
Quality Planning for Distributed

Collaborative Multimedia Applications

Ph.D. Thesis

Mark Claypool

Advisor: John Riedl

University of Minnesota

Computer Science Department

September 2, 1997

Acknowledgements

There are many people who have helped me in this work, either directly by adding

their work to mine or indirectly by giving me vision and support. However, above

all there are two people who deserve my deepest gratitude, Professor John Riedl and

my wife, Kajal. As my advisor, John has contributed to all levels of this thesis, from

guidance on writing C code and English grammar rules to experimental design and

data analysis to a rich, exciting vision of computer science research. Most importantly,

he has provided motivation to persevere through the slow, di�cult parts of research,

motivation to pursue research problems that make a di�erence in the world, and

motivation to pursue a career as a professor, myself. I hope to emulate much of

John's style when I advise my future graduate students.

Equally important, Kajal has been a pillar of strength and support. She has been

understanding of the
uctuations in the demands on the time of a graduate student.

She has been patient through the many years she worked to support us while I was

still in school, working on this thesis. She has been inspirational when I was down

about progress or down about some experiment results. And her technical knowledge

has provided me with nudges in the right direction when my research lacked focus. I

hope I can be as supportive of her during her Ph.D. quest as she was during mine.

I would like to thank the members of my examining committee, Professors John

Carlis, Shashi Shekhar, David Lilja and George Wilcox. Professors Shekhar and Lilja

were also on my Masters committee, work which was later molded to this thesis.

Professors Carlis and Wilcox collaborated with me on the \Flying" interface, work

i

which became Chapter 6 of this thesis. Professor Carlis provided valuable insights

during the very last phase of this document, including writing the abstract and making

my �nal defense a successful talk.

I also must thank those who long ago gave me the tools to achieve a Ph.D. Pro-

fessors Steven Janke, David Roeder and Michael Siddoway, professors at Colorado

College, taught me the elegance of academic work and gave me insights into com-

puter science. My high school teacher, Herr Berndt, gave me the appreciation for

the richness of life, a vision which helped me see the beauty in computer science, as

well. Above all, my parents taught me how to set my sites high and how to succeed,

as well as providing me with my �rst computer, a TRS-80 model III. Little did any

of us know it at the time, but that computer became the reason I am writing this

document today.

I would like to thank several additional people for their direct contributions to

my work: Dan Frankowski, Mike Maley, Mike Stein, Vahid Mashayekhi and Joe

Habermann all worked with me closely during several smaller research projects that

led to this thesis.

Without the contributions of the above people, this work would never have been

completed, nor even begun.

Vita

Mark Claypool was born in Washington D.C. on September 16, 1968. He attended

primary and secondary school in Colorado and �nished his secondary education at

Nuremburg American High School in Nuremburg, Germany. In 1990, he completed

his Bachelor of Arts in Mathematics at Colorado College, in Colorado Springs, CO.

He entered the Computer Science program at the University of Minnesota in the fall

of 1990. He received his M.S. and Ph.D. in Computer Science in the summer of 1993

and the summer of 1997, respectively.

iii

Abstract

The tremendous power and low price of today's computer systems have created the

opportunity for exciting applications rich with graphics, audio and video. These new

applications promise to support and even enhance the work we do in teams by allow-

ing users to collaborate across both time and space. Despite their exciting potential,

building distributed collaborative multimedia applications is very di�cult and pre-

dicting their performance can be even more di�cult. Performance predictions must

deal with future hardware, future software, and future users and their requirements.

The rate of change in new technologies continues to accelerate, with each new genera-

tion of hardware and software introducing new capabilities. Furthermore, distributed

environments have a wider variety of potential con�gurations than do centralized

systems.

To determine the computer resources needed to meet distributed application de-

mands we have developed a
exible model and a method for applying it that allows

us to predict multimedia application performance from the user's perspective. Our

model takes into account the components fundamental to multimedia applications:

latency, jitter and data loss. The contributions of this thesis, to both computer sci-

entists and computer system developers, are: 1) a multimedia application quality

model and method for predicting application performance and evaluating system de-

sign tradeo�s; 2) detailed performance predictions for three distributed collaborative

multimedia applications: an audioconference, a \
ying" interface to a 3D scienti�c

database and a collaborative
ight simulator; 3) the e�ects of system improvements

iv

on these multimedia applications; 4) a demonstration of measures of jitter that have

been used by jitter researchers showing all reasonable choices of jitter metrics are sta-

tistically similar; and 5) experiment-based studies of the e�ects of high-performance

processors, real-time priorities and high-speed networks on jitter.

In predicting the bottlenecks in quality for the above three applications, we have

identi�ed three general traits: 1) processors are the bottleneck in performance for

many multimedia applications; 2) networks with more bandwidth often do not in-

crease the quality of multimedia applications; and 3) performance for many multime-

dia applications can be improved greatly by shifting capacity demand from computer

system components that are heavily loaded to those that are more lightly loaded.

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Problem : 2

1.3 Our Solution : 5

1.4 Applications : 8

2 A Taxonomy of Computer Support for Multimedia Quality 12

2.1 Overview : 12

2.2 Related Work : 13

2.2.1 Taxonomy : 13

2.2.2 Quality of Service : 14

2.3 Quality : 15

2.4 Computer Support for Multimedia : : : : : : : : : : : : : : : : : : : 19

2.4.1 Capacity : 22

2.4.2 Scheduling : 26

2.4.3 Reservation : 31

2.5 Summary : 33

3 Jitter 36

3.1 Overview : 36

3.1.1 Hypotheses : 40

vi

3.2 Related Work : 42

3.2.1 Teleconferencing Systems : 42

3.2.2 Delay Bu�ering : 42

3.2.3 Real-time Performance : 44

3.3 Shared Experimental Design : 44

3.4 Processor Experiments : 52

3.4.1 Speci�c Experimental Design : : : : : : : : : : : : : : : : : : 52

3.4.2 Jitter versus Processor Load : : : : : : : : : : : : : : : : : : : 53

3.4.3 Jitter versus Processor Power : : : : : : : : : : : : : : : : : : 54

3.4.4 Section Summary : 58

3.5 Real-time Priority Experiments : 58

3.5.1 Speci�c Experimental Design : : : : : : : : : : : : : : : : : : 59

3.5.2 Results and Analysis : 60

3.5.3 Section Summary : 62

3.6 Network Experiments : 63

3.6.1 Speci�c Experimental Design : : : : : : : : : : : : : : : : : : 63

3.6.2 Results and Analysis : 64

3.6.3 Section Summary : 64

3.7 Summary : 67

4 Application Method 71

4.1 Overview : 71

4.2 Related Work : 74

4.2.1 Benchmarks : 74

4.2.2 Capacity Planning : 77

4.3 Study Application : 78

4.4 Model : 79

4.5 Micro Experiments : 81

4.6 Macro Experiments : 83

4.7 Predictions : 85

4.8 Summary : 86

5 Audioconferences 87

5.1 Overview : 87

5.2 Related work : 89

5.2.1 Audioconference Experiments : : : : : : : : : : : : : : : : : : 89

5.2.2 Measuring Processor Load : 90

5.2.3 Analyzing UDP : 91

5.2.4 Using Silence Deletion : 91

5.2.5 Digital Audio Compression : 91

5.3 Model : 92

5.4 Micro Experiments : 95

5.4.1 Design : 95

5.4.2 Data Collection : 97

5.4.3 Results : 98

5.5 Macro Experiments : 99

5.5.1 Design : 99

5.5.2 Results : 101

5.6 Predictions : 102

5.6.1 Increasing Participants : 103

5.6.2 Increasing Silence : 107

5.6.3 Potential Audioconference Improvements : : : : : : : : : : : : 107

5.6.4 Quality : 119

5.7 Summary : 131

6 Flying through the Zoomable Brain Database 135

6.1 Overview : 135

6.2 Related Work : 138

6.2.1 Scienti�c Visualization : 138

6.2.2 Neuroscience : 138

6.2.3 Compression : 139

6.2.4 Network Performance : 139

6.2.5 Disk Performance : 140

6.3 Model : 140

6.4 Micro Experiments : 141

6.5 Predictions : 143

6.5.1 Networks : 143

6.5.2 Compression : 145

6.5.3 Disks : 149

6.5.4 Processors : 151

6.5.5 Quality : 154

6.6 Summary : 159

7 The Virtual Cockpit 163

7.1 Overview : 163

7.2 Related work : 166

7.2.1 Distributed Interactive Simulation : : : : : : : : : : : : : : : : 166

7.2.2 Geographic Information Systems : : : : : : : : : : : : : : : : 166

7.3 Model : 167

7.4 Micro Experiments : 167

7.5 Macro Experiments : 169

7.6 Predictions : 171

7.6.1 Networks : 172

7.6.2 Processors : 174

7.6.3 Quality : 176

7.7 Summary : 181

8 Conclusions 184

9 Future Work 190

List of Figures

1.1 Relative Bytes Required for Multimedia : : : : : : : : : : : : : : : : 3

1.2 Our Contributions : 6

2.1 The Process for Computing Application Quality : : : : : : : : : : : : 16

2.2 Application Quality Space : 18

2.3 The Region of Scarce Resources : 21

2.4 Taxonomy of Multimedia Application Quality : : : : : : : : : : : : : 23

3.1 A Jitter-Free Stream : 37

3.2 A Stream with Jitter : 37

3.3 The Re
ection E�ect : 49

3.4 Jitter versus Packet Rate : 50

3.5 Jitter versus Packet Rate for 1280 Byte Packets : : : : : : : : : : : : 51

3.6 Sun SLC Jitter versus Receiver Load : : : : : : : : : : : : : : : : : : 53

3.7 Jitter versus Receiver Load : 54

3.8 E�ects on Jitter : 55

3.9 Jitter versus Power : 57

3.10 Jitter versus Receiver Load : 60

3.11 Zoom of Jitter versus Receiver Load : : : : : : : : : : : : : : : : : : : 61

3.12 Interarrival Times for Di�erent Networks and Network Loads : : : : : 65

3.13 Jitter versus Network Bandwidth : 66

3.14 Jitter versus Years : 69

xi

4.1 Quality Planning Method : 72

4.2 Scope of Quality Planning Models : 76

4.3 Quality Planning Model : 79

4.4 The Counter Process : 83

4.5 Count versus Number of Counters : 84

5.1 Audioconference Model : 92

5.2 Absolute Silence Deletion Algorithm : : : : : : : : : : : : : : : : : : 93

5.3 Ham Silence Deletion Algorithm : 94

5.4 Exponential Silence Deletion Algorithm : : : : : : : : : : : : : : : : : 94

5.5 Di�erential Silence Deletion Algorithm : : : : : : : : : : : : : : : : : 95

5.6 Processor Time for Deletion Algorithms : : : : : : : : : : : : : : : : 100

5.7 Sun IPX Processor Load Without Silence Deletion : : : : : : : : : : : 104

5.8 IPX Processor Load with Silence Deletion : : : : : : : : : : : : : : : 105

5.9 Comparison of Processor Loads : 106

5.10 Percentage of Packets Removed : 108

5.11 E�ects of Faster Processors : 109

5.12 E�ects of 8 Times Faster Network : 110

5.13 E�ects of Multicast : 111

5.14 E�ects of Compression : 112

5.15 E�ects of DSP : 113

5.16 E�ects of DSP : 114

5.17 E�ects of Mixing : 115

5.18 Times per Byte : 116

5.19 E�ects of 8 Times Faster Audio : 117

5.20 E�ects of More Silence Deleted : 118

5.21 Jitter Compensation : 121

5.22 Jitter Compensation Area versus Bu�er Size : : : : : : : : : : : : : : 122

5.23 Jitter versus Jitter Compensation Area : : : : : : : : : : : : : : : : : 124

5.24 Audioconference Quality versus Processor or Network Increase : : : : 129

5.25 Audioconference Quality versus Users : : : : : : : : : : : : : : : : : : 130

5.26 Audioconference Quality versus Load : : : : : : : : : : : : : : : : : : 132

6.1 Flying Model : 140

6.2 Processor load for JPEG Compression and Decompression : : : : : : 142

6.3 Bandwidth versus Number of Simultaneous Users : : : : : : : : : : : 144

6.4 Bandwidth versus Servers : 145

6.5 Bandwidth versus Simultaneous Users : : : : : : : : : : : : : : : : : : 147

6.6 Bandwidth versus Servers : 148

6.7 Bandwidth versus Simultaneous Users : : : : : : : : : : : : : : : : : : 150

6.8 Bandwidth versus Number of Servers : : : : : : : : : : : : : : : : : : 151

6.9 Bandwidth versus Simultaneous Users : : : : : : : : : : : : : : : : : : 155

6.10 Bandwidth versus Number of Servers : : : : : : : : : : : : : : : : : : 156

6.11 Client Application Quality : 157

6.12 Quality versus Clients : 158

6.13 Bandwidth requirements for the Zoomable Brain Database : : : : : : 160

6.14 A Proposed National Data Highway Network : : : : : : : : : : : : : : 160

6.15 Bandwidth requirements for the Zoomable Brain Database : : : : : : 162

7.1 Actual Path versus Dead Reckoning Path : : : : : : : : : : : : : : : : 164

7.2 Dead Reckoning Accuracy : 165

7.3 Virtual Cockpit Model : 168

7.4 Network Bandwidth versus Soldiers : : : : : : : : : : : : : : : : : : : 173

7.5 Processor Load versus Soldiers : 175

7.6 Virtual Cockpit Quality versus Soldiers : : : : : : : : : : : : : : : : : 177

7.7 Virtual Cockpit Quality versus Soldiers : : : : : : : : : : : : : : : : : 179

7.8 Virtual Cockpit Quality versus Soldiers : : : : : : : : : : : : : : : : : 180

7.9 Virtual Cockpit Quality : 183

List of Tables

1.1 Three Distributed Collaborative Multimedia Applications : : : : : : : 10

3.1 Hierarchy of Possible Jitter Reducing Techniques : : : : : : : : : : : 38

3.2 Correlation Among Jitter Measures : : : : : : : : : : : : : : : : : : : 47

3.3 Workstations used in Processor Experiments : : : : : : : : : : : : : : 52

5.1 Bare Counts : 99

5.2 Values for Sun SLC and Sun IPX Line Fits : : : : : : : : : : : : : : : 101

5.3 Predicted and Measured Loads from the Macro Experiments : : : : : 102

5.4 Predicted versus Actual Jitter : 126

6.1 Flying Throughput : 152

6.2 Flying Component Loads : 153

6.3 Hardware Flying Throughput : 154

7.1 Processor Load Breakdown : 170

7.2 Component Predictions for the Virtual Cockpit : : : : : : : : : : : : 171

xiv

Chapter 1

Introduction

1.1 Motivation

\If the automobile had followed the same development cycle as the com-

puter, a Rolls-Royce would today cost $100 and get a million miles per

gallon..." Robert X. Cringely, InfoWorld

Never before has industry seen the tremendous change that is transforming to-

day's computers. There has been a tremendous growth in computer performance

and reliability, accompanied by an equally dramatic decrease in price. Today, a few

thousand dollars will buy more performance, memory and disk storage than a million

dollar computer bought in 1965. Since 1965, the performance growth rate for super-

computers and mainframes has been just under 20% per year, and the performance

growth rate for microprocssor-based computers has been about 35% per year [56].

There has been an even more explosive growth in computer networks. The number of

hosts on the Internet has roughly tripled in the time from January 1994 to January

1996 [47]. And the World Wide Web has grown substantially faster than the Internet.

The rate of the World Wide Web's growth has been and continues to be exponential,

doubling in number of hosts in under six months [47].

With world-wide networks connecting a myriad of powerful computers, there is

1

2

a growing need for collaborative applications. For thousands of years, people have

done their best work when they can interact and work together. Only recently they

discovered the computer and now seek to use it to solve problems. The application

of the computer to cooperative work can support and even enhance the way we work

together. Computer supported distance learning provides educational opportunities

to remote students [102, 2, 49]. Scienti�c collaboration can be enhanced when sup-

ported by computers [15] as can military training [25]. Businesses can also bene�t

from computer-assisted collaboration. Business transactions can be more e�cient

through the use of electronic cash [52]. Business costs and errors can be reduced by

the use of Electronic Data Interchange applications [5, 95].

Computer-supported cooperative work (CSCW) helps to overcome time-space lim-

itations and allows people to share information from distributed locations at the same

or di�erent times. Collaborative applications can be enhanced by multimedia. People

communicate best when they can draw pictures and use voice in
ections and body

language rather than simply type text. Communication can more closely resemble

face-to-face interaction when computers are used through the use of record/playback,

on-screen speaker identi�cation,
oor control and subgroup communication [129].

Multimedia can even enable collaboration environments that do not currently exist

today, such as virtual reality [9].

1.2 Problem

\A Picture is worth a thousand words. That's why it takes a thousand

times longer to load." Anonymous.

Despite the growing need and prevalence of distributed, collaborative multimedia

applications, planning for proper computer systems to support multimedia e�ectively

is still di�cult. Multimedia has greater system requirements than traditional text-

based applications. Figure 1.1 gives a coarse illustration of the number of bytes

3

text graphics color audio video

Bytes

for 1 page

2K
38K

720K

300K

7000K

Figure 1.1: Relative Bytes Required for Multimedia. The bars indicate the number of bytes

required to convey a paper-sized page of information in each type of media. We assume a standard

8.5 x 11 inch piece of paper containing 66 lines of text, 80 characters per line. Text is the number of

bytes required to store the page in 8 bit ASCII characters. Graphics is the number of bytes required

to render those characters in postscript. Color is the number of bytes to convey the postcript in

8-bit color. Audio is the number of bytes required to read that page with an audio sampling rate of

8000 bytes/second. Video is the number of bytes required to read that page of text over a small 3

frames/second video stream.

required to convey one page of information in various media. Each step up in media

requires increased computing capabilities. Text, graphics, and color require relatively

little computing capabilities. Audio is feasible on most workstations currently being

marketed. Video, however, requires high-end multimedia workstations. And when

multimedia applications support multi-users, the system requirements are increased

even more.

Moreover, the di�erent media each place di�erent constraints on computer sys-

tems. For instance, human eyes can smooth over occasional glitches in a video stream

more readily than human ears can smooth over breaks in an audio stream [26]. Hav-

ing the computer system place greater emphasis on preserving audio data than on

preserving video data might be important for user satisfaction.

In addition, the constraints for each type of media can vary from application to

application. For example, the acceptable delay for an audio broadcast application

4

such as a radio program may be far more than the acceptable delay for an audiocon-

ference. In an audioconference, users require low latencies so that the conversation

is as life-like as possible. However, in an audio broadcast program, the users do not

interact, allowing a larger delay to go unnoticed. You could imagine a case where

a user downloads an entire radio program overnight and then plays it back in the

morning. In this case, a delay of over twelve hours might be quite acceptable.

Multimedia applications that must run in a distributed environment and support

many users pose even more challenges. Network software components for multimedia

environments have often been overshadowed by issues such as human interface design

or graphics realism [81]. This has led to the fact that there are not many good

solutions to network problems that scale to many users. Even schemes that have

readily apparent bene�ts such as IP multicast have been slow to be adopted [37]. Even

commercial systems are �nding the limits to current technology in creating networked

environments for large numbers of users. America Online provides low-bandwidth

mltiuser games, messaging and chat services for about a million subscribers, yet its

recent attempt to provide unlimted access time created too much demand for their

modem servers to handle.

Collaborative applications have additional communication requirements and para-

digms that need to be explored and supported. Cooperative processes among humans,

involving issues of con
ict, selective attention, self-interest, trust and privacy are not

understood well enough, especially when computers are used to support such processes

[59]. Separating time and space introduces new problems in building work-enhancing

collaborative applications, such as the continued need for face-to-face meetings and

support of roles in normal communication environments [83].

Planning is the �rst fundamental step in developing a software system. And not

only are distributed, collaborative multimedia applications di�cult to build, their

performance is di�cult to predict, also. Part of the di�culty arises from the di�culty

in predicting the future. Performance predictions must deal with future hardware,

5

future software, and future users and their requirements. Even the users themselves

often cannot predict what they want. The rate of change in new technologies continues

to accelerate. Often, by the time the performance of a technology is understood it

is obsolete. Furthermore, distributed environments have a wider variety of potential

con�gurations that do centralized systems. And each new generation of hardware

and software introduces new capabilities.

1.3 Our Solution

In order to build systems that will adequately support distributed collaborative multi-

media applications, it is important to predict application performance as the number

of users increases and evaluate performance and cost tradeo�s for di�erent system

designs. We have developed a solution to predict bottlenecks in the performance of

such applications. The contribution of our solution is depicted by Figure 1.2.

Our solution consists of a general-purpose method to predict the performance of

multimedia applications. At the heart our method is a
exible model, adjustable

to applications with di�erent user requirements and systems with di�erent system

designs and hardware. Our model uses a quality metric as a means of measuring the

performance of an entire computer system.

One indication of the performance of an entire computer system is the users' opin-

ions on the multimedia quality of the applications they run. Multimedia quality is a

measure of the performance of a multimedia application based on the requirements

expected by the user. If the user performance requirements are met, application qual-

ity will be acceptable. If the user performance requirements are not met, application

quality will be unacceptable. We have developed a quality planning model to aid in

designing systems that meet users' quality requirements for multimedia applications

in the future.

Although we often think of a multimedia application as a continuous stream of

6

Study Model Predict

Study
Users
Hardware
Metrics

Quality
Delay
Jitter
Data Loss

Model

M
u
l
t
i
m
e
d
i
a

A
p
p
l
i
c
a
t
i
o
n
s

Predict

"Before"

"After"

Figure 1.2: Our Contributions. The area on the left labeled \Multimedia" represents the space

of future multimedia applications. \A" and \B" are two di�erent applications. \Before" shows how

the performance of A and B is predicted without the contribution of our method. \After" shows

how the performance of A and B is predicted with the contribution our method. The two �gures

on the right represent the users of the applications. The shaded triangles represent performance

parameters that the users care about.

7

data, computer systems handle multimedia in discrete events. An event may be

receiving an update packet or displaying a rendered video frame on the screen. The

quantity and timing of these events give us measures that a�ect application quality.

Based on previous multimedia application research [114, 6, 100, 60, 92, 96, 84, 39,

75, 115, 90, 40], we have identi�ed three measures that determine quality for most

distributed multimedia applications:

� Latency. The time it takes information to move from the server through the

client to the user we call latency. Latency decreases the e�ectiveness of appli-

cations by making them less like real-life interaction [128, 60, 100, 32].

� Data Loss. Any data less than the amount determined by the user requirements

we call data loss. Data loss takes many forms such as reduced bits of color, pixel

groups, smaller images, dropped frames and lossy compression [6, 88, 84, 114].

Data loss may be done voluntarily by either the client or the server in order to

reduce load or to reduce jitter and/or latency.

� Jitter. Distributed applications usually run on non-dedicated systems. The

underlying networks are often packet-switched and the workstations are often

running multiple processes. These non-dedicated systems cause variance in the

latency, which we call jitter. Jitter can cause gaps in the playout of a stream such

as in an audioconference, or a choppy appearance to a video display [66, 96, 68].

The e�ects of latency on a user's perception of an application is well-understood

and well-researched [128, 60, 100, 32]. Similarly, there is a clear relationship between

data loss and application quality deterioration [6, 88, 84, 114]. Methods to ameliorate

the e�ects of jitter have been explored by many researchers [113, 96, 39, 20]. The

tradeo� between bu�ering and jitter has also been explored [75, 112]. We contribute to

the investigation of the e�ects of high-performance workstations, real-time priorities

and high-speed networks on jitter. Moreover, we incorporate these jitter results with

latency and data loss into a general model for application quality. Lastly, we study

8

of the e�ects of di�erent system con�gurations in our general model for application

quality.

There may be additional measures that a�ect application quality that are appli-

cation speci�c. For example, Distributed Interactive Simulation applications use a

process of computing the location of other simulators through \dead reckoning" [55].

When state update packets are dropped, the accuracy of the simulation decreases

[24]. The use of dead reckoning creates an additional quality measure speci�c to DIS

applications. In the rest of this thesis, we consider only delay, jitter and data loss,

except where noted, but our analysis could be similarly applied to such application

speci�c measures.

1.4 Applications

In order to determine the quality of distributed collaborative multimedia applications

we must �rst understand understand the user requirements and derive the system

requirements. Some of the user requirements that a�ect quality and determine system

requirements include: number of users, type of media, time of collaboration and

distribution of data. Users can range from several to several thousand. Media can

be any combination of text, color, audio, video and graphics. Collaboration time

can at the same time (synchronous) or at di�erent times (asynchronous). Data can

reside in a central repository (client-server) or data can be communicated equally

among clients (peer-to-peer). We study three emerging applications that span these

characteristics for distributed collaborative multimedia applications:

1. Audioconferences. Audioconferences have been shown to enhance collaborative

work among users on distributed workstations [98, 82, 104]. Why are audio-

conferences becoming so important? Hearing is one of our strongest senses.

Thus, sound is one of our most powerful forms of communication. If we wish

to use the
exibility and power of computers to support communication and

9

collaboration, then they must support audio data.

2. Zoomable Database. Neuroscientists from diverse disciplines plan to collaborate

across distances in exploring various aspects of brain structure [15]. Their design

includes a zoomable multimedia database of images of the brain tissue. High-

resolution magnetic resonance imaging (MRI) shows the entire brain in a single

dataset. Even higher resolution confocal microscope images are anchored to

these MR images in three dimensions. The user starts a typical investigation

by navigating through the MR images in a coarse 3-d model of the brain to a site

of interest. The user then zooms to higher resolution confocal images embedded

in the MRI landscape. This real-time navigating and zooming is called \
ying."

In order to be an e�ective collaboration tool,
ying must provide high-resolution

images and a high-frame rate as well as high-quality audio and video to allow

neuroscientists to communicate e�ectively.

3. Distributed Interactive Simulation. Distributed Interactive Simulation (DIS)

applications are designed to enable soldiers to engage in simulated combat [25].

The DIS protocol allows participation from soldiers at military bases across the

country using current packet-switched networks, saving the time and trouble of

traveling for combat training. Many DIS developers are designing simulators

that use o�-the-shelf general purpose hardware [85]. In order for the combat to

be realistic, the simulators use high-quality graphics and allow communication

among the soldiers with audio and video. With the high multimedia system

requirements and many users, applications such as DIS applications will stress

all parts of a computer system.

Many text-based applications, such as email, have simple user requirements: send

and receive mail, byte for byte, in a reasonable amount of time, i.e. reasonable

latency and no data loss. Other text-based applications, such as �le transfer, have

more stringent user requirements: put and get �les, byte for byte, in a short amount

10

Application Users Media Time Distribution

Audioconference 2 to 10s audio synchronous peer-to-peer

Zoomable Database 10s to 100s color, text, video, graphics asynchronous client-server

Distributed Interactive Simulation 100s to 1000s color, audio, video synchronous peer-to-peer

Table 1.1: Three Distributed Collaborative Multimedia Applications. We study the three ap-

plications listed in this table above. Users are the number of users who will simultaneously use

the application. Media is the type of media the application provides. Time is \synchronous" if

users work at the same time and \asynchronous" if users work at di�erent times. Distribution is

\client-server" if workstations access a centralized data repository or \peer-to-peer" if workstations

communicate equally to other workstations.

of time, i.e. short latency and no data loss. Multimedia applications, such as a video

conference, have more complicated user requirements: record and play video frames,

keep the frames mostly clear, and deliver at a fast and reasonably steady rate i.e.

low latency, low data loss and low jitter.

Table 1.4 summarizes the application characteristics.

The rest of this thesis is organized as follows:

Section 2 introduces a taxonomy of computer support for multimedia quality. Our

taxonomy describes our quality model for multimedia applications and categorizes the

means with which computer systems support multimedia.

Section 3 presents an in-depth study of jitter, one of the fundamental components

of our model. We present: a comparison of measures of jitter that have been used by

jitter researchers; an experimentally-based study of the e�ects of high-performance

processors, real-time priorities and high-speed networks on jitter; and predictions on

the importance of application jitter reduction techniques in the future.

Section 4 describes the method we use to apply our quality planning model to

distributed, collaborative multimedia applications. We describe our model of the

user, application and system and detail how our experiments are used as the basis

11

for our model and as a means of testing the accuracy of our predictions.

Section 5 applies our method to audioconferences. We introduce audioconferences

and present our hypotheses. We then apply our model and predict audioconference

performance under a variety of system con�gurations, including faster processors,

networks and Digital Signal Processing (DSP) hardware.

Section 6 applies our method to a 3-d interface to a scienti�c brain database. In

applying our model, we move through bottlenecks in application performance from

the network, processor and disk and arrive at a means to con�gure the
ying interface

to �t on a proposed national network topology.

Section 7 applies our method to the Virtual Cockpit. We describe the Virtual

Cockpit in detail, including a protocol designed to reduce network bandwidth. We

then apply our model and predict the performance of the virtual cockpit under high-

speed networks and high-performance processors.

\A man who does not read good books has no advantage over the man

who can't read them." Mark Twain

Each Chapter has a \Related Work" section that discusses research that is specif-

ically related to that section.

Chapter 2

A Taxonomy of Computer Support

for Multimedia Quality

2.1 Overview

We present a taxonomy of multimedia application quality. Our taxonomy seeks to

categorize popular multimedia research topics into three main groups. It de�nes and

clari�es the usage of several common terms used when building multimedia systems.

In addition, it provides a framework on which research in application quality can

build. We may use our taxonomy as a map towards �nding and improving the per-

formance of a multimedia application. In looking to improve a computer system's

support for multimedia, we can use our model obtain a quantitative measure of ap-

plication quality. We locate the current bottleneck in acceptable application quality

and determine how appropriate system changes from the taxonomy categories a�ect

the application quality.

A taxonomy represents a view of the sub-�elds of a research area. For a rapidly

developing and evolving research area such as multimedia, a taxonomy represents a

snapshot of the �eld at one point in time. A taxonomy can change, and should change

as research in the �eld evolves. The view presented in any taxonomy is subjective,

12

13

based on the background and experience of those developing the taxonomy.

A taxonomy can be useful for categorizing work in the �eld. Note that research

very rarely �ts neatly into exactly one category. More often, it overlaps two or three

topics, so that taxonomies should often not be considered strict or binding. However,

the very process of developing a taxonomy forces a focus on the di�erences between

the de�ning keywords of the �eld, and may help clarify their usage.

This Chapter is organized as follows: Section 2.2 presents related work in taxon-

omy and quality. Section 2.3 introduces our model of multimedia applications that

allows us to predict user satisfaction with a computer system and application con�g-

uration. Section 2.4 describes computer systems support for multimedia and presents

our taxonomy and Section 2.5 summarizes the important contributions of this sec-

tion, including a start at de�ning the relationship between our quality model and our

taxonomy.

2.2 Related Work

2.2.1 Taxonomy

Heller and Martin described a media taxonomy that serves both research and devel-

opment of multimedia applications. It correlated well with previous categorizations of

multimedia and helped researchers better understand the impact and value added by

an individual medium in a multimedia presentation. Their media taxonomy included

a table with rows specifying media types: text, graphics, sound and motion; with

columns specifying media expressions: elaboration, representation and abstraction.

In describing a taxonomy for music, Pope made a strong case for the usefulness

of taxonomies [93]. Researchers in the �eld of computer music struggling with the

notion of a taxonomy identi�ed seven hierarchical areas related to composition. Their

categories were: theory, acoustics, representation, synthesis, hardware, education and

history.

14

We present a taxonomy for multimedia application quality. We examine how

computer systems support multimedia applications in light of this taxonomy.

2.2.2 Quality of Service

Quality of Service (QoS) represents the set of those quantitative and qualitative char-

acteristics of a distributed multimedia system necessary to achieve the required func-

tionality of an application. The user should be the starting point for overall QoS

considerations. Some QoS research de�nes user limits of tolerability for application

performance. The user-de�ned QoS parameters are converted into system-level QoS

parameters. System parameters include such notions as throughput and delay.

Kalkbrenner presented an interface to map user choices into system parameters

[71]. For example, users chose image size, resolution, and color for video and speech

of telephone or CD quality for audio. These choices are then mapped into lower-level

system parameters.

Wijesekera and Srivastava de�ned QoS parameters for continuity and synchroniza-

tion speci�cation of continuous media presentations [125]. They de�ned metrics for

average frame rate, variance in average frame rate, frame losses and synchronization.

Another category of QoS research takes user-de�ned parameters and maps them

into parameters for various system level components, such as network throughput.

Naylor and Kleinrock developed a model for measuring the quality of an audiocon-

ference based on the amount of dropped frames and client-side bu�ering [75].

We develop a model for application quality that covers a wider scope than past

QoS research. Our model provides a view of quality from the user level. Thus, our

model incorporates both the workstation and network when determining application

quality. In addition, our model is tunable to di�erent networks and workstations,

allowing it to be applied to systems of the future.

15

2.3 Quality

\There is an old network saying: `Bandwidth problems can be cured with

money. Latency problems are harder because the speed of light is �xed {

you can't bribe God."' David Clark, MIT

Although there are many di�erent measures of computer system performance,

ultimately, the users of the applications must be satis�ed. A multimedia performance

metric must account for components fundamental to multimedia applications. As

described in Section 1, we have identi�ed three fundamental measures that determine

quality for most distributed multimedia applications: latency, jitter and data loss.

The quality of a distributed multimedia application is a measure of the application's

acceptability to the user. Our quality model allows us to compare performance for

di�erent system con�gurations from a user-centered approach.

