

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 1/4 2015

Uniquitous: an Open-source Cloud-based Game System in Unity

Meng Luo and Mark Claypool

Computer Science and Interactive Media & Game Development

Worcester Polytechnic Institute

Worcester, MA 01609, USA

{mluo2,claypool}@wpi.edu

1. Introduction

Cloud gaming is an emerging service based on cloud
computing technology which allows games to be run
on a server and streamed as video to players on a
lightweight client. Cloud gaming is estimated to grow
from $1 billion in 2010 to $9 billion in 2017 [1], a
rate much faster than either international or online
boxed game sales.

Figure 1 depicts how games can be run in the cloud.
The game computation, normally done on the client’s
computer or game console is instead done on one of
many cloud servers, on the right. The server
maintains the game world and computes the game
scene images that the player sees on the screen,
sending these game frames down to the client as
streaming video. The client, on the left, can be “thin”
since it no longer needs to do the heavy-weight
computation of updating the game world and
rendering the game scene – the client only needs to
display the game frames as video and manage the
player input. The client captures the player input in
the form of mouse, keyboard and/or game controller
actions, and sends it upstream to the game server in
the cloud where the server incorporates the input into
the game world as if the entire game was played
locally on a traditional, non-cloud-based client.

Figure 1. Cloud gaming

Cloud gaming provides benefits to players,
developers and publishers over traditional gaming.
Cloud gaming allows players to access games
streamed as video through mobile devices, such as
laptops, tablets and smart phones, which provides the
potential to play the same game everywhere without
constraints on hardware. Game developers only need
to develop one version for the cloud server platform
instead of developing a version for each client type,
thus reducing game development time and cost.
Publishers can more easily protect against piracy

since cloud games are only installed in the cloud,
thus limiting the ability of malicious users to make
illegal copies.

Despite some recent successes, before cloud gaming
can be deployed widely for all types of games, game
devices and network connections, cloud gaming must
overcome a number of challenges: 1) network latency,
inherent in the physical distance between the server
and the client, must be mitigated; 2) high network
capacities are needed in order to stream game content
as video down to the client; and 3) processing delays
at the cloud gaming server need to be minimized in
order for the game to be maintained, rendered and
streamed to the client effectively for playing.
Research and development required to overcome
these challenges need cloud gaming testbeds that
allow identification of performance bottlenecks and
exploration of possible solutions.

Several commercial cloud gaming systems, such as
OnLive [2] and StreamMyGame [3] have been used
for cloud gaming research. Although these
commercial services can be readily accessed, their
technologies are proprietary, providing no way for
researchers to access their code. This makes it
difficult for researchers to explore new technologies
in cloud-based gaming and makes it difficult for
game developers to test their games for suitability for
cloud-based deployment. While GamingAnywhere
[4] provides an open source cloud gaming system, it
remains separated from the game itself, not
supporting integration and simultaneous exploration
of game code and the cloud system. For instance,
researchers cannot easily explore latency
compensation techniques that require both the game
code and the networking code to monitor player lag if
the game code is separate from the cloud system.

In order to provide a more flexible and easily
accessed platform for cloud gaming researchers and
game developers, we present Uniquitous [5], a cloud
gaming system implemented using Unity [6]. Unity is
a cross-platform game creation system with a game
engine and integrated development environment.
Uniquitous is exported as an independent Unity
package, which can blend seamlessly with existing

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 2/4 2015

Unity projects, making it especially convenient for
Unity developers, one of the largest and most active
developer communities in the world – the Unity
community increased from 1 million registered
developers in 2012 to over 5 million in 2015 [7].

Uniquitous is open source, allowing modification and
configuration of internal cloud gaming structures,
such as frame rate, image quality, image resolution
and audio quality, in order to allow exploration of
system bottlenecks and modifications to meet client-
server requirements. In addition to enabling system
modifications, by being in Unity, Uniquitous enables
game adjustments for further exploring the
relationship between the game itself and cloud
gaming performance. For example, game objects can
be adjusted to study the effect of scene complexity on
network bitrates, or camera settings can be altered to
study the effect of perspective on cloud gaming
frame rates. Although Uniquitous was developed on a
desktop, Unity can build to both iOS and Android
with full networking support, allowing Uniquitous to
provide interactive streaming game video to mobile
devices.

