
Tools and Techniques for Measurement of IEEE
802.11 Wireless Networks

Feng Li, Mingzhe Li, Rui Lu, Huahui Wu, Mark Claypool and Robert Kinicki
{lif,lmz,kkboy,flashine,claypool,rek}@cs.wpi.edu

CS Department at Worcester Polytechnic Institute
Worcester, MA, 01609, USA

Abstract— With the growing popularity of wireless local area
networks (WLANs) has come an increased need for effective
measurements of real-world WLANs and their applications.
This paper presents tools and techniques for measuring IEEE
802.11 WLANs. The techniques include details on setting up
a PC as a wireless access point and building a wireless sniffer
while the tools include programs for measuring link, network
and application layer traffic. The tools are all open-source
software available for download and the techniques all use
open-source software and off-the-shelf hardware components.
Together, these tools and techniques facilitate WLAN perfor-
mance analysis across network layers in a flexible, accurate
and cost-effective manner. To illustrate the usefulness ofthese
tools and techniques for gathering WLAN measurements three
case studies are presented: a streaming video session showing
cross-layer performance; network characteristics of a wireless
hand-held game; and measurements of access point queue size.
Research employing these tools can yield more accurate WLAN
models and more realistic evaluation of proposed WLAN
changes in a network testbed.

I. I NTRODUCTION

The combination of the decrease in price of wireless local
area networks (WLANs) and the increase in wireless link
capacities has significantly increased the number of WLANs
in homes, corporate enterprise networks, academic campus
networks, and entire cities. Initially, much of the WLAN
research was conducted primarily through the use of analytic
models [2], [4] and simulation techniques [22], [7], [5].
Only recently have researchers tackled the task of measuring
WLANs [14], [21], [24] to understand performance anoma-
lies and the implications of installation choices.

However, accurate WLAN measurements have proven
more elusive than measurements for wired LANs due to the
unique characteristics of the wireless medium. For example,
measurements over a single wireless hop, such as in an
802.11 infrastructure network, can vary depending upon
the hop distance, cross and contending traffic, the building
structure and even the human motion within a measurement
testbed. Generally, capturing aspects of WLAN performance
requires more than collecting measurement data at any
one layer in the protocol stack. Instead, measurement tools
and techniques that enable the researcher to observe the
intertwined effects between network layers are important for
a comprehensive assessment of WLAN performance [12].

Building network testbeds, a common approach used
to run controlled experiments, provides special challenges
within WLANs where accurate multi-layer measurements
require custom hardware and software solutions and real-
istic measurements tend to come from commercial, often
proprietary, black-box software and hardware. For exam-
ple, wireless sniffers, while effective for trouble shooting
and other diagnostic functions, are typically expensive and
closed-source devices that offer less flexibility with respect
to capturing specific performance metrics compared to em-
ploying open-source solutions. While inexpensive, today’s
commercial wireless access points (APs) remain as black-
box components in the WLAN in that their exact internal
configurations and protocol implementations are not nor-
mally known.

This paper presents useful tools and techniques for mea-
suring IEEE 802.11 WLANs in real-world environments.
One technique includes the details of modifying a PC to
function as a host AP using off-the-shelf hardware and open-
source software. Having a host AP facilitates the ability
to gather measurements concurrently from several network
layers and also provides the ability to experiment with cus-
tomized changes within the AP. Another technique provides
details on building a wireless sniffer to capture 802.11 and
higher network layers. Having a wireless sniffer as a mea-
surement tool enables non-intrusive network measurements
and evaluation of proprietary 802.11 devices. Tools at the
end-host allow measurement of link layer characteristics
obtained through the wireless interface card and and IP layer
metrics such as round-trip time and loss rate. Application-
layer tools, previously developed for wired-network testbeds,
are mentioned to provide information for complete wireless
network experimentation. All the tools and techniques dis-
cussed in this paper are open-source software available for
download athttp://perform.wpi.edu/tools/.

This paper is organized as follows: Section II presents
tools and techniques for IEEE 802.11 network measurement;
Section III illustrates the use of the tools and techniques
with three performance evaluation examples; and Section IV
provided conclusions and future work.