Ideally, we would like there to be no latency, jitter or data loss. Unfortunately, on

a variable delay network and non-dedicated computer this can never be achieved. To

compute the application quality, we use the above quality components in a process

depicted by Figure 2.1. The user requirements for the application de�ne the accept-

able latency, jitter and data loss. The system determines the predicted latency, jitter

and data loss. Acceptable and projected data are fed into a quality metric for the ap-

plication. The quality metric is a function, based on the acceptable components and

dependent upon the projected components, that computes the application quality.

In order to quantitatively compare application quality for di�erent system con-

�gurations, we need a reasonable quality metric. In the mathematical sense, given

a space S with at least 3 elements (x,y,z) a metric is a real function of 2 variables

D(x,y) such that [42]:

1. D(x,y) = 0 i� x=y (x and y are the same elements)

2. D(x,y) = D(y,x) (symmetry)

16

Acceptable

Projected

Quality Metric Application

Quality

User

System

Latency
Jitter
Data Loss

Latency
Jitter
Data Loss

Figure 2.1: The Process for Computing Application Quality. The user de�nes the acceptable

latency, jitter and data loss and the system determines the actual values. Based on the acceptable

values speci�ed in the user requirements, a quality metric computes the application quality from the

actual values.

3. D(x,y) >= 0 (non-negative)

4. D(x,y) + D(y,z) >= D(x,z) (triangle inequality, which says you cannot gain

by going through an intermediate point)

A metric is sometimes called distance between 2 points in any space. We further

de�ne a \multimedia quality metric" as having several other important properties:

1. It incorporates the three fundamental multimedia quality components: latency,

jitter and data loss.

2. It treats the fundamental components equally, which seems appropriate in the

absence of user studies to the contrary.

3. It produces a convex region of acceptable quality. This �ts our intuition about

changes in quality: the measure increases total quality with any increase in

quality along one axis. There are no pockets of unacceptable quality within the

acceptable quality region, nor can you move from unacceptable to acceptable

by any combinations of increase along the axes.

17

To form our quality metric, we build upon the work of Naylor and Kleinrock [75].

Naylor and Kleinrock developed a model for measuring the quality of an audiocon-

ference based on the amount of dropped frames and client-side bu�ering. We extend

this model by using each quality component as one axis, creating a multi-dimensional

quality space. We place the best quality value for each axis at the origin and scale

each axis so that the user-de�ned minimum acceptable values have an equal weight.

An instantiation of the application lies at one point in this space. The location of

the point is determined by our predictions of the amount of latency, jitter an data

loss that would occur with the given system con�guration. In order to satisfy the

mathematical properties above, we compute the application quality by taking the

Euclidean distance from the point to the origin. All points inside the region de�ned

by the user-de�ned minimums have acceptable quality while points outside do not.

Figure 2.2 depicts a 3-d quality space for multimedia applications. The user

requirements determine a region of acceptable application quality, depicted by the

shaded region. All points inside the shaded region have acceptable quality, while

those outside the region do not. An instantiation of the application and the underlying

computer system would lie at one point in this space.

Our metric attains all of the mathematical metric properties and multimedia met-

ric properties listed above.

There can be many possible quality metrics for a given application. In fact, there

may be many quality metrics that agree with a user's perception of the application.

Mean opinion score (MOS) testing can be used to determine if a metric agrees with

users' perception. The MOS is a �ve-point scale where a MOS of 5 indicates perfect

quality and a score of 4 or more represents high quality. MOS has been used exten-

sively in determining the acceptability of coded speech. MOS testing is beyond the

scope of this paper, so we cannot be certain our quality metric �ts user perceptions.

However, the rest of our model is independent of the quality metric chosen. If new

metrics are developed and validated with MOS testing, they can be used in place of

18

Latency

Jitter

Limit of Acceptable Latency

Limit of Acceptable Jitter

Data Loss

Data Loss
Limit of Acceptable

Figure 2.2: Application Quality Space. The user de�nes the acceptable latency, jitter and data

loss. These values determine a region of acceptable application quality, depicted by the shaded

region. All points inside the shaded region have acceptable quality, while those outside the region

do not. An instantiation of the application and the underlying computer system would lie at one

point in this space.

19

our quality metric.

One limitation to multimedia quality metrics is that after scaling, the upper limits

on the axes have di�erent characteristics. The \data loss" axis has a �nite upper-limit

of 100%, while the \latency" and \jitter" axes each have an in�nite bound. Compar-

ing application quality for two di�erent con�gurations at the upper-limit of any of the

axes may not match user perception. Fortunately, this limitation only arises when

comparing two unacceptable con�gurations. The metric is most valuable for deter-

mining whether a con�guration provides \acceptable" or \unacceptable" application

quality and comparing con�gurations within the \acceptable" region.

2.4 Computer Support for Multimedia

From the time that there was more than one computer, there has been a range of

computer processing capabilities. As the number of low- and high-end computers

continues to grow, the size of this range continues to expand. Just as the capacity

of computer systems has grown, so has the number of applications. Today, as new

computer systems emerge [123], new applications are being developed [8, 31] and old

applications are being enhanced [43, 33]. The growth of computers has resulted in a

large space of possible system capacities, increasingly being �lled by developing and

emerging applications.

The ability of today's computer systems to support a given multimedia applica-

tion falls into one of three categories, represented in Figure 2.3. The computer system

can have abundant enough resources to always provide acceptable application per-

formance. For example, today most computer workstations provide a graphical user

interface. Or, the computer system can have insu�cient resources to every provide

acceptable application quality. For example, a typical workstation and network will

not have enough resources to provide adequate quality for the Virtual Cockpit [24].

In between these �rst two scenarios lies the \Region of Scarce Resources" [4]. Within

20

this region, a computer system will have enough resources to adequately support the

application only if the resources are carefully utilized. For example, workstations

that can provide acceptable audio quality most of the time, may su�er from gaps in

an audio stream when the audio application is competing for resources with another

application.

Yesterday, computer systems could handle text, but struggled with graphics. To-

day, they can handle audio and video, but to do so computer resources must be

carefully managed. Tomorrow, we will have GigaFLOP processors and Terabit net-

works so we will not have a bottleneck for audio and video, just as today there is no

bottleneck for graphics. However, there will always be a region of scarce resources.

As capacity and capacity demand both increase, so does the size of the region of

scarce resources, enabling more applications that will require careful capacity plan-

ning. Moreover, applications continue to expand to �ll (or surpass) available capacity.

A recent quote from Byte Magazine summarizes this situation:

\... imagine a 15,000 MHz processor, 1600 MB of RAM and a 100 GB

hard drive for less than 20 dollars and the new types of applications that

it would spawn. I personally think the new word processor releases would

have enough fatware to bring that system to its knees!" Daren Coppock,

Byte, December 1996

If Daren Coppock is correct, some multimedia applications will always lie in the

region of insu�cient or scarce resources particularly as the number of collaborative

users increases. Applications and system resources must be enhanced so that appli-

cations currently in the region of insu�cient resources will lie in the region of scarce

resources. At the same time, current and future resources must be carefully managed

so that applications in the region of scarce resources will have acceptable quality. In

light of this view, we have begun developing a taxonomy for the areas of computer

science research that bene�t the performance of multimedia applications. Our tax-

21

Insufficient Resources

Sufficient but
Scarce Resources

Abundant Resrouces

Year

The Region of Scarce Resources

1980 1990 2000 2010

Capacity Demand

Remote

Login

1-Person

Audio

10-Person

Audio

1-Person

Cockpit

100-Person

Cockpit

1000-Person

Cockpit

10-Person

Flying

Capacity

Resources

Figure 2.3: The Region of Scarce Resources. The horizontal axis represents the year and corre-

sponding capacity increase. The vertical axis is the capacity demand. The regions represent areas

in which there are insu�cient resources to meet demand, su�cient but scarce resources to meet

demand and abundant resources to meet demand.

22

onomy is a developing document and is meant to represent the current research areas

for multimedia application performance.

In our taxonomy, we identify three categories of research aimed at improving

multimedia application performance:

� Capacity research seeks to increase computer system resources to meet the per-

formance requirements for multimedia applications. Capacity research strives

to move applications currently in the region of insu�cient or scarce resources

into the region of abundant resources.

� Scheduling research seeks to use computer resources in a more e�ective man-

ner for supporting multimedia applications. Scheduling research attempts to

make the performance of applications inside the region of scarce resources more

acceptable.

� Reservation research seeks methods to reserve computer resources for more con-

sistent multimedia application performance. Reservation research attempts to

improve the performance of applications inside the region of scarce and abun-

dant resources.

These three categories are depicted in Figure 2.4. The boxes inside each category

represent sub-categories of multimedia quality research. The words in italics represent

speci�c examples of research taking place within a research sub-category. As our

taxonomy will show, there is enormous breadth and depth of the research in improving

multimedia application performance. Our work concentrates on carefully analyzing

the performance improvements of a few speci�c areas: the capacity improvements of

processors, networks and disks; and real-time operating system priorities.

2.4.1 Capacity

Computer system capacity is the maximum available amount of output over a given

time period. Capacity is the ultimate prerequisite for handling multimedia. Neither

2
3

Taxonomy of Multimedia Application Quality

Reservation

Better Hardware

More Hardware

Ordinary

Special

 Replication

Graphics

Multicast

Compression

Client vs. Server Processing

Dead Reckoning

DSP

RAM

High-perf Workstation

High-speed Network

Multiproc
Real-Time Priorities

Playout Schemes

Synchronization

Interleaved Time Stamp
+ Buffer

MPEG

Buffering Policies

YARTOS

Continous Media File Systems

Schedule Layout

Zebra

I and E

History

Leaky Bucket

SRP

Immediate

Rether

ARTS

DASH MetaScheduler

Advanced

RTP

RTP

Decrease Capacity Demand

Capacity

Increase Capacity

Shift Capacity Demand

Scheduling

ST-II

RSVP CBSRP

F
i
g
u
r
e
2
.
4
:
T
a
x
o
n
o
m
y
o
f
M
u
l
t
i
m
e
d
i
a
A
p
p
l
i
c
a
t
i
o
n
Q
u
a
l
i
t
y
.
T
h
e
r
e
a
r
e
t
h
r
e
e
c
a
t
e
g
o
r
i
e
s
d
e
p
i
c
t
e
d
f
o
r

i
m
p
r
o
v
i
n
g
c
o
m
p
u
t
e
r
s
y
s
t
e
m

s
u
p
p
o
r
t
f
o
r
m
u
l
t
i
m
e
d
i
a
.
C
o
m
p
u
t
e
r
s
y
s
t
e
m

c
a
p
a
c
i
t
y
i
s
t
h
e
m
a
x
i
m
u
m

a
v
a
i
l
a
b
l
e
a
m
o
u
n
t
o
f
o
u
t
p
u
t
o
v
e
r
a
g
i
v
e
n
t
i
m
e
p
e
r
i
o
d
.
S
c
h
e
d
u
l
i
n
g
i
s
t
h
e
p
r
o
c
e
s
s
i
n
g
o
f
c
o
n
t
r
o
l
l
i
n
g

c
o
m
p
u
t
e
r
r
e
s
o
u
r
c
e
s
s
o
t
h
a
t
a
p
p
l
i
c
a
t
i
o
n
q
u
a
l
i
t
y
i
s
m
a
x
i
m
i
z
e
d
.
R
e
s
e
r
v
a
t
i
o
n
i
s
a
m
e
t
h
o
d
o
f
c
o
n
t
r
o
l
l
i
n
g

r
e
s
o
u
r
c
e
a
c
c
e
s
s
.

24

careful scheduling nor optimal reservation schemes will help if the computer system

does not have the capacity to support the multimedia application.

The computer system component with the smallest capacity will determine the

total capacity. For example, it does not matter that your processor can send 50

Mbits/second of video if your network can only carry 10 Mbits/second.

Demand will also impact on capacity. Having a workstation and network that can

process 50 Mbits/second of video for an application that only requires a maximum of

10 Mbits/second of video results in an excess capacity.

We consider computer systems made up of:

1

� Workstations: memory, processor, disk, display, bus, audio/video cards, and

other specialized hardware. Capacity for the workstation is the workstation

multimedia throughput, such as frames/second or Kbits/second of audio.

� Networks: network cards, cables and routers (for multi-hop networks). Capacity

for the network is Mbits/second.

The capacity of computer system and application can be changed by: increasing

the capacity, decreasing the capacity demand from the application or shifting the

capacity demand from one computer component to another.

Increasing Capacity Application quality may be improved by increasing the ca-

pacity of the supporting computer system, particularly when the current computer

resources provide insu�cient capacity for minimal services. Capacity may be in-

creased either through better hardware, more hardware or specialized hardware.

� Better Hardware. With better hardware, either the workstation can be upgraded

or the network upgraded or both. Increasing the capacity of the workstation

1

We also consider the software that drives computer systems, such as an operating system and

network protocol, as a component that a�ects the computer system capacity.

25

involves improving any of: disk, processor, memory, bus, graphics card, or

monitor (or display device). Increasing the capacity of the network involves

improving either the network card, network cable or network protocol.

� More Hardware. Workstations can be improved by adding more basic hardware

or specialized multimedia hardware. Some ordinary hardware that may be

increased to increase workstation capacity includes:

{ Memory. Most workstations will have increased capacity with increased

memory.

{ Processors. Some applications can greatly bene�t from a multi-processor

workstation.

{ Replication. Duplicating servers will often increase the capacity of a com-

puter system, especially when there are multiuser applications.

� Specialized Hardware. Hardware speci�c to multimedia tasks will often increase

system capacity. Some examples of specialized hardware includes graphics

boards for video frame rendering and DSP chips for specialized signal processing

algorithms such as silence deletion [98].

Decreasing Capacity Demand When a computer system does not have su�-

cient capacity to support the application, the application capacity requirements may

be reduced. For example, with unicast routing, you do one send for each of N other

receivers. With multicast routing, you do only one send for N other receivers. Mul-

ticast routing has been shown to dramatically reduce network capacity requirements

[24], and to moderately reduce processor capacity requirements [22].

Alternatively, capacity demand may be decreased through voluntary data loss.

As mentioned in Section 1, data loss takes many forms such as decreased frame

rate, reduced bits of color, jumbo pixels, smaller images, dropped frames and lossy

compression [6, 88, 84, 114].

26

Shifting Capacity Demand When user requirements cannot be completely sat-

is�ed, there is often a tradeo� in system choices. If part of a computer system has

su�cient capacity while another part has surplus capacity, it may be possible to

shift some of the application capacity requirements from the component with scarce

resources to the component with surplus resources.

For example, compression can reduce the size of the data packets that are sent

from server to client, decreasing the network capacity requirements. However, the

compression and decompression increase the workstation capacity requirements.

Capacity requirements can often be shifted between the client and the server.

Many applications have data that needs processing before it is displayed to the user

[19]. This processing can be done at either the client or the server. For example,

in a Geographic Information Systems application the frame computation can take

place by two di�erent methods: in remote image processing the server does the image

computation and transfers only a 2D frame to the client; in local image processing the

server transfers the 3D data and the client does the image computation. In remote

image processing the server capacity requirements are high but the network capacity

requirements are low. In local image processing, the processing capacity demand has

shifted from the server to the client and the network.

Another example that shifts capacity demand is dead reckoning. Dead reckoning

is used in Distributed Interactive Simulation (DIS) [55]. DIS is a virtual environment

being designed to allow networked simulators to interact through simulation using

compliant architecture, modeling, protocols, standards and databases. DIS simula-

tors use \dead reckoning" algorithms to compute position. Dead reckoning shifts

the capacity demand from the network to the simulators. See Section 7 for more

information.

2.4.2 Scheduling

\Let's do smart things with stupid technology today, rather than wait and

27

do stupid things with smart technology tomorrow." William Buxton, Uni-

versity of Toronto.

Scheduling is the processing of controlling computer resources so that applica-

tion quality is maximized. Traditional scheduling techniques for workstations and

networks are Round-Robin or First-Come-First-Served or variants of them. While

fair, these algorithms generally are not careful in ensuring that the users' quality re-

quirements are met. Scheduling that favors multimedia data may be done in several

ways:

Real-Time Priorities. Multimedia applications incorporating audio and video of-

ten have stringent delay requirements. Real-time priorities seek to reduce delay by

giving multimedia processes and network data precedence over traditional processes

or data.

� Solaris. Some modern versions of Unix have support for real-time scheduling.

In particular, SunOS 5.3 (Solaris) allows for �xed-priority processes and has a

fully preemptive kernel. These features produce dispatch latencies on the order

of a few milliseconds [74].

� YARTOS. Je�ay and Stone have built an experimental real-time operating sys-

tem that provides guaranteed response times to tasks [63]. It is used as a vehicle

for research in the design, analysis and implementation of real-time applications.

� RETHER. Venkatramani and Chiueh propose and evaluate a software-based

protocol called RETHER (Real-time ETHERnet) that provides real-time per-

formance guarantees to multimedia applications without modifying existing

Ethernet hardware [cite RETHER]. RETHER features a hybrid mode of op-

eration to reduce the performance impact of non-real-time network packets.

� Real-Time Network. Verma, Zhang and Ferrari describe a scheme for setting

up a connection on a packet switched network with guaranteed performance

28

parameters [121]. Such parameters include a bound on the minimum band-

width, maximum packet delay and maximum packet loss rate. Their scheme is

theoretically capable of providing a signi�cant reduction in jitter.

� RTP. Schulzrinne, Casner, Frederick and Jacobson propose RTP, the real-time

transport protocol, as an Internet standard [103]. RTP provides end-to-end net-

work transport functions suitable for applications transmitting real-time data,

such as audio, video or simulation data, over multicast or unicast network ser-

vices. The data transport is augmented by a control protocol (RTCP) to allow

monitoring of the data delivery in a manner scalable to large multicast networks,

and to provide minimal control and identi�cation functionality. RTP and RTCP

are designed to be independent of the underlying transport and network layers.

The protocol supports the use of RTP-level translators and mixers.

Playout Policies. Ideally, we would like to play-out multimedia frames contin-

uously with each successive frame right after the previous. However, this smooth

playout is often not possible unless strict policies are enforced that control the play-

out. There are several categories of such policies:

� Bu�ering Policies To support continuous play-out, we must compensate for jit-

ter by having a delay bu�er at the receiver end. Bu�ering can compensate for

jitter at the expense of latency. Transmitted frames are bu�ered in memory

by the receiver for a period of time. Then, the receiver plays out each frame

with a constant latency, achieving a steady stream. If the bu�er is made suf-

�ciently large so that it can hold all arriving data for a period of time as long

as the tardiest frame, then the user receives a complete, steady stream. How-

ever, it is not clear that the primary goal should be play-out with no gaps.

In most multimedia applications, gaps from delay variance or even dropping

frames occasionally is tolerable. In these cases, play-out with low-latency and

some gaps is preferable to play-out with high-latency and no gaps. The added

29

latency from bu�ering can be disturbing [90], so minimizing the amount of delay

compensation is desirable.

Another bu�ering technique to compensate for jitter is to discard any late frame

at the expense of data loss. Discarding frames causes a temporal gap in the

play-out of the stream. Discarding frames can keep play-out latency low and

constant, but as little as 6% gaps in the playout stream can also be disturbing

[75]. In the case of audio speech, the listener would experience annoying gaps,

somewhat similar sounding to static, during this period. In the case of video,

the viewer would see the frozen image of the most recently delivered frame.

Naylor and Kleinrock describe two policies that make use of these bu�ering

techniques: the E-Policy (for Expanded time) and the I-Policy (for late data

Ignored) [75]. Under the E-policy, frames are never dropped. Under the I-policy,

frames later than a given amount are dropped. Since it has been observed that

using a strict E-Policy tends to cause the playout latency to grow excessively

and that dropping frames occasionally is tolerable [18, 113], we use the I-Policy

as a means of examining needed jitter compensation for a multimedia stream.

Queue monitoring uses a policy for decreasing display latency based on ob-

serving queue lengths over time at the receiver [58, 113]. If the queue length

becomes su�ciently long compared with previous queue length, we can con-

clude that display latency can be reduced without causing gaps by discarding

a frame.

Frankowski and Riedl de�ne a heuristic solution for choosing the bu�er time

called History [41]. The bu�er times are based on an ordered list of past inter-

arrival times. They �nd History to have some bene�ts over bu�ering methods

that use the standard deviation or absolute deviation of past interarrival times

for choosing delay bu�er size.

30

As opposed to policies of receiver-side bu�ering, Ferrari presents a scheme for

bu�ering data at the network nodes between the sender and receiver [39]. His

bu�ering scheme is capable of providing a signi�cant reduction in jitter, with

no accumulation of jitter along the path of a channel. This form of bu�ering

signi�cantly reduces the bu�er space required in the network.

Je�ay presents a method of bu�ering at the side of the sender, instead of the

receiver [115]. He argues that a sender based bu�ering scheme may be more

e�ective than are receiver based schemes.

� Continuous Media File Systems. Continuous media �le systems seek to im-

prove multimedia application quality by decreasing either the time to access

continuous multimedia data on disk and decreasing the variance in this access

time. Continuous media �le systems are most used to improve the quality of

asynchronous multimedia applications as synchronous multimedia application

generally do not rely on multimedia data on a disk. There are two ways multi-

media disk access may be improved:

{ Scheduling. Under scheduling, access to the disk occur at the time when

the multimedia data is needed.

{ Layout. One approach to providing continuous media is to organize disk

layout to allow e�cient access to continuous data. For example, Zebra

is a network �le system that stripes �le data across multiple servers for

increased �le throughput [54]. Rather than striping each �le separately,

Zebra forms all the new data from each client into a single stream, which it

then stripes. This provides high performance for reads and writes of large

�les and also for writes of small �les. Zebra also writes parity information

in each stripe in the style of RAID disk arrays; this increases storage costs

slightly but allows the system to continue operation even while a single

storage server is unavailable. A prototype implementation of Zebra, built

31

in the Sprite operating system, provides 5-8 times the throughput of the

standard Sprite �le system or NFS.

Synchronization. Many multimedia applications have synchronized renditions of

audio and video. The granularity of synchronization may di�er from application

to application. For example, one application may require tight lip synchronization

between a speaker and his voice, while another application may only require spoken

words displayed with a changing background. There are two kinds of synchronization:

� Interleaved. With interleaved synchronization, the audio data is interleaved

with the video data with which it is to be played. The client, upon receiving

the data, separates the audio and video data and plays it, without performing

any manual synchronizing. An example of interleaved synchronization is the

standard for video from the Motion Picture Experts Group (MPEG) [92].

� Timed. Synchronization of multimedia streams can be achieved by the use of

timestamps. The sender timestamps each sample and the receiver uses the

timestamps to restore the inter-sample spacing. An example is vat, a voice-

conferencing system developed by Van Jacobson in experimental use on the

Internet.

2.4.3 Reservation

\Reservations recommended." Ristorante Luci, St. Paul, MN.

The best scheduling method is useless if the requirements imposed on a resource

exceeds the system capacity. Reservation is a method of controlling resource access.

Setting aside resource capacity implies some form of reservation. We have identi�ed

two categories of reservation schemes:

32

Immediate. Most reservation services for real-time communication assume that

real-time channels are requested for an inde�nite duration. Clients are not asked how

long such changes will be alive and are assumed to be for an inde�nite duration. This

approach is similar to the model of a telephone call, where you do not have to specify

how long you are going to talk.

Anderson, Herrtwich and Schaefer describe the Session Reservation Protocol (SRP)

which allows communicating peer entities to reserve the resources, such as CPU and

network bandwidth, necessary to achieve given delay and throughput [3]. The im-

mediate goal of SRP is to support `continuous media' (digital audio and video) in

IP-based distributed systems. SRP is based on a workload and scheduling model

called the DASH resource model. This model de�nes a parameterization of client

workload, an abstract interface for hardware resources, and an end-to-end algorithm

for negotiated resource reservation based on cost minimization.

Yau and Lam present a framework for scheduling multimedia applications that

allows processes to reserve CPU time to achieve guarantees [127]. It provides �re-

wall protection between processes such that the progress guarantee to a process is

independent of how other processes actually make scheduling requests.

The Experimental Internet Stream Protocol (ST-II) is a network layer protocol

providing multicast services [120]. It provides facilities to negotiate and server re-

sources for packet size and data rate.

Advanced. Some important multimedia applications require that advance reserva-

tions be possible. For example, users wanting a multi-person videoconference might

desire to reserve resources in advance so that a meeting can be held at the appointed

time. Advanced reservation involves setting aside resources in advance such that at

a speci�ed future time the resources will be available. Advanced reservations have

start time and duration. The crucial di�erence between immediate reservations and

advanced reservation is in the duration.

33

The coarseness of the \time granule" for reservations slots has a large impact on

the amount of processing time needed to determine the acceptance of an advanced

reservation. Coarse time granules will require less processing time. Limiting the

duration of advanced reservation requirements will allow more sharing of resources.

Ferrari, Gupta and Ventre describe the Tenet Real-Time Protocol Suite 2, a suite

being developed for multi-party communication, which will o�er advance reservation

capabilities to its clients [38].

2.5 Summary

This section presents a taxonomy of computer support for multimedia quality. Our

taxonomy may be useful for categorizing related research in multimedia applications

and it can provide a framework on which research in application quality can build.

At the heart of our taxonomy is our model for determining distributed, collabora-

tive multimedia application quality. Our quality model can be used to compare the

e�ects of di�erent system con�gurations on application quality. Using our model, we

can �nd the bottlenecks in application quality and determine which categories under

our taxonomy improve quality the most. In addition, we can use our model to eval-

uate the potential performance bene�ts from expensive high-performance processors

and high-speed networks before installing them. We can even investigate possible

performance bene�ts from networks and processors that have not yet been built. In

order to improve multimedia quality, system con�gurations can be altered, a�ecting

one of the three categories in our taxonomy: capacity, scheduling and reservation.

After determining application quality, we may seek to improve it by making a

change in the underlying computer system. The change is re
ected by tuning the

system con�guration part of our model. The potential bene�t from the system change

can improve latency, jitter and/or data loss. We have begun to identify how system

changes from each of the taxonomy categories a�ects latency, jitter or data loss.

34

Since capacity improvements to computer systems will continue independent of

other research in multimedia, it is important to understand what impacts larger ca-

pacities will have on multimedia application performance. In the rest of this thesis,

we concentrate on the the e�ects that changes in capacity have on multimedia appli-

cation performance. Capacity improvements usually improve multimedia quality by

reducing latency, jitter and data loss. As shown in Section 5.4, capacity improvements

reduce latency because faster hardware can respond faster. As shown in Section 3.4,

capacity improvements reduce jitter because faster hardware also reduces variance in

response time. And as described in Section 5.6.4, larger capacities reduce the amount

of data loss from system saturation.

In order to support current and future multimedia application requirements, it

will always be crucial to use available resources in an e�ective matter. In Section 3,

we take an in-depth look at how real-time scheduling a�ects jitter, a fundamental

component of multimedia application quality. We demonstrate that some methods of

scheduling improve jitter more than do capacity improvements.

Reservation has the potential to improve multimedia application quality by re-

ducing latency, jitter and data loss. However, this thesis focuses on the e�ects of

capacity and scheduling on multimedia application quality.

Synchronization is an interesting case. Synchronization does not improve latency;

synchronized data arrives no sooner and may even arrive later than non-synchronized

data. Synchronization does not improve jitter; synchronization does not improve

the variance in the multimedia data. And synchronization does not improve data

loss. Synchronization points out the need for some applications to have an additional

axis to determine application quality in addition to the three fundamental axes. We

may choose to call the additional axis the \accuracy" axis. For example, the quality

of Distributed Interactive Simulation applications includes an \accuracy" axis (see

Section 7). Previous quality research by Je�ay et al. has evaluated videoconference

quality based on audio and video synchronization [66].

35

A computer system's change in one category might require a change in another.

For example, to implement a bu�ering scheme (a scheduling change), you might need

more memory (a capacity increase). Or, to carry out a network reservation scheme,

you might lose some capacity from ine�ciency, requiring an increase in network band-

width (another capacity increase).

In Sections 5, 6 and 7, we apply our quality model to three applications: audio-

conferences, a 3-d interface to a scienti�c database and a distributed, multi-person

combat simulator. We vary system con�gurations in order to predict the e�ect of

capacity and scheduling changes on application quality.

Chapter 3

Jitter

3.1 Overview

In a distributed multimedia application, a multimedia stream is generated at the

sending workstation and sent over a network to the receiving workstation. The data

is generated and sent in �xed-sized quantities called frames. The end-to-end frame

delay is the time between a frame's generation on the sender and the time it is

processed by the receiver. Variation in this end-to-end delay we call jitter. We have

observed jitter on the order of a few hundred milliseconds when sending a multimedia

stream using unloaded workstations on a quiet Ethernet local area network.

How does jitter a�ect a multimedia stream? In the absence of jitter, the frames can

be played as they are received, resulting in a smooth playout, depicted by Figure 3.1.

However, in the presence of jitter, interarrival times will vary, as depicted in Figure 3.2.

In Figure 3.2 the third frame arrives late at r2. In the case of audio speech, the

listener would experience an annoying pause during this period. In the case of video,

the viewer would see the frozen image of the most recently delivered frame.

If we decrease jitter, we will have a less choppy playout and better application

quality. In seeking to decrease jitter, we can tune the application, the operating sys-

tem or the underlying hardware. This gives us a hierarchy of possible jitter reducing

36

37

s0 s1 s2 s3 s4

r0 r1 r2 r3 r4

sender

receiver

Figure 3.1: A Jitter-Free Stream. The above �gure is a model of a jitter-free stream. Each si is

the time at which the send process initiates the transmission of frame i. Each ri is the time at which

the receiving process plays frame i.

s0 s1 s2 s3 s4

r0 r1 r2 r3 r4

sender

receiver

Figure 3.2: A Stream with Jitter. The above �gure is a model of a stream with jitter. Each si

is the time at which the send process initiates the transmission of frame i. Each ri is the time at

which the receiving process plays frame i.

techniques. Table 3.1 depicts this hierarchy. Application techniques for reducing jit-

ter include application tuning and bu�ering. System techniques for reducing jitter

include disk layout/scheduling, alternate network protocols and operating system pri-

orities. Hardware techniques for reducing jitter include hardware improvements, such

as high-performance processors, high-speed networks and fast disks. We consider the

merits of conducting research on each jitter reducing technique:

Application Tuning and Bu�ering. Application-level techniques for reducing

jitter are done in the context of compensating for the jitter produced by the underlying

computer system. There has been extensive research done on application techniques

[35, 104, 81]. Controlled frame playout through bu�ering, in particular, has been well

studied [75, 96, 115, 113, 39]. With bu�ering, transmitted frames are held in memory

by the receiver for a period of time. Then, the receiver plays out each frame with a

38

Level Possible Jitter Reducing Technique

Application Application Tuning

Bu�ering

System Disk Layout/Scheduling

Alternate Network Protocols

Operating System Priorities

Hardware High-Performance Processors

High-Speed Networks

Fast Disks

Table 3.1: Hierarchy of Possible Jitter Reducing Techniques

constant latency, achieving a steady stream. If the bu�er is made su�ciently large so

that it can hold all arriving data for a period of time as long as the tardiest frame,

then the user receives a complete, steady stream. However, the added latency of data

can be disturbing [90]. So there is a tradeo� between ameliorating the e�ects of jitter

and minimizing the amount of latency due to bu�ering.

Computer systems continue to get faster while human perceptions remain the

same. Future system improvements may remove enough of the underlying jitter such

that application-level jitter reduction techniques are unnecessary. How far in the

future will this be? In this work, we seek to answer this question by experimen-

tally measuring the e�ects of system improvements on jitter. Then, based on the

rate of hardware improvements, we predict when the jitter levels contributed by the

underlying system will drop below human perception.

Disk Layout/Scheduling and Fast Disks. Fast disks, and disk layout/scheduling

strategies may be crucial for reducing jitter for some multimedia applications. In this

work, none of the three multimedia applications we study, audioconferences, the scien-

39

ti�c brain database and the virtual cockpit, access multimedia data on disks directly,

so we do not consider the e�ects of disk layout or scheduling on jitter further.

Alternate Network Protocols. Alternate network protocols may reduce jitter

over traditional network protocols. There has been a lot of research into network pro-

tocols designed for handling multimedia data [79, 120, 100]. Our work experimentally

measures the e�ects on jitter of two high-speed network protocols: Fibre Channel and

HIPPI.

Operating System Priorities. There is evidence to suggest that a signi�cant

source of jitter in the transmission of multimedia may be found in the operating

system of the sending and receiving workstations [46]. The principal de�ciency in

process scheduling in modern operating systems is that user-level processes are not

preempted while in kernel mode. As a result, increased system activity can increase

response time without bound. In addition, modern operating systems allow priority

inversions to occur whereby a low priority process excludes high-priority processes

from accessing time-critical data, thus causing the high-priority processes to miss

deadlines. These de�ciencies can result in latency on the order of 100 milliseconds

[74]. Real-time scheduling allows the operating system to accurately time events and

allocation of memory to the process and provide for priority scheduling. This feature

can reduce latency to the order of a few milliseconds [74]. Our work experimentally

compares the bene�ts of real-time scheduling to normal scheduling to determine if

real-time scheduling does reduce jitter.