This article provides a brief introduction of the
design and evaluation of Uniquitous. For details see
other publications [8, 9] with source code and system
documentation available online [5].

2. Architecture

Uniquitous’ architecture is shown in Figure 2. It is

 Figure 2. Uniquitous architecture

composed of three entities: Unity Project, Uniquitous
Server and Uniquitous Thin Client. The Uniquitous
Server and the Uniquitous Thin Client run on two
separate computers connected by an Internet
connection while the Unity Project runs on the same
computer as the Uniquitous Server. Figure 2 shows
three types of data flows in Uniquitous, illustrated
with different shades/colors: the red image flow
carries data for the game frames; the green audio
flow carries data for the game audio; and the blue
input flow carries data for user input. Flows within
components on the same machine are represented
with dashed lines while flows across the network are
shown with solid lines.

3. Experiments

We conducted micro experiments to evaluate the
performance of the Uniquitous server components,
focusing on processing time for bottleneck analysis,
and macro experiments to evaluate the Uniquitous
system as perceived by the player, focusing on game
image quality and frame rate since they are among
the most important to the player. Select results are
presented in this section, with full results available in
[9].

All experiments were run on PCs with Intel 3.4 GHz
i7-3770 processors, 12 GB of RAM and AMD
Radeon HD 7700 series graphic cards, each running
64-bit Windows 7 Enterprise. The PCs were
connected by a 100 Mbps network LAN. The games
tested, the Car Tutorial [10] and Angry Bots (version
4.0) [11], are provided by Unity Technologies.

Since Unity by default can do JPEG decoding, the
Image Encoding component is implemented using a
JPEG encoder [12]. While future work could use
inter-frame compression common in video systems
(e.g., H.264), JPEG encoding is sufficient to
implement and evaluate our Uniquitous prototype.

To evaluate frame rates achievable in Uniquitous, 44
configurations for Car Tutorial and 37 configurations
for Angry Bots were tested. Each configuration
varied the JPEG encoding quality factor and
resolution. To compute the frame rate, the time
differences between frames provided the average
frame intervals, and the inverse provided the frame
rates. Figure 3 shows the frame rate results for Angry
Bots. The x axis is the JPEG quality factor, and the y
axis is the frame rate. Each point is the framerate
average during a predefined period with trendlines
grouping the different screen resolutions. Note, the
higher resolution images are not tested at higher
JPEG quality factors since RPC limits prevent images
larger than 64 Kbytes from being transmitted.

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 3/4 2015

Figure 3. Frame rate versus JPEG quality factor for

Angry Bots

From Figure 3, Angry Bots can achieve a maximum
frame rate of 41 fps at a 210×114 resolution and 1
JPEG encoding. With the exception of this smallest
image resolution, decreasing the JPEG quality factor
does little to change the frame rate. However,
increasing the frame resolution has a pronounced
effect on decreasing the frame rate for both games.
Based on previous results [13], frame rate is more
important to players than resolution and a game
system needs to provide a minimum of 15 fps for
reasonable player performance. Both games tested
can achieve 15 fps at a resolution of 640×480, hence
is the recommended resolution setting for Uniquitous
on this hardware setup. Based on player pilot tests,
under these settings, both games are quite playable.

4. Frame Rate Predicting Model

With all the data collected from the experiments, we
made a model to predict Uniquitous frame rate for
configurations not yet tested. In order to build the
model, we used a Weka classifier [14] with a 10-fold
cross validation to make a linear regression model for
both games:

FCarTutorial = 1 / (0.1348 × R + 0.118 × Q + 21.0)
FAngryBots = 1 / (0.1361 × R + 0.1224 × Q + 22.5)

where F is the predicted frame rate, R is the total
pixel resolution divided by 1000, and Q is the JPEG
quality factor. In order to validate our model, new R
and Q values that had not been tested before were
chosen, 35 for the Car Tutorial and 30 for Angry Bots,
and the actual frame rates measured. The results are
show in Figure 4.

