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ABSTRACT

To allow network researchers to simulate currently deployed
networks, ns-3 needs to incorporate as many standard net-
working technologies as possible. One such technology is
TCP CUBIC, the default TCP congestion control algorithm
in the Linux kernel and one of the most widely deployed
variants of TCP. Despite this prevalence, ns-3 does not na-
tively currently support TCP CUBIC. This paper presents
the design and implementation of CUBIC in ns-3 based on
literature describing the CUBIC algorithm and examination
of Linux kernel source. Verification and validation of our ns-
3 implementation, both within the simulator and in compar-
ison to Linux measurements, show the ns-3 CUBIC mimics
the key features of Linux CUBIC and performs better than
TCP NewReno, the default TCP congestion control algo-
rithm in ns-3.

1. INTRODUCTION

TCP is the dominant transport protocol on the Internet,
accounting for the vast majority of the number of flows and
bytes transferred. To deal with network congestion, TCP
uses congestion control algorithms to vary its transmission
rate and manage on lost packets. There have been numerous
variants proposed for TCP [6], but the current default used
in the Linux kernel is CUBIC [5]. Along with its predecessor
BIC [8], CUBIC and the Microsoft Windows Compound [7]
have been the dominant three TCP algorithms for years. A
2011 study [9] of about 30,000 Web servers show about 25%
use TCP CUBIC, 20% use TCP BIC and 15% to 25% use
TCP Compound. An important step in the development of
these congestion control algorithms, as well as for developing
new TCP variants and other aspects of computer network-
ing, is simulation.

Computer simulator provide valuable insight into poten-
tial implementations before extending the considerable effort
that may be required to build a technology. Simulations
also allow repeatability of measurements and can provide
in-depth details on the inner workings of technologies that
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may not normally be available in actual measurements. The
ns-3 network simulator [2], which succeeds the popular ns-2,
is used by researchers around the world to simulate a variety
of complex networking configurations and technologies. ns-3
includes implementations of some TCP variants, including
TCP based on RFC 793, Tahoe, Reno, NewReno and West-
wood. However, Yang et al. [9] found that these algorithms
(not including no congestion control and Tahoe, which was
not examined) accounted for only about 5% to 15% of the
TCP variants in their sample. Unfortunately, ns-3 does not
currently provide a native implementation of TCP CUBIC,
TCP BIC or TCP Compound. To accurately characterize
real world network behavior, ns-3 should provide implemen-
tations of the most widespread congestion control algorithms
(e.g., TCP CUBIC) in use on the Internet today.

This paper presents the design and implementation of CU-
BIC in ns-3. In order to match the ns-3 TCP CUBIC with
the most widely deployed Internet version, our implementa-
tion focuses on the CUBIC algorithm found in Linux. How-
ever, the original CUBIC algorithm introduced by Ha et
al. [5] differs somewhat from the current Linux kernel im-
plementation. To deal with these discrepancies, our imple-
mentation follows the basic details of the CUBIC algorithm
as much as possible, using the Linux-specific details provided
in the kernel code when appropriate. Verification of our ns-3
CUBIC implementation is provided via a demonstration of
the functioning ns-3 code, and validation is provided by com-
paring performance for TCP CUBIC in Linux TCP CUBIC
in ns-3 with our ns-3 implementation. A final comparison
of TCP CUBIC to TCP New Reno, the default TCP for
ns-3, is provided to highlight the differences in performance
between these two TCP variants.

The rest of this paper is organized as follows: Section 2
reviews basic TCP congestion control concepts; Section 3
briefly discusses prior related work; Section 4 presents an
overview of CUBIC; Section 5 describes the CUBIC imple-
mentation in Linux; Section 6 presents our ns-3 implemen-
tation of CUBIC; Section 7 details the verification and vali-
dation of our implementation; and Section 8 summarizes our
conclusions and presents possible future work.

2. TCP BASICS

TCP provides a reliable, ordered delivery of packets be-
tween computers connected on the Internet. TCP senders
add sequence numbers to packets and TCP receivers ac-
knowledge packet receptions. Unacknowledged TCP packets
are retransmitted based on information about successfully
received sequence numbers and, in some cases, timeouts.
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Figure 1: Simple example of congestion window
growth in TCP.

The various TCP congestion control algorithms proposed
over the last 25 years roughly aim to maximize throughput
while avoiding congestion at Internet routers.

