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Abstract. In this paper, we present an adaptive stream query proces-
sor, Teddies, that combines the key advantages of the Eddies system with
the scalability of the more traditional dataflow model. In particular, we
introduce the notion of adaptive packetization of tuples to overcome the
large memory requirements of the Eddies system. The Teddies optimizer
groups tuples with the same history into data packets which are then
scheduled on a per packet basis through the query tree. Corresponding
to the introduction of this second dimension – the packet granularity –
we propose an adaptive scheduler that can react to not only the vary-
ing statistics of the input streams and the selectivity of the operators,
but also to the fluctuations in the internal packet sizes. The scheduler
degrades to the Eddies scheduler in the worst case scenario. We present
experimental results that compare both the reaction time as well as the
scalability of the Teddies system with the Eddies and the data flow sys-
tems, and classify the conditions under which the Teddies’ simple packet
optimizer strategy outperforms the per-tuple Eddies optimizer strategy.

Keywords: Stream Database Systems, Adaptive Query Processing,
Adaptive Scheduler.

1 Introduction

The proliferation of the Internet, the Web, and sensor networks have fueled
the development of applications that treat data as a continuous stream rather
than as a fixed set. Telephone call records, stock and sports tickers, stream-
ing data from medical instruments, and data feeds from sensors are examples
of streaming data. As opposed to the traditional database view where data
is fixed (passive) and the queries considered to be active, in these new ap-
plications data is considered to be the active component, and the queries are
long-standing or continuous. In response, a number of systems have been devel-
oped [BW01,MWA+03,BBD+02,CCC+02,CDTW00] to address this paradigm
shift from traditional database systems to now meet the needs of query process-
ing over streaming data.
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Stream query optimizers represent a new class of optimization problems. The
most egregious problem faced by stream query optimizers is the need for query
plan adaptation (in some cases continuous adaptation) in reaction to the tur-
bulence exhibited by most data streams. The term turbulence here refers to the
fluctuations in fundamental data statistics such as the selectivity, as well as to
the variability in the network, where bandwidth, quality-of-service, and latency
can modulate widely with time. The turbulence in data streams thus makes a
static optimizer, which chooses a query plan once-and-for-all at query set-up
time, inadequate. For example, in traditional systems the optimizer makes deci-
sions on scheduling and resource allocation based on the fundamental statistics
of the data such as its selectivity. However, in the dynamic case statistics that
lead to optimal query plan selection at one point in time may no longer be pru-
dent at a later time. A stream query optimizer must, thus, be able to adapt to
changing conditions to deal with this dynamicity. To address this problem, two
broad strategies for a dynamic stream query optimizer have been proposed: the
data flow [CCC+02,MWA+03] and the Eddies [AH00,MSHR02] models.

A data flow optimizer typically selects a query plan topology based on past
(or expected) stream statistics, and arriving data is processed en masse using
this query plan topology. While the data flow optimizer is adaptive in theory,
in practice it is often difficult to change the overall topology of the query plan
without introducing significant delays into the system. The novel Eddies archi-
tecture [AH00,MSHR02,Des04,DH04] was proposed to introduce a higher degree
of adaptability into the query optimizer. The Eddies model functions at the gran-
ularity of individual tuples, electing to find the most efficient evaluation path on
a per tuple basis with respect to the conditions that prevail at the time. Thus,
unlike the data flow and the traditional models, the Eddies model need not com-
pute apriori the optimal query plan topology for the entire data set, rather it
can calculate the optimal path based on current tuple statistics as it processes
each tuple. The fast reaction time, the adaptability offered by the Eddies model,
comes at a price. As its scheduler operates on a per tuple basis, the Eddies
processor cannot take advantage of bulk processing of similar data. Moreover,
the metadata required for each tuple to keep track of its progress through the
logical query plan makes the Eddies system prohibitively expensive in terms of
the memory requirements, thereby limiting its scalability.

