
A Credit-based Home Access Point (CHAP)

to Improve Application Quality on IEEE 802.11 Networks

by

Choong-Soo Lee

A Dissertation

Submitted to

The Academic Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in

Computer Science

by

June 2010

Committee:

Professor Mark Claypool - Computer Science, Worcester Polytechnic Institute

Professor Robert Kinicki - Computer Science, Worcester Polytechnic Institute

Professor Craig Wills - Computer Science, Worcester Polytechnic Institute

Professor Carey Williamson - Computer Science, University of Calgary

Abstract

Increasing availability of high-speed Internet and wireless access points has allowed home

users to connect not only their computers but various other devices to the Internet. Ev-

ery device running different applications requires unique Quality of Service (QoS). It has

been shown that delay-sensitive applications, such as VoIP, remote login and online game

sessions, suffer increased latency in the presence of throughput-sensitive applications such

as FTP and P2P. Currently, there is no mechanism at the wireless AP to mitigate these

effects except explicitly classifying the traffic based on port numbers or host IP addresses.

We propose CHAP, a credit-based queue management technique, to eliminate the explicit

configuration process and dynamically adjust the priority of all the flows from different

devices to match their QoS requirements and wireless conditions to improve application

quality in home networks. An analytical model is used to analyze the interaction between

flows and credits and resulting queueing delays for packets. CHAP is evaluated using Net-

work Simulator (NS2) under a wide range of conditions against First-In-First-Out (FIFO)

and Strict Priority Queue (SPQ) scheduling algorithms. CHAP improves the quality of an

online game, a VoIP session, a video streaming session, and a Web browsing activity by

20%, 3%, 93%, and 51%, respectively, compared to FIFO in the presence of an FTP down-

load. CHAP provides these improvements similar to SPQ without an explicit classification

of flows and a pre-configured scheduling policy. A Linux implementation of CHAP is used

to evaluate its performance in a real residential network against FIFO. CHAP reduces the

web response time by up to 85% compared to FIFO in the presence of a bulk file download.

Our contributions include an analytic model for the credit-based queue management, sim-

ulation, and implementation of CHAP, which provides QoS with minimal configuration at

the AP.