High-Performance Processors and High-Speed Networks. High-performance

processors have higher throughput and a faster context switch time than typical pro-

cessors resulting in better application response time. High-speed networks deliver

frames from the sender to the receiver faster than typical networks, reducing the

network transmission time. Together, high-performance processors and high-speed

40

networks networks will reduce application latency. The reduced latency should be

accompanied by a reduction in latency variation, or jitter. We ran experiments on

SGI Challenge workstation clusters and Fibre Channel and HIPPI networks under

both light and heavy load to determine the e�ects that hardware improvements have

on jitter.

3.1.1 Hypotheses

Given the above discussion, we propose the following hypotheses:

1. High-performance processors reduce jitter.

2. Real-time operating system priorities reduce jitter.

3. High-speed networks reduce jitter.

Processor performance approximately doubles every year [56]. As processor per-

formance increases, latency decreases. This decrease in latency may be accompanied

by a decrease in jitter. However, in order to signi�cantly improve application quality,

any jitter reduction from high-performance processors needs to be large compared to

the total jitter contributed by the network and operating system. In other words, the

processor may not be the bottleneck in reducing jitter.

Since real-time operating system priorities have been shown to decrease latency

[74], it seems natural to assume that they may decrease jitter, also. If real-time

priorities do prove to signi�cantly reduce jitter, application quality may be improved

without expensive hardware upgrades or time-consuming application tuning.

Under heavy loads, high-speed networks should deliver multimedia frames faster

than traditional networks. By delivering frames faster, high-speed networks will re-

duce contention for the network, decreasing the latency of frames waiting to be de-

livered by the network. We would also expect this reduced contention to decrease

41

jitter under such conditions. However under light loads, the reduced latency from

high-speed networks may not signi�cantly improve application quality.

In order to test our hypotheses, we looked at three possible performance eval-

uation techniques: analytic modeling, simulation and experimental measurement.

Frankowski and Riedl found that analytically modeling jitter is very di�cult, even

on a quiet, single-hop network [41]. The contributions to jitter from the operat-

ing systems on both the sender and receiver and the contribution to jitter from the

network are di�cult to capture mathematically. Stein and Riedl had some success

in using simulation to evaluate the e�ects of jitter on audioconference quality [112].

However, according to Jain, simulations are most e�ective when they are based on

previous measurement [62]. Unfortunately, to the best of our knowledge, careful mea-

surements of the contributions to jitter from high-performance processors, real-time

priorities and high-speed networks have not been made. Simulating the e�ects of such

components on jitter may give rise to inaccurate or misleading results. We use exper-

imental measurement to test our hypotheses about the e�ects of high-performance

processors, priorities and high-speed networks on jitter reduction. Future research

may be able to use our performance measurements as a basis for simulations.

Although our hypotheses are simply stated, the answers to these hypotheses are

not quite as simple as \true" or \false." The rest of this chapter explains why.

Section 3.2 lists related work in teleconferencing systems, delay bu�ering and real-

time performance. Section 3.3 details the experimental design components that were

common to all experiments. Section 3.4 explores the e�ects of processor performance

on jitter. Section 3.5 examines the e�ects of real-time priorities on jitter. Section 3.6

looks at the e�ects of high-speed networks on jitter. And Section 3.7 summarizes the

results from this section.

42

3.2 Related Work

3.2.1 Teleconferencing Systems

Several experimental teleconferencing systems have been designed to explore telecon-

ferencing performance issues such as jitter.

Riedl, Mashayekhi, Schnepf, Claypool and Frankowski developed SuiteSound [98].

SuiteSound attempted to integrate support for multimedia into the Suite program-

ming environment. They performed experiments to determine the network and CPU

load of the SuiteSound tools, including the e�ects of an algorithm that removes silence

from digitized speech.

Hopper developed the Pandora system to investigate the potential for creating

and deploying a desktop multimedia environment based on advanced digital video

and audio technology [58]. Pandora o�ered a \tool box" to those analyzing and

working on information by providing a
exible communications system that allowed

e�ective interaction between a number of users.

Je�ay, Stone and Smith developed a transport protocol that supports real-time

communication of audio/video frames across campus-area packet switched networks

[65]. They demonstrated the e�ectiveness of their protocol by measuring the perfor-

mance of their protocol when transmitting audio and video across congested networks.

Teleconferencing systems attempt to provide quality audio and video to groups of

users. One component to teleconferencing quality is jitter. We provide experimental

results on the e�ects that system improvements will have on reducing jitter. We also

present a quality model that can be used to evaluate system con�guration tradeo�s

in predicting teleconferencing quality from the users' perspective.

3.2.2 Delay Bu�ering

Research in delay bu�ering has looked at ways to ameliorate the e�ects of jitter by

controlling the playout and delivery of frames at either the sender or the receiver.

43

Ramjee, Kurose, Towsley and Schulzrinne compared the e�ects of four di�erent

bu�ering algorithms for adaptively adjusting the playout delay of audio packets over

a wide area network [96]. They found that an adaptive algorithm which explicitly

adjusts to the sharp, spike-like increases in packet delay achieved the lowest rate of

lost packets.

Stone and Je�ay presented an empirical study of several bu�ering policies for

managing the e�ect of jitter on the playout of audio and video in computer-based

conferences [113]. They evaluated a particular policy called queue monitoring by

comparing it with two policies from other literature. They showed that queue mon-

itoring performs as well or better than the other policies over the range of observed

network loads.

As opposed to the two papers above that use receiver-side bu�ering, Ferrari pre-

sented a scheme for bu�ering data at the network nodes between the sender and

receiver [39]. He studied the feasibility of bounding jitter in packet-switched wide

area networks with a general topology. He presented a bu�ering scheme that is capa-

ble of providing a signi�cant reduction in jitter, with no accumulation of jitter along

the path of a channel, and demonstrated that jitter control signi�cantly reduces the

bu�er space required in the network.

Talley and Je�ay presented a method of bu�ering at the side of the sender, in-

stead of the receiver [115]. They presented a framework for transmission control

that describes the current network environment as a set of sustainable bit and packet

transmission-rate combinations. They empirically demonstrated the validity of adapt-

ing both packet and bit-rate using simple adaptation heuristics.

Naylor and Kleinrock developed a model for measuring the quality of an audiocon-

ference based on the amount of dropped frames and client-side bu�ering [75]. They

used their model to investigate two adaptive receiver-side bu�ering schemes which

may be used to achieve a smooth playout. Method E expands the bu�er to preserve

all incoming frames. Method I ignores all late frames in order to preserve timing.

44

We explore alternative means to delay bu�ering to reduce jitter. Speci�cally,

we examine when hardware improvements might make delay bu�ering techniques

unnecessary. We extend the work of Naylor and Kleinrock to develop a more general

model for multimedia application quality.

3.2.3 Real-time Performance

Govindan and Anderson conjectured that the traditional operating system goals of

fairness, maximum system throughput and fast interactive response may con
ict with

the needs of real-time applications such as continuous media and proposed a new

processor scheduling algorithm [46]. Je�ay, Stone and Smith made similar remarks

and provided experimental evidence [65]. Je�ay and Stone and went so far as to

build an operating system that supports real-time multimedia [63]. Khanna, Serbree

and Zonowsky discussed the design, implementation and performance of the SunOS

5.0 operating system as a real-time system [74]. Gerhan presents the new real-time

enhancements to Microsoft Windows NT [48].

We experimentally measure the e�ects of Solaris real-time priorities and the Unix

nice facility on jitter. We compare the e�ects of using operating system priorities

with processes run under default priorities.

3.3 Shared Experimental Design

\The fundamental principle of science, the de�nition almost, is this: the

sole test of the validity of any idea is experiment." Richard P. Feynman

We ran a series of experiments to test our hypotheses. This section details the

design components that were common to all experiments.

Our experiments were all conducted on a single-hop LAN. In our �rst set of ex-

periments, we attempted to measure jitter contributions on a WAN. However, getting

tight con�dence intervals on WAN jitter proved extremely di�cult. Perhaps in the

45

future, our LAN measurements may be used in simulations to explore the e�ects of

a WAN on jitter.

Each experiment simulated the transmission of a multimedia stream under various

conditions and measured the amount of jitter. We used pairs of user-level processes

that sent and received UDP datagrams using Berkeley socket I/O. The send process

used an interval timer to initiate frame delivery. The receive process took times-

tamps using the gettimeofday() system call. These timestamps are used to measure

the amount of jitter.

A jitter measure must re
ect the extent to which the interarrival times vary.

There are several classical statistical measures of variation that have been used in

jitter research:

� Range. The simplest measure of variability is the maximum delay between any

two consecutive frames. Generally speaking, more variability is re
ected in a

larger range. The range also provides a maximum delay variance for providing

jitter guarantees to multimedia applications. For this reason, range has been

used in some past jitter research [121].

� Variance. The primary measure of variability determines the extent to which

each frame deviates from the mean frame interarrival time. The standard way

to prevent values below the mean interarrival time from negating values above

the mean interarrival time is to square them. Dividing by the number of frames

gives the average squared deviation. This is the standard de�nition of variance

and is used by several jitter researchers [39, 96]. The formula for variance is

[30]:

V ariance =

P

n

i=1

(x

i

� x)

2

(n� 1)

� Standard Deviation. By taking the square root of the variance, we get the

same units as the frame delay. This is the standard deviation, the classical

46

measure of spread. Several researchers have used the standard deviation of

packet interarrival times as a measure of jitter [112, 68, 7]. The formula for

standard deviation is [30]:

StandardDeviation =

v

u

u

t

P

n

i=1

(x

i

� x)

2

(n� 1)

� Absolute Deviation. Variance and standard deviation have proven to be very

sensitive to outliers. Since human eyes and ears can smooth over an occasional

glitch in an audio or video stream, we do not want our jitter measure to be

especially sensitive to outliers. For this reason, some researchers have used

absolute deviation as a measure of jitter because it is less sensitive to values far

from the mean [104]. The formula for absolute deviation is :

Absdev =

n

X

i=1

jx

i

� xj

In addition, there has been jitter research that has incorporated derived measures

of jitter:

� Gaps. When playing out a multimedia stream, a late frame will cause a gap

in the smooth playout. The total number of gaps and the number of gaps per

second can provide a measure of how much jitter there is in the stream. Gaps

as a measure of jitter has been by several jitter researchers [113, 41].

� Jitter Compensation. In addition to determining bu�er size, the jitter compen-

sation curve can be used to measure jitter. The jitter compensation curve is

a measure of the amount of delay bu�ering needed to achieve a smooth multi-

media stream (see Section 5.6.4 for a complete description). The more jitter in

a multimedia stream, the larger the area under the jitter compensation curve.

This jitter measure has been used by [51].

47

Range Variance Stddev Absdev Gaps Area

Range 1.00 0.34 0.34 0.33 0.21 0.34

Variance 0.34 1.00 0.96 0.89 0.85 0.95

Stddev 0.34 0.96 1.00 0.95 0.73 0.99

Absdev 0.33 0.89 0.95 1.00 0.66 0.96

Gaps 0.21 0.85 0.73 0.66 1.00 0.72

Area 0.33 0.95 0.99 0.96 0.72 1.00

Table 3.2: Correlation Among Jitter Measures. This table depicts the correlation coe�cients for

9 di�erent jitter measures. Range is the maximum interarrival time. Variance is the variance in

interarrival times. Stddev is the standard deviation of interarrival times. Absdev is the absolute

deviation of interarrival times. Gaps are the number of playout gaps per second with 250,000

microseconds of bu�ering. Area is the area under the jitter compensation curve. The table is

symmetric about the diagonal.

There are many more possible measures of jitter: interquartile range, mean length

of gaps, median length and even second-order statistics such as variance on the mean

length, etc. However, such measures are less likely to depict the amount of jitter

meaningful to the multimedia application than the more direct methods we detailed

above. Because of this, to the best of our knowledge, other researchers have not used

them to measure of jitter. We do not consider these methods further.

However, we did want to compare the equivalence of jitter measures that had

been used in previous research. We recorded interarrival times for all experiments

in Sections 3.4 through 3.6 and computed jitter values for range, variance, standard

deviation, absolute deviation, gaps and jitter compensation. We then computed the

Pearson's correlation coe�cient [30] for each pair of jitter measures. For the gaps

jitter measure, we assumed all late data is ignored and that there is a bu�er of 250,000

microseconds, values used by other researchers [75]. Table 3.2 gives the correlation

coe�cient for each jitter measure pair.

48

Range does not correlate well with any of the other jitter measures. Range mea-

sures variation as the distance between the two most extreme values. Variation de-

pends on more than just the extreme values as we can see from these two samples:

f10,15,15,15,20g and f10,10,15,20,20g both have the same range but there is

less dispersion in the �rst sample.

Gaps does not correlate well with Absolute Deviation and it correlates only slightly

well with Area. The number of gaps per second depends upon the initial bu�er chosen,

so di�erent bu�er sizes might have di�erent correlation results. The rest of the jitter

measures correlate well (0.72) to to extremely well (0.99) with each other. With the

exception of range, the measurement of jitter chosen does not not appear to matter.

We choose variance as our measure of jitter because it is easy to understand and

compute.

Audio and video have very di�erent bandwidth needs. The Sun audio device

records audio at a rate of 8000 bytes/second [1]. Video acquisition hardware typically

generates 30 frames-per-second and compressed frames with a resolution of 256x240

require around 2 megabits-per-second of bandwidth [18]. We wanted to see if either

packet size or packet rate changed the frequency and/or magnitude of the interarrival

times.

Pairs of packets tend to re
ect about the mean packet arrival time. If a packet

arrives late, the next packet usually arrives early by the same time that the previous

packet was late. When interarrival times become small, the packet following a late

packet is unable to arrive an equal amount early, being unable to arrive in fewer than

zero microseconds. Figure 3.3 depicts packet re
ection. There are two multimedia

streams shown. The top stream has a mean interarrival time of 160,000 microseconds.

The lower stream has a mean interarrival time of 30,000 microseconds. When the

packet �rst packet arrives late in the 160,000 stream, the subsequent packet arrives an

equal amount early. However, when a packet arrives late in the 30,000 microsecond

stream, the subsequent packet arrives almost immediately, being unable to re
ect

49

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9

In
te

ra
rr

iv
al

 T
im

e
(in

 m
ic

ro
se

co
nd

s)

Packet

Reflection

Cannot Reflect

160,000 microseconds
30,000 microseconds

Figure 3.3: The Re
ection E�ect. The horizontal axis is the packet number. The vertical axis the

interarrival time in microseconds. The zig-zag lines represent two multimedia streams with the top

having a mean interarrival time of 160,000 microseconds and the bottom having a mean interarrival

time of 30,000 microseconds.

an equal amount. Mathematically, the top stream will have a larger variance, even

though they both have an equal chance of a having a packet arrive late. This re
ection

e�ect is an artifact of the environment and does not accurately indicate the frequency

and magnitude of late packets.

We performed three mini-experiments to test if either packet size or packet rate

changed the frequency and/or magnitude of the interarrival times. We subtract the

mean from each interarrival time and drop all points that are below zero. This avoids

the re
ection e�ect and allows us to compare the frequency and magnitude of late

packets. In the �rst experiment, we sent packets of three di�erent sizes at three di�er-

ent rates: audio-rate (160,000 microseconds) and audio-size (1280 bytes); video-rate

(33,000 microseconds) and video-size (6000 bytes); and mid-rate (100,000 microsec-

50

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

33000 100000 160000

V
ar

ia
nc

e
(m

ic
ro

se
co

nd
s

^
2)

Time Between Packets (in microseconds)

correlation -.02

Figure 3.4: Jitter versus Packet Rate. The horizontal axis is the time between packets. The

vertical axis is the variance. Each point represents an independent experiment. The correlation is

-0.02.

onds) and mid-size (4000 bytes). Figure 3.4 depicts the results. The correlation

between packet rate and variance is an extremely low -0.02.

In the second experiment, we sent packets all of the same size (1280 bytes) at four

di�erent rates: 30,000 microseconds, 70,000 microseconds, 110,000 microseconds, and

160,000 microseconds. Figure 3.5 depicts the results. The horizontal axis is the time

between packets. The vertical axis is the variance. The correlation between packet

rate and variance is an extremely low 0.09.

In both experiments, the correlation between packet rate and jitter was extremely

low. This indicates that the amount of jitter, in terms of number and magnitude of

late packets, we would expect to see in a high-rate video stream would be the same

as the jitter from a lower-rate audio stream. For all subsequent experiments, we used

the audio rate in order to avoid the re
ection e�ect and to keep network and processor

51

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

30000 70000 110000 160000

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Time Between Packets (in microseconds)

correlation .09

Figure 3.5: Jitter versus Packet Rate for 1280 Byte Packets. The horizontal axis is the time

between packets. The vertical axis is the variance. Each point represents an independent experiment.

The correlation is 0.09.

52

Workstation MHz SPECint92

SLC 20 8.6

IPC 25 13.8

IPX 40 21.8

Sparc 5 85 64.0

Table 3.3: Workstations used in Processor Experiments.

loads low. We can then measure the e�ects that increased network and processor load

had on jitter. To simulate the transmission of audio, we sent 1280-byte datagrams

every 160,000 microseconds.

3.4 Processor Experiments

Processor performance approximately doubles every year [56]. These high-performance

processors will probably have a huge e�ect on improving the quality of current mul-

timedia applications and may enable new multimedia applications. We explore the

e�ects of processor performance on jitter, one component in multimedia application

quality.

3.4.1 Speci�c Experimental Design

We used four classes of Sun processors: SLC, IPC, IPX and Sparc 5. Table 3.3

summarizes the workstation attributes. The workstations were connected to an 10

Mbits/second Ethernet. We used a process that increments a long integer variable in

a tight loop (a \counter process") to induce processor load.

53

0

1e+10

2e+10

3e+10

4e+10

5e+10

0.5 1 1.5 2 2.5 3 3.5 4 4.5

V
ar

ia
nc

e

Load

Figure 3.6: Sun SLC Jitter versus Receiver Load. The horizontal axis is the processor load as

reported by the Unix w command. The vertical axis the the variance in interarrival times. The

middle line is the least squares line �t. The outer two lines form a 95% con�dence interval around

the line. The correlation coe�cient is 0.98.

3.4.2 Jitter versus Processor Load

We �rst test whether increasing processor load increases jitter. We ran an increasing

number of counter processes on the receiver and obtained the processor load from

the Unix w command at the end of each experiment run. The w command displays a

summary of the current activity on the system, including the average number of jobs

in the run queue over the last 1, 5 and 15 minutes. Lastly, we did a least squares line

�t for the load versus variance and computed the correlation coe�cient. Figure 3.6

shows the results of our experiments on the Sun SLC.

Figure 3.7 shows the results of our experiments on all the Sun workstations listed

in Table 3.3. Again, we did a least-squares line �t for the load versus variance, for

54

0

1e+10

2e+10

3e+10

4e+10

5e+10

0 1 2 3 4 5 6 7

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Load

SLC
SLC
IPC
IPC
IPX
IPX

Sparc 5
Sparc 5

Figure 3.7: Jitter versus Receiver Load. The horizontal axis is the processor load as reported by

the Unix w command. The vertical axis the the variance in interarrival times. The lines are the least

squares line �ts. The correlation coe�cients range from 0.97 to 0.99.

each class of processor. The slopes for all processors are positive, meaning that an

increase in load results in an increase in jitter no matter how powerful the processor.

In addition, the slopes of the least squares line �ts decrease as the processors get

more powerful. This means that under loaded conditions, more powerful processors

will contribute less jitter to a multimedia stream than will less powerful processors.

3.4.3 Jitter versus Processor Power

We observed that more powerful processors decrease jitter under high loads, but what

happens under conditions of more normal load?

In Figure 3.7, the lines come to nearly the same point at a processor load of 1.

At a load of 1, we could show no correlation between jitter reduction and processor

55

multi
day

multi
night

single
day

single
night

single
ded

0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)

(Gap between lines is 200 milliseconds)

Figure 3.8: E�ects on Jitter. There are 5 multimedia streams represented in this picture, each

by a horizontal line depicting the interarrival times. \Single" indicates an experiment run in single-

user mode. \Multi" indicates an experiment run in typical multi-user mode. \Day" indicates an

experiment run in the middle of the day. \Night" indicates and experiment run at night. \Ded"

indicates an experiment run on a dedicated network. Each multimedia stream is o�-set from the

one below it by 200 milliseconds. The horizontal axis is the time in seconds.

power, so we sought to isolate our experimental environment from the outside world

to better observe the e�ects of the processor. Figure 3.8 depicts a series of attempts to

do this. The top line in the picture represents the interarrival times for an experiment

run in normal multi-user processor mode during the day.

We wanted a quiet network to reduce e�ects of network on jitter. We assumed

that most users do their work in the day, so there should have been less network tra�c

at night. We recorded interarrival times at night to see if they appeared signi�cantly

di�erent than those recorded during the day. These times are depicted by the 2nd

line from the top of Figure 3.8. The amount of jitter at night appears no better than

56

the amount of jitter during the day. We attribute this to the academic environment

in which we tested, in which some students and faculty members are likely to work

in the early morning hours. In addition, many system backups are scheduled to be

done at night in order to interfere less with the majority of the users during the day.

We also wanted to reduce the e�ects of other workstation processes on jitter. We

ran an experiment in single-user mode during the day and recorded the interarrival

times, depicted by the 3rd line from the top of Figure 3.8. Still, the amount of jitter

in single-user mode appears only slightly better than the amount of jitter in multi-

user mode. We could still show no correlation between jitter reduction and processor

power.

We then tried a combination of single-user mode and nighttime. These interarrival

times are depicted by the 2nd line from the bottom of Figure 3.8. The amount of

jitter in this case is noticeably less than the amount of jitter from the multi-user mode

experiment run during the day. However, we could still show no correlation between

jitter reduction and processor power.

In our last e�ort to remove as much jitter as possible, we physically disconnected

our workstations and subnet from the surrounding networks and ran our experiments

in single-user mode. Success! These interarrival times are depicted by the bottom

line in Figure 3.8. This nearly
at line represents a multimedia stream that is almost

jitter-free.

Once we isolated the machines on a quiet network and ran our experiments in

single user mode, we were able to observe the e�ects di�erent power processors have

on jitter under light loads. Figure 3.9 depicts these results. There is a strong cor-

relation between increased processor power and decreased jitter. However, having

dedicated workstations and networks is implausible in many real-world cases and

probably impossible for wide-area networks such as the Internet.

57

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 10 20 30 40 50 60 70

1
/ V

ar
ia

nc
e

(in
 m

ic
ro

se
co

nd
s

^
2)

Power (SPECint92)

correlation: .99

Figure 3.9: Jitter versus Power. The horizontal axis is the SPECint92 result of the workstation.

The vertical axis is 1 / variance in packet interarrival times. The middle horizontal line is the least

squares line �t. The outer two lines form a 95% con�dence interval around the line. The correlation

coe�cient is 0.98.

58

3.4.4 Section Summary

Jitter correlates highly with processor load. Since multimedia applications are often

processor intensive, they often force processors to run at a heavy load. Moreover,

in the past, applications have tended to expand to �ll (or surpass) available system

capacity, making heavy-load conditions likely in the future. These heavily loaded

workstations will contribute to the jitter in multimedia applications.

Fortunately, under heavy loads, faster processors reduce jitter compared to slower

processors. However, under normal load, the reduction in jitter from the faster pro-

cessors is overshadowed by the variance in average processor and network loads. To

fully determine the bene�ts of faster processors to jitter, it is imperative to determine

if future multimedia application will, in fact, push processor capacities to the limit.

If so, future multimedia application quality will bene�t from faster processors. If not,

application quality should be improved by means other than processor improvement.

We can use our model from Section 2.3 to determine if current and future processor

capacities are being consumed by multimedia applications. In addition, as we show

in Sections 5, 6 and 7, our model allows us quantitatively determine the bene�t

to application quality from high-performance processors for today's and tomorrow's

multimedia applications.

3.5 Real-time Priority Experiments

From the previous experiments, single-user mode and a dedicated network can nearly

eliminate jitter. However, in a multi-user system a dedicated processor is seldom

available, and a dedicated network is even more rare. It seems unlikely that the

above results alone will help users in most cases. We turn to real-time priorities to

see how they compare to the bene�ts of a single-user mode processor under realistic

load conditions.

59

3.5.1 Speci�c Experimental Design

We used Sun SPARC Classics running SunOS 5.4, a Unix variant. In Unix, a processes

priority determines how much CPU time the process gets [87]. The kernel will decrease

the priority of processes that have accumulated what it considers \excessive" CPU

time. The priority of a process is not the only thing that determines when a process

will be run. To determine which process should be run next, the scheduling mechanism

in the kernel uses a formula that takes into account each process's priority, how much

CPU time each process has gotten recently, and how long it has been since each

process has run. SunOS 5.4 extends Unix process scheduling with real-time support.

A real-time process runs in a separate scheduling class than normal processes. In

the default con�guration, a runnable real-time process runs before any other process.

This gives real-time processes the highest priority.

Even without real-time extensions, Unix provides the nice facility. Nice allows

you to change the default priority of a process. Using nice, it is possible to improve

the user-mode priority of a process allowing it to run ahead of other eligible runnable

user-mode processes. Processes using the nice facility may still su�er long dispatch

latencies, however. Any process that is suspended waiting for I/O will, upon being

re-activated, have a higher priority than any process that is in user-mode, regardless

of its nice value [78].

We varied the process priority from Default (processes were run without enhanced

priority), Niced (processes were invoked using the setpriority(-19) system call as

an o�set to determine the �nal user-mode priority of the process) and Real-Time

(processes were given �xed priorities in the SunOS real-time scheduling class using

priocntl() system call).

As in Section 3.4, we used a process that increments a long integer variable in a

tight loop to induce processor load. We ran separate experiments with one through

six of these counter processes.

60

0

5e+09

1e+10

1.5e+10

2e+10

2.5e+10

3e+10

3.5e+10

0 1 2 3 4 5 6

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Load

Default

Nice Real-Time

Figure 3.10: Jitter versus Receiver Load. The horizontal axis is the processor load as reported

by the Unix w command. The vertical axis the the variance in interarrival times. The lines are the

least squares line �ts for default priorities, niced priorities and real-time priorities, as indicated.

3.5.2 Results and Analysis

Figure 3.10 compares the jitter for real-time, nice and default priorities as processor

load increases. The slopes of the lines indicate how sensitive a process running under

the given priority is to the e�ects of increases in processor load. The steeper the slope,

the more jitter the process contributes as processor load increases. Both nice and real-

time priorities have signi�cantly gentler slopes than default priority, indicating that

nice and real-time processes do not su�er nearly as much jitter as do as default priority

processes as processor load increases.

Figure 3.11 is a close-up of the nice and real-time priorities in Figure 3.10. The

most steeply sloped line is for default priority. The next most steeply sloped line is

nice priority and the horizontal line is real-time priority. Real-time priority has nearly

61

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

0 1 2 3 4 5 6

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Load

Default

Nice

Real-Time

Figure 3.11: Zoom of Jitter versus Receiver Load. This graph is a close-up of Figure 3.10 by

changing the upper bound on the vertical axis from 3.5e+10 to 8e+08. The horizontal axis is the

processor load as reported by the Unix w command. The vertical axis the the variance in interarrival

times. The lines are the least squares line �ts for niced priorities and real-time priorities, as indicated.

a
at slope, indicating that real-time processes show almost no increase in jitter as

processor load increases. Nice priority processes, however, do su�er from increased

jitter with increased processor load, as indicated by its steep slope. Notice that the

line for nice priority intersects the x-axis at about a load of two, as opposed to default

priority which intersects the x-axis around a load of one. This indicates that even

under light loads, nice priority processes reduce jitter as opposed to default priority

processes.

62

3.5.3 Section Summary

Real-time priorities signi�cantly reduce jitter as processor load increases. The severity

of jitter that was observed when real-time priorities were used was extremely light

compared to the jitter without real-time priorities. Real-time priorities show almost

no increase in jitter as processor load increases. Real-time processes have priority

over other processes, allowing them to respond to multimedia data with less jitter

than do nice or default priority processes. Note, however, that real-time priorities

must be used carefully. A real-time process can starve other process of CPU time,

including critical operating system processes. We found this out the hard way when

we ran a counter process in real-time mode. The counter process consumed all of the

CPU cycles, not even allowing enough CPU time to kill the process as the super-user.

We were forced to reboot our computer, which displeased our system administrator

and other users as our computer was a server. In addition, if many processes are run

with real-time priorities the bene�ts in jitter reduction will most certainly be reduced

compared with having just one process with real-time. To picture this, assume that

every process ran in real-time mode. All processes would compete for CPU time in

the real-time queue and scheduling would occur just as it does in the usual case. The

bene�ts of having a real-time priority mode would be lost.

Nice priorities signi�cantly reduce jitter as processor load increases. Under heavy

loads, nice priority processes had much less jitter than did default priority processes.

Even under light loads, nice priorities signi�cantly reduced jitter versus default pri-

orities. The improved user-mode priority of a niced process causes it to run ahead of

other eligible runnable user-mode processes, allowing the niced process to respond to

multimedia data with less jitter. However under heavy processor loads, nice priority

processes did su�er from some increased jitter while jitter under real-time processes

remained nearly constant. Even a nice priority process will run after any newly-

activated process, regardless of its nice value, causing the niced process to su�er from

more jitter than would a real-time process. The newly-activated process will complete

63

its time-slice before the CPU reschedules and activates the niced process. When there

are more processes, this becomes more likely, causing the niced process to su�er from

more jitter.

The amount of jitter reduction from nice or real-time priorities depends upon the

processor load. We can use our model in Section 2.3 to determine the processor load

from multimedia applications. As we show in Sections 5, 6 and 7, with our model we

can also explore how the reduction in jitter from nice and real-time priorities bene�ts

the application quality as future multimedia applications push processors to the limit.

3.6 Network Experiments

From the experiments in Section 3.4 and Section 3.5, we know that high-performance

processors and real-time priorities a�ect jitter. We next examine the e�ects that

high-speed networks have on jitter.

3.6.1 Speci�c Experimental Design

We used 4 processor SGI Challenge L workstations. Each workstation was connected

to three networks: a 10 Mbit/s Ethernet; a 266 Mbit/s Fibre Channel; and a 800

Mbit/s HIPPI.

We induced network load using netperf [69]. Netperf is a benchmark that can

be used to measure the performance of many di�erent types of networks. It provides

tests for both uni-directional throughput and end-to-end latency.

Both HIPPI and Fibre Channel are point-to-point networks, unlike Ethernet which

is a shared medium network. Inducing network load between two workstations that

were not the sender and receiver did not increase jitter because they did not share

the same physical wire. Instead, we ran the netperf and netserver processes on

the same workstations as the sender and receiver, respectively. We ran the netperf

processes on di�erent processors than the sender and receiver by using the runon

64

command. This minimized the jitter that might be contributed by the processor load

induced by the netperf processes.

3.6.2 Results and Analysis

Figure 3.12 depicts the experiment results that show the interarrival times for the

three networks under two di�erent conditions of network load. The \no load" runs

are the experiments on a quiet network. The \load" runs are the experiments run

with netperf. The three \no load" lines are almost indistinguishable, indicating

no correlation between jitter and network bandwidth. However, under high network

load there is a noticeable di�erence in the interarrival times for the three networks,

indicating there may be a correlation between jitter and network bandwidth.

Figure 3.13 shows the relationship between jitter and network bandwidth for

loaded networks. We expect that jitter decreases as network bandwidth increases,

so we graphed the theoretical network bandwidth versus 1/variance. There are three

data points plotted, one for each of Ethernet, Fibre Channel and HIPPI. The line

represents a least squares line �t through the three data points. The correlation co-

e�cient is 0.98, indicating that there is a strong inverse relationship between jitter

and network bandwidth. In other words, as network bandwidth increases, jitter de-

creases. Note that although the correlation coe�cient is a high 0.98, the fact that

there are only three data points is evident in the width of the 95% con�dence intervals

around the least squares line �t. It would be nice to have more data points in order

to strengthen the statistical signi�cance of our results. To do this, however, we need

to have new networks on which to experiment.

3.6.3 Section Summary

Under low network loads, high-speed networks do not signi�cantly reduce jitter. Un-

der low loads, the network contributes little variation to the interarrival times for the

multimedia frames. Most of the variance is caused outside the network, rendering

65

0 200 400 600 800 1000 1200 1400 1600 1800
Packet

Ethernet (no load)

Fibre Channel (no load)

HIPPI (no load)

Ethernet (load)

Fibre Channel (load)

HIPPI (load)

Figure 3.12: Interarrival Times for Di�erent Networks and Network Loads. There are 6 multimedia

streams represented in this picture, each by by a horizontal line depicting the interarrival times on

the indicated network. The network was either either loaded or unloaded. Each multimedia stream

is o�-set from the one below it by 750,000 microseconds. The horizontal axis is the packet number.

66

0

1e-06

2e-06

3e-06

4e-06

5e-06

0 100 200 300 400 500 600 700 800

1
/ V

ar
ia

nc
e

(in
 m

ic
ro

se
co

nd
s

^
2)

Mbits/Second

Ethernet

Fibre Channel

HIPPI

Figure 3.13: Jitter versus Network Bandwidth. The horizontal axis is the network bandwidth.

The vertical axis is 1 / variance. The line is a least squares line �t of jitter versus theoretical network

bandwidth for three networks: Ethernet, Fibre Channel and HIPPI. The correlation coe�cient is

0.98.

67

any jitter reduction from the high-speed networks insigni�cant.

However, under heavy network loads, high-speed networks signi�cantly reduce

jitter. Under heavy loads, network contention causes multimedia frames that are

ready to be delivered to be delayed. Because network tra�c is often bursty, the

delays are non-deterministic, causing increased variation in the interarrival times for

the multimedia frames. High-speed networks reduce the amount of time to deliver

the interfering network tra�c, decreasing the variation in the multimedia interarrival

times.