While many TCP congestion control algorithms have been
proposed, all have several features in common. The TCP
sender keeps a dynamic congestion control window (cwnd)
that limits the number of outstanding transmitted packets
before an acknowledgement (ACK) needs to arrive from the
receiver. Figure 1 shows an example of TCP cwnd growth.
The TCP connection begins in slow start mode with cwnd
= 1 and doubles the size of cwnd every packet round trip
time (RTT) (i.e., the time from when a packet is sent un-
til an ACK is received back at the sender). TCP stays in
slow start mode until cwnd reaches the slow start thresh-
old (ssthresh), indicated by the horizontal green line in Fig-
ure 1. Upon reaching ssthresh, TCP switches to the conges-
tion avoidance phase, where cwnd is slowed growing linearly
to avoid network congestion. While the exact management
of the cwnd growth depends on the specific congestion con-
trol algorithm used, Section 4 explains the specifics of the
CUBIC’s cwnd growth during congestion avoidance.

3. RELATED WORK

While there is no CUBIC model currently built inside of
ns-3, CUBIC and other congestion control algorithms can
still be used, albeit only on some platforms, by linking into
the local operating systems network code to run simulations.
There are two ns-3 components that support this: Direct
Code Execution (DCE) and the Network Simulation Cradle
(NSC).! DCE and NSC allow a simulation to use the pre-
compiled, OS version of TCP CUBIC, as long as: 1) the host
OS running ns-3 uses CUBIC, and 2) NSC and/or DCE are
supported for that platform. NSC supports four real world
stacks: FreeBSD, OpenBSD, IwIP and Linux. For Linux,
NSC has been somewhat within DCE, and has not been
ported to kernel versions newer than 2.6.26. DCE is only
available for Linux.

However, in addition to the platform limitations, DCE
and NSC are not the best choice for all TCP CUBIC sim-
ulation scenarios. While TCP CUBIC can be used through
these setups, it is tied to the specific version of the conges-
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tion control algorithm used on a system. Since its initial
introduction, CUBIC has gone through multiple updates to
the algorithm meaning a simulation run on one computer
will not produce the same results as a simulation run on
another. Another issue is that the TCP implementation in
the local operating system does not support the native ns-3
logging and trace capabilities. Without these functions, the
TCP components of the simulation become a “black box”
with unknown changes to cwnd and other TCP parameters
over time. While not all simulations require these details,
some definitely do.

To implement TCP CUBIC in ns-3, a reasonable first step
is to examine the CUBIC implementation in ns-2, perhaps
simply porting it into ns-3. Unfortunately, this task is far
from a trivial cut and paste. ns-3 is a major redesign from
ns-2 to make the structure more object-oriented, resulting
in a different application interface (API) for the TCP con-
gestion control. In ns-3, all congestion control algorithms
extend from a base TCP class and need to implement spe-
cific methods. Any ns-2 code to be used in ns-3 first needs to
be modified to fit into these inherited methods. In addition,
the ns-2 CUBIC implementation expects state information
to be passed into its methods, whereas in ns-3, the API does
not provide this information to the congestion control algo-
rithms. Other ns-2 to ns-3 porting issues impact more than
just the congestion control algorithm. For example, CUBIC
relies on TCP timestamps in the header of the packets to
operate properly. While TCP timestamps may eventually
be needed in ns-3, they are not currently available. Adding
these feature into the TCP header in ns-3, which we at-
tempted, has a ripple effect, impacting other code that relies
on TCP in ns-3 and requires an extensive validation effort
to ensure the additions do not break existing code.

4. CUBIC BASICS

New technologies have allowed network architects to in-
crease network link capacities, accommodating more traffic
and faster transmission rates. Unfortunately, legacy TCP
algorithms like Reno and New Reno are not well suited for
large capacity links. Since the congestion window in older
TCP variants grows by one each RTT, it takes too long for
a TCP flow to expand to meet the capacities available on
some of today’s Internet links. An example given by Ha et
al. [5] is that traditional TCP, using 1250 byte packets on a
10 Gb/s link with a 100 ms RTT, requires 1.4 hours just to
reach half the bandwidth delay product.