Contents

Contents i

List of Tables iv

List of Figures vi

1 Introduction 1

1.1 Motivation . 1

1.2 The Dissertation . 5

1.3 Contributions . 8

1.4 Roadmap . 9

2 Background 11

2.1 User Activities and Their Network Characteristics 11

2.2 Wireless Networks . 19

2.2.1 Overview of Wireless Network . 20

2.2.2 IEEE 802.11 Wireless Local Area Network (WLAN) 22

2.3 Process Schedulers . 27

2.4 Active Queue Management . 32

2.5 Quality Metrics . 34

2.6 Summary . 37

3 Related Work 39

3.1 Wireless Home Networks and QoS . 39

3.1.1 IEEE 802.11e . 39

3.1.2 Home Network QoS Enhancement Research 42

3.2 Active Queue Management for QoS improvement 44

3.3 Traffic Classification . 52

3.3.1 Port-based Classification . 52

3.3.2 Packet Payload-based Classification 54

3.3.3 Behavior-based Approaches . 55

3.3.4 Statistical Approaches . 56

3.4 Credit-based Active Queue Management . 57

3.5 Summary . 60

i

CONTENTS

4 Approach 63

4.1 Overview . 63

4.2 Algorithm . 65

4.3 Cost to Transmit a Packet . 68
4.4 Example . 69

4.5 Summary . 70

5 Analytical Model 73

5.1 Credit Analysis . 73
5.2 Delay Analysis . 76

5.2.1 Probabilistic Priority Discipline . 77

5.2.2 Credit-based Probability . 81

5.2.3 Application of Probability Priority Discipline Queue on CHAP . . . 84

5.3 Wireless Considerations . 86

5.4 Bursts and Effect on CHAP Parameter I 88

5.5 Summary . 92

6 Simulation 95

6.1 User Activities in NS2 . 95

6.1.1 Online Games . 96
6.1.2 Voice over IP . 96

6.1.3 Video Streaming . 96

6.1.4 Web Browsing . 97

6.1.5 Downloading Files . 98

6.2 Simulation Validation . 99

6.3 Model Validation . 103

6.4 Shadowing Model and Transmission Statistics over Distance 104
6.5 Simulation Topology . 106

6.6 Queue Size . 107

6.7 Distances . 110

6.7.1 Distance of the Application Node under Test 111

6.7.2 Distance of the FTP Node . 114

6.7.3 Distance of Both Nodes . 117

6.8 Multiple Applications . 120

6.9 Peer-to-Peer Application . 122
6.10 Edge Behavior . 127

6.11 Latency and Web Application Performance 128

6.12 TCP Congestion Control and Performance 130

6.13 TCP Fairness . 132

6.14 Summary . 136

7 Implementation 139

7.1 Linux Qdisc . 139

7.2 Validation . 141

7.2.1 Validation Setup . 141

7.2.2 Without Frame Errors . 143

ii

CONTENTS

7.2.3 With Frame Errors . 145
7.3 Case Study . 147

7.3.1 Case Study Setup . 148
7.3.2 Web Browsing . 148
7.3.3 Quake IV . 151

7.4 Summary . 152

8 Conclusions and Future Work 155
8.1 Summary . 155
8.2 Future Work . 158

A List of Acronyms 161

B Supplementary Figures 168

Bibliography 184

iii

List of Tables

2.1 User Activities and Network Characteristics 19

3.1 Priority and Access Categories of IEEE 802.11e 40

3.2 Typical QoS Parameters of 802.11e . 40

3.3 Transport Protocols and Ports Used by “Well Known” Applications 53

3.4 Procedures of Payload-based Classification 54

3.5 Flow selection criteria of CBFQ and WCFQ 58

4.1 Example: Table of credits vs. time for flows 1, 2, and 3 70

4.2 Example: Table of queueing delays of each packet 71

5.1 Summary of all the variables . 73

5.2 Variables used in delay analysis . 78

5.3 Wireless Example: Table of credits vs. time of flows 1, 2 and 3 88

5.4 Example: Table of queueing delays of each packet 88

6.1 HTTP Model Parameters . 97

6.2 Simulation Validation Equipment Specification 100

6.3 Some typical values of path loss exponent β 105

6.4 Some typical values of shadowing deviation σdb 105

6.5 Parameters for Queue Size Scenario . 108

6.6 Parameters for Application Node Distance Scenario 111

6.7 Parameters for FTP Node Distance Scenario 114

6.8 Parameters for Both Node Distance Scenario 118

6.9 Parameters for Multiple Applications Scenario 121

6.10 Summary of Performance Metrics . 121

6.11 Parameters for Peer-to-Peer Scenario . 122

6.12 Parameters for Latency Scenario . 129

6.13 Parameters for TCP Congestion Control and Latency Scenario 130

6.14 Parameters for Latency Scenario . 132

7.1 Website Composition Data . 150

B.1 Multiple Application Scenario - Summary of Performance Metrics (No FEC) 168

B.2 Multiple Application Scenario - Summary of Performance Metrics (Small
FEC) . 168

iv

LIST OF TABLES

B.3 Multiple Application Scenario - Summary of Performance Metrics (Large
FEC) . 169