The x axis is the predicted frame rate and the y axis is
the actual frame rate as measured. Each point is the
average frame rate over the experimental run. The
diagonal line shows what would be perfect prediction.
Generally, most of the data points are near this line,

Figure 4. Actual versus predicted frame rate

showing that the model is generally quite accurate.
The points are somewhat closer to the line for frame
rates under 20 fps than for frame rates over 25 fps,
probably due to unaccounted for processing that
accumulates more with more frames per second. The
actual and predicted frame rates have a correlation of
0.995 for Car Tutorial and 0.981 for Angry Bots.

5. Conclusion

Realizing the potential for cloud gaming requires
testbed systems for researchers and developers. This
article introduces Uniquitous [5], an open source
cloud gaming system in Unity, providing a prototype
that can be used for evaluating cloud gaming
performance tradeoffs. Uniquitous seamlessly blends
with Unity game development, providing control not
only over the game system but also over the game
content in a cloud-based environment. Micro
experiments provide performance evaluation of the
Uniquitous components, macro experiments evaluate
game quality of the Uniquitous system, and a model
predicts Uniquitous frame rates for games and
hardware not yet tested. Validation of the model
shows effectiveness for predicting frame rate over a
range of configuration parameters. The evaluation
shows the Unity Project running the game is the most
time consuming component on the server when the
game image quality and resolution are both low, but
Image Encoding becomes the bottleneck for higher
resolutions. For our system testbed, JPEG quality
factors below 35 and resolutions below 640×480
pixels provide a configuration suitable for game play.

Future work can seek to increase Uniquitous frame
rates and/or support higher resolutions and image
qualities by addressing the identified bottlenecks. In
addition, more game genres can be tested, exploring
the relationship between the game genre and cloud

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 4/4 2015

gaming performance. Lastly, since Unity IOS and
Android are fully supported by Unity, Uniquitous can
be extended and evaluated on mobile devices,
helping research and development of cloud-based
games on wider range of clients.

References
[1] “Distribution and Monetization Strategies to Increase

Revenues from Cloud Gaming,” goo.gl/YnlE9V, 2012,
accessed 01-May-2014.

[2] OnLive: http://onlive.com/
[3] StreamMyGame: http://streammygame.com/
[4] C. Huang, Y. C. C. Hsu, and K. Chen,

“GamingAnywhere: An Open Cloud Gaming System,”
in Proceedings of ACM MMSys, Oslo, Norway, Feb.
2013.

[5] Uniquitous: http://uniquitous.wpi.edu/
[6] Unity3d: http://unity3d.com/
[7] “Unity Company Facts”: http://unity3d.com/public-

relations, accessed 09-Jun-2015.
[8] Meng Luo and Mark Claypool. “Uniquitous:

Implementation and Evaluation of a Cloud-based Game
System in Unity”, In Proceedings of the IEEE Games,

Entertainment, Media Conference (GEM), Toronto,
Canada, October 2015.

[9] M. Luo, “Uniquitous: Implementation and Evaluation
of a Cloud-Based Game System in Unity 3D,” Master’s
Thesis, Worcester Polytechnic Institute, 2014, adv: M.
Claypool.

[10] Car Tutorial:
 https://www.assetstore.unity3d.com/en/#!/content/1012
[11] Angry Bots:
 https://www.assetstore.unity3d.com/en/#!/content/12175
[12] A. Broager, “JPEG Encoder Source for Unity in C#,”

goo.gl/FwOfOW, accessed 06-May-2014.
[13] M. Claypool and K. Claypool, “Perspectives, Frame

Rates and Resolutions: It’s all in the Game,” in
Proceedings of Foundations of Digital Games (FDG),
FL, USA, Apr. 2009.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, and I. H. Witten, “The WEKA Data
Mining Software: An Update,” SIGKDD Explorations,
vol. 11, no. 1, 2009.

Meng Luo received a
B.Eng. degree in

Telecommunications
Engineering with
Management from Beijing
University of Posts and
Telecommunications in
2012. He received an M.S.
degree in Interactive Media
and Game Development

from Worcester Polytechnic Institute in 2014.
Currently he is working as a software engineer at
Advanced Visual Systems, Inc.

Mark Claypool is a
Professor in Computer
Science and Interactive
Media & Game
Development at Worcester
Polytechnic Institute in
Massachusetts, USA. Dr.
Claypool earned M.S. and
Ph.D. degrees in Computer
Science from the University
of Minnesota in 1993 and

1997, respectively. His primary research interests
include multimedia networking, congestion control,
and network games.