To more efficiently utilize the capacities of modern Inter-
net links, a new algorithm was needed to grow the TCP
congestion control window (cwnd) faster. This resulted in
the Binary Increase Congestion (BIC) congestion control
algorithm for TCP [8]. In TCP BIC, a binary search al-
gorithm is used to grow cwnd from its current position to
the mid-point of the cwnd position when the last loss oc-
curred, called Wia:. When cwnd is far away from Wi,
cwnd grows quickly, but as cwnd approaches Wi,a,, cwnd
grows slowly. After passing Wi, cwnd continues to grow
slowly for a short time before continuing a more rapid growth
until the next loss event occurs. The pattern of cwnd growth
when graphed over time creates a curved line with a concave
region followed by convex region.

The BIC algorithm described by Ha et al. [5] for managing
the concave and convex regions of cwnd growth is compli-
cated. Since BIC depends on the RTT to change cwnd,
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Figure 2: CUBIC growth function [5]

controlling growth is problematic when a network has a low
RTT. Each time an ACK for a packet is received, BIC grows
cwnd by only small increments to compensate for the short
RTT. This strategy magnifies the inherent unfairness expe-
rienced by TCP flows with long RTTs.

CUBIC reduces this complexity by using a cubic function,
an odd order polynomial which naturally handles concave
and convex growth. Being independent of RTT, CUBIC
relies instead on the time between consecutive congestion
events to adjust cwnd. Hence, CUBIC maintains the same
concave and convex patterns found in BIC, shown in Fig-
ure 2. The horizontal axis represents time and the verti-
cal axis represents cwnd. The left side of the figure shows
the concave region where the rate of cwnd growth slows as
it approaches the position where it last lost packets, mid-
way along the line. After flat growth for some time around
this mid-point, the right side shows the convex region where
cwnd grows more rapidly as TCP CUBIC probes for a new
loss region.

Like BIC, CUBIC keeps track of Wi,.. when a loss event
occurs. To keep track of time CUBIC uses the variables
epoch_start, K and t. epoch_start is the time when the first
new TCP acknowledgment arrives after the loss event. At
this point, cwnd is at its lowest in the curve and CUBIC
needs to start growing cwnd to Wi,.,. The variable K is
the time when cwnd should reach W,.... The variable ¢
keeps track of how long it has been since epoch_start. With
these three variables, CUBIC tracks where the cwnd growth
should be in comparison to Wiy,.. When just starting cwnd
growth, ¢ is small as little time has passed since epoch_start.
This causes large updates to cwnd. As ¢ grows larger it starts
to approach the value K and the increases to cwnd become
smaller. After ¢ grows larger than K, CUBIC changes from
convex to concave where the updates to cwnd start small
but increase the further ¢ grows from K.

S. CUBIC IN LINUX

This section looks at the specific algorithms used in Linux
to implement CUBIC. As Linux only increments cwnd in

segment size units, an algorithm that adjusts cwnd by amounts

other than one segment cannot be used. Instead, Linux CU-
BIC adjusts when a cwnd increment occurs. Namely, if CU-
BIC would normally grow cwnd by less than the segment
size, Linux instead increases the amount of time before it
updates cwnd. This section describes the Linux implemen-
tation of CUBIC based on version 3.11 of the Linux ker-
nel [1].

5.1 Linux Constants and Variables

The Linux implementation of CUBIC has the same con-
stants and variables used in the original CUBIC paper [5],
but with some notable differences. For example, when CU-
BIC was implemented in Linux adjustments had to be made
for tracking time. CUBIC uses TCP timestamps, repre-
sented in the Linux kernel as jiffies. (Informally, a jiffy is an
unspecified, but short, amount of time.) The actual amount
of time in 1 jiffy ranges from 1 ms to 10 ms, depending
upon the computer’s system clock — not consistent across
platforms. Other differences in hardware architectures mean
that the Linux implementation of CUBIC needs additional
parameters and different values for constants than those pre-
sented in the original CUBIC paper [5]. The following is a
list of the main constants and variables used in Linux and
in our ns-3 implementation of CUBIC.

bic_scale — Constant scaling factor used to set the Linux
version of CUBIC’s C and cube_rtt_scale.

BICTCP_BETA SCALE - Constant scaling factor used
with the CUBIC constant 3 .

C' — Constant used for comparing time and congestion win-
dow size in the CUBIC equations.

cube_rtt_scale — Scaling factor used in place of the CU-
BIC constant C when calculating recommended CU-
BIC update, but not when calculating the value of K.