v

List of Figures

1.1 Typical Internet setup for home . 2

1.2 The Block Diagram of CHAP . 6

2.1 Characteristics of Network Applications . 20

2.2 Ad-hoc and Infrastructure Mode . 24

2.3 802.11 Frame Transmission . 26

2.4 Process States and Network Application States 28

2.5 Example of a Traditional UNIX Process Scheduling 30

3.1 DiffServ Architecture . 47

3.2 CBFQ Algorithm . 58

3.3 WCFQ Algorithm . 59

4.1 CHAP Algorithm for Downstream Traffic 66

4.2 Cost of a packet . 68

4.3 Example: Graph of credits vs. time of flows 1, 2 and 3 70

5.1 Probabilistic Priority Discipline Queue . 77

5.2 Example of overlapping four ranges of credits 82

5.3 Conditional probability for overlapping regions between flows i and i + 1 . . 83

5.4 Change in delay relative to κ . 85

5.5 Wireless Example: Graph of credits vs. time of flows 1, 2 and 3 87

5.6 Bursts and Effects on Credits . 90

6.1 Simulation Validation Setup . 99

6.2 Simulation vs. Experiment: Throughput . 101

6.3 Simulation vs. Experiment: Inter-arrival Times of Game Packets 101

6.4 Simulation vs. Experiment: G-model MOS 102

6.5 Mean Queueing Delay from Analytical Model and Simulation 103

6.6 Transmission Statistics over Distances . 106

6.7 Simulation Setup . 106

6.8 Improvement of Game vs. Queue Size . 108

6.9 Improvement of VoIP vs. Queue Size . 109

6.10 Improvement of Video vs. Queue Size . 109

6.11 Improvement of Web vs. Queue Size . 110

6.12 Application Distance Case (Game) . 111

vi

LIST OF FIGURES

6.13 Application Distance Case (VoIP) . 112

6.14 Application Distance Case (Video) . 113

6.15 Application Distance Case (Web) . 114
6.16 FTP Distance Case (Game) . 115

6.17 FTP Distance Case (VoIP) . 115

6.18 FTP Distance Case (Video) . 116

6.19 FTP Distance Case (Web) . 117
6.20 Both Distance Case (Game) . 118

6.21 Both Distance Case (VoIP) . 118

6.22 Both Distance Case (Video) . 119

6.23 Both Distance Case (Web) . 120
6.24 P2P Throughput and Game Quality . 122

6.25 P2P Throughput and VoIP Quality . 123

6.26 Throughputs and Video Quality with No FEC 124

6.27 Throughputs and Video Quality with Small FEC 125
6.28 Throughputs and Video Quality with Large FEC 125

6.29 Throughputs and Web Quality . 126

6.30 Edge Condition (Video) . 127
6.31 Edge Condition (Web) . 128

6.32 Web Performance over Different Latencies 129

6.33 TCP Performance and Impact on Queue Size over Different Latencies . . . 130

6.34 Queue Size over Time (L1 = 125ms) (q = 35 packets) 131
6.35 Queue Size over Time (L1 = 125ms) (q = 350 packets) 133

6.36 TCP Fairness over Distances . 134

6.37 Congestion Window (L1 = 2 ms) . 135

6.38 Congestion Window (L1 = 150 ms) . 136

7.1 Probability of Successful Transmissions . 141

7.2 Controlled Experiment Topology . 142

7.3 Controlled Experiment (Validation) . 143

7.4 Controlled Experiment (Validation) - Queue Size 144
7.5 Controlled Experiment (Validation) - G-model and Queue Size (FIFO) . . . 144

7.6 Controlled Experiment (Validation) - CPU and Memory Usage 145

7.7 Matching Frame Error Rates and Simulation Distances 146

7.8 Controlled Experiment (Distance Error Emulation) 147
7.9 Case Study Experiment Topology . 148

7.10 Sample Websites . 149

7.11 Web Response Time . 150
7.12 Quake IV Servers around the World . 151

7.13 CDF of Quake IV Server Pings . 152

B.1 Congestion Window (10ms) . 169

B.2 Congestion Window (20ms) . 170
B.3 Congestion Window (50ms) . 171

B.4 Congestion Window (100ms) . 172

B.5 Congestion Window (150ms) . 173

vii

LIST OF FIGURES

B.6 Congestion Window (200ms) . 174
B.7 Congestion Window (250ms) . 175
B.8 Controlled Experiment (FER = 0.0001) - CPU and Memory Usage 176
B.9 Controlled Experiment (FER = 0.01) - CPU and Memory Usage 177
B.10 Controlled Experiment (FER = 0.10) - CPU and Memory Usage 178
B.11 Controlled Experiment (FER = 0.25) - CPU and Memory Usage 179
B.12 Controlled Experiment (FER = 0.50) - CPU and Memory Usage 180
B.13 Controlled Experiment (FER = 0.75) - CPU and Memory Usage 181

viii

Chapter 1

Introduction

1.1 Motivation

Affordable prices for wireless Access Points (APs) and increases in wireless link capacities

have driven homes, academic institutions and businesses to deploy Wireless Local Area

Networks (WLANs). The proposed IEEE 802.11n standard supports up to 600 Mbps in

the PHY layer [1]. IEEE 802.11n wireless APs from Linksys claim to support up to 270

Mbps [2]. Increases in wireless link capacities enable most, if not all, applications that were

only possible over wired network links to run over wireless. Such popularity in wireless

networks has also increased the use of IEEE 802.11 on portable devices such as cell phones,

PDAs and portable game devices.

Wireless APs have become popular in networking multiple devices at home and al-

lowing multiple individuals to share a single household Internet connection while doing

different activities simultaneously. People use not only desktop and laptop computers, but

also many other devices with network capabilities. These devices include gaming consoles

such as the Sony PlayStation and Microsoft Xbox, portable gaming consoles such as the

Sony PSP and Nintendo DS, Voice-over-IP (VoIP) phones, video streaming servers such as

Slingbox and LocationFree, cell phones such as iPhone and Blackberry, PDAs, and more.

Many applications that are run on these devices have different Quality-of-Service (QoS)

1

CHAPTER 1. INTRODUCTION

requirements. For example, a user playing a game on a Sony Playstation 3 wants low la-

tency to enjoy the online game. A user downloading a high-definition (HD) quality movie

trailer seeks consistent, high throughput. Multiple activities done over the same Internet

connection may cause congestion and degrade application performance for some of the

users. A typical example is when a user tries to use VoIP while another user downloads a

huge file, the VoIP suffers from choppy sound and an increase in delay.