The amount of jitter reduction from high-speed networks depends upon the net-

work load. We use our model from Section 2.3 to determine the network load from

multimedia applications as the number of users increases. Then, using the results from

this section, we can determine what e�ect jitter reduction from high-speed networks

has on the application quality.

3.7 Summary

Jitter hampers computer support for multimedia. Jitter is the variation in the end-

to-end delay for sending data from one user to another. Jitter can cause gaps in

the playout of a stream such as in an audioconference, or a choppy appearance to

a video display for a videoconference. There are several techniques that can be

used to reduce jitter. In this work, we have experimentally measured the e�ects of

three jitter reduction techniques: high-performance processors, real-time priorities

and high-speed networks.

Jitter researchers have used a variety of metrics to measure the amount of jitter

in a multimedia stream. However, with the exception of range, all previously-used

jitter metrics are statistically similar. Range is probably not an appropriate measure

of jitter because it is very susceptible to outliers. While outliers do create glitches in

an audio or video stream, they can often be smoothed over and ignored by human

68

eyes and ears.

We �nd high-performance processors, real-time priorities and high-speed networks

all signi�cantly reduce jitter under conditions of heavy load. Multimedia applications,

tending to be resource intensive, are likely to push processors capacities to the limit,

making conditions of heavy load likely. As the growth in distributed collaborative

applications continues, multimedia applications will push network bandwidths to the

limits, also. Thus, high-performance processors, real-time priorities and high-speed

networks will all be e�ective in reducing jitter.

Computer systems continue to get faster while human perceptions remain the

same. Future system improvements may remove enough of the underlying jitter such

that application-level jitter reduction techniques are unnecessary. How far in the

future will this be?

In Section 5.6.4, we see that as the area under the jitter compensation curve

decreased, the required bu�er decreased. From Figure 5.22, if we had an area of

75,000 square microseconds or less, we would require virtually no bu�ering in order

to achieve acceptable quality. From Figure 5.23, we can predict that this will happen

if jitter is 10

9

square microseconds or less. From our results in Sections 3.4, 3.6 and

5.6.4, we can predict how powerful hardware must become in order to achieve this

low jitter rate. We can determine when this will be if we assume both processor

power and network bandwidth double each year, as has been the trend in the past

[56]. Figure 3.14 depicts these predictions.

For the next 5 years, hardware improvements alone will not reduce the e�ects of

jitter low enough to eliminate the need for application bu�ering techniques. However,

if we implement real-time priorities in scheduling our multimedia stream, we can

reduce jitter enough to eliminate the need for application bu�ering today.

However, improving jitter alone is not su�cient to guarantee improving applica-

tion quality. In addition to jitter, the application quality also depends upon latency,

which decreases the application realism, and data loss, which reduces the application

69

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

1998 1999 2000 2001 2002 2003 2004 2005 2006

Ji
tte

r
(V

ar
ia

nc
e

in
 In

te
ra

rr
iv

al
 T

im
es

)

Year

Possible Threshold of Human Perception

Without Real-Time
With Real-Time

Figure 3.14: Jitter versus Years. The horizontal axis the year. The vertical axis is the amount

of jitter. There are two sets of predictions. The top, slightly curved line depicts the amount of

jitter in a system without real-time priorities. The lowest, slightly curved line depicts the amount of

jitter in a system with real-time priorities. The horizontal line represent the threshold below which

application bu�ering would not be needed.

70

resolution. We have developed a model that allows us to evaluate the e�ects of jitter

reduction in the larger context of a user's perception of the multimedia application.

Our model allows us to show how advances in networks and processors will improve

application quality without tuning the operating system or the application.

Chapter 4

Application Method

4.1 Overview

In order to plan for the quality of computer enhancements, we have developed a

method to apply our quality planning model to distributed collaborative multimedia

applications. We start by studying the application from the perspective of the user.

The user describes a distributed collaborative multimedia application and de�nes a

set of requirements that need to be ful�lled if the application performance is to be

acceptable. We model the user, application, computer system and quality metric. We

perform some detailed experiments, called micro experiments, to measure the funda-

mental components of the application. We test the accuracy of an analytic model

based on the micro experiments through larger experiments, called macro experi-

ments. We use these macro experiments to calibrate the model. Lastly, we predict

the application quality as various model components change. Figure 4.1 depicts our

method.

We present the methods we use in applying our quality planning model to mul-

timedia applications. Our model is intended to locate the bottlenecks in the perfor-

mance of distributed collaborative multimedia applications. There are three classes

of solutions to this problem[62]:

71

72

Perform Micro
Experiments

Send

Study
Application

Make
Predictions

Calibrate
Model

Model
Application
Users

Apps

U Req

S Req

Architecture

Hardware

Quality

Jitter

Perform Macro
Experiments

Send RecvDisplay

Figure 4.1: Quality Planning Method. We have developed a method for applying our model to

distributed multimedia applications. We start with an application, develop our model, perform

micro and macro experiments and make quality predictions.

1. Analytic Model. An analytic model is a mathematical representation of a com-

puter system. Analytic models are fast and
exible, making them inexpensive

to develop and to run. Analytic models allow easy variation of system param-

eters, which provides insights into the e�ects of various parameters and their

interactions.

2. Simulation. A simulation is a software representation of a computer system

that may include application, operating system, processor and more. Simula-

tions often capture more system details than do analytic models, but are often

less useful for comparing trade-o�s among di�erent parameters. Simulation

measurements can often take a long time, either to build the simulation or to

run it. However, simulation time can often compress wall-clock time that is on

the order of days or weeks. In these cases, simulation runs can be much faster

than measurement.

3. Measurement. Measurement is possible only if something similar to the pro-

73

posed system already exists. When planning for future application performance

on future systems this is not possible. When they are possible, measurements

usually take longer than analytic models, but shorter than building and run-

ning a simulation. However, there is greater variability in the time required

to perform measurements than in the time required for simulation or analytic

modeling. Measurements are often the most believable to users, which also

makes them useful for validating simulation or analytic models.

We use all three solutions where appropriate. At the heart of our method is an

analytic model. Analytic models are most e�ective when they are based on actual

measurements [62]. We base our models on careful measurements of fundamental

application components in our micro experiments. One of the concerns with analytic

models is that they abstract away too many details to be useful for real-world appli-

cation predictions. In order to address this concern, we perform macro experiments

that compare our model predictions to real-world application performance in an at-

tempt to test the accuracy of our models. If the real-world application we wish to

study is not available, either because the users are not at hand or the application has

not yet been build, we simulate the application performance in our macro experiment

and compare the measured simulation results to our model predictions.

This Chapter is organized as follows: Section 4.2 presents related work in bench-

marks and capacity planning. Section 4.3 describes the �rst step of our method, how

we study the application to obtain information for the model. Section 4.4 details

our model of the user, application and computer system. Section 4.5 introduces the

experiments we use to measure fundamental application components. Section 4.6 in-

troduces the experiments we use to test the accuracy of predictions we make based on

the fundamental components. Section 4.7 brie
y mentions our methods for predict-

ing application performance under di�erent system con�gurations. And Section 4.8

summarizes the important points of this chapter.

74

4.2 Related Work

4.2.1 Benchmarks

benchmark (v. trans). To subject (a system) to a series of tests in

order to obtain prearragned results not available on competitive systems.

S. Kelly-Bootle, \The Devil's DP Dictionary"

The process of performance comparison for two or more systems by measurements

is called benchmarking, and the workloads used in the measurements are called bench-

marks. Standard measures of performance provide a basis for comparison, which can

lead to improvements and predict e�ectiveness under di�erent applications. If com-

puter users ran the same programs day in and day out, performance comparisons

would be straight-forward. However, as this will never be the case, systems must rely

on benchmarks to predict performance of estimated workloads.

As early as 1971, Lucas provided a survey categorizing benchmarks [70]. His work

divided benchmarks into seven categories:

Timings. Early computer systems were evaluated based on a comparison of processor

cycle times and add times.

Mixes. The instruction mix is an attempt to provide a broader range of evaluation

than timings. A frequency of execution is speci�ed and timings given appropri-

ate weights. An example of a previously used instruction mix is Gibson [56].

Kernels. A kernel program is a typical program that has been partially coded and

timed. The kernel includes more parameters than mixes however they generally

do not include adequate I/O considerations. The Sieve of Eratoshenes is a

program sometimes used as a kernel.

Models. An analytic model is a mathematical representation of a computer system.

The performance of the slotted Aloha network protocol is a well-known example

75

of an analytic model [116].

Benchmarks. A benchmark is a speci�c program that is coded in a speci�c language

and executed on the machine being evaluated. The Livermore Loops are one

of the oldest, widely-used benchmarks [86]. LINPACK has extensive use even up

until today [34]. HINT promises to be a benchmark that measures workstation

capacity in a realistic manner [50].

Synthetic Programs. A synthetic program is a representation of a real-world pro-

gram that is coded and executed on the machine being evaluated. Unlike bench-

marks, synthetic programs are intended to represent an application that will be

used on the machine. Two popular synthetic programs are Whetstone [29] and

Dhrystone [124].

Simulation. Simulation uses software to represent some or all of a computer system,

including the application and hardware. Simulations can be trace-driven, event-

driven or probabilistic, such as in a Monte Carlo simulation [62].

Monitor. Monitoring is a method of collecting data on the performance of an exist-

ing system. Gprof is a method of collecting pro�le data on a running program.

Etherfind is a method of collecting network information from an active net-

work.

Figure 4.2 depicts our layout of his categories and the scope of our quality planning

models.

Jain, Hennessey and Patterson break benchmarks into four categories [56, 62]:

Real Programs. Real programs are applications that users will actually run on the

system. A system under such programs can be observed to get a good indication

of performance under normal operations. Examples are language compilers such

as gcc, acc and f77, text-processing tools like TeX and Framemaker, and CAD

tools like Spice.

76

SPEC Dhryhstone

Synthetic Programs

Kernels

Mixes
Gibson

Timings
Touchstone

Monitoring

Gprof

Etherfind

Benchmarks

HINT
Livermore Loops

Linpack

 Quality
Planning

Macro

Micro

Si
ev

e
of

 E
ra

to
sh

en
es

Analytic Models

Simulation

 F
ut

ur
e

So
ft

w
ar

e

 a
nd

H
ar

dw
ar

e

C
ur

re
nt

So
ft

w
ar

e
 C

ur
re

nt
H

ar
dw

ar
e

Figure 4.2: Scope of Quality Planning Models. This picture depicts the scope of our quality

planning models in relation to benchmarks. Included as a subset of our quality planning models are

our macro and micro experiments. The vertical axes depict approximate ranges that the various

benchmark categories span.

77

Kernels. Kernels are small, key pieces from real programs. Unlike real programs, no

user runs kernel programs, for they exist only for performance measurements.

They are best used to isolate performance of key system features. Examples

are LINPACK [34] and the Livermore Loops [86].

Synthetic Benchmarks. Synthetic have characteristics similar to those of a set of

real programs and can be applied repeatedly in a controlled manner. They

required no real-world data �les (that may be large and contain sensitive data),

and can be easily modi�ed without a�ecting operation. They often have built-in

measurement capabilities. Examples are the Byte benchmarks [109], Whetstone

[29] and Dhrystone [124].

Toy Benchmarks. Toy benchmarks are small pieces of code that produce results

known before hand. They are small, easy to type, and can be run on almost

any computer. They may be used in some real programs, but often are not.

Examples include the Sieve of Eratosthenes and Quicksort.

SPEC, the Standard Performance Evaluation Corporation, has sought to create

an objective series of synthetic benchmarks [28]. SPEC is a non-pro�t corporation

formed by leading computer vendors to develop a standardized set of benchmarks.

Founders, including Apollo/Hewlett-Packard, DEC, MIPS and Sun, have agreed on

a set of real programs and inputs that all will run. The benchmarks are meant for

comparing processor speeds. The SPEC benchmark numbers are the ratio of the time

to run the benchmarks on a reference system and the system being tested. We use

SPEC results to make predictions in our quality planning model. Performance results

from our research may also be useful to other benchmark researchers.

4.2.2 Capacity Planning

\Do not plan a bridge's capacity by counting the number of people who

swim across the river today." Heard at a presentation

78

The study of computer resources needed to meet expected computer demand is

called capacity planning. Many experts agree that the main goal of capacity planning

is to maintain a balance between business growth and needs and explicit or implicit

service level objectives of computing support. In other words, capacity planning is

a method used for projecting computer workload and planning to meet the future

demand for computing resources in a cost-e�ective manner.

Tim Browning applies the concepts of capacity planning to computer systems

with a blend of measurement, modeling and analytic methods. He provides business-

oriented forecasts based on service level objectives, chargeback and cost control [13].

However, capacity planning is a di�cult task because no clear economic framework

exists to do a cost-bene�t analysis of information technology. There have been several

general frameworks established in an attempt to manage the growth of information

technology [61, 67]. There are also many speci�c capacity planning solutions designed

for speci�c platforms and intended to plan for speci�c workloads [126]. Generally, it

is still easier to �nd that a con�guration will not support a speci�c level of service

than to predict it will.

Snell describes several commercial products that are designed for capacity plan-

ning on the Internet [111]. Most of the tools she describes are high in cost and di�cult

to deploy. She cites integration of the the tools into a company's environment and

�ltering the data as major obstacles.

We develop a form of capacity planning that emphasizes the quality of the applica-

tion as perceived by the user, enabling designers to tradeo� application performance

and system cost.

4.3 Study Application

Our method begins by studying the application to obtain information on the users and

their requirements. We start with the application users. People interact with touch,

79

Users

Applications

User Requirements

System Requirements

Architecture

Hardware

Quality

Figure 4.3: Quality Planning Model. Our model of application performance incorporates users,

applications, user requirements, system requirements, architecture and hardware. In addition, we

include a measure of application quality as perceived by the user.

sight and hearing. We would like computers to come as close to real-life interaction

as possible, even enhancing personal interaction by allowing it across both time and

space. The application is founded on a set of user requirements that need to be

ful�lled for the application to be e�ective for the user. These include information

such as frame rate and frame size, acceptable latency and jitter and tolerance of data

loss.

4.4 Model

We use the information about the users and their requirements in our model. Our

model for the quality of a distributed multimedia application incorporates the user,

application and hardware. Figure 4.3 depicts our model.

Users The users of the application are those we used during the \Study Applica-

tion" phase of our method as described in Section 4.3. Applciation users would like

to interactively view a 3D brain database in Sweden while working in Minnesota;

synchronously train as a �ghter pilot in a virtual battle�eld with a thousand other

soldiers spread across the country; or discuss research with a half-dozen scientists in

80

a computer-mediated meeting.

Applications The applications are the software programs the users will run. For

the examples under Users above, these would be: a \
ying" interface to a 3D brain

database; a DIS
ight simulator; and an audioconference.

User Requirements The user requirements are the user's interface to our model.

The requirements they specify may drive the selection of the underlying system in

order to make the application acceptable for the user.

System Requirements The user requirements impose a series of requirements on

the system. Some of these include network bandwidth, disk throughput and processor

power. The method to determine the system requirements from the user requirements

depends upon the application and, to some extent, its implementation. For instance,

the workstation can make rendering frames the highest priority, possibly forsaking

sending and receiving data to do so. Or, sending and receiving data can be the top

priority at the expense of a lower display frame rate. Data packets can be compressed

before sending, reducing network bandwidth but possibly increasing processor load

from compression and decompression.

Architecture Architecture is the structure of the distributed program which de-

termines the location of data and the distribution of the processing. Architecture can

greatly a�ect the application. For example, a multimedia application that supports

all users on one central mainframe would perform di�erently than one in which each

user had a dedicated workstation connected by a network.

Hardware Given the system requirements and architecture, the hardware needed

to support the application can be determined. Hardware might range from a low-end

workstation with a T1 network up to a high-performance workstation with a HIPPI

network.

81

Quality The variations in hardware, architecture, system requirements, user re-

quirements and the application all e�ect the application quality as perceived by the

user. The acceptability of the application to the user is determined by how closely

the application performance matches the user requirements. We are developing a

quantitative measure of the di�erence between application performance and user re-

quirements. We call this the application quality. See Section 2.3 for more details.

As an brief example of the application of our model, suppose we wish to predict

the performance of a proposed voice mail system that will allow a group of software

engineers browse their archived voice-mail [12]. We �rst determine the quality of the

audio required by the users, either by MOS user testing or by an analogy to similar

applications. The audio quality determines the user requirements. The system re-

quirements are derived from the user requirements, with key system components used

to examine tradeo�s. For example, we might vary the number of users, the amount

of compression or the network protocol. We choose an architecture and hardware on

which to analyze the system. For example, we might pick Sun Sparc 5 workstations

connected via a 10-base T Ethernet cable. As described in Section 2.3, we build a

quality model based on the user requirements. The system requirements, architecture

and hardware are all used in the quality model to determine if the proposed con�g-

uration is acceptable to the users. We can then iterate on our method, modify the

component parameters and determine a new application quality.

4.5 Micro Experiments

Experiments that measure processor performance of the fundamental components of

an application we call micro experiments. We do micro experiments to allow us to

predict the e�ects of systems on applications built with those components. Some

fundamental components for many multimedia applications include:

� Record: data from the microphone or video codec.

82

� Play: data to the speakers.

� Render: a frame to be displayed.

� Display: a frame to the screen.

� Read: data from a disk.

� Write: data to a disk.

� Compress: data.

� Decompress: data.

� Send: a data packet to a client.

� Receive: a data packet from a server.

We use a process that increments a long integer variable in a tight loop to mea-

sure the processor load for the individual components. The use of this counter process

is depicted in Figure 4.4. To obtain a baseline for our counter, we run the counter pro-

cess on a quiet machine. This gives the processor potential for the machine, depicted

by the single column on the far left. For example, a Sun IPX will count to 1.7 million

per second. We then run the counter process with each component in the model.

The di�erence in the bare count and the component count is the component-induced

load. For example, the middle two columns show the count obtained if two counter

processes were run simultaneously. On a Sun IPX, each counter would count to about

0.85 million per second. In the last two columns, the processor load of the send pro-

cess would be the count obtained on a bare machine less the count obtained by the

counter process. If the Sun IPX were sending data at a rate of a 1280 byte packet

every 160 ms, the count would be about 1.69 million in one second. The di�erence

between the 1.7 million barecount and the 1.69 million send count can be converted

into milliseconds of processor load, resulting in a send load of about 1 millisecond per

second.

83

Counter Counter Counter Counter Send

Barecount

Figure 4.4: The Counter Process. Our model of application performance incorporates users,

applications, user requirements, system requirements, architecture and hardware. In addition, we

include a measure of application quality as perceived by the user.

To verify that the counter process does indeed accurately report loads of processor-

bound processes with which it runs concurrently, we ran the counter process with 1, 2,

3 and 4 other counter processes. Since we assume the counter processes will have same

priorities, we expect the counter value to be (count on bare machine) x 1/(N+1),

where N is the number of other counters running. Figure 4.5 shows the results of

this experiment. The predicted values were within the con�dence intervals for all the

measured values.

After carefully measuring the processor load of each component, we can predict the

processor load of an application built with those components. Changes in application

con�guration or changes in hardware are represented by modifying the individual

components and observing how that a�ects performance.

4.6 Macro Experiments

Experiments that measure performance of applications built with micro experiment

components we callmacro experiments. We do macro experiments to test the accuracy

of micro experiment-based predictions of application performance.

For example, assume we have a two-person audioconference that lasts for three

84

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

0 1 2 3 4 5

C
ou

nt

Number of Extra Counters

predicted
meaured

95% confidence interval

Figure 4.5: Count versus Number of Counters. The vertical axis is the count obtained by the

counter process. The horizontal axis is the number of additional counters running. The curve

represents the predicted value. All points are shown with 95% con�dence intervals. The largest

interval is 8% of the measure value. The curving line is the predicted value. The measurements were

taken on a Sun Sparc IPX.

85

minutes. Each component of the audioconference, record send, receive and play,

processes the three minutes of audioconference data. We predict the total processor

load from our micro experiment measurements of the record, send, receive and play

loads. In addition, we predict the network load based on the audio data rate of the

workstations. In our macro experiments, we run a two-person audioconference and

carefully measure the processor and network load. We then compare these measured

values to the predicted values in an attempt to test the accuracy of our predictions

methods.

4.7 Predictions

By modifying the fundamental application components, we can predict performance

on alternate system con�gurations. This allows us to evaluate the potential perfor-

mance bene�ts from expensive high-performance workstations and high-speed net-

works before installing them. Moreover, we can investigate possible performance

bene�ts from networks and workstations that have not yet been built.

Our approach for evaluation of each alternative system is the same: We modify

the parameters of our performance model to �t the new system, then evaluate the

resulting model to obtain performance predictions. These analyses are intended to

provide a sense of the relative merits of the various alternatives, rather than present

absolute measures of their performance.

Our micro and macro experiments are done on only a handful of platforms. How-

ever, we would like our predictions to be accurate for untested platforms, and even

future, as yet unbuilt hardware. In order to attempt these extrapolations we rely on

research in benchmarks that compare the performance among systems and alternate

system con�gurations. In particular, we rely upon SPEC benchmarks results to pre-

dict the performance of application components on untested workstations.

1

We rely

1

Many SPEC benchmark results can be found at the Performance Database Server (PDS). The

86

upon landmark studies in network and disk performance to predict performance on

alternate networks [11, 80, 79, 106, 101].

4.8 Summary

The strengths in our model and implementation method include:

1. Tradeo�s: A
exible way to compare the tradeo� in performance for alternate

system con�gurations.

2. Users: A measure of performance from the point of view of the application

users.

3. Validation: Experimental con�rmation that our methods of predicting proces-

sor, disk and network throughput (the basis of our model) are accurate.

In the next three sections, we apply our model to three distributed, collaborative

multimedia applications:

1. Audioconferences: Multi-person, synchronous audio conferencing.

2. Flying: 3-d, asynchronous, scienti�c database browsing.

3. Virtual Cockpit: Distributed, virtual-reality
ight-combat training.

URL for the PDS is http://netlib2.cs.utk.edu/performance/html/PDStop.html

Chapter 5

Audioconferences

5.1 Overview

There is an increasing interest in the use of audio for computer-based communication

applications.

� Electronic mail includes audio along with text [118]. Multimedia editors en-

hance text documents with audio annotations [17]. World Wide Web radio

stations spread audio across the world. Movies, containing audio in addition

to video, are starting to grace consoles everywhere [99]. And audioconferences

synchronously link workstations [98, 82, 104].

� General-purpose workstations can have advantages over the use of specialized

hardware: corporate and academic environments have ready-access to neces-

sary hardware; and teleconferencing can be enhanced when computers are used

through the use of record/playback, on-screen speaker identi�cation,
oor con-

trol and subgroup communication.

� Audio and video streams similar to those in a teleconference are often inte-

grated into larger distributed multimedia applications. For example, a shared

editor may allow several users to simultaneously collaborate on a document from

87

88

separate workstations. Audio and video links coupled with the shared editor

enhance the editing process by making it more like face-to-face collaboration.

Audioconferences frequently support other collaborative tasks that are themselves

processor-intensive. Therefore, e�cient processor use is essential. Our goal is to iden-

tify improvements that reduce audioconference processor load. The major contribu-

tion of this section is an experimentally-based comparison of the processor perfor-

mance bene�ts of �ve potential audioconference improvements:

� Faster processors. How much do faster processors bene�t audioconference pro-

cessor load?

� Faster communication. How much do more e�cient network protocols and

faster network speeds bene�t audioconference processor load?

� Better compression. How much do improved compression techniques bene�t

audioconference processor load?

� Hardware support. How much does Digital Signal Processing (DSP) hardware

reduce audioconference processor load?

� Silence deletion. How much does removing the silent parts from a conversation

reduce audioconference processor load?

We focus particularly on a comparison of the �rst four areas to silence deletion.

Without silence deletion, in a unicast network environment network bandwidth will

increase O(N

2

) where N is the number of audioconference participants. However, in

most conversations, only one person speaks at a time. Silence deletion detects silence,

only transmitting the sound of the person who is presently speaking, reducing the

network bandwidth increase to O(N). Although silence deletion algorithms take

additional processing time, they may yield a net savings by reducing the amount of

data that must be communicated from O(N

2

) to O(N). Therefore, we hypothesize

89

silence deletion will improve the scalability of audioconferences more than any of the

other four improvements.

Our analysis can help direct research in networks, multimedia and operating sys-

tems to techniques that will have a signi�cant impact on audioconferences. In addi-

tion, our approach may generalize to video and other forms of multimedia.

This Chapter is organized as follows: Section 5.2 of this section describes related

work in audioconference experiments, measuring processor load, analyzing UDP, us-

ing silence deletion and audio compression. Section 5.3 introduces our model of an

audioconference. Section 5.4 details micro experiments that measure the processor

load of each component. Section 5.5 describes macro experiments that test the ac-

curacy of the predictions based on the micro experiments. Section 5.6 analyzes the

experiments and projects the results to future environments. And Section 5.7 sum-

marizes the important contributions of this section.

5.2 Related work

5.2.1 Audioconference Experiments

There has been a variety of experimental audioconference work. Casner and Deer-

ing performed a wide-area network audioconference using UDP multicast [16]. They

found disabling silence suppression increases average bandwidth and eliminates the

gaps between packets that give routers a chance to empty their queues. They recog-

nized that experimenters need better tools to measure audioconference performance.

Our model may be one of the tools they seek. They conjectured that ubiquitous mul-

ticast routing support can greatly reduce network and processor loads. In addition,

they described several on-going experiments in which readers can participate.

Terek and Pasquale implemented an audioconference with an Xwindow server

[117]. They described the structure and performance of their system. In particular,

they described a strategy for dealing with real-time guarantees.

90

Gonsalves predicted that without software or protocol overhead, a three Mbps

Ethernet could support 40 simultaneous 2-way 64Kbps conversations [44]. Thus, if

our results show what is needed to enable the processors to handle the conversation

loads, the networks can.

Riedl, Mashayekhi, Schnepf, Frankowski and Claypool measured network loads of

audioconferences using silence deletion [98]. They found silence deletion signi�cantly

reduces network loads. We analyze how silence deletion a�ects processor loads.

Frankowski and Riedl study the e�ects of delay jitter on the delivery of audio data

[41]. They developed a heuristic for managing the audio playout bu�er and compare

it to several alternative heuristics. They found none of the heuristics is superior under

all possible arrival distributions.

5.2.2 Measuring Processor Load

Je�ay, Stone and Smith discussed a real-time kernel designed for the support of multi-

media applications [64]. They achieved some real-time guarantees through utilizing

close to eighty percent of the processor. Our results may indicate methods that can

trim audioconference processor loads, while achieving the same guarantees.

Lazowska parameterized queuing network performance models to assess the alter-

natives for disk-less workstations [77]. He used a counter process to measure processor

loads. We use a similar process (see Section 5.4.1 of the present document).

Riedl, Mashayekhi, Schnepf, Frankowski and Claypool measured the processor

load of an audio conference with no
oor control and no silence deletion using a

counter process [98]. They showed the processor loads quickly become prohibitive

under increasingly large audioconferences. We provide further analysis and a compo-

nent breakdown of the processor load.

91

5.2.3 Analyzing UDP

Cabrera measured throughput for UDP and TCP for connected Sun workstations

[14]. In analyzing the call-stack for UDP in detail, he determined the checksum at

the receiving end takes the most processor time; this checksum may not be needed

for adequate quality sound.

Kay and Pasquale measured delay at the processor end for sending UDP pack-

ets for a DEC 5000 [73]. They found checksumming and copying dominated the

processing time for high throughput applications.

Bhargava, Mueller and Riedl, divided communications delay in Sun's implemen-

tation of UDP/IP into categories such as bu�er copying, context switching, proto-

col layering, Internet address translation, and checksum implementation [10]. They

found socket layering and connection were the most expensive categories. We use

their analysis of their kernel bu�ering techniques in de�ning our experiment.

5.2.4 Using Silence Deletion

Rabiner viewed voice as a measure of energy and presented an algorithm for discov-

ering the endpoints of words [94]. Henning Schulzrinne implemented an audioconfer-

encer with silence deletion [104]. We adapt and build upon their view of voice and

silence deletion algorithms.

5.2.5 Digital Audio Compression

Pan surveyed techniques used to compress digital audio signals [89]. He discussed

u-law, Adaptive Di�erential Pulse Code Modulation (ADPCM) and Motion Picture

Experts Group (MPEG), compression techniques which are not speci�cally tuned

to human voice. Kroon and Swaminathan described techniques to improve perfor-

mance of Code Excited Linear Prediction (CELP) Type coders, compression tech-

niques tuned to human voice [76]. We predict the processor load of audioconferences

92

Send Receive Mix Silence
Deleteion

Record Play

+ + + + +

Figure 5.1: Audioconference Model. Our model of audioconference processor load, that includes

recording from the audio device, silence deletion, sending and receiving packets, mixing sound packets

that should be played simultaneously and writing to the audio device.

using such compression techniques.

5.3 Model

Figure 5.1 depicts our model of an audioconference processor load. Our model is

based on the components of recording, silence deletion, sending, receiving, mixing

and writing. Recording is the processor load for taking the digitized sound samples

from the audio device. Silence deletion is the processor load for applying one of the

deletion algorithms to the record sample. Sending is the processor load for pack-

etizing the sample and sending it to all other stations. Receiving is the processor

load for processing all incoming packetized samples. Mixing is the processor load for

combining sound packets that arrive simultaneously. Writing is the processor load

for delivering the incoming samples to the audio device. Our model asserts we can

predict audioconference processor load from the sum of the above components.

Silence deletion removes silent parts from speech. Experiments have shown that

silence deletion substantially reduces network load for two reasons [98]:

1. In a typical N person conversation, at any given time one person is talking and

N-1 are silent. With silence deletion, only the talking person's packets are sent;

each workstation must send only 1/N of the packets on average. Without silence

93

Threshold

Sound

Silence

Figure 5.2: Absolute Silence Deletion Algorithm. The zig-zap line represents the energy of each

byte. The horizontal line represents the sound-silence threshold. Bytes with energy above the

threshold are treated as sound. Bytes with energy below the threshold are treated as silence.

deletion, all packets are sent; each workstation sends N of the packets. A linear

increase in participants results an N

2

increase in network load.

2. Pilot tests suggest about 1/3 to 2/3 of the digitized speech data can be identi�ed

as pauses between words or sentences. Silence deletion may remove these pauses.

Although silence deletion algorithms themselves take additional processing time,

they may yield a net savings in total processor load by decreasing the processor costs

of the communication.

We consider four common silence deletion algorithms [21]. All four algorithms use

the energy contained in each byte:

1. Absolute uses the average energy over chunks of bytes to determine silence. It

removes all chunks with energy less than a threshold. See Figure 5.2 for a visual

representation of the Absolute algorithm.

2. Ham (an adaptation of an algorithm used by Ham radio) removes chunks with

enough consecutive byte energies below a threshold. Ham decreases a counter

for each byte with energy below the threshold. When the counter reaches zero,

the chunk is not sent on. Any byte above the threshold resets the counter

to a maximum value. See Figure 5.3 for a visual representation of the Ham

algorithm.

94

Counter
Silence

Figure 5.3: Ham Silence Deletion Algorithm. The zig-zap line represents the counter used to

determine sound or silence. When the counter reaches zero the sound bytes are treated as silence.

Weight of Bytes

Time

Figure 5.4: Exponential Silence Deletion Algorithm. The curved line represents the weighting of

each byte in determining sound or silence. The more recent bytes (to the left) have a greater weight

than older bytes (to the right).

3. Exponential also uses the energy in each byte. It removes all exponentially

weighted byte energies that are below a threshold. The most recent bytes are

weighted most heavily. Exponential decreases a counter value according to the

decay value. When the counter drops below the threshold, the bytes are not sent

on. The decay determines the exponential change. When decay is small, the

counter
uctuates quickly. When decay is large, the counter
uctuates slowly.

See Figure 5.4 for a visual representation of the Exponential algorithm.

4. Di�erential uses the changes in energy of each byte to determine silence. All

chunks with changes below a threshold are interpreted as silence. The algorithm

keeps a counter of the number of non-changes. If there are too few changes (the

95

Silence

Silence

Figure 5.5: Di�erential Silence Deletion Algorithm. The zig-zap line represents the energy of

each byte. The horizontal lines represent periods where there was little change in the energy of

consecutive bytes. Little or no change in sound energy is treated as silence. Signi�cant change in

sound energy is treated as sound.

counter gets higher than a threshold), then di�erential does not send the chunk

on. When a change is encountered, the counter is reset to zero. See Figure 5.5

for a visual representation of the Di�erential algorithm.

In our pilot tests, the Absolute and Exponential algorithms often yielded poor

sound quality. Absolute is e�ective when signal-to-noise ratio is very high. This may

occur in a recording studio or with very high �delity magnetic tape. However, it is

not practical in real-world situations [94]. Further MOS testing should be done to

verify that Absolute and Exponential do, indeed, yield poor sound quality. In the

meantime, we concentrate on the performance of the Di�erential and Ham silence

deletion algorithms.

5.4 Micro Experiments

5.4.1 Design

Our micro experiments were designed to measure the processor load of audioconfer-

ence components. We chose two Sun workstations, the 20 MHz SLC and the 40 MHz

IPX, to test if the components of the audioconference scale with processor speed.

