput. At all times, the confidence

intervals overlap significantly. Both flows experience the same

round-trip times since they have the same bottleneck, with

times around 0.7 seconds but with peaks around 1 second in

some cases. After start-up, the congestion windows are each

about 1/2 the BDP – about 5 MBytes. Retransmission rates

are negligible.

B. Cubic versus BBR

In contrast to Cubic, BBR – widely deployed by Google

servers and an option for QUIC [22] – uses an estimate of the

available bandwidth and round-trip time to determine the size

of the congestion window, ignoring packet losses. Given the

BDP of about 10.5 MBytes, but a queue limit only of 1.5x this,

our previous work [23] would estimate TCP BRR would get

considerably more throughput than a competing TCP Cubic.

Figure 3 depicts this scenario. The graphs are as for Figure 2,

but here the orange lines represent BBR.

From the graphs, BBR dominates throughput from 15

seconds on, getting 10x more bandwidth. This is reflected

in the CWND growth. Round-trip times are fairly high for

both, ranging from around 0.8 to 1.2 seconds, suggesting

considerable queuing at the bottleneck. Cubic’s low throughput

is likely due to its response to intermittent loss, evidenced by

the retransmission spikes in the bottom graph.

Fig. 3. Cubic versus BBR

Note the widths of the BBR confidence intervals suggest

considerable variation in bitrates over time, but this is mostly

due to the timing across runs, when BBR probes for minimal

round-trip times by drastically reducing bitrates for a few

round-trip times [10].

During start-up, Cubic and BBR appear to share the bot-

tleneck equally with average throughputs not diverging until

about 15 seconds from the start.

C. Cubic versus PCC

PCC deploys a utility function to deciding the sending rate

based on throughput, loss and round-trip time. Figure 4 shows

TCP Cubic versus TCP PCC, with graphs as for Figure 2 and

the orange lines representing PCC.

After starting up, Cubic consistently gets about 2x more

throughput than PCC, reflected in the congestion window val-

ues, too. These differences may be because PCC is prioritizing

low delay, so reduces its rate, even though the queue is shared

by both flows and Cubic does not consider delays. Round-

times are consistently around 0.9 seconds, but rise to as high

as 1.3 seconds.

During start-up, Cubic and PCC appear to share the bot-

tleneck equally with average throughputs not diverging until

about 15 seconds from the start.

Note the widths of the confidence intervals for PCC, sug-

gesting considerable variation in bitrates from run to run.



Fig. 4. Cubic versus PCC

D. Cubic versus Hybla

Hybla is a latency-optimized version of TCP Reno that is

tuned to high-latency conditions (e.g., satellite links), adjusting

the congestion window size based on the measured round-

trip time compared to a baseline (0.25 seconds by default).

Figure 5 shows TCP Cubic versus TCP Hybla, with graphs as

for Figure 2 and the orange lines representing Hybla.

From the graphs, Hybla dominates throughput versus Cubic

for the first 70 seconds of the download. From time 80 to

120 seconds, however, throughputs are fairly equal. Round-

trip times are relatively low compared to the Cubic vs. Cubic

baseline, but show periods of steady increase from 0.6 seconds

to just over a second. The initial start-up phase for Hybla

causes considerable retransmissions and round-trip times over

2 seconds. After that, retransmissions are minimal for both

flows.

E. Cubic without Hystart

Our preliminary evaluation [24] has shown Cubic with

Hystart [25] enabled (the default for all TCP connections in

Linux since about 2010) can cause TCP over a satellite Internet

link to exit slow start prematurely before the congestion

window has a chance to reach the approximate maximum. We

evaluate how TCP Cubic with Hystart enabled competes with

TCP Cubic with Hystart disabled.4

Figure 6 shows the same scenario as Figure 2, but the orange

flow is TCP Cubic with Hystart off. From the graphs, the

4Disabled via: echo 0 > /sys/module/tcp cubic/parameters/hystart

Fig. 5. Cubic versus Hybla

flow with Hystart off gets far more throughput during start-

up, with this advantage persisting until around 45 seconds

in whereupon the flows have comparable throughputs. This

difference is likely because Hystart causes Cubic to exit slow

start prematurely before the appropriate congestion window

is reached – the ideal congestion window should be about 5

MBytes for each flow based on the bandwidth-delay product.