Technique:
Host AP

Technique:
Wireless Sniffer
Tools:
TCPDump
Ethereal

Application Server
Tools:
UDPPing, UDP Heartbeat

Application Client
Tools:
Media Tracker, Wget, ...
UDPPing, UDP Heatbeat
WRAPI + , typeperf

100 Mbps
Hub

Fig. 1. Deployed tools and techniques. Underlined tools arediscussed in
this paper.

II. T ECHNIQUES ANDTOOLS

Figure 1 depicts a basic testbed deploying the tools and
techniques presented in this paper, with the underlined links
being specific contributions of our work.

Baseline measurements of WRAPI+ and UDP Heartbeat
indicated that these tools consume only about 3% of the
client’s processor time [18]. Measurements of the network
sniffer reported no packets dropped due to being overloaded
over a range of wireless traffic conditions [8]. Moreover,
previous experience with application tools Media Tracker
and Real Tracker indicate that they also add little overhead
to application layer measurements.

A. Techniques

1) Build a Wireless Sniffer: While sniffers have been
widely used to monitor network traffic at the data-link layer
and above, most commercial wireless sniffers are costly and
are not a flexible open source solution. However, passive
sniffing does not interfere with the hosts under test and does
not require access to the hosts themselves. Thus sniffers can
be used to measure black-box devices such as hand-held
game consoles (see Section III-B).

Our first wireless measurement technique is to turn a
PC into an IEEE 802.11 wireless sniffer from open source
software and off-the-shelf wireless networking hardware.
Briefly, the steps include:1

1) Install the Linux operating system. The Linux distri-
butions tested include SUSE (Novell) Linux releases
9.0, 9.1, 9.2 and 10.0 and Red Hat Fedora Core 3,
with Linux kernel versions 2.4 and 2.6.

1See http://perform.wpi.edu/tools/ for details on each step.

2) Integrate a prism GT-based wireless network interface
card. The wireless network interface cards tested
include Netgear WG 511 version 1 PCMCIA card and
Allnet ALL0271 54 Mbit Wireless PCI adapter.

3) Update the driver (a prism54 kernel module) to the
latest version.2

4) Create an interface configuration file that brings the
wireless interface up in monitor (sniffing) mode.

5) Use network sniffing tools to capture frames. Popular
network tools to capture and analyze capture data
include tcpdump,3 Ethereal,4 or Kismet.5

The wireless sniffer captures the IEEE 802.11 Medium
Acces Control (MAC) layer header, which includes data-
link frame information such as the number of MAC layer
retries, power management functionality and WEP encryp-
tion information. Additionally, the wireless sniffer collects
extra physical and MAC layer information provided by the
Absolute Value Systems (AVS) header,6 an “extra” header
which is created by the wireless driver when operating in
monitor mode. With the AVS header, the wireless driver
records wireless layer metadata, including the received
signal strength, channel number and current capacity, and
passes the metadata to the sniffer as an emulated frame
header. Beyond performance monitoring, the sniffer can
also capture wireless management frames such as RTS/CTS,
(De)authentication, and (Dis)association. This extra func-
tionality means the sniffer can be used as a wireless network
diagnostic tool.

2) Build a Host Access Point: Results from prior WLAN
measurement studies [1], [12], [18], [22] indicate that the
internal allocation of buffers within a wireless AP can
significantly impact the performance of WLAN applications.
Moreover, these studies suggest that providing AP tuning
mechanisms could yield performance gains. However, com-
mercial APs are essentially “black-box” commodities that
all promise equivalent performance regardless of internal
design differences. This leaves academic researchers with
little ability to evaluate and understand the internal workings
of APs. Hence, the goal is an open source AP that runs on
a PC – the host AP.

The first four steps in building a host AP are the same
as the steps for building a wireless sniffer, presented in
Section II-A.1. The additional steps are:7

5) Create an interface configuration file to bring up the
wired interface.

6) Configure Dynamic Host Configuration Protocol
(DHCP) to provide the addressing services

2http://www.prism54.org/
3http://www.tcpdump.org/
4http://www.ethereal.com
5http://www.kismetwireless.net/index.shtml
6http://www.ethereal.com/docs/dfref/w/wlancap.html
7See http://perform.wpi.edu/tools/ for details on each step.

common to most APs. The DHCP8 daemon
(DHCPD) can be easily configured by modifying
its configuration file based on a sample at
http://perform.wpi.edu/tools/.