An increase in latency for delay sensitive applications is an indication that there is a

queue buildup somewhere along the network path. Figure 1.1 depicts a typical network

setup at home. The broadband Internet service provider (ISP) provides access to their

network through a gateway. The ISP also provides a modem based on the connection type,

typically connected to a wireless AP. In some cases, the modem and the wireless AP are

combined into one device. There are three places of interest for congestion: ISP gateway,

modem and wireless AP. The link between the ISP gateway and modem depends on the

Internet subscription and connection type. The link between the modem and the wireless

AP is 100 Mbps to 1 Gbps Ethernet. Devices at home connect to the wireless AP at speeds

up to 270 Mbps over 802.11n. The queue is most likely to build up over a bottleneck link

and this depends on the connection capacity of the Internet from the ISP. Currently in

the US, the highest capacity Internet access offered is Fiber Optic Service (FiOS) from

Verizon [3]. Verizon currently offers up to 50 Mbps downstream and 20 Mbps upstream

and plans to increase their capacity up to 100 Mbps. With this setup, the ISP gateway is

most likely the source of congestion.

However, ISPs are trying to push faster broadband access to homes worldwide. Some

Asian countries already provide 1 Gbps to residences. Hong Kong Broadband Network

Figure 1.1: Typical Internet setup for home

2

1.1. MOTIVATION

(HKBN) has provided a 1 Gbps symmetric service for the residential market since April

2005 [4]. Approximately 800,000 households, out of a total of 2.2 million households in

Hong Kong, are wired to receive the service [5]. KDDI Corp in Japan has launched a

fiber-optic communications service with downstream and upstream speeds up to 1 Gbps

since October 2008 [6]. Both SK Broadband and Korea Telecom (KT) in South Korea have

been offering 100 Mbps for homes for years [7]. Europe is also moving towards increased

broadband service to homes. CityNet in Amsterdam has tested 1 Gbps fiber to residences

in September 2008 [8]. Sweden successfully tested a 40 Gbps Internet connection to a

home [9]. With such high bandwidths available to homes, it is likely that the wireless AP

will become the source of the bottleneck. Historically, wireless communication capacity

has been lower than wired capacity and will likely remain thus. Moreover, devices in

wireless networks share the same wireless spectrum as the medium for data transmission

and reception.

Calvert et al. argue that problems in home networks need to be solved in middle devices

rather than end hosts [10]. The authors list five difficulties users face in home networks:

provisioning, topological complexity, troubleshooting, security, and composition. With a

diverse set of devices connected in home networks, provisioning is essential to provide QoS

for all applications running on the devices. Misconfiguration of the network can cause

degradation in application quality and/or prevent users from accessing the Internet. In

addition, it is difficult for users to understand the physical and logical topology of home

networks. Increasing complexity in home network topologies requires extra security aware-

ness and configuration from users. Most home users are relatively unsophisticated users,

from a networking perspective, and troubleshooting problems in home networks is not an

easy task for them. Home users also need to be aware of security issues within and outside

home networks. The current Internet architecture lacks support for providing simple secu-

rity policies. The rich variety of networked devices makes composition an important issue.

Networked devices need to co-exist in home networks and provide compatibility with each

other. Based on these difficulties, the authors propose six requirements for the “smart mid-

3

CHAPTER 1. INTRODUCTION

dle” device: self-configuring/self-administering, secure by default, explicit user interface,

compatibility with existing external TCP/IP-based applications, application-independence

and support for composition. Self-configuring/self-administering takes the burden off home

users. Default security provides sufficient security for home networks. Explicit user inter-

face makes it easy for users to interact with and control home networks. Existing TCP/IP

applications must seamlessly work with the “smart middle” device. The “smart middle”

device must be independent of applications, providing a robust and evolvable network.

Ultimately, the “smart middle” device must support composition to allow devices to inter-

connect within home networks and to connect to the Internet. Wireless APs are “smart

middle” devices with a potential to meet most, if not all, requirements.

There are approaches implemented by the manufacturers for wireless APs to provide

basic QoS support. Some wireless APs support prioritizing physical Ethernet ports for a

specific device connected over a cable. They also support prioritizing flows based on their

protocol type and transport layer port for known traffic. While these approaches may

be easy and satisfactory for some users who know how to configure wireless APs, typical

Internet users have considerable difficulty understanding and configuring APs. Even with

experienced users, these solutions have some limitations. For port-based priorities, users

need to know the protocols and ports that applications use. It is also difficult for new

applications to receive appropriate treatment. Moreover, the traffic that goes through the

wireless APs is dynamic and is not always the same mix of applications. These limitations

have prompted research in classification of flows to provide specific QoS needs for them.

Classification of flows removes the need for users to configure their wireless APs to

prioritize their traffic. Instead wireless APs examine the flows and classify them auto-

matically. However, there are limitations to current classification approaches due to the

dynamic nature of wireless conditions. Once classification of flows takes place, flows are

treated according to the class in which they are placed. For example, VoIP flows get VoIP

treatment while video flows get video treatment. However, if the VoIP client is connected

over wireless, the client condition might change based on physical location or interference.