BICTCP_HZ — Constant used to convert units of time.

epoch_start — Time of last loss event — from this point, time
is tracked to find values of ¢ and K.

cnt — Count set by CUBIC to indicate when next cwnd
growth can occur.

cwnd_cnt — Global variable incremented on every ACK re-
ceived. Once cwnd_cnt == cnt, cwnd is incremented
and cwnd_cnt is reset.

B — Constant used as a multiplicative factor for decreasing
cwnd during loss events.

t — Elapsed time since last loss event.

W_max — cwnd position at last loss event.

5.2 CUBIC Update

In Linux, the file tcp_cubic.c contains the CUBIC class.
Upon instantiation, constants and starting variables are set.

Linux calls the bictep_update method when an acknowl-
edgment is received. Even though the method is called
bictcp_update, it still refers to a CUBIC update. This method
first checks to see if K has been set. In CUBIC, the growth
of cwnd is controlled by a rate determined by the time since
the last packet loss. K is used to represent when cwnd
should return to the point it was at just before the last loss
event. K is set based on Equation 1.

K = {/C x (Wpasz — cwnd) (1)

The cube root tcp_cubic.c is calculated by method cu-
bic_root. Code comments indicate the cubic root is found us-
ing a lookup table and an iteration of the Newton-Raphson



root finding method,with an average error of about 0.195%.
Along with calculating K during a loss event the time of the
event is recorded to epoch_start using TCP timestamps.

After K is calculated, a value for ¢ is calculated using
Equation 2. As with epoch_start, time is calculated using
TCP timestamps, which in this equation is represented by
tep_time_stamp. The value of t takes the current TCP times-
tamp plus the smallest RT'T and subtracts epoch_start. In
this equation, minRTT is the minimum RTT seen and a bit
shift operation is performed three positions to the right (>
>). The variable t is then converted so it can be compared
against K. This is comprised by the bit shift to the right (<
<) by BICTCP_HZ and then the final division by HZ.

t = ((tep_time_stamp + (minRTT >> 3) — epoch_start)
<< BICTCP_HZ)/HZ (2)

Next CUBIC calculates W(t) using either Equation 3 or
Equation 4 to insure that the expression ¢ - K is positive.
Note, in these equations > > indicates a bit shift to the right
which scales the units of time so the result can be used with
Wmaaz~

W (t) = ((cube_rtt_scale x (K —t)*) >>
(10 + 3 x BICTCP_-HZ)) — Wnaw  (3)

W (t) = ((cube_rtt_scale x (t — K)*) >>
(1043 x BICTCP_HZ)) + Winas (4)

The next step is to determine cnt, which is a count of
acknowledgments that need to be received before CUBIC
will increment cwnd. cnt is calculated by either Equation 5
or Equation 6, depending on if cwnd is less than W(t +
RTT) or not. Further modification is made to the value of
cnt depending on other Linux settings, but these are omitted
for brevity.

cwnd
M = W+ RTT) = cwnd (%)

ent = 100 x cwnd (6)

Since the growth of cwnd could be slower for CUBIC than
other TCP congestion control mechanisms, CUBIC uses a
check referred to as TCP-friendliness. In TCP-friendliness,
a different value for cnt is calculated and the larger of the
two cnt values is used.

Finally, the value of c¢nt is compared to cwnd_cnt and
handled as mentioned in Section 5.1.

5.3 CUBIC Packet Loss

The method bictcp_recalc_ssthresh in the Linux implemen-

tation of CUBIC handles lowering cwnd and resetting ssthresh.

epoch_start is reset to 0 since the congestion window is being
lowered. If CUBIC is in fast convergence, Equation 7 is used
to calculate Wiz

cwnd X (BICTCP_-BETA_SCALE + 3)

Winas = 2 x BICTCP_BETA_ SCALE

(7)
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Figure 3: TCP class diagram in ns-3. Grey classes
currently in ns-3 and white TcpCubic class pre-
sented in this paper. Diagram modified from [4].