7) Share the connection to the wired and wireless adap-
tors. One of many possible solutions is to modify
iptables9 using a sample configuration file from
http://perform.wpi.edu/tools/.

With the host AP built, an end-host wireless client using a
commercial AP should be able to transparently associate and
use the host AP, instead. Control of the internal components
of a host AP allows exploration and understanding of the
ramifications of internal AP resource allocation decisionson
overall WLAN performance.

B. Tools

1) Wireless Layer: For monitoring WLAN performance
on end hosts, a real-time monitor tool namedWRAPI+
was developed to extract information from the end hosts’
IEEE 802.11b/g network device. WRAPI+ is an application
built upon the freely available C++ library named WRAPI10

that provides function calls to gather wireless statisticsin
Windows XP. The WRAPI Web site provides significant
documentation on the features of WRAPI, but less infor-
mation available for building applications that use WRAPI.
For example, one initial appeal of WRAPI was the claim
to be “a hardware-independent tool that works with any
IEEE 802.11b wireless network hardware vendor”. However,
during the development of WRAPI+, hardware dependent
problems were a major issue as several wireless adaptors
were found to not be fully supported by the WRAPI library.

Thus, a contribution is WRAPI+, an application to mon-
itor wireless statistics in real-time, with guidelines on the
wireless adaptors supported (the PrismGT/2/2.5/3 chipsets).
When run on an end-host, WRAPI+ periodically (every
500 ms, by default) reports and logs IEEE 802.11 network
interface statistics that includes received signal strength,
transmitted frame count, and failed frame transmissions and
acknowledgments. WRAPI+ is provided with source code to
maximize reuse and enable measurement customization.

2) Network Layer: Preliminary experiments revealed that
the systemping (using ICMP) provided by Windows XP
waits for the previous ping reply or a timeout before sending
out the next ping packet. Hence, a constant ping rate cannot
always be maintained under poor wireless conditions where
long round-trip times can be encountered.

There are other previously developed tools to measure
network layer performance, such asIperf,11 that measures
maximum TCP and UDP bitrates, with reports for band-
width, delay and loss, andNetDyn, 12 a low-overhead

8http://www.isc.org/products/DHCP/
9http://www.netfilter.org/
10http://sysnet.ucsd.edu/pawn/wrapi/
11http://dast.nlanr.net/Projects/Iperf/
12http://www.cs.umd.edu/˜suman/netdyn/index.html

probing tool to measure network characteristics. However,
one advantage to developing customized IP layer tools is
this approach provides transparency as to the means by
which network performance is inferred. Since such network
layer code is fairly simple to write, a customized ping tool,
UDP Ping, was built using application-layer UDP packets
to provide configurable ping intervals and packet sizes. UDP
Ping uses a server and a client. The UDP Ping client writes a
sequence number and current timestamp into a UDP packet
and sends it to the server which echoes the packet back to
the client. The client then records round-trip time and is able
to calculate the packet loss rate.

WLAN performance is often not symmetric, with network
congestion in only one direction or with the upstream flows
having more contention than the downstream flows. In these
cases, UDP Ping can only report the aggregate network
performance for both directions. To measure performance for
each direction, a variant of UDP Ping namedUDP Heartbeat
was developed to report one-way delay and packet loss. The
UDP Heartbeat sender writes a sequence number and current
timestamp in the UDP packet and sends it to the receiver.
Upon receiving the packet, the receiver calculates the time
difference and reports any missing packets. To measure
absolute one-way delay, the sender and receiver clocks must
be synchronized. However, often only the relative difference
in one-way delay time, say after network congestion starts,is
needed to evaluate performance. Thus UDP Heartbeat can
be a a useful measuremnt tool even when clocks are not
synchronized.

3) Application Layer: At the application layer, there are
numerous possible tools that drive network performance
workloads and provide application-centric measures of net-
work performance. For example, application measurement
tools for streaming video such asMedia Tracker [19] and
Real Tracker [23], can provide a realistic video workload
while provide application layer data specific to streaming
video including: encoding data rate, playout bitrate, time
spent buffering, video frame rate, video frames lost, video
frames skipped, packets lost and packets recovered.

There are certainly other application layer tools
worth considering, includingwget,13 a publicly-available
HTTP/FTP download application that can be used to es-
timate the effective throughput of a TCP bulk transfer, and
httperf,14 a tool for measuring web server performance.