96

To obtain the processor load for each component of the model, we ran the counter

process described in Section 4.5 in conjunction with a process for each of the compo-

nents of the audioconference (see [21] for more information):

� Read. The read process takes sound from the audio device. User level processes

access Sun's audio device driver /dev/audio through open() and read() calls.

The audio device delivers sound at a rate of 8000 bytes per second. By default,

it delivers it in 1K chunks, but this can be changed by modifying kernel variable

a

udio

7

9C30

b

size. The audio device compresses 13 bit sound samples into 8 bit

u-law.

The packet size determines the read frequency. The read process sets a signal()

and alarm() to read from the audio device at the appropriate frequency. The

process reads until killed by the counter process.

� Deletion. The deletion process measures the load of the deletion algorithms.

Since we want to measure the load of the algorithms only, we need to eliminate

reads from the disk. Thus, the deletion counter must follow a di�erent paradigm

than the other pieces.

The deletion process forks() a counter process which waits until given the

kill() signal to start. Deletion then reads 200 seconds of sound into RAM and

records the number of page faults from the getrusage() command. It then

sends a signal to the counter to start it counting. Deletion applies the deletion

algorithms described above to the 200 second sound bu�er. After repeating

processing the appropriate number of iterations (see Section4.1.2.2 on page16),

deletion kills the counter process and records the page faults. The page faults

are recorded to be sure that paging activity is not measured along with the

deletion.

� Send. The send process sends UDP packets. Send opens and binds to a socket.

It sets a signal() and alarm() to send a packet every 5 milliseconds. Send

97

delivers packets until killed by the counter.

A shell script starts the send process and dummy receive process to pull the

packets o� the network.

� Receive. The receive process receives UDP packets. Receive opens and binds to

a socket. It blocks on the socket until a packet arrives. Receive listens on the

socket until killed by the counter.

� Add. In an audioconference with more than two participants, sound recorded

from two di�erent stations may need to be played simultaneously. To do this,

the u-law sound-bytes must be converted to linear form, added, and converted

back to u-law. We use an e�cient table lookup to do both conversion.

Add repeatedly adds two arrays of sound together byte by byte. The two bytes

to be added are converted from u-law to linear, added, and converted back to

u-law. When killed by the counter, add reports the number of bytes it added.

� Play. The play process delivers sound to the audio device. The packet size

determines the write frequency. The read process sets a signal() and alarm()

to read from the audio device at the appropriate frequency. The process reads

until killed by the counter.

5.4.2 Data Collection

Since the counter process measurements are sensitive to other processes, we performed

the experiments on machines in single user mode. In single user mode, the processor

runs a bare minimum of system processes and no other user processes.

We ran the counter process for 200 seconds to amortize start-up costs. To deter-

mine the number 200, we ran the counter process for increasing times and recorded

the standard deviation of its counts. The standard deviations level out just before

200. At this point, the standard deviation is only 0.001% of the mean. Thus, we chose

98

one 200 second counter run as one iteration. Pilot tests indicated that �ve iterations

for each machine at each packet size were needed to achieve reasonable con�dence

intervals.

The process we used to measure the deletion algorithm was memory intensive to

avoid I/O costs. In order to avoid measuring unwanted paging, we recorded the total

page faults during the experiments.The number of page faults during the deletion

iterations is almost always three, which we accepted as the baseline case. We decided

to discard cases that had more than three page-faults, as they incur extra processor

load from paging. In our experimental runs, this situation never occurred.

The sound chunk size and the threshold levels determine how the deletion al-

gorithms perform. We tuned them such that they deleted about 1/3 to 2/3 of live,

audioconference speech (in accordance to the sound pilot tests mentioned above). We

con�rmed that the speech with the sound deleted was still very understandable.

The kernel changes between large and small bu�ers at various packet sizes has a

direct in
uence on packet sending and receiving times [10, 21]. User messages are

copied into bu�ers in kernel space. The kernel may use one large bu�er and one

copy for certain messages, while it uses several smaller bu�ers and several copies for a

slightly smaller message. While the kernel is using the small bu�ers, there may be a

steady continuous increase in time per message as the message sizes increase. When

the kernel stops using the smaller bu�ers in favor of the larger bu�ers, there may be a

break in the linear continuity. To avoid these possible nonlinearities, we collected data

on 515 to 2000 byte packets, which we assume covers most audioconference packet

sizes.

5.4.3 Results

The 200 second counts on bare machines are shown in Table 5.1.

Figure 5.6 shows the line equations obtained from the counter measurements for

the deletion algorithms on the IPX. We have similar graphs for the SLC and for other

99

Machine Bare Count Left Endpoint Right Endpoint

SLC 123924595 123920808 123928381

IPX 340539937 340204150 340875723

Table 5.1: Bare Counts for SLC and IPX with 95% Con�dence Intervals (Indicated by the Left

and Right Endpoints).

components of the model [21], but to avoid redundancy we do present them here.

Table 5.2 shows the values for the line equations for each of the audioconference

components for each machine type.

The per-packet and per-byte terms above pertain to the equations: Load(component)

= per-packet + per-byte * bytes. The equations are the processor costs for each

component of an audioconference from which we can project the cost of a complete

audioconference (see Section 5.6).

5.5 Macro Experiments

5.5.1 Design

In order to test the accuracy of our model in predicting audioconference processor

loads, we measured the performance of a simple audioconferencer, Speak. Speak is

two person, uses UDP, can employ any of the �ve deletion algorithms (Absolute,

Di�erential, Exponential, Ham or None), and has little extra user-interface overhead.

We used Internet Talk Radio (ITR) �les rather than real conversants. This made

our experiments more reproducible and gave us a large conversation sample space

from which to choose. Since the ITR �les have one person speaking most of the

time, the silence deletion algorithms typically deleted only 10% of the packets. As

the number of audioconference participants increased, the one person speaking in

the ITR audio would re
ect the group communication characteristics less and less.

100

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

T
im

e
in

 M
ill

is
ec

on
ds

Number of Mbytes Processed

Exp
Diff
Abs

Ham

Figure 5.6: Processor Time for Deletion Algorithms on the Sun IPX. The four deletion algorithms

are shown for their time to process 300 seconds worth of sound. All points are shown with 95%

con�dence intervals.

101

Operation SLC per-packet SLC per-byte IPX per-packet IPX per-byte

Record 0.810 0.0145 0.597 0.00169

Absolute 0.00 0.00302 0.000 0.000164

Di�erential 0.00 0.00563 0.000 0.00300

Exponential 0.00 0.0130 0.000 0.00489

Ham 0.00 0.00454 0.000 0.00245

Send 0.807 0.000194 0.210 0.000100

Receive 0.910 0.000129 0.187 0.000103

Mix 0.00 0.00546 0.000 0.00245

Play 1.26 0.0137 0.726 0.00103

Table 5.2: Values for Sun SLC and Sun IPX Line Fits for audioconference components. Units are

in milliseconds.

However, the actual audio data used in these experiments does not matter, since our

model is parameterized by the amount of silence deleted.

We did experiments on the �ve possible silence deletion methods on the SLC and

two such methods on the IPX. A shell script initiated a remote Speak process and a

local Speak process. One two hundred second conversation was one data point. We

repeated each data point 5 times. We predict the load from the speak processes by

using the micro experiment results. From the conversation length, the record size and

the sample rate, we calculate the total packets read. By pro�ling the sound �les with

the deletion algorithms, we know the number and size of the packets sent, received

and written. Because sound only arrives from one other Speak process, there is no

mix component.

5.5.2 Results

Table 5.5 shows the results of the seven macro experiments.

102

Machine Algorithm Predicted Actual Left Endpoint Right Endpoint

SLC Absolute 45.55 44.84 44.76 44.91

SLC Di�erential 54.92 49.02 48.93 49.11

SLC Exponential 54.08 50.00 49.91 50.09

SLC Ham 49.34 48.45 48.45 48.46

SLC None 49.92 46.49 46.44 46.55

IPX Di�erential 10.63 12.50 12.49 12.56

IPX None 6.96 8.81 8.78 8.85

Table 5.3: Predicted and Measured Loads from the Macro Experiments with 95% Con�dence

Intervals (Indicated by Left and Right Endpoints). Loads are in seconds. Maximum load is 200

seconds.

The discrepancy in predicted and actual values may be due to the unforeseen costs

that occur when putting micro components together. In most cases, the predicted

values are within 10% of the actual values. We therefore consider the projected results

presented in Section 5.6 to be signi�cant only if the di�erences are larger than 10%.

5.6 Predictions

The processor loads in the macro experiments compared to the processor loads pre-

dicted by adding the components of the micro experiments suggests that our model

may be a reasonable way to predict the processor load of audioconferences. It is

di�cult and expensive to run experiments with many people on a large number of

workstations. Instead, from our micro experiments we extrapolate our results to con-

versations that have more silence and audioconferences that have more participants.

Furthermore, we adjust the pieces of our model to compare the performance bene�ts

of four potential audioconference improvements: faster processors, faster communi-

103

cation, better compression, and Digital Signal Processing (DSP) hardware. We also

compare the bene�ts of better silence deletion algorithms.

All analysis can be done for both the SLC and IPX and with any of the four silence

deletion algorithms. To avoid repetition, we do our extrapolations on one machine

type (IPX) with one deletion algorithm (Di�erential). We use the fastest processor

we studied to improve the quality of our extrapolations to even faster machines. Our

results are largely independent of the type of silence deletion.

5.6.1 Increasing Participants

What happens when we have an increasing number of audioconference participants?

We can extrapolate the loads at each workstation to an N person audioconference.

The load depends upon the number of participants, the total conversation time, the

packet size, the percentage of packets deleted and the percentage of sound removed

from the remaining packets. The load without silence deletion does not have the

deletion algorithm component. The load with silence deletion does not have the

mix component since we assume only one person speaks at a time and the deletion

algorithm removes all sound of those who are not speaking.

Figure 5.7 shows the predicted load for an audioconference without silence dele-

tion and an increasing number of participants. The audioconference components are

displayed, each line representing the sum of the particular piece and the pieces below

it. The total load is the value of the line labeled play since it is the sum of all the

components. The communication components, send, receive and mix, all increase

as the number of participants increases. The mix component increases the fastest,

accounting for approximately 70% of the processor load with 8 participants.

Figure 5.8 shows the predicted load for an audioconference with silence deletion

and an increasing number of participants. Again, the audioconference components

are all displayed. There is no mix component since we assume only one participant

is speaking at a time. The communication components are only approximately 2% of

104

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

play
mix

receive
send

record

Figure 5.7: Sun IPX Processor Load Without Silence Deletion. The graph reads from the bottom.

Each piece is the sum of the pieces below it. Thus, the total load is indicated by the play piece at

the top. The maximum load is 200 seconds.

105

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

play
receive

send
delete
record

Figure 5.8: The IPX processor load with silence deletion. The graph records from the bottom.

Each piece is the sum of the pieces below it. Thus, the total load is indicated by the play piece at

the top. Since only one person sends packets at a time, there is no mix component. The maximum

load is 200 seconds.

the total load for all audioconferencing. The record and play from the audio device

account for about 50% of the audioconference load, which seems disproportionately

high compared to the communication components. The silence deletion component is

also large, accounting for just under 50% of the audioconference load. Section 5.6.3

investigates the e�ects of reducing this component through software optimization or

DSP hardware.

Figure 5.9 shows the total loads with silence deletion and the total loads without

silence deletion. Here and in all subsequent graphs, only the total loads are displayed.

For three or more participants, silence deletion reduces processor load compared to

not using silence deletion.

106

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

with deletion
without deletion

Figure 5.9: Comparison of processor loads on a Sun IPX with and without silence deletion. Only

the total load processor is indicated. The maximum load is 200 seconds.

107

5.6.2 Increasing Silence

What happens when the conversation has more silence in it? The amount of silence

will vary, as conversation characteristics such as speakers and topics change. The

percentage of bytes in packets after deletion has an inconsequential e�ect on processor

load because most cost is per-packet [10], but the percentage of packets after deletion

may have a greater e�ect.

Figure 5.10 shows the result of our extrapolations to an increasing amount of si-

lence. For a two person audioconference, the processor load without silence deletion

is always less than the load with silence deletion. Thus, for a two person audioconfer-

ence, there is never a processor bene�t from using silence deletion, even when 100% of

the packets are removed. This is because it takes less processor time to send a packet

once than it does to remove silence from it. For 4 and 8 person audioconferences,

the load without silence deletion is always greater than the load with silence deletion.

Thus, for audioconferences of 3 or more, any silence deletion results in a reduction in

processor load over no silence deletion. The largest part of this e�ect is that there is

only one person speaking at a time, and even basic silence deletion algorithms delete

all of the speech of silent participants.

5.6.3 Potential Audioconference Improvements

We adjust the components of our model to compare the performance bene�ts of four

potential ways technology could be used to improve audioconference performance:

faster processor, faster communication, better compression, and Digital Signal Pro-

cessing (DSP) hardware.

Faster Processors What happens when the processors become faster? Faster pro-

cessors decrease the per-byte times and the per-packet times of all components. Fig-

ure 5.11 shows the e�ects of faster processors for a 6-person audioconference. Notice

that even the conversations without silence deletion use less than 5% of the processor

108

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Percent Packets Removed

2 person with deletion
4 person with deletion
8 person with deletion

2 person without deletion
4 person without deletion
8 person without deletion

Figure 5.10: A�ect of percentage of packets removed on conversations with silence deletion for

2, 4, and 8 participants. For comparison, conversations without silence deletion are also shown,

depicted by the horizontal lines.

109

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Factor of Increase in Processor Speed

without deletion
with deletion

Figure 5.11: The e�ects of faster processors on audioconferences with and without silence deletion.

The number of participants is �xed at 6. Maximum load is 200 seconds.

with an 8 times faster processor. With a fast enough processor, the load from audio-

conferences may be insigni�cant with or without silence deletion. Similar results will

hold for 4 to 8 participants.

Faster Communication What happens when the network protocols become more

e�cient? A more e�cient network protocol decreases the amount of processor time

required to send and receive the sound packets. Figure 5.12 shows the predicted e�ect

of an 8 times faster network protocol. Since the processor load of the network protocol

is so slight, the audioconference processor load does not improve much despite a

signi�cant decrease in network protocol load.

What happens when multicasting is used in place of unicasting? With multicas-

ting, only one send is required for each sound packet regardless of the number of

participants. Thus, the send component decrease by a factor of N-1. However, the

110

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

without deletion, current protocol
without deletion, faster protocol

with deletion, current protocol
with deletion, faster protocol

Figure 5.12: Audioconference processor load with and without silence deletion with an 8 times

faster network protocol. The processor loads under the current network protocol is shown for

comparison. With silence deletion, the two lines overlap. Maximum load is 200 seconds.

111

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

without deletion, unicast
without deletion, multicast

with deletion, unicast
with deletion, multicast

Figure 5.13: Audioconference processor load with and without silence deletion for multicasting.

The loads under unicasting are shown for comparison. With silence deletion, the two lines overlap.

Maximum load is 200 seconds.

receive, mix and play components remain unchanged. Figure 5.13 shows the pre-

dicted e�ect of multicasting on audioconferences with and without silence deletion.

Since the processor load for sending packets is small compared to the mix and play

components, multicast routing reduces processor load only slightly.

Better Compression How do forms of compression other than silence deletion

a�ect audioconference processor loads? Compression reduces the packet size but not

the number of packets. The silence deletion algorithms we used are fairly simple.

We assume they are a lower bound on the processor complexity of most compression

and decompression algorithms. We estimate the processor load of compression from

the processor load of silence deletion and use a range of values for the amount audio

is compressed. Audioconference loads with other forms of compression will have

112

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

10%
20%
30%
40%
50%
60%
70%
80%
90%

silence deletion

Figure 5.14: The e�ects of other forms of compression on audioconference processor load. For

comparison, processor load with silence deletion is displayed. The maximum load is 200 seconds.

full-sized packets for recording and compressing, and reduced packets for sending,

receiving, mixing and writing. In addition, they will have an additional uncompressing

component.

Figure 5.14 shows the predicted e�ects of other forms of compression. Only algo-

rithms that compress sound bytes by 70% or more perform better than silence deletion

for more than 4 people. It appears unlikely that compression algorithms better than

this can be expected to run in realtime. Audioconference processor load using com-

pression scales worse than audioconference processor load using silence deletion in

every case.

Digital Signal Processing Hardware In Section 5.6.1, we observe that the si-

lence deletion component accounts for almost half the processor load. A DSP chip

might completely remove the load of silence deletion from the processor. Such hard-

113

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

without deletion
software deletion

hardware deletion at user-level
hardware deletion in kernel

Figure 5.15: Audioconference processor load with silence deletion done in hardware, compared

with software and without silence deletion. The two di�erent hardware deletion designs, having a

zero-cost user level call, or having the hardware in the kernel, are presented. The maximum load is

200 seconds.

ware silence deletion could be available at the user level through memory mapping,

performing silence deletion at near-zero processor cost. Or, the chip could be in the

kernel, removing silence before the user makes the record call, reducing the number of

bytes in each record call. Figure 5.15 shows the predicted e�ects of the two hardware

silence deletion designs. Hardware silence deletion always reduces processor load com-

pared to no silence deletion. In addition, hardware silence deletion halves processor

load compared to software silence deletion. There is no signi�cant di�erence between

the two hardware deletion implementations.

What happens when we have both compression and silence deletion in hardware?

DSP chips could completely remove the load of silence deletion and compression from

the processor. Since we observed that a zero-cost user level call to the DSP or the

114

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

software compression
hardware compression

software silence deletion
hardware silence deletion

hardware compression and hardware silence deletion

Figure 5.16: Audioconference processor load with hardware silence deletion and hardware com-

pression. For comparison, software and hardware silence deletion and software and hardware com-

pression are shown. All hardware implementations have the DSP chip in the kernel. Maximum load

is 200 seconds.

DSP in the kernel perform similarly (Figure 5.15), we only present data for the DSP

in the kernel. Figure 5.16 shows the processor load for hardware silence deletion and

compression. Having both silence deletion and compression in hardware decreases

total processor load by 60%.

In Section 5.6.1, we noted that in conversations without silence deletion the mix-

ing component accounts for over 70% of the processor load. Hardware mixing can

be done with a DSP chip or on a multi-channel audio-board. When mixing is done

in hardware, the processor does not have to mix. The processor plays all incom-

ing sound packets to the audio device, so the load of writing then scales with the

number of participants. Figure 5.17 shows the predicted e�ects of hardware mixing.

Hardware mixing signi�cantly reduces non-silence deletion audioconference processor

115

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

software mixing, without silence deletion
hardware mixing, without silence deletion

with silence deletion

Figure 5.17: Audioconference processor load with packet combining done in hardware compared

with packet combining done in software. The silence deletion conversations are una�ected by hard-

ware mixing. Maximum load is 200 seconds.

loads. However, such loads still increase rapidly with the number of participants,

becoming larger than the loads under silence deletion at four or more people.

We observed in the micro experiments (Section 5.4) that the audio component

appeared comparatively large. Measurement of three classes of Suns' audio devices

show that the audio device e�ciency is improving disproportionately to processor

speed (Figure 5.18). Perhaps the audio device will eventually be made to record and

play as e�ciently as sending and receiving packets (a 10 fold increase). Figure 5.19

shows the processor load for an 8 times faster audio device. For audioconferences

with silence deletion, a faster audio device can reduce total Sun processor load by

almost one-half.

116

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
P

er
 C

hu
nk

 in
 M

ill
is

ec
on

ds

Chunk Size

SLC
IPC
IPX

Figure 5.18: Record times per byte for di�erent classes of machines. We would expect the slopes

to scale according to the 20-25-40 MHz clock speeds but they actually scale in about a 20-50-170

ratio. The improved performance on the IPC and IPX may be due to better audio hardware. The

dashed lines represent predictions beyond the measured data.

117

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

without silence deletion, current device
without silence deletion, faster device

with silence deletion, current device
with silence deletion, faster device

Figure 5.19: E�ects of an 8 times faster audio device on processor loads. For comparison, loads

under the current device are shown. Maximum load is 200 seconds.

118

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Lo
ad

 in
 S

ec
on

ds
 (

20
0

M
ax

)

Number of Participants

deleted 15%
deleted 60%
deleted 90%

Figure 5.20: Audioconference processor load with di�erent amounts of silence deleted. The 15%

is based on a fairly poor algorithm. 60% is the maximum observed during our pilot tests. We

consider 90% deletion to be an upper bound on silence deletion algorithms. The maximum load is

200 seconds.

Improved Silence Deletion Algorithms The above experiments and equations

all used a silence deletion algorithm that removed only 15% of the packets. Our pilot

tests suggest that, theoretically, deletion algorithms could remove as much as 60% of

speech packets. Figure 5.20 shows the predicted e�ects of increasing the amount of

silence deleted from the speaker's speech. Improving the deletion algorithm to remove

as much as 90% of the packets improves the processor load by only approximately

10%. The biggest reduction in load is in removing the silence of the non-speakers;

doing better than that improves processor load only a little.

119

5.6.4 Quality

The above predictions are all concerned with the processor load of an audioconference.

However, having an adequate processor capacity to meet the predicted audioconfer-

ence load does not guarantee that the user will �nd the audioconference acceptable.

How does the user perceive the audio? What is the audioconference quality?

In order to apply our quality model to a audioconference under various system

con�gurations, we must: 1) determine the region of acceptable audioconference qual-

ity; 2) predict jitter; 3) predict latency; and 4) predict data loss.

The Region of Acceptable Audioconference Quality To determine the re-

gion of acceptable audioconference quality, we need to de�ne acceptable limits for

audioconferences along each of the latency, jitter and data loss axes.

According to [40], fewer than 6% gaps in an audio stream playout and 230 millisec-

onds or less of delay resulted in acceptable audio quality. Audioconference quality is

then the Euclidean distance from the origin to a point represented by delay millisec-

onds normalized over 230 and the percentage of audio gaps normalized over 6%. Any

quality value under 1 is considered acceptable. But how do we predict latency and

data loss?

The presence of jitter often presents an opportunity for a tradeo� among latency

and data loss. Bu�ering, an application-level technique for ameliorating the e�ects

of jitter, can compensate for jitter at the expense of latency. Transmitted frames are

bu�ered in memory by the receiver for a period of time. Then, the receiver plays out

each frame with a constant latency, achieving a steady stream. If the bu�er is made

su�ciently large so that it can hold all arriving data for a period of time as long as

the tardiest frame, then the user receives a complete, steady stream. However, the

added latency from bu�ering can be disturbing [90], so minimizing the amount of

delay compensation is desirable.

Another bu�ering technique to compensate for jitter is to discard any late frame

120

at the expense of data loss. Discarding frames causes a temporal gap in the play-out

of the stream. Discarding frames can keep play-out latency low and constant, but

as little as 6% gaps in the playout stream can also be disturbing [75]. In the case of

audio speech, the listener would experience an annoying pause during this period. In

the case of video, the viewer would see the frozen image of the most recently delivered

frame.

Naylor and Kleinrock describe two policies that make use of these bu�ering tech-

niques: the E-Policy (for Expanded time) and the I-Policy (for late data Ignored)

[75]. Under the E-policy, frames are never dropped. Under the I-policy, frames later

than a given amount are dropped. Since it has been observed that using a strict

E-Policy tends to cause the playout latency to grow excessively and that dropping

frames occasionally is tolerable [18, 113], we use the I-Policy as a means of examining

needed jitter compensation for a multimedia stream.

The I-policy leads to a useful way to view the e�ects of jitter on a multimedia

stream. Figure 5.21 depicts the tradeo� between dropped frames and bu�ering as

a result of jitter. We generated the graph by �rst recording a trace of interarrival

times. We then �xed a delay bu�er for the receiver and computed the percentage of

frames that would be dropped. This represents one point in the graph. We repeated

this computation with bu�ers ranging from 0 to 230 milliseconds to generate the

curved line. The graph can be read in two ways. In the �rst, we choose a tolerable

amount of dropped frames (the horizontal axis), then follow that point up to the

line to determine how many milliseconds of bu�ering are required. In the second, we

choose a �xed bu�er size (the vertical axis), then follow that point over to the line to

determine what percent of frames are dropped. In Figure 5.21, if we wish to restrict

the amount of bu�ering to 100 ms, then we must drop about 2% of the frames since

that is how many will be more than 100 ms late, on average. For an 8000 KBps audio

stream consisting of 6.25 1280-byte frames per second, this equates to dropping one

frame every 8 seconds. On the other hand, if we wish to not drop any frames, we

121

0

50

100

150

200

250

0 2 4 6 8 10

B
uf

fe
rin

g
(M

ill
is

ec
on

ds
)

Dropped Frames (Percent)

Figure 5.21: Jitter Compensation. This picture depicts the amount of bu�ering needed for a given

number of dropped frames. The horizontal axis is the percentage of dropped frames. The vertical

axis is the number of milliseconds of bu�ering needed.

have to bu�er for over 200 ms.

How much bu�ering should we choose? We normalize the axes from 6% gaps

to 230 ms bu�ering. The best quality value in the jitter compensation curve is

the closest point to the origin along the curve. In practice, there is no way for an

application to determine exactly what bu�er will give it this point. However, there

are heuristics that consider past jitter in determining the most appropriate bu�er

size for the future jitter[41]. We assume a heuristic can provide an application with

a near-optimal bu�er size. We would like to know how much latency is added from

bu�ering at this point. It seems natural to assume that as the area under the jitter

compensation curve gets larger, the amount of bu�ering at the closest point along the

curve gets larger. We hypothesize that there is a strong correlation between the area

122

-2e+06

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

B
uf

fe
r

S
iz

e
(in

 m
ic

ro
se

co
nd

s)

Area (in milliseconds ^ 2)

corelation 0.96

Figure 5.22: Jitter Compensation Area versus Bu�er Size. The horizontal axis is the area under

the jitter compensation curve. The vertical axis is the bu�er size in microseconds. The points are

each a separate experiment run. The middle line is the least squares line �t. The outer two lines

form a 95% con�dence interval around the line. The correlation coe�cient is 0.96.

under the jitter compensation curve and the bu�er size. If this hypothesis is true, we

can determine the latency attributed to bu�ering from the jitter compensation area.

We tested our hypothesis by generating jitter compensation curves for all data points

from the experiments detailed in Section 3.4, Section 3.5 and Section 3.6. We then

computed the area under each curve. We computed the bu�er size by normalizing

the axes as described in Section 2.3 and �nding the lowest Euclidean distance to

the origin along the curve. We plotted bu�er size versus area and computed the

correlation coe�cient. Figure 5.22 depicts these results. There is a high correlation

between jitter compensation area and bu�er size.

We can predict the optimal amount of bu�ering if we know the area under the

jitter compensation curve. How can we determine the area under the jitter compen-

123

sation curve? As the amount of jitter experienced by the system gets larger, more

bu�ering should be required to alleviate the e�ects of jitter and more gaps should

appear in the multimedia stream. Thus, the area under the jitter compensation curve

should get larger as jitter increases. We hypothesize that there is a strong correlation

between the area under the jitter compensation curve and the variance in the packet

interarrival times. If this hypothesis is true, then we can predict the area under the

jitter compensation curve from the amount of jitter. Then, we can predict the bu�er

size from the jitter compensation area. We tested our hypothesis by computing jitter

from all data points from the experiments detailed in Section 3.4, Section 3.5 and

Section 3.6. We then compared these jitter values to the areas under the jitter com-

pensation curves from our previous hypothesis. We plotted area versus jitter and

computed the correlation coe�cient. Figure 5.23 depicts these results. There is a

high correlation between jitter and compensation curve area. Note that streams with

the most jitter (the right-most points) are all outside the con�dence interval curves.

Further work might be needed to determine the relationship between high-jitter mul-

timedia streams and the area under the jitter compensation curve. Fortunately, our

predictions deal almost exclusively with streams with far less jitter than the streams

represented by those right-most points.

From the above graphs, we have:

Buf: = 26:5� Area� 624; 000

Area = 0:000198� Jitter + 1; 590; 000

Substituting the equation for Area into the equation for Bu�er, we have:

Buf: = 0:00525� Jitter + 41; 500; 000

This last equation allows us to accurately estimate the optimal bu�er size for an

application given the amount of jitter.

124

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10

A
re

a
(in

 m
ill

is
ec

on
ds

 ^
 2

)

Variance (in microseconds ^ 2)

corelation 0.95

Figure 5.23: Jitter versus Jitter Compensation Area. The horizontal axis is the jitter (variance in

packet interarrival times). The vertical axis is the area under the jitter compensation curve. The

points are each a separate experiment run. The middle line is the least squares line �t. The outer

two lines form a 95% con�dence interval around the line. The correlation coe�cient is 0.95.

125

Predicting Jitter From our results in Sections 3.4 and 3.6, we know the relation-

ship between load and jitter for faster processors and networks. We hypothesize that

a high network load along with a high processor load increases jitter by the sum

of the jitter from the network and processor. While perhaps seeming obvious, our

hypothesis will be false if processor jitter and network jitter are not independent. If

some of the jitter attributed to the processor is actually due to jitter from the network

and/or some of the jitter attributed to the network is actually due to jitter from the

processor, adding the jitter from each component will result in more jitter than the

system actually experiences. However, if our hypothesis is true, we can then add

the predicted jitter from each component in predicting jitter for systems with both

components.

We tested our hypothesis with an experiment. We �rst computed the jitter we

would predict on a system with a loaded processor and loaded network. This pre-

diction is based on the amount of jitter attributed from the processor as obtained in

results from Section 3.4 and from the network as obtained in results from Section 3.6.

We next experimentally measured the jitter with a loaded processor and a loaded

network for each of the Ethernet, Fibre Channel and HIPPI networks. We then com-

pared the predicted results to the actual results. Table 5.4 depicts this comparison.

The predicted jitter values are within 7% of the actual jitter values. It seems appro-

priate to add the jitter attributed to processor load alone with the jitter attributed

to network load alone to predict the jitter attributed to processor load and network

load together.

Predicting Latency We can predict the amount of latency from the jitter com-

pensation bu�er by using predictions on the amount of jitter. In addition to the

bu�ering latency, there is the additional latency from the sender processing, the net-

work transmitting and the receiver processing. From our micro experiments, we know

the latency from recording and playing audio and the latency attributed to sending

126

Network Processor Network Predicted Actual

Ethernet 564.63 411.37 976.00 913.72

Fibre Channel 590.60 58.33 648.93 641.14

HIPPI 501.15 28.62 529.77 538.41

Table 5.4: Predicted versus Actual Jitter. This table depicts total jitter predictions based on

the amount of jitter contributed by the processor and network. \Processor" is the amount of jitter

contributed by a loaded processor. \Network" is the amount of jitter contributed by a loaded

network. \Predicted" is the sum of the \Processor" and \Network" values. \Actual" is the amount

of jitter measure during our experiments.

and receiving packets [22]. We can compute the latency from the network based on

the frame size and network bandwidth. To predict the total latency, we add the laten-

cies from: recording the audio frame; sending the audio frame to the client; receiving

the audio frame from the receiver; bu�ering in the jitter compensation curve; and

playing the audio frame.

Predicting Data Loss In order to predict data loss, we need to identify what form

data loss may take and when data loss may occur. In general, data loss can take many

forms such as reduced bits from encoding, dropped frames and lossy compression. For

an audioconference, we assume data loss only in the form of dropped frames or reduced

frame rate. We assume data loss under three conditions:

� Voluntary. As described in Section 5.6.4, an application may chose to discard

late frames in order to keep playout latency low and constant and we assume

the audioconference uses heuristics to discard enough frames to achieve the best

quality.

� Saturation. When either the network or the processor do not have su�cient

capacity to transmit data at the required frame rate, data loss occurs. For

127

example, if the network has a maximum bandwidth of 5 Mbps and the audio-

conference required 10 Mbps there will be a 50% data loss. We can compute

when systems reach capacity based on our previous work measuring processor

capacities [22, 24] and theoretical network bandwidths [27, 119, 45]. Although

the actual network bandwidth can often be less than the theoretical network

bandwidth [106, 80], using the theoretical bandwidth gives us an upper bound

on network utilization. If future work measures the actual network bandwidth

appropriate for an application, in can be used in place of the theoretical network

bandwidths we use.

� Transmission Loss. In our previous experiments, we found that typically about

0.5% packets on the average are lost when the network is running under max-

imum load [24]. We assume a maximum lost data rate of about 0.5% due to

network transmission.

Predicting Quality At last! We have built and tested the accuracy of an experiment-

based model that will allow us to explore audioconference quality under di�erent

system con�gurations. We can quantify how e�ectively today's computer systems

support multi-person audioconferences. We can predict when today's systems will

fail due to too many users or too much load on the processors or networks. We can

see how much using real-time priorities will help audioconference quality. We can

evaluate the bene�ts of expensive high-performance processors and high-speed net-

works before installing them. We can even investigate possible performance bene�ts

from networks and processors that have not yet been built. Let's go exploring!

We predict application quality for three scenarios: 1) high-performance processors

and high-speed networks; 2) increasing users; and 3) increasing load.

High-Performance Processors and High-Speed Networks Our results in Sec-

tions 3.4 and 3.6 showed that both high-performance processors and high-speed net-

128

works reduce jitter. However, which reduces jitter more? And more importantly,

which improves application quality more?