4

1.2. THE DISSERTATION

If the connectivity gets worse and the AP tries to give priority to the VoIP flow, everyone’s

performance suffers due to the AP trying to forward traffic to the client with a poor wire-

less connectivity. In such a situation, it is recommended to move away from giving priority

to flows with poor connectivity [11].

Therefore, this dissertation focuses on the importance of dynamic wireless conditions

and application quality improvement. Credit-based queue management that classifies flows

implicitly based on the flows’ characteristics and changes priority of flows dynamically

according to wireless connectivity is proposed to be deployed in wireless APs at home.

By utilizing credit-based queue management, delay sensitive flows can benefit from lower

latency and wireless APs can dynamically adjust priority to different flows to give higher

overall QoS in home networks.

1.2 The Dissertation

The goal of the dissertation is to improve overall quality of applications in a home net-

work by using credit-based queue management at the wireless AP. Figure 1.2 depicts the

proposed module and its interaction between layers. The network layer queue, which is

represented by a white block, is managed by the proposed credit queue management. The

data link layer provides feedback for the network layer queue to help out with credit cal-

culation. As discussed in Section 1.1, the queue is most likely built up on the downstream

traffic and not on the upstream traffic because both downstream and upstream bandwidth

offered by ISPs exceed the wireless bandwidth. Therefore, the upstream queue is not to be

controlled by credit-based queue management.

The assumption is that the wireless link at home is the bottleneck connection in an

end-to-end network path. The more a flow uses the network, the more credits it drains

while the less a flow uses the network, the fewer credits it drains. Prioritizing the flow

with the highest number of credits lowers the latency for that flow. The credit is in units

of time and the deduction is based on the transmission time of the corresponding frames

through the wireless data link layer. In addition, typical bandwidth usage of applications

5

CHAPTER 1. INTRODUCTION

characterize flows adequately for an implicit classification. Delay-sensitive flows such as for

VoIP, online games and remote login sessions have relatively low bandwidth while delay-

insensitive flows such as for file transfer and video streaming tend to use higher bandwidth.

The inverse relationship between delay requirement and bandwidth usage fits nicely with

credit-based schemes.

It is known that the overall performance of wireless networks can be severely decreased

when having one node with poor wireless connectivity. Therefore, if there are delay-

sensitive applications running on a node with a poor connection, it may not be best to

give priority to those applications [11]. Explicit classification methods and scheduling algo-

rithms would continue to give delay-sensitive flows priority, decreasing overall performance

of the wireless network. However, credits based on transmission time naturally reduce the

credits of flows with poor wireless connectivity, resulting in lower priority for those flows.

Figure 1.2: The Block Diagram of CHAP

Figure 1.2 depicts CHAP components involved inside a wireless access point. Down-

6

1.2. THE DISSERTATION

stream traffic into the home network follows light arrows while upstream traffic into the

Internet follows dark arrows. Downstream traffic comes into the wireless access point

through the IEEE 802.3 Ethernet data link layer and is passed to the downstream traffic

queue. A packet from this queue is selected based on credit information kept along with

Network Address Translation (NAT) information that the wireless AP tracks. Once the

packet is selected, it is sent to the IEEE 802.11 wireless data link layer to be transmitted.

When transmission completes, the IEEE 802.11 wireless data link layer relays transmission

time information to the NAT component to update the credit. Upstream traffic comes in

through the IEEE 802.11 wireless data link layer and goes to the upstream traffic queue.

Most likely, there is no queue build-up on the upstream.

The dissertation consists of the following components:

• Model. The range of credits of flows are estimated based on their bandwidth usage.

Then, a delay model for a probabilistic priority discipline queue is used to analyze the

average queueing delay of flows based on their range of credits. The model shows that

CHAP can reduce delay for flows with relatively lower bandwidth usage compared to

the FIFO queueing discipline.

• Validation. The mathematical model requires validation. CHAP is implemented

and evaluated using Network Simulator (NS2) [12] and used to validate the model.

Performance data from the simulations using the scenarios in the mathematical model

are compared to the results of the model.

• Evaluation. Once the model is validated, a wide range of simulation scenarios is run

using NS2 to provide performance analysis of CHAP under various conditions. The

difference in scenarios include dynamic wireless conditions (devices with good and

poor wireless connectivity), number of devices, and different mixes of user activities.

The quality of these activities is calculated using well-known quality metrics and

compared to performance with a traditional First-In-First-Out (FIFO) and Strict

Priority Queue (SPQ) queue access point.

7

CHAPTER 1. INTRODUCTION

• Implementation. CHAP is implemented as a queueing discipline (Qdisc) in Linux

as a proof of concept. The Linux machine is modified to act as a bridge, emulating

an IEEE 802.11g network in a 100 Mbps Ethernet network. The implementation is

validated against simulation results, and a few case studies are conducted in a real

environment to demonstrate the efficacy of CHAP.