III. C ASE STUDIES

This section presents three case studies to demonstrate
the use of the WLAN measurement techniques and tools
discussed in Section II. The first case study shows cross-
layer performance measurements for a video being streamed
over a WLAN to a mobile user (Section III-A). The second
case study utilizes a wireless sniffer to characterize the

13http://www.gnu.org/software/wget/wget.html
14http://www.hpl.hp.com/research/linux/httperf/

wireless network characteristics of two hand-held video
games over a WLAN (Section III-B). The final case study
employs a host AP to assist in understanding queues within
an AP (Section III-C).

A. Streaming Video over WLAN

To show the importance of gathering wireless LAN mea-
surements from multiple layers of the protocol and to pro-
vide a feel for how the tools we developed can be used in a
complementary fashion, this section presents measurements
from an experiment where a video is streamed from a
Windows Media server to a mobile client over a WLAN.
Specifically, this section shows wireless measurement results
gathered simultaneously at the application, network and data
link layers of the end-host.

A three-minute video clip of a moving Coast Guard ship
was encoded with 11 bitrate layers and streamed over UDP
from a Windows Media server, located on the wired part
of the WPI campus, to a Media Tracker client on a laptop
being carried by a graduate student volunteer. The volunteer
was initially standing very close to a wireless AP. After
approximately 10 seconds, the volunteer walked15 slowly
away from the AP.

Figure 2 offers a multi-layered snapshot of the data
gathered. The top three graphs show application layer per-
formance measurements from Media Tracker that include
the video encoding bitrate, the received bandwidth, and
the frame rate, respectively. The middle two graphs show
network layer performance measurements from UDP ping
that represent the round-trip time and the IP packet loss rate,
respectively. The bottom three graphs show wireless layer
performance measurements from WRAPI+ that include the
target bandwidth level, the retransmission failures, and the
signal strength, respectively.

Initially, the highest quality encoding layer, 2.4 Mbps, is
selected for streaming by the media server. Consistent with
results in [20], the client buffers from 2 seconds until about
18 seconds at a rate much higher than the video encoding
rate, peaking around 3.75 Mbps. This suggests that the high
playout rate overflows a downstream buffer from the server
to the client and causes significant IP packet losses. This
can be seen in the middle graph labeled “Loss Rate” (4th
from the bottom) where there is a spike in loss rates up to
20% in the first 20 seconds, even though the wireless signal
strength is still quite good.

Near the 10 second mark, video frame playout begins as
seen by the graph labeled “Frame Rate” (3rd from the top).
As the volunteer moves the client laptop away from the AP,
the wireless signal strength steadily degrades, shown in the
graph labeled “Signal Strength” at the bottom. However, the
wireless target bandwidth remains high except for a brief,
abrupt and unexplained change in bandwidth to 2 Mbps at 65

15Note, a mobile wireless client provides a challenging test for measure-
ment tools over a wide range of network conditions.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180

A
pp

lic
at

io
n

La
ye

r
E

nc
od

in
g

B
itr

at
e

(M
bp

s)

Time (sec)

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180

A
pp

lic
at

io
n

La
ye

r
R

ec
ei

ve
d

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

0
5

10
15
20
25
30

0 20 40 60 80 100 120 140 160 180

A
pp

lic
at

io
n

La
ye

r
F

ra
m

e
R

at
e

(f
ps

)

Time (sec)

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180

N
et

w
or

k
La

ye
r

R
ou

nd
-T

rip
 T

im
e

(m
s)

Time (sec)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

N
et

w
or

k
La

ye
r

Lo
ss

 R
at

e
(f

ra
ct

io
n)

Time (sec)

0
2
4
6
8

10
12

0 20 40 60 80 100 120 140 160 180

W
ire

le
ss

 L
ay

er
B

an
dw

id
th

 (
M

bp
s)

Time (sec)

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180

W
ire

le
ss

 L
ay

er
R

et
ry

 F
ai

l (
co

un
t)

Time (sec)

-90
-80
-70
-60
-50
-40
-30

0 20 40 60 80 100 120 140 160 180

W
ire

le
ss

 L
ay

er
S

ig
na

l S
tr

en
gt

h
(d

bm
)

Time (sec)

Fig. 2. Application layer, network layer, and wireless layer performance
of a mobile client streaming a high-quality, multi-layer video clip.

seconds, seen in the graph labeled “Bandwidth” (3rd from
the bottom).