However, when fast convergence is not in use, Wy,q, is set
to cwnd. The reduction of cwnd and ssthresh uses Equa-
tion 8 (note the max() function ensures cwnd and ssthresh
are at least 2):

cuwnd = ssthresh =

cwnd X 3 2)
BICTCP_BETA_SCALE’

6. NS-3 IMPLEMENTATION

Researchers and educators studying modern computer net-
work performance are increasingly using ns-3, an open source,
discrete-event simulator. ns-3 has focused on improving the
architecture and existing software modules of the widely
used ns-2 simulator. Many (but not all) of the existing ns-2
modules have been ported into ns-3. While ns-3 includes
support for new lower layer technologies (e.g., 4G LTE), not
all of the TCP variants found in ns-2 have been ported or
implemented in ns-3. The TCP variants currently supported
by ns-3 exist as part of the Internet module which handles
the IP layer, wired and wireless routing and the TCP and
UDP transport layer protocols.

The class diagram for TCP in ns-3, which includes the
CUBIC implementation presented in this paper, is shown
in Figure 3. As of version 3.18, ns-3 supports the TCP
congestion control algorithms of Tahoe, Reno, New Reno,
Westwood and Westwood+.

6.1 TCP Cubic

Our ns-3 CUBIC implementation creates the TcpCubic
class from TcpSocktBase using two files, tcp-cubic.h and
tcp-cubic.cc. In TcepCubic, the methods NewAck() and
DupAck() are inherited from TcpSocketBase (among oth-
ers). NewAck() is called for each new TCP acknowledgment
received and DupAck() is called whenever a duplicate ac-
knowledgment is detected. DupAck() records the number of

(®)

max(




duplicate acknowledgments received to properly handle fast
retransmit or for reducing cwnd. In addition to the inherited
methods, TcpCubic has added:

CubicRoot() — Mimics the cubic_root Linux method and
provides its own mechanism for finding the cubic root
of a number.

CubicUpdate() — Contains most of the CUBIC related
code from the Linux bictcp_update method.

CubicTcpFriendliness() — Contains code related to han-
dling the TCP-friendly region.

CubicReset() — Resets CUBIC variables during timeouts.

6.1.1 NewAck()

NewAck() gets called for each new acknowledgment re-
ceived. First, the current cwnd is compared to ssthresh.
If (cwnd <= ssthresh) then TCP is in slow start and one
segment size is added to cwnd. Otherwise, the method Cu-
bicUpdate() is called to get the value of cnt. As described
in Section 5.2, cnt is compared to cwnd cnt to determine
if cwnd is incremented or not. NewAck() is then called by
TcpSocketBase to return execution to the rest of the ns-3
TCP implementation.

6.1.2 CubicUpdate()

We implemented CubicUpdate () to be similar to the Linux
method bictcp_update, described in Section 5.2. In Linux,
t is calculated using TCP timestamps, but ns-3 does not
implement TCP timestamps. Instead we implemented a
standin for TCP timestamps as described in Section 6.2.
More minor changes from the Linux implementation includes
further dividing some code into separate methods for read-
ability.

6.1.3 CubicTcpFriendliness()

The code in CubicTcpFriendliness() is the same as the
code used in the Linux implementation. The details are
omitted for brevity, but basically if the growth suggested
by TCP is greater than that suggested by CUBIC, then the
TCP friendliness growth is used for cnt.

6.1.4 DupAck()

DupAck() is called for every duplicate acknowledgment re-
ceived, with parameters passed into DupAck () indicating the
number of duplicates. If three duplicate acknowledgments
have been received and if TCP is not in fast recovery, our
Linux implementation of CUBIC lowers cwnd and ssthresh
(Equation 8) and sets Waz.

If three duplicate acknowledgments have not been received,
He et al. [5] do not indicate CUBIC’s response. Our im-
plementation assumes that CUBIC would act in a manner
similar to that of New Reno which includes increasing cwnd
by one segment while in fast recovery.

6.2 TCP Timestamps

Ideally TCP timestamps should be fully implemented and
included in the TCP header. However, this would have re-
quired more coding and changes to the base TCP classes
that would impact all other TCP related code. We chose in-
stead to create a local method for finding timestamps to get
a consistent count of time to track when loss events happen

and when cwnd should grow to Wi,ee. In ns-2, timestamps
are set in the class tcp-linux.cc and are generated by look-
ing at the clock from the ns-2 scheduler, which returns time
in seconds, multiplies this by the constant JIFFY_RATIO
(in the example simulations, this was 1000) and then trun-
cated for the result. For our implementation, we followed
this same pattern by getting the simulator clock in seconds,
multiplying by 1000 and then truncating. Our timestamps
are intended to represent the same consistent gap, but small
errors may exist due to not having a full implementation of
timestamps. Future work would take the code for generat-
ing the timestamps and move it so that the timestamps are
generated by the sender and added to the TCP header.