1.3 Contributions

The main contribution of this dissertation is the design and evaluation of the Credit-based

Home Access Point (CHAP) to improve the quality of Internet applications in wireless

home networks. The specific contributions include:

• The design and configuration of credit-based queue management for wireless home

access points. Our Credit-based Home Access Point (CHAP) provides better quality

for applications in home networks with minimal configuration and without changes to

end hosts. We provide an evaluation of CHAP in comparison with First-In-First-Out

(FIFO), the default queue management in APs, as the baseline, and Strict Priority

Queue (SPQ) as the best case in most cases, given an explicit, static classification

and scheduling algorithm. Through a simulation study, we demonstrate that CHAP

provides simple and effective application quality improvement. The results also show

that CHAP provides significant improvement for delay-sensitive applications while

maintaining the quality for delay-insensitive applications, and adapts to dynamic

wireless conditions over a wide range of realistic traffic mixes and loads.

• Analytical modeling of CHAP. We model CHAP’s behavior by examining the stable

credit ranges for flows and applying the known queueing model for a Probabilistic

Priority Discipline Queue (PPDQ). The model demonstrates how average queueing

delays of flows are related to the ratio of their rates. We also analyze the parameter

I, the only configuration variable of CHAP, and recommend a suitable value for I.

• The implementation and evaluation of the CHAP system. We implement CHAP as

8

1.4. ROADMAP

a queueing discipline (Qdisc) in Linux. Evaluation in a home network demonstrates

significant improvement in quality for Web browsing and online games over FIFO in

the presence of a delay-insensitive application.

• Validation of NS2 simulation. We mirror the same set of scenarios in NS2 and in the

real world. The comparison of results shows that NS2 simulations provide similar

trends as the experiments. The gap between the simulation and experimental results

suggests TCP protocol implementation differences and provides evidence of unsimu-

lated factors such as system level overheads and interference in wireless networks.

• The design and implementation of a video streaming application in NS2. The video

streaming application uses video traces [13, 14] and sends frames at the encoded rate

over UDP. Moreover, the video streaming application is capable of adding Frame

Error Correction (FEC) data for more robust streaming.

• Simulation and analysis of TCP variants. TCP NewReno [15], BIC [16], CUBIC [17]

and Compound [18] are simulated to demonstrate their differences in congestion

window, queue size and throughput. It is important to understand the differences

in TCPs because modern operating systems default to different congestion control

mechanisms. Simulation results demonstrate that CUBIC provides the most stable

throughput with a small queue limit while Compound provides the lowest queue size

with a large queue limit.

1.4 Roadmap

The remainder of this dissertation is organized as follows: Chapter 2 provides background

knowledge to the work in this dissertation; Chapter 3 discusses related research in the areas

of QoS management, traffic classification, and credit-based queue management; Chapter 4

describes the approach; Chapter 5 presents the analytical model of the approach; Chapter 6

describes validation of the analytical model presented in Chapter 4 and evaluation of the

approach through simulations; Chapter 7 presents details of the Linux implementation,

9

CHAPTER 1. INTRODUCTION

validation and case studies; and Chapter 8 concludes this dissertation research and lists

possible future work.

10

Chapter 2

Background

This chapter reviews fundamental techniques and terminologies referenced in the disser-

tation. Section 2.1 reviews user activities such as Web browsing, file downloads and au-

dio/video streaming, along with their network characteristics. Section 2.2 reviews wireless

network techniques, including general characteristics of wireless media and IEEE 802.11

Wireless LAN (WLAN). Section 2.3 describes process scheduling techniques and their rele-

vance to packet scheduling techniques. Section 2.4 introduces a taxonomy for active queue

management techniques. Section 2.5 reviews all the metrics used to measure the quality of

applications tested in simulation and experiment.

2.1 User Activities and Their Network Characteristics

Users engage in a variety of activities on their network devices over the Internet at home.

Common activities include emailing, instant messaging, listening to online radio, watching

online video clips, talking with/without video, browsing the Web, playing online games,

and downloading files. Each activity may take place over multiple applications. For ex-

ample, instant messaging is done over many different applications such as America Online

(AOL), Yahoo, Google, and MSN. Video streaming can be done over Windows Media

Player, YouTube, RealPlayer, and QuickTime Player. Despite the differences in applica-

tions, the applications supporting each user activity tend to share common characteristics.

11

CHAPTER 2. BACKGROUND

Network characteristics of interest are bandwidth usage, duration, number of flows, and

burstiness with respect to bandwidth and delay requirements. Bandwidth usage and delay

requirements are particularly important to our approach.