At approximately 90 seconds, there is a sudden spike in
round-trip time reported by UDP Ping that is accompanied
by a considerable increase in IP packet losses, shown in
the middle-two graphs labeled “Loss Rate”. The streaming
buffer built up at the client is able to smooth over these
losses, keep the same encoding rate and maintain a consis-
tently high frame rate.

Just before 100 seconds, the streaming wireless system
encounters a major event: the round-trip time spikes again;
the wireless signal strength degrades further; numerous
wireless frame retransmissions are recorded by WRAPI+
(shown in the “Retry Fail” graph, 2nd from the bottom) and
higher IP packet loss rates are seen due either to wireless
layer frame drops or to AP buffer overflow.

With a delay in reaction time to this major event, the
wireless data link layer lowers its target bandwidth to 6 Mbps
(see the third graph from the bottom) and the streaming
application changes encoding levels to 1 Mbps (see top
graph) just before 120 seconds. Notice, however, that the
wireless streaming system has reached a volatile state and
the target bandwidth oscillates for the remainder of the test.
Even the 1 Mbps encoding rate chosen for streaming is
still too high for the effective wireless capacity. This yields
numerous IP packet drops and subsequently a low-quality
video frame rate. One can conjecture that at 142 seconds,
the streaming system mistakenly switches to the original
2.4 Mbps encoding rate possibly due to erroneous capacity
estimates from a packet-pair technique.

The use of these measurement tools suggest possible
improvements to the streaming system. If the media server
had better information on the effective bandwidth of the
wireless channel, application throughput, round-trip time and
packet loss rate, the server could choose a more effective
video encoding layer from among the many choices it could
have picked below 1 and 2.4 Mbps. Moreover, this brief
analysis demonstrates the value of being able to collect
wireless measurements concurrently at multiple layers of the
protocol stack.

B. Hand-Held Wireless Network Games

To demonstrate the ability to non-intrusively gather wire-
less layer traffic from commercial devices for traffic char-
acterization, this section presents measurements from an
experiment where video games are played on a WLAN
network with the newest commercial hand-held gaming plat-
forms, each equipped with IEEE 802.11 wireless networking
interfaces for multi-player gameplay.

The traffic generated by one host on a WLAN can have
dramatic impact on the performance of other hosts on the
WLAN [1], [13]. Specifically, when there is a WLAN host
with weak wireless connectivity, and hence low WLAN
capacity, the performance of all WLAN hosts is severely de-

graded. Moreover, some hand-helds are specifically designed
to operate at low WLAN capacities to conserve power. These
results are especially important since preliminary evidence
suggests some game phases for hand-held games may have
adverse affects on throughput for Internet applications shar-
ing the same 802.11 wireless channel [8]. To adequately
plan WLAN network infrastructures, it may be important
for engineers to have knowledge of the network load caused
by hand-held game traffic.

Three hand-held Nintendo DSes were used to play two
different three-player games in separate sessions. Sniffing
of the 802.11 traffic between the hand-helds was performed
using a Dell Inspiron 8600 laptop, running in close proximity
(10 feet) to the hand-helds, and with the hand-helds in close
proximity with each other. The two games chosen were
GoldenEye: Rogue Agent (a first-person shooter game) and
Super Mario (a third-person action game).

800

600

400

200

0 50 100 150 200 250 300

B
itr

at
e

(K
bp

s)

Time (Seconds)

Super Mario
Rogue Agent

Fig. 3. Bitrate comparison for two Nintendo hand-held games.

Figure 3 shows bitrate (in Kbps) versus time (in seconds)
for the two different games. Notice there are two distinct
phases of network traffic in each game session. The first
phase is marked by high bitrates where the hand-held devices
send game setup data to each other as fast as possible. In
this case, the data are the games themselves since the devices
allow game sharing, but may also include game settings and
map information. The setup phase is of different lengths for
the two games. Rogue Agent ends its setup phase after about
25 seconds while Super Mario does not complete setup until
just over 60 seconds.

The second phase, the play phase, is characterized by
lower, more consistent data rates with bitrate quantities
shown in Table I. During this phase where the game is
actually played, players responds to the game state and the
hand-helds communicate player actions to the other hand-
helds, as appropriate. The bitrates during this phase are
different for the two different games, with Rogue Agent
having slightly higher bitrates (104 Kbps average, 15.6 std
dev) than Super Mario (47 Kbps average, 9.1 std dev).