In this paper, we propose Teddies, Trained eddies, – a hybrid system that in-
corporates the adaptability of the Eddies system with the scalability of the more
traditional data flow model. The fundamental building block of the Teddies sys-
tem is the adaptive packetization of tuples to create a tight inner processing loop
that gains efficiency by bulk-processing a “train” of similar tuples simultaneously.
Corresponding to this new dimension – the packet granularity – we introduce
an adaptive scheduler that reacts to not only the time varying statistics of the
input streams and the selectivity of the operators, but also to the fluctuations in
the internal packet sizes. The scheduler, thus, schedules only those packets that
are sufficiently filled as determined by a threshold value for each packet type.
Additionally, the threshold value for each packet type is adjusted dynamically,
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growing if the system is creating many tuples of a particular type, and shrinking
otherwise. This ensures that there is no starvation – packets containing tuples
of all types are eventually scheduled.

The Teddies system uses packets in a manner similar to data flow systems,
while at the same time applying an adaptive scheduling mechanism that does
not tie down the overall processing to a single query tree topology. The cost of
the Teddies system is the introduction of latency into the system since some
tuples may have to remain in their respective queues for longer periods of time
waiting for tuples with similar metadata to fill the queue to the threshold. We
ran a series of experiments to measure the overhead of our adaptive packetization
algorithm, as well as a series of experiments to isolate the performance benefits
of packetization with respect to the varying cost of a single routing decision. The
results show the promise of the Teddies approach over both the data flow and
Eddies approaches.

The rest of the paper is organized as follows: Section 2 presents an overview
of the data flow and the Eddies system to set the context for the rest of the
paper; Section 3 gives an overview of the Teddies system and details its main
components. Section 4 outlines our experimental methodology and presents our
preliminary experimental results; Section 5 briefly describes the related work;
and Section 6 summarizes our conclusions and provides possible future work.

2 Background: Data Flow and Eddies Architecture

2.1 Data Flow Query Processor

In the data flow framework, stream operators have dedicated buffers at their
inputs, and the query plan chosen by the optimizer is instantiated by connecting
the output of some operators to the input of another operator. Figure 1 gives
a pictorial depiction of a multi-way join query topology in the data flow model.
The operators are scheduled to consume tuples in their input queues in such a
way so as to optimize the throughput of tuples in the system. Various strategies
and algorithms are used to schedule the operators. However, the topology of
the query plan is difficult to change once it has been set up, as the amount
of computational state that resides in the operator input queues at any point
of time cannot easily be disentangled. Hence, a change to a potentially more
advantageous query topology, involving reconnection of some of the operator
queues, cannot be done except at special points of time. One possible strategy
to address this is to: (1) block all upstream tuples from entering that portion
of the query tree that is to be modified; (2) drain all the remaining tuples in
the intermediate queues; (3) reconnect the queues in a new plan; and then (4)
unblock the upstream tuples to resume execution. If there is a large amount
of intermediate state, this blocking strategy is both costly and inefficient. The
latency in the reaction time of the data flow architecture is the main motivation
for the introduction of the Eddies framework. The Eddies model explicitly keeps
track of the intermediate state of tuples in the input queues to enable query
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Fig. 2. The Eddies System Architec-
ture

topology rearrangement on the fly without blocking any processing and hence
introducing any latency in the system.

2.2 The Eddies Query Processor

The Eddies stream query processor is a highly adaptive architecture for comput-
ing stream queries. In Eddies, tuples – input tuples or intermediate tuples – are
routed individually through the query plan. Each tuple has associated with it
a set of metadata that tracks the progress of the tuple through the query plan.
This metadata is unique to each individual query and its structure is determined
when the query is first introduced into the system. A query plan consists of the
operators that compose the query, such as versions of SELECT, PROJECT, and
JOIN operators.

The Eddies system relaxes the requirement to choose a particular query topol-
ogy by decomposing the join operators, in this case, into sub-operators – called
SteMs – and then routing the tuples through the SteMs [Ram01,MSHR02]. There
is one SteM associated with each stream attribute that participates in the join.
For example, consider the join R��R.1=S.1S��S.2=T.1T shown in Figure 2. Here
the join attributes R.1, S.1, S.2, and T.1 each have an associated SteM. The SteM
keeps track of the window of attribute values that have arrived on the stream and
allow subsequent tuples from the other streams to probe these stored attribute
values to search for a match. The SteM may be implemented, for example, as
a hash table on the attribute values to allow for efficient probing. In the case
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of the join operator, the order in which tuples probe the SteMs is irrelevant as
long as each tuple passes through each SteM exactly once. This holds from the
associativity and the commutativity property of the join operator. Intermediate
tuples that are produced as output from a SteM – representing a partial join
between the input tuple and any of the tuples stored in the SteM that match the
input tuple’s join attribute – do not need to revisit the SteMs already visited
by their constituent tuples. In this way the intermediate tuples, as they pass
through all of the SteM operators, build up the final output tuples one SteM at
a time. Once a tuple has visited all of the SteMs, it is output from the system
as a tuple in the full join.