Online games Video games have been around as a form of electronic entertainment

since the 1960s. Some games in the 1980s were online through Bulletin Board Systems

(BBS), but these were limited to those who had modems and phone lines to connect to

such services. As the Internet became popular in the 1990s, computer games started

connecting players across the world. In 1996, Quake was the pioneer in the computer

gaming industry to connect players over the Internet. Ever since, many different genres

of games use the Internet to connect their players across the world. Console games were

initially not networked but Sony PlayStation and Microsoft XBox were able to offer online

services to their customers by introducing network adapters. Now Sony and Microsoft

offer PlayStation Network [19] and XBox Live [20], respectively, for games to be played

online on their consoles. Nintendo also offers online game play to Wii players. In addition

to computers and consoles, there are portable gaming devices such as Sony PlayStation

Portable (PSP) and Nintendo DS that take advantage of the wireless network to connect

players in the same vicinity.

There are many genres of online video games: First Person Shooter (FPS), Real Time

Strategy (RTS), Massively Multiplayer Online (MMO), Turn-based Strategy, Puzzles, etc.

A popular game in the FPS genre is Halo 2 by Bungie on the XBox gaming console. Zander

and Armitage examine the characteristics of Halo 2 [21] network traffic [22]. Halo 2 players

can act as both a server and a client. Each gaming console can support up to four players.

Zander and Armitage find that the packets from client consoles to the server console are

consistent in packet size while the packets from the server console to client consoles have

wider variation [22]. The packet sizes also scale with the number of players in the game

and also on one console. The client consoles show mean bandwidth of 25 Kbps with four

players, which is the maximum number of players on one console. The server console shows

mean bandwidth of 55 Kbps with 12 players. The mean inter-arrival times for both the

12

2.1. USER ACTIVITIES AND THEIR NETWORK CHARACTERISTICS

server console and client consoles are 40 ms with small standard deviations.

Starcraft [23] is a popular game in the Real Time Strategy (RTS) genre, although now

over 10 years old. Dainotti, Pescape, and Ventre measure the network traffic characteristics

of Starcraft [24]. Starcraft is a PC game and can only support one player on one machine.

Players connect to BattleNet [25] to find other players and then once the game session

starts, each player communicates with other players without going through BattleNet,

using the network model described in [26]. Starcraft supports up to eight players in a game

session, using UDP packets. The number of packets exchanged scales with the number of

players in the game session. Over 90% of the outbound and inbound packets are less than

25 bytes. Over 90% of the inter-departure times are less than 150 ms. Over 90% of the

inter-arrival times are less than 100 ms.

World of Warcraft (WoW) [27] is the most popular game in the Massively Multiplayer

Online (MMO) genre. A survey [28] done by MMOGCHART.COM [29] shows that 62.2%

of MMO players are subscribed to World of Warcraft as of April 2008. They analyze

the network traffic of World of Warcraft [30]. Svoboda, Karner, and Rupp define one

application data as a collection of packets, meaning that application data may not fit in

one packet. However, over 90% of downstream WoW data are less than 1500 bytes, implying

that most of the application data can fit in one packet. Every upstream application datum

is less than 250 bytes. Over 60% of inter-data time is less than 250 ms. Over 90% of the

downstream bandwidth is less than 15 Kbps while over 90% of the upstream bandwidth is

less than 5 Kbps.

The network traffic characteristics from Halo 2, Starcraft, and World of Warcraft can

be used to generalize the characteristics of online game network traffic. They all use small

amounts of bandwidth, both downstream and upstream. Their inter-arrival and inter-

departure times are mostly constant. Due to their interactive nature, their delay tolerance

is low. Armitage demonstrates that Quake 3 requires round-trip times of about 150-180

ms or lower for users to find it playable [31].

13

CHAPTER 2. BACKGROUND

Voice over IP Voice over IP (VoIP) technology surfaced in 1995 when a small company

called Vocaltec released the first Internet phone software. It ran on a home PC and ran

much like any PC phone software today. In 1998, VoIP traffic reached approximately 1%

of all voice traffic in the United States and jumped to 3% by 2000 with the help of Cisco

and Lucent manufacturing equipment designed to route and switch VoIP traffic. Currently

there are home devices that are built to support popular VoIP services such as Skype [32].

Sharafeddine, Riedl, Glasmann, and Totzke examine the network characteristics of VoIP

applications [33]. Two common voice coders mentioned are G.711 and G.723.1 [34]. G.711

uses 64 Kbps of bandwidth and its frames are 0.125 ms long while G.723.1 uses 6.3 Kbps or

5.3 Kbps and its frames are 30 ms long. Measurements from IP phones and VoIP gateways

show that both protocols produce constant bit rate traffic with low standard deviation for

inter-arrival times. G.711 uses packet sizes of 200 bytes with a mean inter-arrival time of

20 ms. This yields an average bit rate of 80 Kbps. G.723.1 uses packet sizes of 64 bytes

with mean inter-arrival time of 30 ms. This results in an average bit rate of 17 Kbps.