6.3 Issues

Challenges to overcome during the ns-3 CUBIC implemen-
tation can be categorized into unavailable implementations
and unit conversions. Unavailable implementations refers to
Linux code that was not available for use in ns-3. For ex-
ample, the Linux cubic_root algorithm relies on the method
£1s64() to find the last set bit of a 64-bit number. This
method is defined in the Linux kernel and is not part of the
normal C/C++ libraries — instead an implementation of this
method was copied from the ns-2 TCP package.

Other Linux code and constants could not be definitively
found. For example, code from [1] has multiple implemen-
tations for some methods in different files, with constants
having differing definitions. Some of these differences stem
from differences in CPU architectures, where processor clock
cycles require specific values for the scaling and conversion
constants used with the variable t.

CUBIC uses timestamps to track time between packet
losses and growth to Wp.e. As mentioned in Section 6.2,
added code keeps consistent track of time but this code needs
to be incorporated into the base classes of TCP.

7. VALIDATION

This section verifies and validates the TCP CUBIC im-
plementation in ns-3. First, Section 7.1 compares the per-
formance of our implementation to that of the CUBIC im-
plementation in Linux 3.0.0-26-generic on the Ubuntu 11.10
operating system through the use of NSC. Section 7.2 com-
pares our implementation to the CUBIC implementation in
ns-2.34. Finally, Section 7.3 examines how our CUBIC im-
plementation compares to the default congestion control al-
gorithm in ns-3, NewReno.

7.1 NSC Comparison

Our first validation step is to compare our CUBIC imple-
mentation against a CUBIC implementation used by the un-
derlining operating system through the use of NSC. As men-
tioned in Section 3, the detailed logging capabilities and pa-
rameter adjustments available in ns-3 are not available when
using the operating systems’ TCP stack. However, we can
compare the overall performance of both simulations. The
ns-3 module Flow Monitor, which tracks the bytes/packets
sent and received as well as dropped packets, can be used
to compare data rates between an operating system CUBIC
and our ns-3 CUBIC.

Our simulation had one node transmitting to a receiver
over a 5 Mbps link with a delay of 40 ms and an error rate
of 0.000001. The error rate generated a small number of
loss events (in this simulation, exactly 10) so we could see
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Figure 4: Comparison of our CUBIC model and the
operating system’s CUBIC accessed by NSC.

the differences in TCP response between loss and recovery
clearly. The application, from the ns-3 documentation, sent
packets of a specific size at a specific data rate. The data
rate was set to 1 Mbps, in order to keep the transmissions
lower than the capacity of the pipe. While packet size can
be controlled in ns-3 with the maximum TCP segment size,
there is no direct control over this in the operating system.
To determine the maximum segment size and bytes sent per
packet, we first ran the application using NSC, recorded the
number of bytes and packets transmitted by the Flow Mon-
itor, and computed the maximum packet sized used. The
underline operating system used a maximum segment size
of 1410 bytes with headers totaling 1450 bytes. Hence, the
ns-3 TCP CUBIC simulation also used a maximum segment
size of 1410 bytes.

After testing, results show for a 100 second simulation,
NSC CUBIC transmits 8864 packets with 12,849,224 total
bytes. Our CUBIC transmits 8865 packets with 12,848,610
total bytes, just one more packet than the operating sys-
tems’ CUBIC implementation and 614 fewer bytes. Both
simulations lost 10 packets due to the error rate. The re-
ceiving statistics are similar to the transmission, with NSC
CUBIC receiving 8851 packets and 12,829,724 bytes and our
CUBIC receiving 8852 packets and 12,829,760 bytes.

Further tests were run with higher transmission rates,
depicted in Figure 4. The x-axis is the transmission rate
and the y-axis is the number of packets sent. The opaque
green bar shows NSC CUBIC while the clear red bar shows
our ns-3 CUBIC. At higher transmission rates, ns-3 CU-
BIC transmits more data than NSC CUBIC. Unfortunately,
since there are no logging mechanisms with NSC to under-
stand what the TCP CUBIC protocol there is doing, we
have no way to better understand the differences in CUBIC
behaviors. A possible difference is in the use of TCP times-
tamps. When setting up NSC, we specified that the CU-
BIC implementation should not use several TCP features
not supported by ns-3, including TCP timestamps. How-
ever, our ns-3 CUBIC uses our own method of calculating
time and these seemingly small differences may results in
greater differences as the simulation time runs longer or the
transmission rates increase.