The Eddies system, thus, routes tuples through the SteM operators, and main-
tains one large queue of intermediate tuples. Each intermediate tuple has asso-
ciated metadata (see Scheduler Queue in Figure 2) that keeps track of which
SteMs the tuple has already visited and which SteMs the tuple needs to visit
in the future. When a tuple bubbles to the top of the queue it is eligible for
routing. The scheduler examines the metadata and then schedules one of the
SteM operators that the tuple needs to visit. Because this process occurs for
each intermediate tuple in the system, and indeed represents the main inner
loop of the processing of the system, the decision to which SteM to send a tuple
must be made efficiently.

The Eddies system uses an adaptive scheduler, one version of which keeps
track of the number of tuples produced minus the number of tuples consumed
for each query operator. In this version of the Eddies adaptive scheduler, a lot-
tery based scheme is used whereby operators gain lottery tickets by consuming
input and lose lottery tickets by producing output. For each tuple to be sched-
uled, the scheduler holds a lottery, with the winning operator selected to process
the tuple [MSHR02,DH04]. By scheduling the operator that produces the fewest
while consuming the most, the system can react to changing conditions by mak-
ing a local decision for each tuple. Since each tuple need not follow the same
path through the SteM operators, it is possible for the system to find the most
efficient path for a given tuple with respect to the prevailing conditions.

3 Teddies Adaptive Query Processor

The Eddies system, while highly reactive, is limited in its scalability by the fine
granularity of its routing decisions - that is by its tuple routing. To overcome
the drawbacks of the Eddies system, we propose the Teddies system.

Teddies is an adaptive query processing system that leverages the fine-grained
adaptivity of pure Eddies with the efficiencies gained from the bulk processing
of query operators. A fundamental concept of the Teddies system is a packet
wherein tuples with the same history (metadata) are grouped together. The
Teddies scheduler thus works at the granularity of packets, making routing de-
cisions per packet as opposed to the per tuple routing decisions made by the
Eddies system. In a heavily loaded system, this packetization of tuples enables
the scheduler to make a reduced number (by a factor of the packet size) of
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routing decisions per tuple, achieving a corresponding increase in the system
efficiency. The potential gains of this amortization is harnessed by the scheduler
to enhance the packet routing policies that are employed. In addition, when a
particular operator is scheduled by the packet router, the run-time cost of the
operator per-tuple is amortized across the number of tuples in a packet. How-
ever, the trade-off of grouping tuples into packets is that of a reduced adaptivity,
as potentially a finer-grained scheduling policy may respond with minimal delay
to the changing characteristics of the input data, and of increased latency for
some tuples, as some tuples may now have to wait longer in queues before being
scheduled.
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Fig. 3. Teddies System Architecture Illustrating a Three-Way Join Between Three
Streams R, S, and T - R��R.1=S.1S��S.2=T.1T

The overall Teddies design consists of two aspects: the set of data structures
used to schedule packets and the algorithm that implements the adaptive pack-
etization scheme.

3.1 The Metaqueue and Scheduler Queue Data Structures

Figure 3 gives an overview of the flow of tuples through the Teddies system for
an equi-join R��R.1=S.1S��S.2=T.1T defined on three input relations.

The Teddies scheduler design separates the single Eddies scheduler queue into
multiple data structures: the scheduler queue and the set of metaqueues. The
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scheduler queue maintains references to those metaqueues which are currently
eligible for scheduling. The metaqueues, which are the fundamental units that
are scheduled, group together tuples with the same metadata history. Thus, in
the Teddies system the metaqueues are the specific mechanism used to packetize
the data. Figure 4 shows an example metaqueue, where each metaqueue is a
set of tuples along with some associated metadata. The associated metadata
consists of the READY and DONE bitmaps, which have the same semantics
as in the Eddies system. However, in Teddies this metadata is now shared by
all the tuples in the metaqueue. Additional metadata is used to keep track of
the state of the metaqueue, including (1) occupancy – which counts the total
number of tuples currently contained in the metaqueue; (2) threshold – which
represents the number of tuples that need to be in the metaqueue before it can
be scheduled; and (3) counter – which is a value maintained by the scheduler
to prevent starvation. (The precise policy used by the scheduler is described in
Section 3.2.).