Since the play phase is normally significantly longer than
the setup phase and is of the most concern to the players, a
50 second slice of the play phase for each game is analyzed
to provide a uniform sample with which to compare the two

Game Bitrate (Kbps) Std dev
Super Mario 47 9.1
Rouge Agent 104 14.6

TABLE I

BITRATES BY GAME FOR PLAY PHASE(NOT INCLUDING SETUP PHASE)

games.

0

0.25

0.5

0.75

1

0 100 200 300 400 500

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Frame Size (bytes)

Super Mario
Rogue Agent

0

0.25

0.5

0.75

1

0 5 10 15 20 25

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Inter Frame Time (milliseconds)

Super Mario
Rogue Agent

Fig. 4. Wireless frame analysis for two Nintendo hand-held games.

The top graph in Figure 4 provides the cumulative dis-
tribution functions (CDFs) for frame size while the CDF
for inter frame time is presented in the bottom graph. In
general, the frames are small and frequent, befitting the
interactive nature of computer games. Compared with other
Internet games, the hand-helds send frames considerably
more frequently than a typical real-time strategy game,
which has a signature of sending data every 100 ms [9], and
more frequently than a typical first-person shooter game,
which has a signature of sending data about every 40-50
ms [6], [25]. Wireless measurements such as bitrate, frame
size and frame timings can be a useful first step in building
models, such as in [25], [3], for hand-held game traffic.

Game Management Data Overall
Super Mario 87 70 70
Rouge Agent 186 65 67

TABLE II

AVERAGE WIRELESSLAYER FRAME SIZE (BYTES)

Many of the frames are quite small, around 100 bytes
(including all 802.11 headers) and many frames are sent
within 1 millisecond of the previous frame. Most of these

these small, closely-spaced frames are likely acknowledg-
ments and account for approximately 50% of all frames
recorded.

Game Management Data Retry Total
frame (%) frame(%) (count)

Super Mario 1.75% 98.25% 17 62812
Rouge Agent 1.36% 98.64% 1 63965

TABLE III

WIRELESSLAYER STATISTICS

Table III facilitates further analysis of the wireless char-
acteristics by showing there are few wireless frame retrans-
missions for either game (Rogue Agent had only 1 while
Super Mario had 17). Moreover the two game sessions send
roughly the same fraction of wireless management frames
(beacon and authentication, and association frames).

For wired network games, traffic from a number of pop-
ular games has been characterized to provide suitable traffic
models for testing existing or planned network designs.
There have been numerous studies of traffic models for
popular PC games [3], [6], [11], [17], [16] and even game
consoles [25]. Use of a wireless sniffer can help collect data
to build comparable models and for characterization of hand-
held game traffic running over 802.11 networks.

C. Wireless Access Point Queue Behavior

Given the bursty nature of Internet traffic [15], wireless
AP queue size can directly impact a flow’s achievable
throughput. While a small queue may keep effective bitrates
significantly below the available capacity, a large AP queue
size can negatively impact a flow’s end-to-end delay which
is detrimental to VoIP and some network game applications.
Despite the importance of queue size to achievable through-
put and delay, there is in practice little documentation on
AP queue size settings.

To investigate queue sizes in wireless APs, a variant of
the QFind [10] methodology is applied to infer the access
network queue size for the host AP. UDP Heartbeat is run
by itself for 15 seconds to provide a one-way baseline delay
from a wired server, through the host AP to a wireless
client. After obtaining a baseline, a high-bitrate UDP flow
is sent concurrently with the UDP Heartbeat for 60 seconds
to saturate the link and fill the host AP queue. The UDP
Heartbeat records the increase in one-way delay between the
baseline latency and the delay with the access queue filled
by UDP load traffic. The host AP queue size can then be
estimated by the product of the UDP flow throughput and
the maximum delay increase measured by UDP Heartbeat.
Let Dt be the total delay (the maximum delay seen by UDP
Heartbeat):

Dt = Dl + Dq (1)

whereDl is the latency (the baseline delay) andDq is the
queuing delay. Therefore:

Dq = Dt − Dl (2)

Given throughputT (measured at the wireless client), the
access link queue size in bytes,qb, can be computed by:

qb = Dq × T (3)

For packet sizes (a 1400 byte application payload was used),
the queue size in packets,qp, becomes:

qp =
(Dt − Dl) × T

s
(4)

The accuracy of the QFind method can be checked by
instrumenting the Linux kernel in the host AP to monitor
the transmit queue attached to the wireless adaptor. This
instrumentation also illustrates the flexibility of an open-
source AP. The instrumentation records queue size via a
simple user-level application issuing a custom system call
to obtain the queue size every 200 ms.