Table 1: ns-2/ns-3 high level comparison.

ns-2 ns-3
Packets Sent 7,159 6,979
Packets Received 7,146 6,972
Packets Lost 13 7

Bytes Sent
Bytes Received

7,515,940 | 7,255,160
7,502,290 | 7,247,880

Table 2: ns-2/ns-3 low level comparison.
ns-2 ns-3

K | 3,640 -6,575 | 4,116 - 5,344
t 678 - 17,891 | 38 - 13,079
cnt 1-4,748 4 - 13,300

7.2 NS-2 Comparison

We created simulations that closely mirror one another
to compare the general performance for ns-2 CUBIC and
our ns-3 CUBIC. Both simulations had a network with two
nodes (sender and receiver) and a link with a 1 Mbps ca-
pacity, a 40ms delay and an error rate. The error rate was
chosen so that for both simulators, there were a few packet
drops during the simulation, allowing us to analyze the CU-
BIC congestion window curves. Both ns-2 and ns-3 used
a maximum TCP segment size of 1000 bytes. For applica-
tions, ns-2 used an FTP example while ns-3 used the bulk
sending application. Graphs of cwnd for these simulations
are shown in Figure 5.

Similar to the test with NSC CUBIC when limiting the
maximum link bandwidth to 1 Mbps, our ns-3 CUBIC model
performs similarly to the ns-2 implementation, as shown in
Table 1. ns-2 sent 180 more packets than ns-3. Some of
this difference is likely due to the retransmissions for the 6
extra packets lost in the ns-2 simulation compared to ns-3.
ns-2 sent 260,780 more bytes than ns-3. Part of this comes
from the extra packets sent, and examining the trace shows
ns-2 sending an additional 10 bytes per TCP data packet, a
result of the additional header data on the packets used in
ns-2.

Next, we analyze how ns-3 CUBIC calculates the CUBIC
variables K, ¢ and cnt. Since the two simulation scenarios
are not identical there is no direct one to one comparison.
Instead, the goal is to see if under similar inputs ns-3 CUBIC
produces results similar to ns-2 CUBIC. The range of values
seen for these variables in ns-2 and ns-3 are shown in Table 2.
For K, both ns-2 and ns-3 are returning 4 digit numbers.
From Equation 1, our ns-3 CUBIC uses a copied version of
the cubed root formula and the same constant C' where the
only variables in this equation are Wi, and cwnd. Since
the difference in the ns-2 and ns-3 simulation cwnds are not
off by more than a few hundred segments, our K values do
not diverge beyond 4 digit numbers.

Next, a comparison of the variable ¢ from Equation 2
shows other differences. Here, the constants BICTCP-HZ
and HZ are the same in both ns-2 and ns-3. The custom
implementation of TCP timestamps differs, which is likely to
cause differences in behavior. In our ns-3 CUBIC, ¢ ranges
from 2 to 5 digits while in ns-2, the values for ¢ range from
3 to 5 digits, although other ns-2 simulations showed that ¢
could be 2 digits, too. The ACK counts (cnt) required to
increase cwnd range from 1 to 4 digits in ns-2 and 1 to 5
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cwnd growth changes from convex to concave, de-
picted by the solid black vertical line.

digits in ns-3.

7.2.1 Packet Loss

In order to compare specific parts of our ns-3 CUBIC to
ns-2 CUBIC, we edited the ns-2 tcp-cubic.c file and add
logging statements.

During a loss event, CUBIC decreases cwnd as shown in
Equation 8 and sets ssthresh to cwnd. This equation has
two constants, fand BICTCP_BETA_SCALE. In both ns-
2 and ns-3, the constants are set to the same value, 819
and 1024 respectively. The only variable is the size of cwnd
before the loss event. During the ns-2 simulation, there was
one loss event when cwnd was equal to 90 and after running
through Equation 8 it became 71. The ns-3 simulation has
the same equation and in one instance there is a cwnd of size
92, and after Equation 8 became 73. The standard handling
of loss events appears the same for both the ns-2 and ns-3
implementations.