Tuple 1

Tuple 2

Tuple 3

Tuple 4

Tuple 5

Tuple 6

DONE   =   0100DONE   =   0100
READY =   0001READY =   0001
THRESHOLD = 10THRESHOLD = 10
COUNTER  =  5COUNTER  =  5

Fig. 4. The Metaqueue Data Struc-
ture
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 get tuple metadata from top of scheduler queue
 decide operator based on metadata
 schedule operator to process tuple 
 adjust operator statistics

Teddies Inner Processing Loop

For each packet DO:
 get packet metadata from the top of scheduler queue
 decide operator based on metadata
 schedule operator to process packet
 adjust operator statistics
 adjust packet threshold values

Fig. 5. The Inner Processing Loops
for the Eddies and the Teddies Sys-
tems

In Teddies, new input tuples are inserted into the SteM operators before they
are inserted into the proper metaqueues. This ensures that the insert/probe
invariant is maintained: if the input tuples are already ordered by timestamp,
then whenever a tuple probes a SteM, all tuples with an earlier timestamp are
guaranteed to be present in the SteM, no matter in what order the metaqueues
are actually scheduled. This invariant must be maintained to ensure that no
potential output tuples are lost. This is in contrast to the policy employed by
the Eddies system. In the Eddies system, an input tuple is inserted into the
SteMs at the same time that the tuple first probes a SteM: in this manner the
insert/probe invariant for the Eddies is maintained.
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3.2 The Adaptive Packetization Algorithm

The second major aspect of the Teddies query processor is the adaptive scheduler
that provides two functionalities: (1) dynamically adjusting the level of packeti-
zation of each individual metaqueue; and (2) making all packet routing decisions
– that is deciding which query operator to schedule next for a given packet. This
is in contrast to the Eddies adaptive scheduler that focuses only on the routing
of individual tuples.

The adaptive packetization algorithm utilizes the metaqueue and scheduler
queue statistics to dynamically adjust the number of tuples allowable in each
metaqueue. The scheduler queue contains references to unique metaqueues,
where every metaqueue is either on the scheduler queue or is currently ineli-
gible to be scheduled. For each round of the scheduler, the top metaqueue of
the scheduler queue is processed. The READY bit of the top metaqueue is ex-
amined and the router policy is applied. Based on the outcome of the router
policy, the entire train of tuples in the metaqueue are processed en masse by
the selected query plan operator. All tuples output from this operator are either
output from the system or placed into a metaqueue based on the READY and
DONE bits of the input metaqueue. After all of its tuples are thus processed,
the top metaqueue is removed from the scheduler queue, its occupancy is decre-
mented by the number of tuples processed, its counter is reset to zero, and the
counter value of any currently unscheduled metaqueue is incremented by one.
At this point, as a result of this adjustment, another metaqueue may become
eligible to be scheduled; if so, it is placed at the end of the scheduler queue where
it awaits its turn to be processed.

The metaqueue selection, i.e., the criterion used to decide the eligibility of
a given metaqueue to be scheduled, is based on the three values introduced in
Section 3.1: the occupancy, the threshold, and the counter. At the end of each
round of scheduler execution, if the occupancy value is greater than or equal to its
threshold value, the metaqueue is moved from the unscheduled state and placed
at the end of the scheduler queue. The threshold value is a dynamic quantity that
is adjusted as follows: if the occupancy of a metaqueue is at least twice its current
threshold when the metaqueue is finally processed from the head of the scheduler
queue, then the threshold is doubled. On the other hand, if a metaqueue’s counter
value, after being incremented during a round of the scheduler, is greater than a
preset limit (which is a preset system parameter), then the threshold value of this
metaqueue is halved. In this way, those scheduled metaqueues tend to accumulate
many tuples per round of the scheduler increase their threshold for more efficient
processing, and, on the other hand, those unscheduled metaqueues that tend to
accumulate few tuples per round lower their threshold to the point that they
become eligible to be scheduled, thus avoiding starvation. The dynamics of the
threshold value are thus determined by the rate at which a metaqueue gains
occupants: high-rate metaqueues accumulate relatively more tuples before being
scheduled, allowing for efficient train-processing, while low-rate metaqueues do
not starve as their threshold values are lowered in response.
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The second function of the Teddies scheduler is implemented by the algorithm
that selects the operator to process the metaqueue on the top of the scheduler
queue. This part of the scheduler is identical in essence to the Eddies sched-
uler with one distinction. Consider the inner loop processing of the Eddies and
the Teddies system shown in Figure 5. Both schedulers schedule based on the
READY bits of the entity on the top of the scheduler queue. However, the Ted-
dies inner loop has an additional step – (“adjust packet threshold values”) –
not shared by the Eddies inner processing loop. This step invokes the adaptive
packetization algorithm. Moreover, it should be noted that although all other
steps are common to both inner loops, the Teddies inner loop runs fewer times
if the data tuples are effectively grouped into packets. This allows the adaptive
scheduler to potentially gain efficiencies by trading off the cost of performing
the extra packetization step with the reduction in the total number of times the
scheduler itself is invoked.