The higher data rates for Hystart off also cause high round-

trip times until about 15 seconds in, but then fairly steady

round-trip times around 0.7 seconds.

F. Summary

As a summary for performance, we computing Jain’s fair-

ness index [26], one of the most widely used metrics for

measuring the fairness of system resources allocation. For two

flows with throughputs x1 and x2:

f(x1, x2) =
(x1 + x2)

2

2(x2

1
+ x2

2
)

(4)

Jain’s fairness ranges from 1

2
(most unfair) to 1 (most fair).

Since TCP congestion control includes at least two distinct

congestion response phases (slow start and congestion avoid-

ance), we also consider three different regions: 1) start-up, the

first 15 seconds, often before the flow has reached the available

bandwidth; 2) steady state, the last 60 seconds of our flows,

where a TCP flow operates only at the available bandwidth;

and 3) overall, including throughput for the entire 120 second

download.

Figure 7a has the fairness results, shown with a heatmap

for start-up, steady state and overall for each scenario. The



Fig. 6. Cubic (Hystart on) versus Cubic (Hystart off)

green shades indicate mid-range or better fairness, whereas

red indicates mid-range or worse fairness. Figure 7b shows the

throughput differences corresponding to the same scenarios.

Here, blue indicates the default Cubic flow gets more through-

put and red indicates the competing flow gets more throughput

with the color intensity reflecting degree of difference.

From the graphs comparing another flow to Cubic, Cubic is

quite fair at all phases. Conversely, BBR is somewhat unfair

at start-up and considerably unfair at steady state getting a

significantly more bandwidth in the latter case and making it

unfair overall. PCC is fair at start-up, but gets considerably

lower bandwidth at steady state and overall. Hybla is unfair

at start-up, getting a lot more bandwidth at start-up, but quite

fair at steady state making it moderately fair overall. Cubic

with Hystart off is unfair to Cubic at start-up, getting more

bandwidth initially before being fair at steady state.

V. CONCLUSION

TCP congestion control algorithms are important for high

network utilization while avoiding overload. Understanding in-

teractions between existing congestion control algorithms, par-

ticularly TCP Cubic, and new congestion control algorithms

is important before widespread deployment. Satellite Internet

links pose particular challenges due to their high latencies but

are relatively under-studied despite their importance.

This paper presents results from experiments on a produc-

tion satellite Internet network, considering the competition for

the link with default TCP Cubic with 4 congestion control al-

gorithms: loss-based Cubic, bandwidth estimation-based BBR,

utility function-based PCC, and satellite optimized Hybla.

(a) Fairness.

(b) Throughput difference.

Fig. 7. Flows competing with Cubic – start-up, steady state and overall.

Analysis shows Cubic shares the satellite link fairly with

itself during both start-up and steady-state. BBR, on the other

hand, dominates Cubic in both these same phases. PCC,

in contrast, is dominated by Cubic in both phases. Hybla

dominates Cubic during start-up but is fair during steady-state

and overall. The throughput differences for BBR and Hybla

start-up are the largest (about 9x). These insights should be

useful for TCP congestion control research moving forward,

particularly as algorithms are adjusted over a wide range of

link conditions and in conjunction with existing protocols.

There are several areas we are keen to pursue as future work.

Other settings to TCP, such as the initial congestion windows,

may have a significant impact on performance. Novel utility

functions (e.g., for PCC [19]) may have benefits when tuned

for high latency. Improvements to BBR startup [27] may ben-

efit BBR over satellite links. The emerging transport protocol

QUIC [17] merits evaluation, particularly as it has modular

congestion control algorithms (Cubic and BBR) that should be

assessed for their interactions with TCP Cubic over satellites.
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