We assume we have twenty audioconference participants. In Section 5.6.4, we use

our model to evaluate quality for a variable number of users, but here we evaluate

a possible audioconference con�guration that has interesting quality predictions. We

compute quality under two di�erent scenarios. In the �rst, processor load remains

constant while the network bandwidth increases. In the second, network bandwidth

remains constant while processor power increases. Figure 5.24 shows these predic-

tions. For twenty users, increasing the processor power to a SPECint92 of 40 or

greater results in acceptable audioconference quality. At no time does increasing the

network bandwidth result in an acceptable quality. In this scenario, we conclude that

processor power in
uences audioconference quality more than does network band-

width.

Number of Users While today's computer systems may struggle to support even

twenty audioconference participants, tomorrow's processor improvements promise to

support more and more users. But how many more? How do more and more audio-

conference users a�ect application quality? Figure 5.25 depicts the predicted e�ects

of increasing users on audioconference quality. We predict audioconference quality for

three di�erent audioconference con�gurations: a low-end workstation with a typical

network (Sun IPX and Ethernet), a mid-range workstation with a fast network (Sun

Sparc 5 and Fibre Channel), and a high-performance workstation with a high-speed

network (DEC Alpha and HIPPI). As we saw in Section 5.6.4, today's typical work-

stations and networks have trouble supporting a small number of audioconference

participants. However, workstations such as Sun Sparc 5s connected by fast networks

such as a Fibre Channel can support up to 30 users. Very high-performance worksta-

tions such as a DEC Alpha connected by high-speed networks such as a HIPPI can

support over 70 users.

129

0

1

2

3

4

5

0 200 400 600 800 1000

Q
ua

lit
y

SPECint92 or Mbps

Ethernet and Sun IPX

Fibre Channel HIPPI

SGI Indigo 2 DEC Alpha Server

Unacceptable Quality

Acceptable Quality

Vary Network
Vary Processor

Figure 5.24: Audioconference Quality versus Processor or Network Increase. The horizontal axis

is the SPECint92 power of the workstation or the network Mbps. The vertical axis is the predicted

quality. There are two scenarios depicted. In the �rst, the processor power is constant, equivalent to

a Sun IPX (SPECint92 = 22), while the network bandwidth increases. This is depicted by the solid

curve. In the second scenario, the network bandwidth is constant, equivalent to an Ethernet (10

Mbps), while the processor power increases. This is depicted by the dashed curve. The horizontal

line marks the limit between acceptable and unacceptable audioconference quality.

130

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Q
ua

lit
y

Users

Unacceptable Quality
Acceptable Quality

IPX, Ethernet
Sparc 5, Fibre Channel

DEC Alpha, HIPPI

Figure 5.25: Audioconference Quality versus Users. The horizontal axis is the number of users.

The vertical axis is the predicted quality. There are three scenarios depicted. In the �rst, the

processors are Sun IPXs connected by an Ethernet. In the second, the processors are Sun Sparc 5s

connected by a Fibre Channel. In the third, the processors are DEC Alphas connected by a HIPPI.

The horizontal line marks the limit between acceptable and unacceptable audioconference quality.

131

Processor and Network Load Audioconferences with many users are resource

intensive, forcing processors and networks to run at a heavy loads. In addition, au-

dioconference streams are often integrated into larger distributed multimedia appli-

cations. In the past, applications have tended to expand to �ll (or surpass) available

system capacity. As system capacities increase, audioconference users will demand

higher frame rates and better resolution, making heavy-load conditions likely in the

future. We predict the e�ects of increasing load on audioconference quality.

Figure 5.26 depicts the predicted e�ects of load on audioconference quality. There

are three classes of systems depicted. A traditional system has Sun IPXs connected

by an Ethernet. A mid-range system has Sun Sparc 5 connected by a Fibre Channel.

A high-end system has DEC Alphas connected by a HIPPI. The predictions for audio-

conference quality are almost identical for the three systems. We saw in Section 5.6.4

that the processor is more crucial than network for audioconference quality. Increas-

ing processor load has a larger e�ect on decreasing audioconference quality than does

improving the network speed and processor power.

Figure 5.26 also depicts Sun IPXs connected by an Ethernet but using real-time

priorities instead of default priorities, shown by the bottom line. With real-time prior-

ities, audioconference quality does not su�er from increased jitter from the processor

as processor load increases. For conditions of increasing load, real-time priorities have

a greater e�ect on improving quality than do faster processors and faster networks.

5.7 Summary

Our goal is to identify improvements that reduce audioconference processor load. We

developed a model for audioconference processor load and presented experimentally-

based analysis on the e�ects on processor load from improving each component of the

model. In addition, we explored the a�ects of system improvements on audioconfer-

ence quality.

132

0

0.5

1

1.5

2

0 2 4 6 8 10

Q
ua

lit
y

Load

Unacceptable Quality

Acceptable Quality

Real Time Priorities

IPX, Ethernet
Sparc 5, Fibre Channel

DEC Alpha, HIPPI
IPX, Ethernet, Real Time

Figure 5.26: Audioconference Quality versus Load. The horizontal axis is the processor load.

The vertical axis is the quality prediction. There are four system con�gurations depicted. In the

�rst, the processors are Sun IPXs connected by an Ethernet. In the second, the processors are Sun

Sparc 5s connected by a Fibre Channel. In the third, the processors are DEC Alphas connected

by a HIPPI. In the fourth, the processors are again Sun IPXs connected by an Ethernet, but they

are using real-time priorities instead of default priorities. The upper horizontal line marks the limit

between acceptable and unacceptable audioconference quality.

133

Based on our analysis of individual components, silence deletion appears to im-

prove the scalability of audio more than all other improvements. This result holds

even when using compression and even for ten times faster processors, networks and

Digital Signal Processing (DSP) hardware. Further, the simple silence deletion al-

gorithms we studied achieve 90% of the potential bene�t from silence deletion for

audioconference processor load. Simple silence deletion algorithms are su�cient be-

cause the biggest reduction in processor load from silence deletion is in removing the

silence of the non-speakers which even the basic algorithms do well.

Sending and receiving packets are already relatively low-cost, so reducing the cost

further has relatively low bene�t. Better network protocols, faster networks and even

multicasting reduce load only slightly, with or without silence deletion. Techniques

based on DSP hardware alone do not scale as well as silence deletion alone. However,

DSP based silence deletion and compression together scale better than any other

technique. Silence deletion done in a DSP chip can reduce processor load by 50%.

Compression and silence deletion in a DSP chip can reduce processor load by an

additional 30%.

In applying our quality model we found that for some con�gurations, high-performance

processors will improve audioconference quality more than will high-speed networks.

However, the typical Ethernet network is the bottleneck in application quality as the

number of users increases. Thus, even high-performance processors will not su�-

ciently improve application quality as the growing number of users saturate existing

networks. The traditional Ethernet network will become the bottleneck in approx-

imately a year when workstation performance has doubled and may even be the

bottleneck for networks of today's high-performance workstations.

When multimedia applications are running under conditions of increasing load,

real-time priorities have a greater e�ect on improving quality than do faster pro-

cessors and faster networks. In fact, hardware improvements alone will not reduce

jitter enough to eliminate the need for application bu�ering techniques. However,

134

for multimedia on a Local Area Network (LAN), real-time priorities can reduce jit-

ter enough to eliminate the need for application bu�ering today. On a Wide Area

Network (WAN) especially the Internet, real-time priorities will not be available on

all routers, reducing the e�ectiveness of real-time priorities in reducing. In this case,

bu�ering techniques may still be needed.

Chapter 6

Flying through the Zoomable

Brain Database

6.1 Overview

Gradually, in laboratories around the world, neuroscientists from diverse disciplines

are exploring various aspects of brain structure. Since there is so much research to be

done on the nervous system, neuroscientists must specialize. An undesirable result of

this specialization is that it is di�cult for individual neuroscientists to investigate how

their results �t together with results from other scientists. Moreover, they sometimes

duplicate research e�orts since there is no easy way to share information.

To enhance the work of neuroscientists, we propose a zoomable database of images

of the brain tissue. We begin with the acquisition of 3-d structural maps of the nervous

system using high-�eld, high-resolution magnetic resonance imaging (MRI). The MR

images show the entire brain in a single dataset and preserve spatial relationships

between structures within the brain. However, even high resolution MRI cannot show

individual cells within the brain. We therefore anchor confocal microscope images to

these 3-d brain maps. Because of their higher resolution, the confocal images are

of smaller regions of the brain. Many such images are montaged into larger images

135

136

by aligning cellular landmarks between images.

1

These montages are then aligned

with structural landmarks from the MR images, so the high-resolution images can

be anchored accurately within the MR image. In addition to the image data, other

types of brain data can be linked to the 3-d structure.

The brain database will be embedded in three dimensions. The user starts a

typical investigation by navigating through the MR images in a coarse 3-d model of

the brain to a site of interest. The user then zooms to higher resolution confocal

images embedded in the MRI landscape. This real-time navigating and zooming we

call \
ying."

The scienti�c value of the data and the distributed nature of the database impose

a series of user-level requirements that the
ying interface should satisfy:

� Wide Spread Use. We estimate the number of users who may be interested in

using the database to be 10,000 (half the number of members of the Society for

Neuroscience in 1994), the average day to be 10 work hours, the average work

week to be 5 days and the average work month to be 4 weeks. We can predict the

average number of simultaneous database users based on some possible usage

amounts:

Uses the Database Simultaneous Database Users

1 hour/day 1000

1 hour/week 200

1 hour/month 50

� Twenty-four Bit Color. As often as possible, the database will express exper-

imental data in its purest form, so expensive raw data can be analyzed and

reanalyzed by researchers worldwide. Confocal microscope images include up

1

We have created a WWW server that includes an example of a montage of confocal micro-graphs

at http://www.cs.umn.edu/Research/neural/

137

to three layers of eight bit gray-scale, with each layer representing one brain

chemical. The �nal images include 24 bits of color, all important to the scien-

tists who view it.

� Three Dimensions. Since the anchoring MR images are three dimensional,
y-

ing must be allowed in all three dimensions. This necessitates computing two

dimensional frames from the three dimensional images. The computation can

take place by two di�erent methods:

Remote Flying: In remote image processing the server does the image com-

putation and transfers only a 2-d frame to the client. We estimate Remote

Flying will require sending 24 Mbits (a mega-pixel) of data per frame. Re-

mote
ying shifts the image processing load from the client to the server.

Local Flying: In local image processing the server transfers the 3-d data and

the client does the image computation. We estimate Local Flying will

require sending 384 Mbits (the 3-d region of the brain) of data per frame.

Local
ying shifts the image processing load from the server to the client.

� Smooth Navigation. Flying must be very smooth even over a varied, non-

dedicated network. This necessitates a motion picture quality rate of 30 frames

per second, and jitter control to compensate for network variance.

� Adaptability. Flying must adapt to a wide variety of resources, including varying

processor and disk types and non-dedicated variable bandwidth networks.

This Chapter is organized as follows: Section 6.2 of this section describes related

work in scienti�c visualization, neuroscience, compression, network performance and

disk performance. Section 6.3 introduces our model of an audioconference. Section 6.4

details micro experiments that measure the processor load of each component. Sec-

tion 6.5 analyzes the experiments and projects the results to future environments.

And Section 6.6 summarizes the important contributions of this section.

138

6.2 Related Work

6.2.1 Scienti�c Visualization

Hibbard, Paul, Santek, Dyer, Battaiola and Voidrot-Martinez designed an interac-

tive, scienti�c visualization application [57]. They were seeking to bridge the barrier

between scientists and their computations and allow them to experiment with their

algorithms.

Elvins described �ve foundation algorithms for volume visualization in an intu-

itive, straight-forward manner [36]. His paper included references to many other

papers that give the algorithm details.

Singh, Gupta and Levoy showed that shared-address-space multiprocessors are

e�ective vehicles for speeding up visualization and image synthesis algorithms [107].

Their article demonstrated excellent parallel speedups on some well-known sequential

algorithms.

We investigate performance of an application that will use techniques developed

in other scienti�c visualization applications. In particular, we use performance results

from Singh, et al. and may implement some of the algorithms that Elvins describes.

6.2.2 Neuroscience

Carlis, et al, present the database design for the Zoomable Brain Database [15].

We have developed data models for novel neuroscience. One model focuses on MR

and Confocal microscopy images, the connections between them, and the notions of

macroscopic and microscopic neural pathways in the brain. We have implemented

this "connections" data model in the Montage DBMS, and have populated the schema

with neuroscience data.

Kandel, Schwartz and Jessel discussed in detail the fundamentals behind neural

science [72].

Slotnick and Leonard had an extensive photo atlas of an albino mouse forebrain

139

[108]. The ideas of a zoomable, digitized rat brain came from atlases such as this one.

The Zoomable Brain Database is based on neuroscience fundamentals. At its heart

is a digital brain atlas. Our work presents network, processor and disk performance

analysis in accessing the digital images.

6.2.3 Compression

Wallace presented the Joint Photographic Experts Group (JPEG) still picture stan-

dard [122]. He described encoding and decoding algorithms and discusses some rela-

tions to the Motion Picture Experts Group (MPEG).

Patel, Smith and Rowe designed and implemented a software decoder for MPEG

video bit-streams [92]. They gave performance comparisons for several di�erent bit

rates and platforms. They claimed that memory bandwidth was the bottleneck for

the decoder, not processor speed. They also gave a cost analysis of three di�erent

machines for doing MPEG.

We expand compression research by providing careful processor load measure-

ments of JPEG compression and decompression on a Sun IPX. In addition, we predict

the e�ects of compression on network, processor and disk performance.

6.2.4 Network Performance

Hansen and Tenbrink investigated gigabyte networks and their application to sci-

enti�c visualization [53]. They explored various system topologies centered around

the HIPPI switch. They analyzed network load under some possible visualization

applications and hypothesize on the e�ects of compression.

Lin, Hsieh, Du, Thomas and MacDonald studied the performance characteris-

tics of several types of workstations running on a local Asynchronous Transfer Mode

(ATM) network [80]. They measured the throughput of four di�erent application pro-

gramming interfaces (API). They found the native API achieves the highest through-

put, while TCP/IP delivers considerably less.

140

+ + +

Read Render Compress Send

Read Render Compress Send

+ +

Decompress

+ +

 N

et
w

or
k

C
om

pr
es

si
on

N
et

w
or

k
an

d
D

is
k

 C

om
pr

es
si

on

Read Render Send

+ +

N

o
C

om
pr

es
si

on

Figure 6.1: Flying Model. Our model of the
ying software used by the server, that includes

reading, rendering and sending. Compression reduces the data before sending. Decompression

expands the data before rendering.

6.2.5 Disk Performance

Ruwart and O'Keefe describe a hierarchical disk array con�guration that is capable of

sustaining 100 MBytes/second transfer rates [101]. They show that virtual memory

management and striping granularity play key roles in enhancing performance.

6.3 Model

We have three di�erent models for the Flying software depicted in Figure 6.1:

1. No Compression. Flying with no compression has three processor load compo-

nents: read is the processor load for reading the image from the disk; render is

the processor load for computing the 2-d frame from the 3-d image; and send is

the processor load for sending the frame to the user.

141

2. Network Compression. Flying with network compression has four processor

load components: read is the processor load for reading the image from the

disk; render is the processor load for computing the 2-d frame from the 3-d

image; compress is the processor load for compressing the frame; and send is

the processor load for sending the compressed frame to the user.

3. Network and Disk Compression. Flying with network compression and disk

compression has �ve processor load components: read is the processor load for

reading the compressed image from the disk; decompress is the processor load

for decompressing the image; render is the processor load for computing the 2-d

frame from the 3-d image; compress is the processor load for compressing the

frame; and send is the processor load for sending the compressed frame to the

user.

2

6.4 Micro Experiments

We can predict the processor throughput required for
ying by using the processor

load for individual components as in Section 5.4. We obtain the
ying throughput for

a 40 MHz Sun IPX to obtain a baseline for predictions to faster machines. We re-use

the appropriate micro-experiment results from Section 5.4 and [21] that were used

for the audioconference application and run experiments to measure the components

new to the
ying application. The components we re-use are: send, receive, read

and write. The new components are: compress and decompress.

We obtained the processor load for doing JPEG compression and decompression.

We modi�ed the source code for cjpeg and djpeg

3

to perform compression and de-

2

A clever image computation algorithm might do the calculation on the compressed images [110].

3

The \o�cial" archive site for this software is ftp.uu.net (Internet address 137.39.1.9 or

192.48.96.9). The most recent released version can always be found there in directory graphics/jpeg.

The particular version we used is archived as jpegsrc.v4.tar.Z.

142

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

20 40 60 80 100

M
ill

is
ec

on
d

/ B
yt

e

JPEG Quality

decompression
compression

Figure 6.2: Processor load for JPEG Compression and Decompression versus Compressions Qual-

ity. The vertical axis is processor time in milliseconds/byte. The horizontal axis is the JPEG quality

setting. All points are shown with 95% con�dence intervals.

compression in separate processes. We followed experimental techniques that were

identical to those used to obtain the processor loads for the previous components.

As in Section 5.4, we used a counter process that incremented a double variable in a

tight loop to measure the processor load of the JPEG components. We compressed

and decompressed images to and from PPM �les (see the footnote in section 6.5.2).

The independent variable in our measurements was the JPEG compression qual-

ity. Figure 6.2 depicts the processor load for compression and decompression versus

quality. All points are shown with 95% con�dence intervals.

Using linear regression, we can derive the JPEG processor load in milliseconds

per bit of the original PPM image:

143

JPEG msec/bit

compression 0.000338

decompression 0.000341

6.5 Predictions

6.5.1 Networks

Since the database is distributed, the above user-level requirements determine the

network requirements. For one user, we can predict the network load that
ying will

induce under the image processing types described in Section 6.1:

Flying Type Mbits/second

Remote 720

Local 11520

We can determine the minimal network required for
ying using projected network

bandwidths. The following table lists the Optical Carrier (OC) network rates:

Protocol Mbits/second

OC-1 52

OC-3 155

OC-12 622

OC-24 1243

We infer from the above two tables that we need more bandwidth than even an

OC-12 network can deliver to support just one remote
ying user. Since local
ying

appears to be very di�cult under all projected network bandwidths, we will assume

remote
ying in the rest of the
ying predictions. We also assume a
ying rate of

one hour per week. The network bandwidth will increase further with additional

simultaneous users. Figure 6.3 shows the load predictions for a variable number of

users.

144

1

10

100

1000

10000

100000

0 50 100 150 200

M
bi

ts
/s

ec
on

d

Number of Simultaneous Users

total bandwidth
OC-24
OC-12
OC-3

Figure 6.3: Bandwidth versus Number of Simultaneous Users. The curve is the total bandwidth

required. The horizontal lines are various Optical Carrier (OC) network bandwidths. On this, and

subsequent graphs, the Mbits/second axis is in log 10 scale.

145

1

10

100

1000

10000

100000

0 50 100 150 200

M
bi

ts
/s

ec
on

d

Number of Servers

average bandwidth per server
OC-24
OC-12
OC-3

Figure 6.4: Bandwidth versus Servers. The curving is the average bandwidth per server. The

horizontal lines are OC network bandwidths.

To counteract the huge bandwidth requirements, we can increase the number of

servers. If we assume that each user
ies through the database for one hour per week,

we have an average of 200 simultaneous users (see section 6.1). Figure 6.4 shows the

load predictions for a variable number of servers.

With 200 servers, there is, on average, one server per connected user. We take 200

to be the upper limit on the number of servers. But with 200 servers, each connected

to clients by OC-12s, each server can only support one user. Clearly, there is a need

to �nd ways to reduce network load.

6.5.2 Compression

We turn to compression to reduce network bandwidth. If each frame is compressed

before sending, the network bandwidth will be reduced.

146

We assume JPEG compression for
ying. The Joint Photographic Experts Group

(JPEG) have been working to establish the �rst international compression standard

for continuous-tone still images, both grayscale and color [122]. Although JPEG is

intended as a still picture standard, it has greater
exibility for video editing than

does MPEG, and is likely to become a \de facto" intraframe motion standard as well.

The quality factor in JPEG lets you trade o� compressed image size against quality

of the reconstructed image: the higher the quality setting, the closer the output image

will be to the original image and the larger the JPEG �le.

4

A quality of 100 will

generate a quantization table of all 1's, eliminating loss in the quantization step (but

there is still information loss in subsampling, as well as roundo� error).

Since the viewed images are to be as close to the original data as possible, we

assume a quality of 100 must be used for
ying compression. Pilot tests show that

JPEG with a quality of 100 reduces the size of PPM

5

images by about 70%. In all

subsequent predictions, we assume a compression ratio of 70%.

Figure 6.5 shows our predictions of the e�ects of compression versus the number

of simultaneous users. Figure 6.6 shows our predictions of the e�ects of compression

versus the number of servers.

With compression and 75 servers, we can satisfy the user-level network band-

width requirements for 200 simultaneous users. However, doing compression and

decompression induces additional processor load (see Section 6.5.4).

4

Quality values below about 25 generate 2-byte quantization tables, which are considered optional

in the JPEG standard. Some commercial JPEG programs may be unable to decode the resulting

�le.

5

Jef Poskanzer's PBMPLUS image software can be obtained via FTP from export.lcs.mit.edu

(contrib/pbmplus*.tar.Z) or ftp.ee.lbl.gov (pbmplus*.tar.Z).

147

1

10

100

1000

10000

100000

0 50 100 150 200

M
bi

ts
/s

ec
on

d

Number of Simultaneous Users

total bandwidth without compression
total bandwidth with 70% compression

OC-24
OC-12
OC-3

Figure 6.5: Bandwidth versus Simultaneous Users. The top curve depicts the total bandwidth

without compression. The lower curve depicts the total bandwidth with 70% compression. The

horizontal lines are OC network bandwidths.

148

1

10

100

1000

10000

100000

20 40 60 80 100 120 140 160 180 200

M
bi

ts
/s

ec
on

d

Number of Servers

average bandwidth without compression
average bandwidth with 70% compression

OC-24
OC-12
OC-3

Figure 6.6: Bandwidth versus Servers. This graph depicts the average bandwidth per server for

a variable number of servers. The top curving line represents bandwidth without compression. The

lower curving line represents bandwidth with compression. The horizontal lines are OC network

bandwidths.

149

6.5.3 Disks

Compression may also be used for reducing the size of images on disk. The most

obvious e�ect is the decrease in storage space. A fully-mapped mouse brain will

take approximately 24 terabits of data, while a rat brain will take approximately 80

terabits of data. A 70% compression rate would reduce the required storage space to

about 7.2 terabits and 24 terabits respectively.

Compressed disk images will also increase the disk
ying throughput. With an

image compression of 70%, disk drives can supply over 3 times more frames/second.

Using the disk bandwidths obtained from [15], we can determine the disks required

for meeting the requirements for
ying throughput. Recent studies at the Army High

Performance Computing Research Center at the University of Minnesota (AHPCRC)

have measured the performance of single disk arrays [101]. When going through a

�le system, normal I/O runs at about 6 Mbits/second. Direct I/O which bypasses

the �le system bu�er cache and beams data directly to the user's application bu�er,

runs at 14.5 Mbits/second on a non-fragmented �le. Direct I/O and striping across

multiple disk arrays can achieve up to N times 14.5 Mbits/second where N is the

number of arrays striped over. The AHPCRC currently stripes over 4 or 8 arrays,

producing transfer rates around 40 Mbits/second for 4 arrays. In the 3-5 year time

frame they expect to see the single array speed go to 100 Mbits/second and possibly

1 Gbits/second for large �le transfers. If the physical design matches users' needs

e�ectively, the database retrieval rate may approach the maximum disk rate, but

applications cannot exceed this retrieval speed.

Figure 6.7 shows the disk drive throughputs compared to the increase in bandwidth

as simultaneous users increase. At least 8 direct I/O disk arrays are required to meet

the
ying requirements for one user. However, with compression, one user's
ying

need can be met with 4 direct I/O disk arrays.

Figure 6.8 shows the disk rates compared to the decrease in bandwidth as servers

increase. A 1 disk array will not satisfy even a single user's
ying requirements.

150

1

10

100

1000

10000

100000

0 50 100 150 200

M
bi

ts
/s

ec
on

d

Number of Simultaneous Users

total bandwidth without compression
total bandwidth with 70% compression

8 direct io disk arrays
4 direct io disk arrays
1 direct io disk array

Figure 6.7: Bandwidth versus Simultaneous Users. The Mbits/second axis is a log 10 scale. The

increasing curves are bandwidths without compression and with compression. The horizontal lines

are all disk throughput rates.

151

1

10

100

1000

10000

100000

20 40 60 80 100 120 140 160 180 200

M
bi

ts
/s

ec
on

d

Number of Servers

average bandwidth without compression
average bandwidth with 70% compression

8 direct io disk arrays
4 direct io disk arrays
1 direct io disk array

Figure 6.8: Bandwidth versus Number of Servers. The decreasing curves are bandwidths with

compression and without compression. The horizontal lines are disk rates.

An 8 disk array will satisfy user
ying requirements only with compression and 40

servers. Without compression, an 8 disk array will need 140 servers to satisfy user

ying requirements. A 4 disk array will need compression and 100 or more servers to

meet
ying requirements.

A drawback of compression is that it will decrease processor frame throughput.

Compressed images on disk must be uncompressed before the processor can perform

image computation to generate the 2-d frame. And compressing before sending takes

additional processor time. What are the processor requirements for
ying?

6.5.4 Processors

To estimate the e�ects of new high-performance graphical workstations on the pro-

cessor load for image calculation, we use the results reported in [107]. They report

152

Compression Operations Seconds/frame Mbits/second

None read render send 32.6 0.74

Network read render compress send 40.4 0.59

Network and Disk read decompress render compress send 170 .14

Table 6.1: Flying Throughput. This table shows the predicted Sun IPX processor loads with three

ways to use compression for
ying.

that image calculation from a 256x256x256 voxel volume data set (the same size we

assume for our 3-d region) takes about 5 seconds per frame on a 100 MHz Silicon

Graphics Incorporated (SGI) Indigo 2 workstation using Levoy's ray-casting algo-

rithm and about a second per frame using a new shear-warp algorithm. We will

assume a processor load of one second per frame for an Indigo workstation.

We compare the processing power of the Sun IPX to the SGI Indigo by comparing

their performance under the Systems Performance Evaluation Cooperative (SPEC)

benchmark integer suite. The SPECint value for a Sun IPX is 21.8 and the SPECint

value for the 150 MHz Indigo 2 is 92.2. Roughly, the Indigo 2 is 4 times faster than

IPX, so we assume the IPX takes 4 seconds to do the 2-d image calculation from the

3-d region.

We can now predict the
ying throughput for the Sun IPX processor server. Ta-

ble 6.1 gives the Sun IPX processor throughput predictions for the above 3 methods

for the server to provide
ying described in Section 6.3:

Network compression slightly reduces processor frame throughput. Disk com-

pression, however, reduces processor frame throughput by more than 80%. Most

importantly, it would take a processor over nine-hundred times faster than a Sun

IPX to satisfy the
ying requirements for even one user! Even an SGI Indigo 2 with

20 processors would still only have a
ying throughput of 59.2 Mbits/second, not even

enough for 1 user! Clearly, there is a need to �nd ways to increase processor
ying

153

Component Software Load Hardware Load

read uncompressed image 28.2 seconds 0.03 seconds

read compressed image 8.5 seconds 0.009 seconds

decompress image 131 seconds -

compress frame 8.2 seconds -

render frame 4 seconds 0.03 seconds

send uncompressed frame 3.8 seconds 0.006 seconds

send compressed frame 1.1 seconds 0.0002 seconds

Table 6.2: Flying Component Loads. This table shows Sun IPX processor loads induced by various

ying components when done in software and hardware.

throughput.

One such method may be specialized hardware. There are co-processors that

perform JPEG compression and decompression. Similarly, many computers have

specialized graphics rendering hardware. To estimate the processor load for using

specialized hardware, we assume that accessing specialized hardware is equivalent to

one kernel call and that calls can take place in block sizes of 100 Kbytes. We also

assume that all hardware is su�ciently fast to keep up with the processor. Table 6.2

analyzes the Sun IPX processor improvements from using such hardware for each

ying component operating on one frame. Table 6.3 gives the processor throughput

predictions for an SGI Indigo 2 workstation using hardware support for the
ying

components.

We can now predict the processor throughput required for
ying. Figure 6.9

shows the load predictions versus simultaneous users and Figure 6.10 shows the load

predictions versus servers. Flying throughput for a Sun IPX would be at the very

bottom of these graphs. Even a 20 processor 100 MHz SGI Indigo 2 using compression

cannot satisfy user
ying requirements for even one user. We therefore consider the

154

Compression Operations Seconds/frame Mbits/second

None read render send 0.0170 1416

Network read render compress send 0.0150 1608

Network and Disk read decompress render compress send 0.0066 2400

Table 6.3: Hardware Flying Throughput. Possible SGI Indigo 2 processor loads induced by the

three forms of
ying when the processor is equipped with specialized
ying hardware.

use of specialized hardware and kernel support for reading, compressing, calculating

and sending.

6.5.5 Quality

So far we have explored the necessary network, disk, and processor requirements to

completely satisfy our user requirements. But when user requirements cannot be

completely satis�ed, there is often a tradeo� in system choices. For example, if more

compression is applied, bandwidth requirements for network and disk are reduced,

but the processor may become overloaded with the added decompression cost. We

apply the model presented in Section 2.3 to predict the quality for
ying on di�erent

system con�gurations. In order to apply our quality model, we must: 1) determine

the region of acceptable
ying quality; 2) predict jitter; 3) predict latency; and 4)

predict data loss.

To determine the region of acceptable
ying quality, we need to de�ne acceptable

limits for
ying along each of the latency, jitter and data loss axes. According to Je�ay

and Stone, delays of 230 milliseconds or under are acceptable for a videoconference

[64]. We assume this is a lower bound on the acceptable latency for
ying. For data

loss, research in remote teleoperator performance has found that task performance is

virtually impossible below a threshold of 3 frames per second [84]. We also assume

fewer than 20 Mbits/second of data provides too little data to be useful, and more

155

1

10

100

1000

10000

100000

0 50 100 150 200

M
bi

ts
/s

ec
on

d

Number of Simultaneous Users

total bandwidth without compression
total bandwidth with 70% compression

SGI Indigo 2 with flying hardware
20 processor SGI Indigo 2 without compression

20 processor SGI Indigo 2 with compression

Figure 6.9: Bandwidth versus Simultaneous Users. The upward sloping curves are total band-

widths with compression and without compression. The horizontal lines are processor
ying through-

put rates. The top horizontal line is the predicted
ying throughput of a 2 processor SGI Indigo 2

with specialized
ying hardware.

156

1

10

100

1000

10000

100000

20 40 60 80 100 120 140 160 180 200

M
bi

ts
/s

ec
on

d

Number of Servers

average bandwidth without compression
average bandwidth with 70% compression

SGI Indigo 2 with flying hardware
20 processor SGI Indigo 2 without compression

20 processor SGI Indigo 2 with compression

Figure 6.10: Bandwidth versus Number of Servers. The upward sloping curves are the average

bandwidths per server with compression and without compression. The horizontal lines are processor

ying throughput rates. The top horizontal line is the predicted
ying throughput of a SGI Indigo

2 with specialized
ying hardware.

157

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

La
te

nc
y

in
 M

ill
is

ec
on

ds

Data Reduction in Mbits/second

20 processors

8 processors

4 processors

1 processor

unacceptable quality

acceptable quality

quarter-flyinghalf-flying16-bit color 15 frames/s

16 processors

Figure 6.11: Client Application Quality. This graph depicts a measure of quality for the client.

The horizontal axis is the number of Mbits/second of data reduction received by the client. The

vertical axis is the latency added by the client. The points are SGI Indigo 2's clients with di�erent

numbers of processors. The curve represents an acceptable level of quality; all points inside the curve

will have acceptable quality while points outside will not. Note that the clients are not equipped

with any special
ying hardware.

than 720 Mbits/second (30 frames/second and 24 bits of color) provides no more

useful data. As described in Section 5.6.4, the presence of jitter often presents an

opportunity for a tradeo� among latency and data loss. We predict jitter, latency

and data loss as in Section 5.6.4, Section 5.6.4 and Section 5.6.4, respectively.

To compute application quality, we use the methods described in Section 2.3.

Figure 6.11 depicts our quality predictions. The individual points are all SGI Indigo

2 clients with a di�erent number of processors. In this �gure, we have not assumed

any specialized
ying hardware. We assume that the servers will be able to provide

the bandwidth requested by all the clients to simplify the computation.

158

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

Q
ua

lit
y

Number of Clients

server bandwidth capacity reached

acceptable quality

without compression

with 70% compression

Figure 6.12: Quality versus Clients. Clients are 100 processor SGI Indigo 2 workstations with

no specialized hardware. The server is an SGI Indigo 2 workstation with specialized hardware (see

Section 6.5.4). The arrows indicate points at which the server can no longer keep up with the

bandwidth requests by the clients. At this point, perceived application performance decreases, as

depicted by the increasing quality values.

Figure 6.12 depicts quality versus the number of clients for both
ying with com-

pression and without. Clients are assumed to be 20 processor Indigo 2's without

specialized hardware. The server is assumed to be an SGI Indigo 2 workstation with

specialized hardware (see Section 6.5.4). The arrows indicate points at which the

server can no longer keep up with the bandwidth requests by the clients. At this

point, application performance decreases, as depicted by the increasing quality val-

ues. Thus, for fewer than 4 clients, compression decreases client-side quality, mostly

because of the latency increase from the clients decompressing the images. However,

for 5 or more clients, compression increases application quality because the server can

meet the bandwidth requirements of more clients.