4 Experimental Evaluation

4.1 Experimental Setup and Methodology

To evaluate the Teddies design, we implemented both the Teddies and the Eddies
architectures and ran sample queries to compare their relative performance. To
ensure an even comparison, the implementations of Teddies and Eddies used
as much of the same codebase and data structures as possible. As described in
Section 3, the main difference between the two implementations is that Teddies
uses a set of metaqueues to store the intermediate tuples while the Eddies system
uses a single queue for its intermediate tuples. The tuple routing mechanism was
also shared between the two systems, by suitably modifying the Eddies code to
handle metaqueues instead of tuples. In addition, for the Teddies system, we
modified the query operators (the SteM operators) to allow processing of a train
of tuples at a single invocation.

For all experiments, we use a windowed, three-way equality join defined on
three input streams (i.e., three relations ordered by timestamp), and varied the
join selectivities by changing the size of the defining window. The input streams
are multiple integer-valued tuples randomly generated from a uniform distribu-
tion. Consequently, each of the possible paths through the three-way join query
tree have the same cost. Since all possible query plans have the same cost, the
actual scheduling policy used by both the Teddies and the Eddies implementa-
tions was not exercised. In addition, since we are interested in measuring the
performance difference between single tuple routing and packet tuple routing,
we ensured that all routing decisions have equal cost by using a simple random
routing policy. The cost of packet routing is the sum of the cost of maintaining
the metaqueue threshold data and the cost of routing each packet. Hence, by
minimizing the routing component cost, we can isolate the cost/benefits of the
packet scheme.

Each experiment consists of measuring the total time required to compute the
join query R��R.1=S.1S��S.2=T.1T for a given batch size and window size. Batch
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processing of tuples in this manner gives a measure of the maximum data rate
sustainable by the system, as the system never has to spin idly waiting for the
arrival of new input data. However, this batch processing introduces the com-
plication of how to introduce new data into the system. The mechanisms used
to introduce new tuples into both systems are similar – whenever the respective
schedulers cannot proceed because the scheduler queue is empty of intermediate
tuples (in the Eddies case) or because the scheduler queue contains no metaque-
ues above their thresholds (in the Teddies case), a new batch of tuples is added
to the scheduler queue (Eddies) or to appropriate metaqueues (Teddies). Thus
both systems use a priority scheme whereby new tuples are introduced only when
there are no more intermediate tuples available to be scheduled. The number in
the new batch of tuples is adjustable and represents the “back pressure” effect
that the input has on the system.

4.2 Results and Analysis

The focus of our experiments was to compare the cost of the Teddies system
with that of the Eddies system. To this end, the experiments measured the total
time required to process a given batch of tuples from randomly generated data
sets under varying conditions.

The first set of experiments compared the total runtime cost of the Teddies
and the Eddies systems for evaluating the three way join R ��

R.1=S.1S ��
S.2=T.1T

with varying join selectivity. We controlled the join selectivity by adjusting the
SteM window size – we start with a window size that yields an average selectivity
of 1.0, and in each subsequent experiment we double the selectivity by doubling
the window size. For this experiment, we used a simple random router policy to
consign tuples to operators. The selection of a low cost router was made primarily
to highlight the overhead cost of the adaptive packetization mechanism proposed
for Teddies.