7.2.2  CUBIC Update

An key aspect of CUBIC is cwnd growth being convex up
to the point where it expects packet loss and then flipping
to concave when cwnd grows past Wi,e, with no loss. An

cwnd growth changes from convex to concave, de-
picted by the solid black vertical line.

example of this for our CUBIC implementation (a different
simulation from Figure 5) is shown in Figure 6. In this
graph, the x-axis is time and the y-axis is the number of
TCP segments. The blue line shows the value of Wi,
the red line indicates the value of cwnd and the black line
marks when CUBIC changes from concave to convex. This
figure shows that in CUBIC cwnd reaches W,,q,; about the
same time the CUBIC variable t reaches the variable K, as
expected.

For comparison, Figure 7 is an example of ns-2 CUBIC
cwnd growth (a different simulation from Figure 5). The
axes and trendlines are the same as in Figure 6. In the ns-2
simulation, ¢ does not pass K until a short time after cwnd
reaches Wi,q,. Possible discrepancies for this are the custom
TCP timestamps created for our ns-3 CUBIC model.

7.3 NewReno Comparison

TCP CUBIC’s method of using Wi, as a target to rapidly
increase cwnd is intended to provide a better congestion
avoidance mechanism in many circumstances when com-
pared against the older TCP NewReno method. This sec-
tion compares simulations using both the standard NewReno
(currently the ns-3 default) and our ns-3 CUBIC, as seen in
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Figure 8. The x-axis is time and the y-axis is number of TCP
segments, with the yellow ‘x’ trendline depicting NewReno
and the red ‘+’ trendline depicting CUBIC. When the sim-
ulations start, both NewReno and CUBIC behave similarly
in slow start where they both double cwnd every RTT. How-
ever, once the two algorithms pass the initial sshtresh value
and enter congestion avoidance, differences emerge. CUBIC
starts to probe for the first Wy,q. value while NewReno uses
Equation 9 to increment cwnd as specified in RFC 2581 [3].
Note, SMSS is the sender’s maximum segment size.

cwnd+ = SMSS x SMSS/cwnd (9)

At the first loss event, CUBIC sets the value of Wi,q, and
reduces cwnd as described in Section 7.2.1. On the other
hand, NewReno uses Equation 10, as given in RFC 2581 [3],
to set ssthresh and modify cwnd to be 3 segments larger
than ssthresh. Consequently, CUBIC does not lower cwnd
as much as does NewReno during loss events.

After exiting fast recovery, CUBIC displays its normal
concave/convex pattern (i.e., concave approaching Winaz,
then convex when passing). CUBIC updates cwnd less than
NewReno. However, once passing Wi, CUBIC starts to in-
crement cwnd much more rapidly than NewReno. The mul-
tiple loss events seen in Figure 8 keep cwnd low in NewReno
while the CUBIC cwnd stays much higher. Hence, TCP CU-
BIC makes use of more of the channel capacity than does
TCP NewReno.

ssthresh = maz(BytesInFlight/2,2 x SMSS)  (10)

8. CONCLUSIONS

The current ns-3 TCP implementations lack the newer
TCP congestion control algorithms used by most comput-
ers today [9]. For realistic network simulations that more
closely model Internet behavior, additional implementations
of TCP congestion control algorithms are needed in ns-3.

This paper introduces a TCP CUBIC implementation for
ns-3,% based on the original CUBIC algorithm [5] while us-
ing many of the implementation details found in Linux [1].

2Available for download at http://perform.wpi.edu/
downloads/#cubic

Evaluation of our ns-3 CUBIC verifies the implementation,
and comparisons with Linux measurements provide valida-
tion. In particular, the ns-3 implementation produces a
CUBIC-like cwnd growth pattern which is critical for mod-
ern TCP implementations to effectivley utilize available net-
work capacities. The comparison of the simulated perfor-
mance with TCP NewReno implies a significant bitrate ad-
vantage gained by employing TCP CUBIC.

Existing issues with our ns-3 CUBIC include lack of sup-
port for TCP timestamps in the base TCP implementation
of ns-3, making it unable to exactly match CUBIC imple-
mentation in the Linux kernel or ns-2. Future work includes
implementing TCP timestamps in ns-3 and running more
validation tests involving multiple flows and different net-
work conditions, such as low and high congestion as well
as a wide range of capacities and RTTs, that stress TCP
functionality. Additionally, native implementations of other
TCP protocols, such as TCP BIC and TCP Compound, with
corresponding verification and validation, could be under-
taken.
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