159

Note that this graph depicts the quality tradeo�s with one particular system

con�guration. Di�erent system con�gurations may have di�erent quality tradeo�s.

6.6 Summary

Since the users of the Zoomable Brain Database will be distributed across the country,

the system stress from
ying will be spread over the underlying network. If the

network topology appears as a backbone with six Network Access Points (NAP's),

like the proposals for the national data highway [97], we can determine the bandwidth

required for each link.

We assume:

� An equal distribution of users among servers,

� 50 servers, each directly connected to the backbone, and

� 70% compression.

We can use the analysis from previous sections to determine the system require-

ments:

Component Mbits/second

Backbone: 43200

NAP's: 7200

Individual Connections: 216

50 Processor Servers: 4680

Figure 6.13 depicts the network for the constructed Zoomable Brain Database.

Unfortunately, some of the proposals for the national data highway have bandwidths

like those in �gure 6.14.

We can only hope to
y on such a network by reducing the user-level
ying

requirements. [15] describes a number of modi�cations that can be done to the user

160

43 Gigabits

7
G

ig
ab

its

7
G

ig
ab

its

7
G

ig
ab

its

7
G

ig
ab

its

7
G

ig
ab

its

7
G

ig
ab

its

Figure 6.13: Bandwidth requirements for the Zoomable Brain Database system on a topology

similar to a possible national data highway [93].

155 Mbits

50
 M

bi
ts

50
 M

bi
ts

50
 M

bi
ts

50
 M

bi
ts

50
 M

bi
ts

50
 M

bi
ts

Figure 6.14: A proposed national data highway network. In order to allow
ying in this environ-

ment, user-level requirements must be relaxed.

161

requirements that will ease the system requirements. The server can reduce the frame

resolution in each dimension by one-half (half-
ying) to a one-fourth (quarter-
ying),

reducing the data needed by 1/8th and 1/64th respectively. Likewise, fewer bits of

color decrease the data needed for each pixel. The table below summarizes the system

bene�ts of several of these modi�cations:

Reduction

Modi�cation I/O Processor Network

8 bit color 0 2/3 2/3

half-
ying 0 0 3/4

quarter-
ying 0 0 15/16

3 frames/sec 9/10 9/10 9/10

Processing and sending 8-bit color reduces processor and network requirements

by 2/3. Yet many neuroscientists may �nd scienti�c analysis di�cult under such

conditions. In half- or quarter-
ying, one frame pixel represents 4 or 16 display pixels,

respectively. Thus, network data rates are reduced by 3/4 and 15/16 respectively, but

at the expense of image quality. Sending fewer frames per second reduces all system

components. However, motion displayed at 3 frames/second has a much rougher
ow

than does motion displayed at 30 frames/second.

The data reduction from the above modi�cations can also be combined. If we

modify the user-requirements to allow 8 bit color, 3 frames/second and 1/2
ying,

the system requirements for the Zoomable Brain Databases would appear as in Fig-

ure 6.15. These reductions in user requirements make it possible to use the proposed

infrastructure to achieve some of our goals, but will not be suitable for some neuro-

science analysis.

All of our predictions have done the image computation at the server (remote

ying) as opposed to image computation done at the client (local
ying). But re-

mote
ying, while inducing signi�cantly less bandwidth than local
ying, increases

the amount of server computation. With many database users, the server computa-

162

88 Mbits
15

 M
bi

ts
15

 M
bi

ts

15
 M

bi
ts

15
 M

bi
ts

15
 M

bi
ts

15
 M

bi
ts

Figure 6.15: Bandwidth requirements for the Zoomable Brain Database system on a topology

similar to a proposed national data highway. User requirements have been reduced to ease system

requirements.

tion may become prohibitive. As client workstations become increasingly powerful,

they may be able to readily perform the needed computations at a su�cient
ying

rate, reducing server load. In other environments, server load has proven critical for

performance [77].

Advances in networking, such as those described in this paper, are needed to enable

a new era of neuroscience. Researchers will be able to directly access high-quality

pristine data from all areas of the brain. Hypotheses will be formulated, evaluated,

and scienti�cally tested through interaction with data collected by scientists on the

other side of the world. As we have shown, realizing this dream fully will require

gigabits per second of sustained throughput per user, and terabits per second of

aggregate bandwidth.

Chapter 7

The Virtual Cockpit

7.1 Overview

We have applied our model to the speci�cations and preliminary performance results

of a
ight simulator called the Virtual Cockpit [85]. The Virtual Cockpit is a low-cost,

manned
ight simulator of an F-15E built by the Air Force Institute of Technology.

A soldier
ies the Virtual Cockpit using the hands-on throttle and stick, while the

interior and out-the-window views are viewed within a head-mounted display. The

Virtual Cockpit research was undertaken to build an inexpensive system for use as a

tactics trainer at the squadron level that could participate in a Distributed Interactive

Simulation (DIS).

DIS is a virtual environment being designed to allow networked simulators to inter-

act through simulation using compliant architecture, modeling, protocols, standards

and databases. The DIS system must be
exible and powerful enough to support

increasingly large numbers of simulators. The Advanced Research Projects Agency

(ARPA) estimates the need for exercises with 100,000 simulators [25].

In addition to latency, jitter and lost data, DIS simulators have an additional

application-speci�c measure that a�ects application quality. DIS simulators use \dead

reckoning" algorithms to compute position. Each simulator maintains a simpli�ed

163

164

representation of other simulators and extrapolates their positions based on their

last reported states. When a simulator determines that other simulators cannot

accurately predict its position within a pre-determined threshold, it sends a state

update packet. The state update contains the correct position and orientation as well

as velocity vectors and other derivatives that the other simulators can use to initiate

a new prediction. Figure 7.1 depicts the di�erence between the actual
ight path of

a simulator and the dead reckoning
ight path computed by the other simulators.

Deviation Exceeds Threshold

Actual Path
Dead Reckoning Path

Update Received

Figure 7.1: Actual Path versus Dead Reckoning Path. The solid line represents the actual
ight

path of the simulator. The grey line represents the
ight path as computed by the other simulators

using a simple dead-reckoning algorithm based only on direction and velocity. The dashed line

represents a time when the perceived path deviated from the actual path by more than a pre-set

threshold. At this time, a packet updating position, orientation and direction is sent and the dead

reckoning resumes from this new posture.

Dead reckoning creates an additional quality measure speci�c to DIS applications:

� Missed Updates. If a simulator is unable to send the update or process an

incoming update, the accuracy of the simulation decreases.

Figure 7.2 shows the e�ects of missed updates on accuracy. The horizontal line is

the position threshold, set at 1 meter. When the inaccuracy surpasses the threshold,

an update is sent, bringing inaccuracy back to 0. Inaccuracy increases one meter

on average for each update missed. These missed updates are shown by the taller

165

thrshld

2

3

0 1 2 3 4

M
et

er
s

of
 In

ac
cu

ra
cy

Seconds

Dead Reckoning Accuracy vs. Time

missed 1 update

missed
2 updates

low-order
high-order

Figure 7.2: Dead Reckoning Accuracy. The horizontal line is the position threshold, set at 1 meter.

The triangular-shapes represent areas of inaccuracy. When they reach the threshold, an update is

sent, bringing inaccuracy back to 0. Inaccuracy increases by as much as a meter on the average for

each update missed. These missed updates are shown by the taller triangles.

triangles. The total inaccuracy for the simulation is represented by the sum of the

areas of the triangles. The larger the sum, the more inaccurate the simulation. As we

would expect, consecutive missed updates a�ect accuracy more than non-consecutive

missed updates. There are two di�erent simulations depicted in the graph. One

uses a dead reckoning algorithm that does more computation (high-order) while the

other uses a dead reckoning algorithm that does less computation (low-order). The

total accuracy is independent of the dead reckoning algorithm used; changing the

dead reckoning algorithm only a�ects the number of updates sent and not the total

accuracy.

Our objective is to enhance our understanding of the performance bottlenecks that

arise in the design of a multi-person, distributed multimedia application. Among

the factors we investigate are the performance of the Virtual Cockpit on existing

networks and processors and the e�ects of high-speed networks and high-performance

processors on Virtual Cockpit quality.

This Chapter is organized as follows: Section 7.2 of this section describes related

work in Distributed Interactive Simulation and geographic information systems. Sec-

166

tion 7.3 introduces our model of the Virtual Cockpit. Section 7.4 details micro ex-

periments that measure the processor load of each component. Section 7.5 describes

macro experiments that test the accuracy of the predictions based on the micro ex-

periments. Section 7.6 analyzes the experiments and projects the results to future

environments. And Section 7.7 summarizes the important contributions of this sec-

tion.

7.2 Related work

7.2.1 Distributed Interactive Simulation

Distributed Interactive Simulation (DIS) is a virtual environment being designed to

allow networked simulators to interact through simulation using compliant architec-

ture, modeling, protocols, standards and databases [25]. DIS exercise involve the

interconnection of a number of simulators in which simulated entities are able to in-

teract within a computer generated environment. The simulators may be present in

one location or be distributed geographically and the communications are conducted

over the network. The DIS system must be
exible and powerful enough to support

increasingly large numbers of simulators. The Advanced Research Projects Agency

(ARPA) estimates the need for exercises with 100,000 users.

We study the performance of a
ight simulator, the Virtual Cockpit, designed to

participate in DIS exercises. In particular, we examine the network and processor

requirements as the number of users scales to 100,000.

7.2.2 Geographic Information Systems

A Geographic Information System (GIS) is a computer system capable of assembling,

storing, manipulating, and displaying geographically referenced information, i.e. data

identi�ed according to their locations. GIS are often processor and network inten-

167

sive. GIS research includes ways to e�ectively distribute processing time on high

performance parallel computer systems while obtaining enough �delity to support

realistic simulations [105], and developing network software architectures to support

large scale virtual environments [81].

GIS are the basis for many vehicle simulators. We use performance numbers from

the GIS used by the Virtual Cockpit, Software Systems' MultiGen, in our experiments.

7.3 Model

The fundamental components for the Virtual Cockpit are: send a dead reckoning

update packet, receive update packets, update dead reckoning status, read GIS in-

formation from the database, perform dead reckoning, render the frame and display

the frame.

1

The fundamental components of the Virtual Cockpit are depicted in Fig-

ure 7.3. Send is the processor load for sending updates to the other soldiers. Receive

is the processor load for receiving updates. Update is the processor load for updating

dead reckoning status structures. Read is the processor load for reading from a �le.

Reckon is the processor load for doing a dead reckoning computation to determine

the position of another soldier. Render is the processors load for generating a frame

to be displayed. Display is the processor load for displaying the frame on the screen.

Send is done once for each update packet sent. Receive and Update are done once

for each update packet received. Read, Render and Display are done once per frame.

Reckon is done once per soldier per frame.

7.4 Micro Experiments

After carefully measuring the processor, network and disk loads induced by each

component, we can predict the load of an application built with those components.

1

We assume that the user interface contributes an insigni�cant amount of processor load.

168

Update
Per Packet

DisplaySend Receive

Send
Per Packet

Receive
Per Packet

Display
Per Frame

Render
Per Frame

Reckon
Per Soldier

Read
Per Frame

Figure 7.3: Virtual Cockpit Model. The 3-d boxes above all contain a fundamental component of

the Virtual Cockpit. The larger, dashed boxes place the fundamental components into conceptual

groups.

Changes in application con�guration or changes in hardware are represented by mod-

ifying the individual components and observing how that a�ects the application per-

formance.

We re-use the appropriate micro-experiment results from Section 5.4, Section 6.4

and [21] that were used for the audioconference and
ying applications and run ex-

periments to measure the components new to the virtual cockpit. The components

we re-use are: send, receive, read and write. The new components are: update,

reckon, render and display.

We ran our experiments on a dedicated network of SGI Personal Iris workstations.

Each workstation had a 20 MHz IP6 R3000 processor, 16 Mbytes RAM and 96 Kbytes

cache.

We use a high-order dead reckoning algorithm as an upper bound on the processor

load required (see Section 7.1).

We compare the load for sending and receiving unicast packets to that of multicast

so we could better analyze the bene�ts of multicast in Section \Predictions" below.

The update packet size is 144 bytes, as de�ned by the DIS standard [81].

169

We followed experimental techniques that were identical to those used to obtain

the processor loads for the previous components. As in Sections 5.4 and 6.4, we used

a counter process that incremented a double variable in a tight loop to measure the

processor load for the model components.

Table 7.1 gives the processor times for the Virtual Cockpit components. All points

are shown with a 95% con�dence interval. The times for multicast send and unicast

send are indistinguishable at the 95% con�dence level. The time for multicast receive

is signi�cantly more than the time for unicast receive.

Although we present only the measurements of the processor load, in the past,

workstation performance has scaled with processor performance [56]. We assume that

processor performance will continue to re
ect the workstation performance.

7.5 Macro Experiments

We ran macro experiments for the Virtual Cockpit model for 2-15 simulated soldiers.

Each soldier ran a Virtual Cockpit on an SGI Personal Iris, one workstation per

soldier. The workstations were connected by an Ethernet. Each Virtual Cockpit sent

3 update packets per second, the average for most vehicles in a typical DIS exercise

[81].

Our micro experiments measured the processor load for the fundamental compo-

nents of the Virtual Cockpit. Using these measurements, we can predict the number

of occurrences of each of the fundamental components in the macro experiments. For

example, in a 10 second, two-soldier simulation, we would expect each soldier to send

and receive 30 update packets. Table 7.2 gives the predicted versus actual count for

all the Virtual Cockpit components for an experiment with 9 soldiers. \Predicted"

are the predicted numbers of times each component occurred per second based on

the performance of the individual components. \Actual" are the actual numbers of

times each component was recorded per second in the experiment. Other macro ex-

170

Component msec Low High Per Unit

Display 0.194 0.193 0.195 frame

Read 0.000327 0.000325 0.000329 byte

Render 305 304 306 frame

Update 0.00813 0.00808 0.00818 soldier

Compute 0.949 0.940 0.958 soldier

Unicast Receive 0.579 0.230 0.928 update

Multicast Receive 1.12 1.11 1.13 update

Unicast Send 1.58 1.57 1.59 update

Multicast Send 1.57 1.56 1.58 update

Table 7.1: Processor load breakdown for the fundamental components of the Virtual Cockpit.

Send is the processor load for sending updates to the other soldiers. Receive is the processor load

for receiving updates. Update is the processor load for updating dead reckoning status structures.

Read is the processor load for reading from a �le. Reckon is the processor load for doing a dead

reckoning computation to determine the position of another soldier. Render is the processors load

for generating a frame to be displayed. Display is the processor load for displaying the frame on the

screen. \Low" and \High" are the lower and upper bounds respectively from the 95% con�dence

interval.

171

Component Predicted Actual

Receive 27 25

Send 3 3

Update 27 25

Compute 27 28

Render 3 3

Display 3 3

Read 6265 6354

Table 7.2: Component predictions for a Virtual Cockpit simulation with 9 Soldiers. \Predicted"

are the predicted performance numbers based on the performance of the individual components.

Actual are the actual performance numbers reported in the experiment. All predicted values are for

one second.

periments with 2-15 soldiers had similar results, but we do not show them here to

avoid redundancy.

All of the predicted performance results are within 10% of the actual performance

results. We regard future comparisons of predicted performance results that com-

bine the Virtual Cockpit components into alternate con�gurations to be signi�cantly

di�erent if they vary by more than 10%.

Our micro experiments give us the performance results for the fundamental compo-

nents of the Virtual Cockpit. Our macro experiments test the accuracy of combining

the values from our micro experiments into accurate Virtual Cockpit predictions.

7.6 Predictions

By modifying the fundamental Virtual Cockpit components, we can predict perfor-

mance on alternate system con�gurations. This allows us to evaluate the potential

performance bene�ts from expensive high-performance processors and high-speed net-

172

works before installing them. Moreover, we can investigate possible performance

bene�ts from networks and processors that have not yet been built.

Our approach for evaluation of each alternative system is the same: We modify

the parameters of our performance model to �t the new system, then evaluate the

resulting model to obtain performance predictions. These analyses are intended to

provide a sense of the relative merits of the various alternatives, rather than present

absolute measures of their performance.

7.6.1 Networks

We �rst investigate the network bandwidth requirements for a DIS simulation. Net-

work bandwidth requirements depend upon the frequency with which each Virtual

Cockpit broadcasts its position. In the absence of dead reckoning, each simulator

would have to send an update every frame, for a maximum of 30 updates per second.

However, with dead reckoning, the average rate is 3 updates per second [81], with a

maximum of 17 updates per second [55].

Figure 7.4 depicts the predicted network bandwidth versus the number of soldiers

in a Virtual Cockpit exercise. The upward sloping lines are the predicted network

bandwidth for updates sent at the frame rate without dead reckoning, the maximum

update rate with dead reckoning, and average update rate with dead reckoning. The

three lines with the lower slopes all use multicast routing, as speci�ed by the DIS

standard [25]. The line with the steepest slope represents the network bandwidth

required for a unicast simulation at an average update rate. The horizontal lines are

the maximum bandwidths for a 1.5 Mbps T1, 10 Mbps Ethernet and 155 Mbps ATM

network.

Without dead reckoning, a T1 network becomes saturated at about 50 soldiers and

an Ethernet at about 200 soldiers. With dead reckoning and the maximum update

rate, a T1 can support nearly 100 soldiers and an Ethernet can support nearly 400

soldiers. With dead reckoning and the average update rate, a T1 can support about

173

0.1

1

10

100

1000

1 10 100 1000 10000

M
bi

ts
 /

S
ec

on
d

Soldiers

T1

Ethernet

ATM

unicast (3 updates/sec)
frame rate (30 updates/sec)
maximum (17 updates/sec)

average (3 updates/sec)

Figure 7.4: Network Bandwidth versus Soldiers. This graph shows the predicted network band-

width as the number of soldiers increases. The upward sloping lines are the predicted bandwidth

for the frame rate, maximum rate, and average update rate. The steeply sloped line is the network

bandwidth required for unicast with an average update rate. The horizontal lines are the maximum

bandwidths for a T1, Ethernet and ATM network. Both the horizontal axes and vertical axes are

in log scale.

174

400 soldiers and an Ethernet can support over 2000 soldiers. We use the maximum

update rate for situations in which we are concerned about peak network bandwidth.

We use the average update rate in situations in which we are concerned about network

throughput.

Multicast is crucial for soldier scalability. Even at the average update rate, a

Virtual Cockpit exercise using unicast rapidly exceeds the bandwidth available on T1

and Ethernet networks.

7.6.2 Processors

Existing networks are capable of supporting many soldiers, but what about existing

processors? We investigate the performance results Virtual Cockpit exercises with

more powerful processors.

We compare the performance of the SGI Personal Iris to other processors by com-

paring performance results from the Systems Performance Evaluation Cooperative

(SPEC) benchmark integer suite. In past work, we have found SPEC results cor-

relate inversely with execution times for processor-intensive tasks. Since the largest

Virtual Cockpit component, render, is largely processor-intensive, we assume that

the Virtual Cockpit processor performance will correlate well with SPEC results.

The SPEC int92 value for a SGI Personal Iris is 22.4 and the SPEC int92 value for

the 150 MHz SGI Indigo 2 is 92.2. Roughly, the Indigo 2 is 6.5 times faster than the

Personal Iris, so we assume it does all the Virtual Cockpit components measured in

Section 7.4 6.5 times faster.

Swartz et al. did experiments to measure the e�ects of frame rate on on the ability

to perform tasks through Unmanned Aerial Vehicles (UAVs) [114]. UAVs are used

to conduct a variety of reconnaissance missions with human operators interpreting

the transmitted imagery at ground stations. The experiments found that human

performance with 4 frames per second is signi�cantly better than 2 frames per second,

but not consistently worse than 8 frames per second. Therefore, we assume a rate of

175

0.001

0.01

0.1

Iris

100

1000

Indigo2

1 10 100 1000 10000

S
ec

on
ds

 o
f P

ro
ce

ss
or

 L
oa

d

Soldiers

display
receive

send

Figure 7.5: Processor Load versus Soldiers. This graph depicts the predicted processor load in

seconds on a SGI Personal Iris versus the number of soldiers. The graph reads from the bottom.

The load of each piece the sum of the pieces below it. Thus, the total processor load is indicated by

the \display" line at the top. The horizontal lines are the maximum processor throughputs for an

SGI Personal Iris and an SGI Indigo 2. Both axes are in log base 10 scale.

4 frames per second in our processor load predictions.

We break the processor load into three pieces: send, receive and display (see Fig-

ure 7.3 for the components in each piece). Figure 7.5 depicts the predicted processor

load in seconds on a SGI Personal Iris versus the number of soldiers. The graph reads

from the bottom. The load of each piece is the sum of the pieces below it. Thus, the

total processor load is indicated by the \display" line at the top. The horizontal lines

are the maximum processor throughputs for SGI Personal Iris' and SGI Indigo 2s, as

indicated.

The processor is the bottleneck. The SGI Personal Iris is unable to support even

the minimal frame rate for any soldiers. Processors signi�cantly more powerful than

176

SGI Personal Iris' are needed to realize the army's goals of hundreds and thousands

of distributed soldiers interacting in a simulation. Indigo 2s, powerful workstations,

can support adequate frame rates while communicating with 1000s of other soldiers.

7.6.3 Quality

If we have a system with the more powerful processors required for acceptable frame

rate, we can investigate the predicted user perception of the Virtual Cockpit { what

is the application quality? In order to apply our quality model, we must: 1) determine

the region of acceptable quality; 2) predict jitter; 3) predict latency; and 4) predict

data loss.

To determine the region of acceptable quality, we need to de�ne acceptable limits

along each of the latency, jitter and data loss axes.

� Latency is the time from when an update is sent until it is processed and

displayed by the other simulators. The DIS steering committee had de�ned

latency as 100 to 300 milliseconds as acceptable for DIS applications [25]. We

use 300 milliseconds as the maximum acceptable latency for the Virtual Cockpit.

� Jitter is the variance in the latency. We assume 10% jitter is the maximum

acceptable for the Virtual Cockpit.

� For data loss, we note that research in remote teleoperator performance states

that task performance is virtually impossible below a threshold of 3 frames per

second [84]. We use 3 frames per second as the minimum acceptable frame rate.

The conventional rate of 30 frames per second would provide a more realistic

simulation, possibly in
uencing training e�ectiveness. We assume that frame

rates above 30 frames per second provide no more useful data.

� For missed updates, we assume the same thresholds of 1 meter position and 3

degrees of accuracy used in SimNet [55]. We assume the simulation must be

95% accurate to be acceptable.

177

0.1

1

10

10 100 1000 10000

Q
ua

lit
y

Soldiers

Unacceptable Quality

Acceptable Quality

Figure 7.6: Virtual Cockpit Quality versus Soldiers. The middle line represents predicted appli-

cation quality as the number soldiers increases. The upper and lower lines represent best and worst

case quality scenarios respectively. The horizontal line marks the acceptable/unacceptable quality

limit.

We predict jitter, latency and data loss as in Section 5.6.4, Section 5.6.4 and

Section 5.6.4, respectively.

To compute application quality, we use the methods described in Section 2.3.

We examine the application quality for Virtual Cockpit exercises with SGI Indigo 2s

because SGI Personal Iris' were incapable of achieving the minimum acceptable frame

rate. Figure 7.6 depicts our quality predictions.

SGI Indigo 2s provides acceptable quality for Virtual Cockpit exercises with about

500 soldiers. Notice that in Figure 7.5, we had predicted that the Indigo 2s could

support 1000 soldiers when we analyzed the frame rate alone. Application quality

is determined by latency, jitter and missed updates as well as frame rate. Latency,

jitter and missed updates all increase as the number of soldiers increase.

178

High-Performance Processors The quality of the Virtual Cockpit was improved

by using high-performance processors. Is there further bene�t from higher-performance

processors?

We assume the network has su�cient bandwidth to handle all necessary updates in

order to minimize the e�ects of the network. We compare the quality of the Virtual

Cockpit with SGI Personal Irises and SGI Indigo 2s to the quality of the Virtual

Cockpit with processors 15 times more powerful than the Indigo 2.

2

Figure 7.7 shows the quality predictions for the Virtual Cockpit with di�erent

processors. The top curve is an SGI Personal Iris. The second curve is an SGI Indigo

2. The bottom curve is a processor 15 times more powerful than the Indigo 2. The

horizontal line represents the acceptable quality limit. The \knee" in the curve for

the 15x processor is where the processor decreases the frame rate in order to handle

the updates from the other soldiers.

High-performance processors are crucial for acceptable Virtual Cockpit quality.

SGI Personal Iris' are unable to deliver acceptable application quality. More pow-

erful SGI Indigo 2s can deliver acceptable application quality for up to 500 soldiers.

15x's provides better application quality than Indigo 2s and can deliver acceptable

application quality for up to 7000 soldiers.

High-Speed Networks With the Virtual Cockpit running on processor 15 times

more powerful than the SGI Indigo 2, a T1 network will become saturated while

supporting just 100's of soldiers. How much quality bene�t will then be gained

from a high-speed network? We compare the quality of the Virtual Cockpit with an

Ethernet to that of the Virtual Cockpit with an ATM network. The ATM network

transmits the update packets faster (155 Mbits/second versus 10 Mbits/second for

an Ethernet). Past work has found jitter and missed updates in the ATM network

2

Processor performance has approximately doubled every year for the last 5-10 years [56]. If this

trend continues, the 15x processor will come along in about 8 years.

179

0.1

1

10

100

1 10 100 1000 10000

Q
ua

lit
y

Soldiers

Unacceptable Quality
Acceptable Quality

Processor decreases frame rate

Iris
Indigo 2

15x

Figure 7.7: Virtual Cockpit Quality versus Soldiers. The three curves represent the quality

predictions for three di�erent processors. The top curve is an SGI Personal Iris. The second curve

is an SGI Indigo 2. The bottom curve is a processor 15 times more powerful than the Indigo 2. The

horizontal line represents the acceptable quality limit. Both the horizontal and vertical axes are in

log scale.

180

0.01

0.1

1

10

100

1 10 100 1000 10000

Q
ua

lit
y

Soldiers

Quality Predictions vs. Soldiers

Unacceptable Quality

Acceptable Quality

Ethernet saturated

Processor decreases frame rate

ATM

saturated

Ethernet
ATM

Figure 7.8: Virtual Cockpit Quality versus Soldiers. The two curves represent the quality predic-

tions for an Ethernet and an ATM network. The horizontal line represents the acceptable quality

limit. Both the horizontal and vertical axes are in log scale.

are the same as jitter and missed updates in the Ethernet [51]. We assume jitter

and missed updates remain the same in high-speed networks. In order to make the

network bandwidth more signi�cant, we assume the maximum 17 updates per second.

Figure 7.8 shows the quality predictions for the Virtual Cockpit with di�erent

networks. The top curve is the quality predictions for an Ethernet. The lower curve

is the quality predictions for an ATM. The steep increase in the Ethernet curve occurs

when the Ethernet becomes saturated. At this point, the Virtual Cockpit begins to

increasingly miss updates. The �rst bend in the ATM curve occurs when the processor

must decrease the frame rate in order to process all updates. The second bend in the

ATM curve occurs when the ATM becomes saturated.

High-speed networks are unimportant for the Virtual Cockpit quality until existing

181

networks reach saturation. The quality prediction curves for the Ethernet and the

ATM are indistinguishable until the Ethernet becomes saturated. At this point, the

ATM network greatly increases scalability. The network as the present bottleneck in

application quality has been removed by the DIS use of dead reckoning and multicast.

7.7 Summary

Multi-person distributed multimedia applications stress all parts of a computer sys-

tem. We have developed a quality planning model for distributed multimedia appli-

cations that allows us to investigate potential bottlenecks in application quality. We

have applied our model to the Virtual Cockpit, a
ight simulator used in Distributed

Interactive Simulation (DIS). DIS is a virtual environment within which simulators

may interact through simulation at multiple networked sites. In order for DIS to

be e�ective for military training, simulation exercises must support up to 100,000

soldiers.

In applying our model to the Virtual Cockpit, we discovered:

� High-performance processors are crucial for acceptable Virtual Cockpit qual-

ity. Low-end processors are unable to deliver acceptable application quality.

More powerful processors can deliver acceptable application quality for 1000's

of soldiers.

� High-speed networks are unimportant for Virtual Cockpit quality until existing

networks reach saturation. T1 and Ethernet networks will saturate after 2-3

generations of processor improvement. The network as the present bottleneck

in application quality has been removed by the DIS use of dead reckoning and

multicast.

� Dead reckoning greatly bene�ts the Virtual Cockpit quality, primarily due to its

reduction of network load. The small update message size plus the infrequent

182

number of updates reduces the network load over a scheme where all simulators

update their position with each frame. With dead reckoning, a T1 can support

10's of simulators, an Ethernet can support 100's of simulators and an ATM

can support 1000's of simulators.

� Multicast is a crucial to maintain reduced network bandwidth. Even at the

average update rate, a Virtual Cockpit exercise using unicast rapidly exceeds

the bandwidth available on T1 and Ethernet networks.

We depict the above conclusions in Figure 7.9. The �gure shows our measure of

quality for the Virtual Cockpit. The user de�ned acceptable latency, jitter, data loss

and missed updates determine a region of acceptable application quality, depicted by

the shaded region. Each point is an instantiation of the application and the under-

lying computer system. All points inside the shaded region have acceptable quality,

while those outside the region do not. There are four 100-soldier Virtual Cockpit in-

stantiations shown: SGI Personal Iris' with Ethernet, SGI Personal Iris' with ATM,

SGI Indigo 2s with Ethernet and SGI Personal Iris' with Ethernet and unicast. Only

the Indigo 2s with Ethernet have acceptable application quality. The ATM does not

signi�cantly improve the quality of the Virtual Cockpit with the Personal Iris'. Using

unicast instead of multicast greatly decreases the application quality for the Personal

Iris' with Ethernet. Note that the graph does not show the fourth axis of quality,

missed updates, because of the di�culty in depicting four dimensions. We chose to

eliminate the missed updates axis because the predicted number of missed updates is

constant for all system con�gurations.

183

Acceptable Quality

Application Instance

SGI Personal Iris, Ethernet

Jitter

Limit of Acceptable

(300 ms)

(3 frames/sec)

Limit of Acceptable Latency

Limit of Acceptable Jitter
(10%)

SGI Indigo 2, Ethernet

SGI Personal Iris, ATM

SGI Personal Iris, Ethernet, Unicast

Data Loss

Data Loss

Latency

Figure 7.9: Virtual Cockpit Quality. The user de�nes the acceptable latency, jitter and data loss.

These values determine a region of acceptable application quality, depicted by the shaded region. All

points inside the shaded region have acceptable quality, while those outside the region do not. Four

Virtual Cockpit instantiations are shown as points in this space. Note that the graph does not show

the fourth axis of quality, missed updates, because of the di�culty in depicting four dimensions.

Chapter 8

Conclusions

Most of the work people do is in groups. People communicate best when they can draw

pictures and use voice and body language. Computers supporting collaborative work

can provide realistic person-to-person communication by using multimedia. Multi-

media applications can also provide collaboration in synthetic environments through

virtual reality. Today's explosive growth in fast networks and powerful workstations

has the potential to support and even enhance group work through multimedia.

There are at least four reasons why multimedia is an important area for computer

science research:

� Teleconferences. Multimedia has greatly enhanced the richness of computer-

based conferencing. In the beginning, there was only email as a form of Internet

communication. Soon after, there was the tty-based talk where two users could

type synchronously on a split computer screen. Emoticons were developed to

allow users to express their emotions in symbols in addition to words [91].

Today, audio and video enable people to use voice in
ection, facial expressions

and gestures to assist communication, making teleconference more life-like.

� Environments. Multimedia can enable environments that are not available in

the real world. For instance, imagine a virtual reality environment that allows

184

185

scientists to explore the surface of Mars through multimedia data fed back from

a robot on the planet's surface. And, as shown in Section 7, soldiers may soon

train for combat on a virtual battle�eld, reducing the costs and risks associated

with \live" combat training.

� Communication. Multimedia brings the opportunity for communication with

computers where previously communication was impossible. For instance, mul-

timedia can enable people with visual impairment to operate with a computer

through gesture recognition and voice synthesis.

� Fun. Multimedia makes computers fun. Multimedia applications have much

more widespread appeal than do traditional text-based applications. Users who

would otherwise not deal with computers will be attracted by multimedia bring-

ing money into computer industry and more researchers into computer science.

Despite the real and potential bene�ts of multimedia, there are several obstacles to

overcome in designing multimedia applications and systems. Multimedia and multi-

user applications are more resource intensive than traditional text-based, single-user

applications. In addition, multimedia applications have di�erent performance re-

quirements than do text-based applications. Text-based applications are sensitive to

delay and loss, while multimedia applications are sensitive to delay and jitter. The

bottlenecks to text-based application performance might lie in those components that

induce delay, while the bottlenecks to multimedia applications might lie in the those

components that induce the jitter. New techniques must be developed to identify

bottlenecks in multimedia application performance.

We have developed a quality planning method for distributed collaborative mul-

timedia applications that allows us to investigate potential bottlenecks in application

quality. At the heart of our method is a model that allows us the predict the appli-

cation performance from the user's perspective. Our model takes into account the

components fundamental to multimedia applications: delay, jitter and data loss. Our

186

model allows us to investigate application bottlenecks by being adjustable to:

� Number of Users. Explicit support for collaboration in our computer tools has

the potential to support and even enhance traditional group work. Our model

allows us see how quality changes as the number of collaborating users increases.