Figure 6 shows the results of our experiments. The x-axis depicts the join se-
lectivity and the y-axis the runtime ratio. The runtime ratios are normalized by
dividing the Teddies runtime cost by the total Eddies runtimes (so that Eddies
always has ratio 1.0). As can be seen from Figure 6, the total runtime cost of
the Eddies system is better than the total runtime cost of the Teddies system
for lower join selectivities (between 1.0 and 16.0). However, the Teddies sys-
tem outperforms the Eddies system at higher selectivities (greater than 32.0).
At lower selectivities the opportunities for packetization are fewer, that is, each
SteM operator produces few tuples that can be grouped together to form pack-
ets. The overhead of the Teddies adaptive packetization is significant in this
case. However, higher selectivities result in the formation of larger packets that
trade-off the overhead cost of the adaptive processing with the benefits of batch
processing, resulting in overall performance improvements.

The second set of experiments were targeted towards measuring the adaptivity
of the packetization scheme that has been implemented as a core feature of the
Teddies system, and for affirming the results shown in Figure 6. Here, we varied
the join selectivities in a manner identical to the join selectivity variation for
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the first set of experiments (Figure 6) and recorded the average occupancies of
the metaqueues. To obtain this measure, we instrumented the code as follows –
every time a metaqueue is scheduled to be processed by a SteM operator, its
occupancy value is recorded and the resulting running average is later computed.

Figure 7 depicts the average occupancy for each of the five metaqueues in-
volved in the evaluation of the three way join R ��

R.1=S.1S ��
S.2=T.1T . Here, the

x-axis depicts the join selectivity, while the y-axis shows the average occupancy
of the metaqueues in terms of the number of tuples. It can be seen that the
metaqueue behavior divides into two primary groups. The first three metaque-
ues handle only input tuples, and hence have an average occupancy that is
independent of the join selectivity. However, the last two metaqueues handle
tuples output from the first set of SteM operators. These two metaqueues have
an average occupancy that exhibits a relationship linear to the selectivity of the
SteMs.

The last set of experiments was geared towards measuring the effect of the
cost of the routing decision, i.e., the scheduling cost, on the total runtime cost of
the Teddies and the Eddies systems. Both the Teddies and the Eddies systems
were used to evaluate the three-way join R ��

R.1=S.1S ��
S.2=T.1T . However, for this
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set of experiments, we fixed the join selectivity at 1.0. We simulated the extra
scheduling cost by augmenting the random tuple router with an increasing num-
ber of dummy instructions every time a routing decision needed to be made.
Each dummy instruction simply increments a counter by one. In this manner,
we simulate the cost of a more sophisticated tuple router that needs to adapt its
decision making to the changing environment.

Figure 8 shows the results of our experiments. Here, the x-axis represents
the delay in terms of the total number of extra instructions added per routing
decision. The y-axis represents the normalized runtime ratio obtained by dividing
the runtime costs by the Eddies runtime cost. Figure 8 shows that as the cost-
per-tuple of the Eddies scheduler increases, even in the low selectivity regime
(the selectivity here was fixed at 1), the Teddies scheduler achieves significant
performance benefits.

Collectively the above graphs (Figure 6–8) present an overall picture of how
the Teddies system compares with the Eddies system. Figures 6 and 7, show that
the Teddies system performs better when the metaqueues are large – that is when
the packet sizes are large. Operating in the high selectivity regime allows Teddies
to amortize the cost of maintaining the metaqueues across many tuples. On the
other hand, operating in the low selectivity regime when the occupancies of the
metaqueues are relatively small, the Teddies adaptive packetization scheme has
significant overhead compared to Eddies. However, we point out in Figure 8
that with any reasonable scheduler – a more complex scheduler that presumably
makes smarter tuple routing choices – the adaptive packetization of Teddies can
provide significant performance benefits even in the lower selectivity regions.