1000

750

500

250

0
9080706050403020100

Q
ue

ue
 S

iz
e

(p
kt

s)

Time(seconds)

Kernel
QFind

Fig. 5. Host AP with transmit queue length set to 1000 packets.

1000

750

500

250

0
9080706050403020100

Q
ue

ue
 S

iz
e

(p
kt

s)

Time(seconds)

Kernel
QFind

Fig. 6. Host AP with transmit queue length set to 100 packets.

QFind with kernel monitoring was run with the AP queue
set to 1000 and then re-run with the AP queue set to 100.
Figures 5 and 6, show the queue size (in packets) computed
by QFind and reported by the host AP kernel on the y-axis
as a function of time (in seconds) on the x-axis. Note that
theQFind andKernel data sets track each other very closely.
This illustrates the efficacy of QFind as a methodology to
determine queue sizes and suggests that if the host AP
were replaced by a black-box, commercial AP, QFind could
effectively determine the AP queue size.

Note that the Linux kernels v2.4 default queue size is
100 packets and Linux kernels v2.6 default queue size is
1000 packets. The differences between access queue sizes
for different versions of Linux and perhaps for different
commercial APs begs the question: what sizeshould access
queues be? The tools and methodology presented in this
paper can be used to explore the impact of access queue
size on throughput and round-trip times through wireless
measurements. This in turn can be used to study the ability
of wireless infrastructure topologies to provide quality of
service to a variety of applications.

IV. CONCLUSIONS

This paper presents open-source software tools and tech-
niques that facilitate exploration of the intertwined effects
of WLAN performance across network layers in a flexible,
accurate and cost-effective manner. Three examples are pre-
sented to illustrate the tools and techniques: 1) a streaming
video session using applications, network and wireless layer
tools aligns cross-layer performance; 2) wireless sniffing
shows network bitrates, frame sizes and inter-frame times
for wireless, hand-held games; and 3) data gathered with
two queue size parameters demonstrates the use of a host
AP. These tools and techniques are useful for gathering real
data, both for building more accurate models of WLANs and
their applications and for evaluating proposed improvements
within a network testbed.

Future tool development such as incorporating new IEEE
802.11 standards (e.g., 802.11e and 802.11n), will allow ex-
ploration of state-of-the-art WLAN technology. Techniques
and tools to measure and monitor 802.11 ad hoc mode,
in particular ad hoc routing, and wire-area wireless tech-
nologies, can expand the research scope of the tools and
techniques presented here.

REFERENCES

[1] G. Bai and C. Williamson. The Effects of Mobility on Wireless
Media Streaming Performance. InProceedings of Wireless Networks
and Emerging Technologies (WNET), pages 596–601, July 2004.

[2] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed
Coordination Function.IEEE Journal on Selected Areas in
Communications, Wireless Series, 18(3):535–547, Mar. 2000.

[3] M. S. Borella. Source Models of Network Game Traffic.Elsevier
Computer Communications, 23(4):403 – 410, Feb. 2000.

[4] F. Cal̀ı, M. Conti, and E. Gregori. IEEE 802.11 Wireless LAN:
Capacity Analysis and Protocol Enahncement. InProceedings of
IEEE INFOCOM, pages 142–149, San Francisco, CA, USA, Mar.
1998.

[5] M. Carvalho and J. Garcia-Luna-Aceves. Delay Analysis of IEEE
802.11 in Single-Hop Networks. InProceedings of IEEE
International Conference on Network Protocols (ICNP), Atlanta,
Georgia, USA, Nov. 2003.

[6] W. chang Feng, F. Chang, W. chi Feng, and J. Walpole.
Provisioning On-line Games: A Traffic Analysis of a Busy
Counter-Strike Server. InProceedings of the ACM SIGCOMM
Internet Measurement Workshop (IMW), Nov. 2002.