� Applications. Our model can analyze new distributed multimedia applications

by altering the user requirements, often without further micro or macro exper-

iments.

� Hardware and Architectures. Our model can be adapted to hardware and meth-

ods of processing that are not available for experimentation either because of

prohibitive costs, or because they are not yet built. Changing the model ar-

chitecture and hardware components does yield less accurate predictions than

predictions based on our micro experiments. However, additional micro and

macro experiments can be incrementally performed as new hardware or archi-

tectures are explored.

� Quality Metrics. The quality metric we have presented in Section 2.3 has several

useful characteristics: it has the properties of a linear mathematical metric; and

it incorporates the three fundamental multimedia quality components: latency,

jitter and data loss. However, there can be many possible quality metrics for

a given application. Fortunately, the rest of our model is independent of the

quality metric chosen. If new metrics are developed, they can be used in place

of our quality metric.

When computing the amount of jitter in a multimedia stream, jitter researchers

have used a variety of metrics. However, as our work in Section 3.3 shows, nearly all

previously-used jitter metrics are statistically similar. Thus, jitter researchers can use

a jitter metric most suitable to their research without fear of di�erent result being

obtained from an alternate metric.

187

Using the model in our method, we can explore the performance tradeo�s for a va-

riety of multimedia applications as the underlying computers systems change. Among

the system changes we can examine are changes in capacity, such as faster proces-

sors, networks or disks and scheduling, such as real-time priorities or delay bu�ering.

We have applied our model to three emerging applications: audioconferences,
ying

and the virtual cockpit. There are three general trends that we have identi�ed in

analyzing these applications:

1. Processors are King. Processors are the bottleneck in performance for many

multimedia applications. Audioconferences, Flying and the Virtual Cockpit all

saw a dramatic increase in application performance with an increase in processor

power.

2. Networks are Queen. Networks with more bandwidth often do not increase the

quality of multimedia applications. For Audioconferences, a faster network did

very little to improve application quality. In Flying, more network bandwidth

did increase the performance for one user, but once that users' requirements

were met, there was little bene�t from more bandwidth. For the Virtual Cock-

pit, more bandwidth did not noticeably a�ect application quality at all, but it

did allow more simultaneous users to train for combat when existing networks

became saturated. Networks with more bandwidth do not bene�t few-person

multimedia applications but serve only to increase the scalability of the appli-

cations by allowing more simultaneous users.

3. Share the Burden. Application capacity requirements are not equally distributed

across computer systems. Performance for many multimedia applications can

be improved greatly by shifting capacity demand from computer system compo-

nents that are heavily loaded to those that are more lightly loaded. And shifting

capacity demand is crucial as the number of application users increases. For

Audioconferences, silence deletion transfered load from the network to the pro-

188

cessor. While this decreased application quality for two audioconference users,

it greatly increased application quality for three or more users. For Flying,

application performance was totally unacceptable unless capacity demand was

shifted from the processor to specialized hardware. Local
ying, which would

have shifted capacity demand from the server to the clients, required far too

much network bandwidth to be feasible in the foreseeable future. For the Vir-

tual Cockpit dead reckoning shifted capacity demand dramatically from the

network, enabling current networks to support the tens of thousands of soldiers

required for e�ective combat training.

Our objective in identifying application bottlenecks is to understand the system

limits that will prevent applications from meeting users' needs. After identifying each

bottleneck, we explore ways to reduce the e�ect of the bottleneck through improving

system resources. We then explore the new bottlenecks that arise in the enhanced

system. Our analysis at each stage is likely to overstate system performance, because

we assume maximum possible performance of each system component. However,

the bottlenecks we identify are likely to be bottlenecks in practice, and the design

principles suggested by the analysis should ameliorate these bottlenecks in practice.

To conclude, the major contributions of this thesis are:

� A multimedia application quality model and implementation method that en-

ables the prediction of application performance and evaluation of system design

tradeo�s.

� Detailed performance predictions for three distributed collaborative multimedia

applications: an audioconference, a \
ying" interface to a 3D scienti�c database

and a collaborative
ight simulator called the Virtual Cockpit.

� The e�ects of system improvements on the performance of these multimedia

applications.

189

� A demonstration of measures of jitter that have been used by jitter researchers

showing all reasonable choices of jitter metrics are statistically similar.

� Experiment-based studies of the e�ects of high-performance processors, real-

time priorities and high-speed networks on jitter.

� Predictions on the importance of application jitter reduction techniques in the

future.

Chapter 9

Future Work

The research in this thesis focuses on a new, rapidly expanding area of computer

science. As such, it paves the way into an exciting new area of computer science,

allowing access to several new areas for future research.

The taxonomy given in Section 2 is an ongoing document. Moreover, there are

several areas of the current taxonomy that support multimedia application perfor-

mance research that we have not had the opportunity to examine. Most notably,

we would like to see a more extensive investigation of the e�ects of scheduling and

reservation on multimedia application performance. In addition, our taxonomy can

possibly support a cost analysis of the tradeo�s between network bandwidths, disk

data rates and processor throughputs. Such an economic analysis could determine

what system con�guration will be the most economical for improving computer sup-

port for multimedia.

For some applications, there is potential for interaction e�ects among the quality

events. For example, 3-d graphics applications have multiple factors a�ecting users'

perception of objects and di�erent combinations of requirements may yield satisfac-

tory results. Such applications may even have a non-convex region of acceptable

quality. Future research into new quality metrics appropriate for these applications

may be required.

190

191

Applications that have changing user requirements present another challenge. For

example, users doing remote problem-solving via a video link, may want to maximize

frame rate at the expense of frame resolution while they are identifying the location

of the problem. Once the problem is located, they may want to maximize frame

resolution at the expense of frame rate (perhaps even wanting a still image) to best

identify the problem. As presented, our model does not allow speci�cation of dy-

namic user requirements. One possible solution would be to apply a separate quality

planning model to each set of user requirements speci�ed. The model that had the

poorest quality for a given system con�guration could then be examined more closely

to determine the application quality bottleneck within.

Systems that need to support more than one simultaneous application present

another challenge. Our model currently assumes the computer system is dedicated to

the application we are analyzing. We might further develop our techniques to deter-

mine where potential bottlenecks might arise when several applications are running

at once [23].

For the Virtual Cockpit, an interesting processing decision arises in the processing

of dead reckoning updates. Dead reckoning allows a tradeo� among three factors:

network bandwidth, processor load and simulation accuracy. After a dead reckoning

computation, a simulator will have the perceived position of other simulators. This

perceived position will be inaccurate up to a pre-set threshold. Lower thresholds

provide a more accurate representation of other simulators, but increase the number of

updates required, causing more network load. Higher order dead-reckoning decreases

the number of updates sent, but increases processor load. Our model could be used to

determine the e�ect on application quality for the various dead reckoning parameters,

possibly recommending a speci�c accuracy and algorithm to use.

For our predictions, we assume that processor performance will continue to re
ect

workstation performance. If other workstation components, in particular the data

bus, do not continue to scale with processor performance, future work would include

192

extending our model to discover which workstation components are bottlenecks to

application quality. In addition, for some predictions, especially those for Flying

(see Section 6), we assumed specialized hardware to shift capacity demand from the

processor. A careful study of the e�ects of
ying hardware will determine bottlenecks

in current proposed
ying systems.

We studied the e�ects of real-time priorities on jitter when used at both the

sender and receiver. Real-time priorities may not signi�cantly reduce jitter when

used at only the sender or at only the receiver. If this is true, real-time priorities may

only be e�ective in reducing jitter for a local area network, without an intervening

router. On a Wide Area Network, especially the Internet, real-time priorities may

not be available on all routers, reducing the e�ectiveness of real-time priorities on the

sender and receiver. In this case, bu�ering techniques will be needed.

Another possible potential jitter reduction technique would be a real-time net-

work protocol. Future work includes experiments to measure the e�ects of real-time

network protocol on jitter. However, network delivery of data within strict jitter

bounds does not signi�cantly help the sender and receiver. They must still worry

about internal jitter due to queuing in the operating system. Stamping out jitter in

the network does not eliminate the need for jitter management code in the hosts.

In Section 3.7 we made predictions on the magnitude of jitter on a LAN in the

future. MOS studies or other appropriate techniques can be used to determine the

actual threshold of human perception of jitter. The threshold for human perception of

jitter in an audio stream is probably di�erent than the threshold of human perception

of jitter in a video stream as the eye is better able to smooth over occasional glitches

in video than the ear is to account for glitches in audio.

The layout of multimedia data on disks and disk scheduling strategies may be

crucial for reducing jitter for some multimedia applications. Database management

systems (DBMS) that manage multimedia data may further impact the amount of

jitter seen by an application that accesses that data. Future work would involve

193

exploring the e�ects of di�erent disk strategies and DBMS techniques for reducing

jitter.

This thesis presents a method for determining application quality given user re-

quirements and system con�gurations. Although the analysis presented here took

many years to complete, we can dream of packaging our knowledge into a fast,
exible

tool usable by application developers and visionaries. Imagine a our model wrapped

up in a smooth, sexy graphical user interface. The user enters application perfor-

mance parameters at an appropriate level of detail, perhaps by choosing a bit rate or

the frame rate, frame size and color, or even by choosing the most pleasing picture

from a multimedia sample. The user enters system parameters with similar ease,

specifying raw processing power and network bandwidth, or selecting a workstation

and network from a list of computer system hardware. Our model, the heart of

the tool, determines the quality that the application would have given the speci�ed

information. The output results appear as rich and varied as the graphs shown in

this thesis, with users able to quickly and easily identify the potential bottlenecks in

application performance by varying the hardware, number of users and application

requirements. The bene�ts of packaging our model in this way would be enormous.

Our model would save developers countless amounts of time and money by quickly

being able to identify potential performance bottlenecks before the undertaking of

expensive, time-consuming system design and implementation. More importantly,

our model would enable new forms of interaction for all computer users, including

ourselves. We would immerse ourselves in computer applications rich with graphics,

audio and video, and interact with each other across both time and space, �nally

realizing the full potential of computers and multimedia.

Bibliography

[1] Sparcstation audio programming. Technical report, Sun Microsystems, 1991.

[2] Richard C. Allen, Chris Bottcher, Phillip Bording, Pat Burns, John Conery,

Thomas R. Davies, James Demmel, Chris Johnson, Lakshmi Kantha, William

Martin, Geo�rey Parks, Steve Piacsek, Dan Pryor, Tamar Schlick, M.R. Strayer,

Verena M. Umar, Robert Voigt, Jerrold Wagener, Dave Zachmann, and John

Ziebarth. The Computational Science Education Project (CSEP). January

1997. The URL for this book is http://csep1.phy.ornl.gov/csep.html. This was,

in 1993, the �rst complete textbook available on the World Wide Web.

[3] David P. Anderson, Ralf Guido Herrtwich, and Carl Schaefer. SRP: a resource

reservation protocol for guaranteed-performance communication in the Internet.

Report UCB/CSD 90-562, University of California, Berkeley, Computer Science

Division, Berkeley, CA, USA, February 1990.

[4] David P. Anderson, Shin-Yuan Tzou, Robert Wahbe, Ramesh Govindan, and

Martin Andrews. Support for continuous media in the DASH system. In Proc.

10th Intl. Conf. Distributed Computing Systems (ICDCS-10), Paris, France,

May 28-June 1 1990. IEEE.

[5] Sally Apgar. New weapon in retailing: Technology. Minneapolis Star Tribune,

August 1994.

194

195

[6] Ronnie T. Apteker, James A. Fisher, Valentin S. Kisimov, and Hanoch Neishlos.

Video acceptability and frame rate. IEEE Multimedia, pages 32 { 40, Fall 1995.

[7] Barberis and Pazzaglia. Analysis and optimal design of a packet voice receiver.

IEEE Transactions on Communication, February 1980.

[8] John Bates and Jean Bacon. Supporting interactive presentation for distributed

multimedia applciations. Multimedia Tools and Applications, 1(1), March 1995.

[9] Salvador Bayarri, Marcos Fernandez, and Mariano Perez. Virtual reality for

driving simulation. Communications of the ACM, 39(5), May 1996.

[10] Bharat Bhargava, Enrique Ma
a, and John Riedl. Communication in the Raid

distributed database system. International Journal on Computers and ISDN

Systems, 21:81{92, 1992.

[11] David R. Boggs, Je�rey C. Mogul, and Christopher A. Kent. Measured capacity

of an Ethernet: Myths and reality. In Proceedings of the SIGCOMM Conference,

August 1988.

[12] M. Borwn, J. Foote, G. Jones, K. Sparck Jones, and S. Young. Open-vocabulary

speech indexing for voice and video mail retrieval. In Proceedings of the

Fourth ACM International Multimedia Conference, Boston, MA, November

1996. ACM.

[13] Tim Browning. Capacity Planning for Computers. Academic Press, 1995.

[14] Luis-Filipe Cabrera, Edward Hunter, Michael J. Karels, and David A. Mosher.

User-process communication performance in networks of computers. IEEE

Transactions on Software Engineering, 14(1), January 1988.

[15] J. Carlis, J. Riedl, A. Georgopoulos, G. Wilcox, R. Elde, J. H. Pardo, K. Ugur-

bil, E. Retzel, J. Maguire, B. Miller, M. Claypool, T. Brelje, and C. Honda. A

196

zoomable DBMS for brain structure, function and behavior. In International

Conference on Applications of Databases, June 1994.

[16] Stephen Casner and Stephen Deering. First IETF Internet audiocast. ACM

SIGCOMM, pages 92 { 97, 1992.

[17] Todd Cavalier, Ravinder Chandhok, James Morris, David Kaufer, and Chris

Neuwirth. A visual design for collaborative work: Columns for commenting

and annotation. In Proceedings of IEEE HICSS, 1990.

[18] D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in an

integrated services packet network: Architecture and mechanism. Computer

Communication Review, 22(4), July 1992.

[19] M. Claypool, J. Riedl, J. Carlis, G. Wilcox, R. Elde, E. Retzel, A. Georgopoulos,

J. Pardo, K. Ugurbil, B. Miller, and C. Honda. Network requirements for 3D

ying in a zoomable brain database. IEEE JSAC Special Issue on Gigabit

Networking, 13(5), June 1995.

[20] Mark Claypool, Joe Habermann, and John Riedl. The e�ects of high-

performance processors, real-time priorities and high-speed networks on jitter

in a multimedia stream. Technical Report TR-97-023, University of Minnesota

Department of Computer Science, June 1997.

[21] Mark Claypool and John Riedl. Silence is golden? The e�ects of silence deletion

on the CPU load of an audio conference. Technical Report TR-93-81, University

of Minnesota Department of Computer Science, 1993.

[22] Mark Claypool and John Riedl. Silence is golden? The e�ects of silence deletion

on the CPU load of an audio conference. In Proceedings of IEEE Multimedia,

Boston, May 1994.

197

[23] Mark Claypool and John Riedl. Analysis of processor power versus network

bandwidth. Technical Report TR-95-042, University of Minnesota, 1995.

[24] Mark Claypool and John Riedl. A quality planning model for distributed mul-

timedia in the virtual cockpit. In Proceedings of ACM Multimedia, pages 253 {

264, November 1996.

[25] The DIS Steering Committee. The DIS vision - a map to the future of dis-

tributed interactive simulation. Technical report, Institute for Simulation and

Training, May 1994.

[26] American Technology Corporation. HyperSonic Sound System (HSS) { (A New

Method of Sound Reproduction). July 1997. The URL for this document can

be found at http://www.atcsd.com/HTML/sound2.html.

[27] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation. The

Ethernet: A local area network data link layer and physical layer speci�cation,

September 1980.

[28] Standard Performance Evaluation Corporation. SPEC primer. July 1994. The

SPEC primer is frequently posted to the newsgroup comp.benchmarks. SPEC

questions can also be sent to spec-ncga@cup.portal.com.

[29] H.J. Curnow and B.A Wichmann. A synthetic benchmark. The Computer

Journal, 19(1), 1976.

[30] Jay Devore and Roxy Peck. Statistics { The Exploration and Analysis of Data.

Wadsworth, Inc., second edition edition, 1993.

[31] Stanford Diehl. Forging a new medium. Byte, July 1996.

[32] Spiros Dimolitsas, Franklin L. Corcoran, and John G. Phipps Jr. Impact of

transmission delay on ISDN videotelephony. In Proceedings of Globecom '93 {

198

IEEE Telecommunications Conference, pages 376 { 379, Houston, TX, Novem-

ber 1993.

[33] Dick Dobson. Make access and the web work together. Byte, October 1996.

[34] Jack J. Dongarra. Performance of various computers using standard linear equa-

tions software. Technical Report CS-89-85, University of Tennessee, February

1994. To obtain a postscript copy, send email to netlib@ornl.gov with message

body: send performance from benchmark.

[35] Chip Elliot. High-quality multimedia conferencing through a long-haul packet

network. In Proceedings of the First ACM International Conference on Multi-

media, pages 91 { 98, New York, NY, 1993.

[36] T.T. Elvins. A survey of algorithms for volume visualization. Computer Graph-

ics, 26(3):194 { 201, August 1992.

[37] Hans Eriksson. MBONE: The multicast backbone. Communications of

the ACM, 37(8):54, August 1994. A FAQ on mbone can be found at

ftp://venera.isi.edu/mbone/faq.txt.

[38] D. Ferrari, A. Gupta, and G. Ventre. Distributed advance reservation of real-

time connections. Lecture Notes in Computer Science, 1018, 1995.

[39] Domenico Ferrari. Delay jitter control scheme for packet-switching internet-

works. Computer Communications, 15(6):367{373, July 1992.

[40] J.W. Forgie and C.W. McElwain. Some comments on NSC note 78 'e�ects

of lost packets on speech intelligibility.'. Technical Report Network Speech

Compression Note 92, M.I.T., Lincoln Laboratory, March 1976.

[41] Daniel Frankowski and John Riedl. Hiding jitter in an audio stream. Tech-

nical Report Technical Report 93-50, University of Minnesota Department of

Computer Science, 1993.

199

[42] Krzysztof Frankowski. De�nition by Professor Krzysztof Frankowski. Computer

Science Department, University of Minnesota, May 1997.

[43] Steve Gillmor. Notes opens up to the web. Byte, October 1996.

[44] Timoth A. Gonsalves. Packet-voice communication on an ethernet local com-

puter network: an experimental study. Communications of the ACM, pages

178{185, 1983.

[45] Walter Goralski and Gary Kessler. FIBRE CHANNEL: Standards, Applica-

tions, and Products. December 1995. The URL for this document can be found

at http://www.hill.com/personnel/gck/�bre channel.html.

[46] R. Govindan and D. Anderson. Scheduling and IPC mechanisms for continuous

media. ACM Operating Systems Review, 25(5), October 1991.

[47] Mathew Gray. Internet Statistics { Growth and Usage of the Web and

the Internet. 1997. The URL for this document can be found at

http://www.mit.edu:8001/people/mkgray/net/.

[48] Rick Grehan. NT in real time. Byte, October 1996.

[49] Mike Guidry and Mike Strayer. Computational Science for the Phys-

ical and Life Sciences. January 1997. The URL for this book is

http://csep1.phy.ornl.gov/guidry/phys594/phys594-root.html. This course is

completely online, with lectures delivered electronically from the network, and

student exercises turned in as Web (html) documents.

[50] J.L. Gustafson and Q.O. Snell. HINT: A new way to measure computer per-

formance. In Proceedings of the 28th Annual Hawaii International Conference

on System Sciences, volume 2, pages 392 { 401, IEEE Computer Society Press,

January 1995. Technical report available via ftp from ftp.scl.ameslab.gov.

200

[51] Joe Habermann and John Riedl. Using real-time priorities to eliminate jitter

in a multimedia stream. Technical report, University of Minnesota Department

of Computer Science, January 1996.

[52] Matti Hamalainen, Andrew B. Whinston, and Svetlana Vishik. Money in elec-

tronic commerce: Digital cash, electronic fund transfer and ecash. Communi-

cations of the ACM, 39(6), June 1996.

[53] Charles Hansen and Stephen Tenbrink. Impact of gigabit network research on

scienti�c visualization. IEEE Computer, May 1993.

[54] John H. Hartman and John K. Ousterhout. The Zebra striped network �le

system. ACM Transactions on Computer Systems, 13(3):274{310, August 1995.

[55] Edward P. Harvey and Richard L. Sha�er. Capability of the distributed interac-

tive simulation networking standard to support high �delity aircraft simulation.

In Proceedings of the 13th Interservice/Industry Training Systems Conference,

1993.

[56] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann Publishers, Inc., 1990.

[57] William L. Hibbard, Brian E. Paul, David A. Santek, Cahrles R. Dyer, Andre L.

Battaiola, and Marie-Francoise Voidrot-Martinez. Interactive visualization of

earth and space science computations. IEEE Computer, 27(7):65 { 72, July

1994.

[58] A. Hopper. Pandora { an experimental system for multimedia applications.

ACM Operating Systems Review, 24(2), April 1990.

[59] JJ Garcialunaaceves HP Dommel. Floor control for multimedia conferencing

and collaboration. 5(1):23 { 38, January 1997.

201

[60] Satoru Iai, Takaaki Kurita, and Nobuhiko Kitawaki. Quality requirements for

multimedia communcation services and terminals { interaction of speech and

video delays. In Proceedings of Globecom '93 { IEEE Telecommunications Con-

ference, pages 394 { 398, Houston, TX, November 1993.

[61] Magid Igbaria and Snehamay Banerjee. Computer capacity planning manage-

ment: De�nitions and methodology. Journal of Information Technology, (9):213

{ 221, 1994.

[62] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley

and Sons, Inc., 1991.

[63] K. Je�ay, D. Stone, and D. Poirier. Yartos { kernel support for e�cient, pre-

dictable real-time systems. In Joint IEEE Workshop on Real-Time Operating

System and Software and IFAC/IFIP Workship on Real-Time Programming,

pages 8 { 13, May 1991.

[64] K. Je�ay, D. Stone, and F. Smith. Kernel support for live digital audio and

video. Computer Communications, 15(6), 1992.

[65] K. Je�ay, D. Stone, and F. Smith. Transport and display mechanisms for

multimedia conferencing across packet-switched networks. Computer Networks

and ISDN Systems, 26(10), July 1994.

[66] K. Je�ay, D. L. Stone, T. Talley, and F. D. Smith. Adaptive, best-e�ort, delivery

of audio and video data across packet-switched networks. In 3rd International

Workshop on Network and Operating System Support for Digital Audio and

Video, November 1992.

[67] Sanjay K. Jha and Bruce R. Howarth. Capacity planning of LAN using network

management. In Proceedings of Conference on Locacl Computer Networks, pages

425 { 430, Washington D.C., 1994.

202

[68] Saimin Jin, Dhadesugoor R. Vaman, and Divyendu Sina. A performance

mangement framework to provide bounded packet delay and variance in packet

switched networks. Computer networks and ISDN Sytems, pages 249 { 264,

September 1991.

[69] Rick Jones. Netperf. Hewlett-Packard, 1995. The netperf home page can be

found at http://www.cup.hp.com/netperf/NetperfPage.html.

[70] Henry C. Lucas Jr. Performance evaluation and monitoring. Computing Sur-

veys, 3(3):78 { 91, September 1971.

[71] Kalkbrenner. Quality of servie (qos) in distributed hypermedia systems. In

Proceedings of the 2nd International Workshop on Principles of Ducment Pro-

cessing, 1994.

[72] E.R. Kandel, J.H. Schwartz, and T.M. Jessel. Principles of Neural Science, 3rd

Ed. Appleton & Lange, Norwalk, CT, 1991.

[73] Jonathan Kay and Joseph Pasquale. Measurement, analysis, and improvement

of UDP/IP throughput for the DECstation 5000. Technical report, University

of California at San Diego, 1993.

[74] S. Khanna, M. Serbree, and J. Zolnowsky. Realtime scheduling in SunOS 5.0.

In Proceedings of the Winter '92 Usenix Conference, 1992.

[75] Kleinrock and Naylor. Stream tra�c communication in packet switched net-

works: Destination bu�ering considerations. IEEE Transactions on Communi-

cations, COM-30(12):2527 { 2534, December 1982.

[76] Peter Kroon and Kumar Swaminathan. A high-quality multirate real-time

CELP coder. IEEE JSAC Selected Areas in Communications, 10(5), June 1992.

203

[77] Edward D. Lazowska, John Zahorjan, David R. Cheriton, and Willy

Zwaenepoel. File access performance of diskless workstations. Transactions

on Software Engineering, 4(3):238{268, August 1986.

[78] S. Le�er, M. McKusick, M. Karels, and J. Quarterman. The Design and Imple-

mentation of the 4.3BSD Unix Operating System. Addison-Wesley Publishing

Company, 1989.

[79] Mengjou Lin, Jenwei Hsieh, David Du, and James MacDonald. Performance of

high-speed network I/O subsystems: Case study of a Fibre Channel network.

In Proceedings of Supercomputing '94, November 1994.

[80] Mengjou Lin, Jenwei Hsieh, David H.C. Du, Joseph P. Thomas, and James A.

MacDonald. Distributed network computing over local ATM networks. ATM

LANs: Implementation and Experience with An Emerging Technology, 1995.

[81] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Paul T. Barham,

and Steven Zeswitz. NPSNET: A network software architecture for large scale

virtual environments. Presence, 3(4):265 { 287, October 1994.

[82] Vahid Mashayekhi, Janet Drake, Wei-Tek Tsai, and John Riedl. Distributed,

collaborative software inspection. IEEE Software, 10(5), September 1993.

[83] Vahid Mashayekhi, Chris Feulner, and John Riedl. CAIS: Collaborative Asyn-

chronous Inspection of Software. In The Second ACM SIGSOFT Symposium on

the Foundations of Software Engineering. Association of Computing Machinery,

December 1994.

[84] Michael J. Massimino and Thomas B. Sheridan. Teleoperator performance with

varying force and visual feedback. In Human Factors, pages 145 { 157, March

1994.

204

[85] W. Dean McCarty, Steven Sheasby, Philip Amburn, Martin R. Stytz, and Chip

Switzer. A virtual cockpit for a distributed interactive simulation. IEEE Com-

puter Graphics and Applications, January 1994.

[86] F.M McMahon. The livermore fortran kernels: A computer test of numeri-

cal performance range. Technical Report UCRL-55745, Lawrence Livermore

National Laboratory, University of California, December 1986.

[87] Evi Nemeth, Garth Snyder, and Scott Seebass. Unix System Adminstration

Handbook. Prentice Hall, 1989.

[88] Judith S. Olson, Gary M. Olson, and David K. Meader. What mix of video

and audio is useful for remote real-time work? In Proceedings of CHI'95 {

Proceedings of the Conference in Human Factors in Computing Systems, pages

362 { 368, 1995.

[89] Davis Yen Pan. Digital audio compression. Digital Technical Journal, 5(2):28

{ 40, Spring 1993.

[90] Craig Partridge. Gigabit Networking. Addison-Wesley, 1994.

[91] Pastmaster. Smilies Unlimited. June 1997. The URL for this document can be

found at http://www.czweb.com/smilies.htm.

[92] Ketan Patel, Brian C. Smith, and Lawrence A. Rowe. Performance of a software

mpeg video decoder. In Proceedings of ACM Multimedia, Anaheim, CA, 1993.

[93] Stephen Travis Pope. A taxonomy of computer music. Computer Mu-

sic Journal, 18(1), 1994. This article can be found at: http://www-

mitpress.mit.edu/Computer-Music-Journal/EdNotes/Taxonomy.

[94] L. R. Rabiner and M. R. Sambur. An algorithm for determining the endpoints

of isolated utterances. The Bell System Technical Journal, February 1975.

205

[95] Lynda Radosevich. Retailer swings its partners to edi. Computerworld, 27,

September 1993.

[96] Ramachandran Ramjee, Jim Kurose, Don Towsley and Henning Schulzrinne.

Adaptive playout mechanisms for packetized audio applications in wide-area

networks. In Proceedings of the 13th Annual Joint Conference of the IEEE

Computer and Communications Societies on Networking for Global Communci-

ation. Volume 2, pages 680{688, Los Alamitos, CA, USA, 1994. IEEE Computer

Society Press.

[97] Andy Reinhardt. Building the data highway. Byte, March 1994.

[98] John Riedl, Vahid Mashayekhi, Jim Schnepf, Mark Claypool, and Dan

Frankowski. SuiteSound: A system for distributed collaborative multimedia.

IEEE Transactions on Knowledge and Data Engineering, August 1993.

[99] Lawrence A. Rowe and Brian C. Smith. A continuous media player. In 3rd

International Workshop on Network and OS Support for Digital Audio and

Video, 1992.

[100] Radhika R. Roy. Networking contraints in multimedia conferencing and the role

of ATM networks. AT&T Technical Journal, July/August 1994.

[101] Thomas M. Ruwart and Matthew T. O'Keefe. Storage and interfaces '94. In

Proceedings of the Storage and Interfaces '94, Santa Clara, CA, January 1994.

[102] James Schnepf, Vahid Mashayekhi, John Riedl, and David Du. Computer sup-

ported, participative, media-rich education. Educational Technology Review,

1994.

[103] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport

protocol for real-time applications. RFC 1889, January 1996.

206

[104] Henning Schulzrinne. Voice communications across the internet: A network

voice terminal. Technical report, University of Massachussetts Department of

Electrical Engineering, August 1992.

[105] Shashi Shekhar, Sivakumar Ravada, Greg Turner, Douglas Chubb, and Vipin

Kumar. Load balancing in high performance GIS: Partitioning polygonal maps.

In Proceedings of the Internationall Symposium on Large Spatial Databases,

1995.

[106] John F. Shoch and Jon A. Hupp. Measured performance of an Ethernet local

network. Communications of the ACM, 23(12):711{720, December 1980.

[107] Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. Parallel visualization al-

gorithms: Performance and architecural implications. IEEE Computer, 27(7):45

{ 55, July 1994.

[108] B. M. Slotnick and C. M. Leonard. A Stereotaxic Atlas of the Albino Mouse

Forebrain. Superintendent of Documents, US Government Printing O�ce,

Washington DC, 1975.

[109] Ben Smith. The Byte unix benchmarks. Byte, pages 273 { 277, March 1990.

[110] Brian C. Smith and Lawrence A. Rowe. A new family of algorithms for ma-

nipulating compressed images. IEEE Computer Graphics and Applications,

September 1993.

[111] Monica Snell. Internet-savvy capacity-planning software helps guide network

growth. LAN Times, September 1996. The URL for this journal can be found

at http://www.lantimes.com/.

[112] Michael V. Stein and John Riedl. The e�ects of transport method on the

quality of audioconferences with silence deletion. Technical report, University

of Minnesota Department of Computer Science, June 1995.

207

[113] Donald Stone and Kevin Je�ay. An empirical study of delay jitter management

policies. Multimedia Systems, 1995.

[114] Merryanna Swartz and Daniel Wallace. E�ects of frame rate and resolution

reduction on human performance. In Proceedings of IS&T's 46th Annual Con-

ference, Munich, Germany, 1993.

[115] T. Talley and K. Je�ay. Two-dimensional scaling techniques for adaptive, rate-

based transmission control of live audio and video streams. In Proceedings of

the Second ACM International Conference on Multimedia, pages 247 { 254,

October 1994.

[116] Tanenbaum. Networks. Prentice Hall, 1989.

[117] R. Terek and J. Pasquale. Experiences with audio conferencing using the X

window system, UNIX, and TCP/IP. In Proceedings of the Summer '91 Usenix

Conference, pages 405 { 417, 1991.

[118] Robert H. Thomas, Harry C. Forsdick, Terrence R. Crowley, Richard W. Schaaf,

Raymond S. Tomlinson, Virginia M. Travers, and George G. Robertson. Dia-

mond: A multimedia message system built on a distributed architecture. IEEE

Computer, 18(3), December 1985.

[119] Don Tolmie and Don Flanagan. HIPPI: It's Not Just for Supercomputers Any-

more. Los Alamos National Laboratory, 1997. The URL for this document can

be found at http://nocone.lanl.gov/lanp/HIPPI Data Comm.html.

[120] Claudio Topolcic. Experimental internet stream protocol, version 2 (ST-II).

RFC 1190, October 1990.

[121] Dinesh C. Verma, Hui Zhang, and Domenico Ferrari. Delay jitter control for

real-time communication in a packet switching network. IEEE Computer, pages

35 { 43, 1991.

208

[122] Gregory K. Wallace. The JPEG still picture compression standard. Communi-

cations of the ACM, April 1991.

[123] Peter Wayner. Inside the NC. Byte, November 1996.

[124] R.P. Weicker. Dhrystone: A synthetic systems programming benchmark. Com-

munications of the ACM, 27(10):1013 { 1030, October 1984.

[125] Duminda Wijesekera and Jaideep Srivastava. Quality of service metrics for

continuous media. Protocols for Multimedia Systems, pages 269 { 289, 1995.

[126] Brian L. Wong. Capacity Planning for Solaris Servers. Prentice Hall, 1996.

[127] David K.Y. Yau and Simon S. Lam. Adaptive rate-controlled scheduling for

multimedia applications. In Proceedings of the Fourth ACM International Mul-

timedia Conference, Boston, MA, 1996.

[128] J.A. Zebarth. Let me be me. In Proceedings of Globecom '93 { IEEE Telecom-

munications Conference, pages 389 { 393, Houston, TX, November 1993.

[129] Hongjiang Zhang, Chien Yong Low, and Stephen W. Smoliar. Video parsing

and browsing using compressed data. Multimedia Tools and Applications, 1(1),

March 1995.