5 Related Work

Adaptive query processing deals primarily with on-the-fly re-optimization of
query plans and has been studied in the context of both static databases
[Ant96,GC94,INSS92,KD98] and with renewed vigor for continuous queries in
stream systems [ZRH04,CCC+02,MWA+03].
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Re-optimization strategies in static databases range from those that utilize a
run-time statistics collector and reconfigure only the unprocessed portion of the
running query plan to improve performance [KD98], to strategies that select and
run multiple query plans in parallel and dynamically migrate the running query
plans to better performing alternatives [GC94,INSS92]. These approaches have
limited direct applicability for stream systems. For instance, reconfiguration of
the unprocessed portion of a running query plan is impractical for continuous
queries, as the query plan is likely to already be in its execution cycle before
migration is needed. The parallel strategy [GC94,INSS92] has been adapted to
a stream system [ZRH04], but in of itself is technically infeasible as it is near
impossible to apriori define a set of plans for continuous queries.

Migrations strategies in stream systems range from a pause-drain-resume
strategy [CCC+02,CCR+03] to adaptation of a parallel strategy [ZRH04] to
a tuple-based routing strategy [AH00,MSHR02,DH04]. The pause-drain-resume
strategy [CCR+03] has the ability to shutdown processing along a segment of
the plan in order to reorder operators within this portion. On completion of the
reordering, tuples can resume flow through the previously shutdown segments.
A drawback of this strategy is the difficulty of handling stateful operators such
as the join operator. Zhu et al. [ZRH04] have developed a moving state and a
parallel track strategy to explicitly handle migration of stateful query plans.

Madden et al. [AH00,MSHR02] have developed a novel tuple-based routing
called Eddies that shifts away from the traditional re-optimization strategies
and makes an optimized decision for each individual tuple. The Eddies sys-
tem [AH00,MSHR02,Des04,DH04] was designed to allow fine-grained adaptivity
at the tuple level. Each tuple in the Eddies model is routed through the query
plan independently from other tuples. Tuples are tagged with metadata that
allows the scheduler to determine the query operators for a given tuple.The fun-
damental design choices for an Eddies system implementation include history
maintenance for each tuple as it moves through the system, implementation of
“stateful” operators such as the join operators, and routing policy decisions for
each tuple.

The current Eddies implementation uses bitmaps associated with each tuple
to store the metadata. Two types of stateful join operators have been proposed
for the Eddies systems: the SteM [Ram01,MSHR02] operator, which implements
a version of the symmetric hash join but stores only input tuples in its state hash
tables; and the STAIR [DH04] operator that now also stores intermediate tuples in
the state hash tables. Storing intermediate tuples in the state enhances efficiency
due to reduction of repeated probing. However, it complicates the book-keeping
needed to ensure that duplicate tuples are not produced.

An efficient and quickly computed routing policy is crucial for the Eddies
system, as a routing decision must be made on every tuple inside the inner loop
of the system’s operation. One such policy [MSHR02] is the lottery based policy
whereby an operator either gains or loses tickets based on how many tuples it
consumes or produces. Each time through the inner scheduling loop, a lottery
must be held to determine which operator wins the next tuple. In addition,
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statistics of each operator’s behavior must be kept during execution in order to
compute the number of tickets each operator holds at any point in time. Other
routing policies based on the distribution of attribute values and an estimate
of each operator’s selectivity have also been proposed in the literature [DH04].
An approach similar to ours that provides virtual batching of tuples has also
been proposed [Des04]. Here the scheduler updates the routing decision for each
possible tuple history periodically. The period is a fixed size value and each tuple
is still routed individually, but the lottery algorithm (or other routing decision
algorithm) need not be run for each individual tuple.

6 Conclusions and Future Work

In this paper we have introduced a new type of adaptive query processor. The
Teddies adaptive query processor is a hybrid architecture combining the adaptiv-
ity of the Eddies model with the efficient bulk processing of the data flow model.
We have introduced an adaptive packetization algorithm that fits in the Eddies
design scheme but allows for the accumulation of similar tuples into metaqueues,
which are then scheduled en masse by the query plan router. Our experiments
have shown that the packetization algorithm is able to produce large packets in
the case of high operator selectivity. Our experiments also show that the bare
overhead of packetization is beneficial in the high selectivity regime. Finally, our
experiments have shown that the benefits of scheduling tuples in aggregate is
beneficial when the cost of making a single routing decision is high, even in the
low selectivity regime.

In the future, we plan on investigating the adaptivity of the Teddies archi-
tecture. The packetization process gives an adaptive query processor an extra
dimension with which to find the most efficient query processing strategy. The
above experiments show how this extra dimension given to the adaptive query
processor may prove beneficial in the case of high input data rates.
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