[7] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas. Performance
Analysis of IEEE 802.11 DCF in Presence of Transmission Errors.
In IEEE International Conference on Communications (ICC),
volume 27, pages 3854 – 3858, June 2004.

[8] M. Claypool. On the 802.11 Turbulence of Nintendo DS and Sony
PSP Hand-held Network Games. InProceedings of the 4th ACM
Network and System Support for Games (NetGames), Oct. 2005.

[9] M. Claypool. The Effect of Latency on User Performance in
Real-Time Strategy Games.Elsevier Computer Networks, Special
Issue on Networking Issues in Entertainment Computing,
49(1):52–70, Sept. 2005.

[10] M. Claypool, R. Kinicki, M. Li, J. Nichols, and H. Wu. Inferring
Queue Sizes in Access Networks by Active Measurement. In
Proceedings of the 5th Passive and Active Measurement Workshop
(PAM), Apr. 2004.

[11] J. Faerber. Network Game Traffic Modelling. InWorkshop on
Network and System Support for Games, Apr. 2002.

[12] J. Gretarsson, F. Li, M. Li, A. Samant, H. Wu, M. Claypool, and
R. Kinicki. Performance Analysis of the Intertwined Effects
between Network Layers for 802.11g Transmissions. InIn
Proceedings of the 1st ACM Workshop on Wireless Multimedia
Networking and Performance Modeling (WMuNeP), Oct. 2005.

[13] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda.
Performance Anomaly of 802.11b. InProceedings of IEEE
INFOCOM, 2003.

[14] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E.M.
Belding-Royer. Understanding Congestion in IEEE 802.11b
Wireless Networks. InProceedings of the Internet Measurement
Conference (IMC), Berkeley, CA, USA, Oct. 2005.

[15] H. Jiang and C. Dovrolis. Source-Level IP Packet Bursts: Causes
and Effects. InProceedings of the ACM Internet Measurement
Conference (IMC), Miami, FL, USA, Oct. 2003.

[16] T. Lang, G. Armitage, P. Branch, and H.-Y. Choo. A Synthetic
Traffic Model for Half Life. In Australian Telecommunications
Networks & Applications Conference (ATNAC), Melbourne,
Australia, Dec. 2003.

[17] T. Lang, P. Branch, and G. Armitage. A Synthetic Traffic Model for
Quake 3. InACM SIGCHI Advances in Computer Entertainment
(ACE), Singapore, June 2004.

[18] F. Li, J. Chung, M. Li, H. Wu, M. Claypool, and R. Kinicki.
Application, Network and Link Layer Measurements of Streaming
Video over a Wireless Campus Network. InProceedings of the 6th
Passive and Active Measurement Workshop (PAM), Boston,
Massachusetts, USA, Apr. 2005.

[19] M. Li, M. Claypool, and R. Kinicki. MediaPlayer versus RealPlayer
– A Comparison of Network Turbulence. InProceedings of the
ACM SIGCOMM Internet Measurement Workshop (IMW), pages 131
– 136, Marseille, France, Nov. 2002.

[20] J. Nichols, M. Claypool, R. Kinicki, and M. Li. Measurements of
the Congestion Responsiveness of Windows Streaming Media.In
Proceedings of the 14th ACM International Workshop on Network
and Operating Systems Support for Digital Audio and Video
(NOSSDAV), June 2004.

[21] E. Pelletta and H. Velayos. Performance Measurements of the
Saturation Throughput in IEEE 802.11 Access Points. InIn
Proceedings of the Third International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
pages 129–138, Apr. 2005.

[22] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, and P. Sinha.
Understanding tcp fairness over wireless lan. InINFOCOM, 2003.

[23] Y. Wang and M. Claypool. RealTracer - Tools for Measuring the
Performance of RealVideo on the Internet.Kluwer Multimedia Tools
and Applications, 27(3), Dec. 2005.

[24] M. Yarvis, K. Papagiannaki, and W. S. Conner. Characterization of
802.11 Wireless Networks in the Home. InProceedings of 1st
workshop on Wireless Network Measurements (WiNMee), Riva del
Garda, Italy, Apr. 2005.

[25] S. Zander and G. Armitage. A Traffic Model for the Xbox Game
Halo 2. In Proceedings of International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV),
Stevenson, WA, USA, June 2005.