Therefore, VoIP applications have low bandwidth requirement but delay tolerance is low

due to its interactive nature. The action of a user on each end has to reach the other party

in a reasonable amount of time to have a smooth interactive session. VoIP quality is good

with 150 ms of latency or lower and it gets poor as it goes beyond 400 ms, according to

the specification for premium IP service [35].

Many instant messenger clients support video communication on top of audio. Nor-

mally users can see each other through Web cams while they are talking to each other

online via audio and/or instant messages. This is a case of video streaming both upstream

and downstream. Just like voice communication, the delay tolerance is low for a video

conference while the bandwidth requirement is higher than for audio.

Audio and video streaming Many users stream audio and video online. By audio

and video streaming, we mean primarily one-way traffic from a server to the users in a

non-interactive session. As the Internet bandwidth has increased for home users, it has

become easier to stream audio and/or video without having to download and store the

14

2.1. USER ACTIVITIES AND THEIR NETWORK CHARACTERISTICS

media on the computer.

Research in 2001 [36] by MacInTouch [37] showed that Real Player [38] dominates

the market share. The number of unique users of Real Player was more than Windows

Media [39] and QuickTime [40] combined. Real Player had about 30% of the market

share while Windows Media and QuickTime are only around 10%. However, more recent

research [41] by Research and Markets [42] shows that Windows Media has grown to

over 50% of the market share followed by Flash [43]. Real Player is down to 9.3% while

Quicktime to about 2%. An analysis by compete in 20081 shows that 49.0% of Web video

viewing visits are to YouTube.

Windows Streaming Media (WSM) and Real media have different network character-

istics from Flash and QuickTime. WSM and Real media are transmitted at a certain rate

either over TCP or UDP [44]. Depending on the available bandwidth, both have mecha-

nisms to adapt their rate. QuickTime can be downloaded using HTTP or streamed using

RTP/RTSP [45]. Flash offers three modes of video delivery: embedded video, progressive

download, and streaming delivery. A Flash object includes a video in the embedded video

mode, while it includes a link to a video in the progressive download mode. In these modes,

the video is downloaded to the user over an HTTP connection. A Flash object streams

a video using HTTP in the streaming delivery mode. Because of our definition of au-

dio/video streaming, the one-way delay is not a factor in QoS. Therefore, latency tolerance

for audio/video streaming traffic is relatively high. Audio streaming uses low bandwidth

such as 64-192 Kbps while video streaming can use up to 3.7 Mbps (YouTube 1080p HD

content2).

As cable companies reach millions of homes to provide more channels than traditional

broadcast services, many home users view programs on available channels on their sub-

scription plan. However, it is hard for people to watch the programs once they are away

from home on business or vacation. Sling Media developed SlingBox [46] and Sony devel-

oped LocationFree [47] as a solution for these customers. These products can deliver TV

1http://blog.compete.com/2008/09/04/online-video-share-july-youtube-myspace-blinkx-crackle/
2http://www.digitalsociety.org/2009/11/youtube-will-support-1080p-3-7-mbps-next-week/

15

CHAPTER 2. BACKGROUND

channels from the home to the Internet. In other words, users can stream cable channels

over the IP network to their Internet location outside the home. Orb Networks developed

Orb to deliver media files on a computer over the Internet [48]. These home streaming

systems are applications with video streaming where the network traffic is mostly upstream

and not downstream.

Web browsing Web browsing is perhaps the most popular activity users engage in at

home. The Web, also known as the World Wide Web (WWW), was primarily adopted for

university-based research early on with the Hypertext Transfer Protocol (HTTP) and Go-

pher protocol to transfer a file rather than common Hypertext Markup Language (HTML) [49].

Early browsers include Mosaic [50] and Netscape, which has become FireFox/Mozilla today.

Commercialization of the Web started in 1996 and continues to grow. Between 1999 and

2001, many startup companies ventured into the WWW during the “Dot-Com” boom. The

introduction of Web 2.0 allows browsers to share and exchange information in an ad hoc

fashion through technologies such as Asynchronous Javascript and XML (AJAX). Popular

browsers today include Internet Explorer [51], FireFox [52], Chrome [53], Safari [54], and

Opera [55].

Charzinski analyzes Web data sets collected using Tcpdump [56] on a FreeBSD com-

puter connected to a local area network with client computers and their connection to the

Internet [57]. Their traces show that about 50-60% of objects can be transferred in one or

two IP data packets. This implies that most of the TCP connections used for Web object

transfers do not leave the slow start phase. However, today, the introduction of AJAX has

increased the amount of data transferred for a single Web page. AJAX-enabled Web pages

keep polling the server for new content without the user moving on to a different Web page.

Schneider, Agarwal, Alpcan, and Feldmann show that the amount of data transferred can

be as much as 10 MB per connection [58]. The bytes transferred over one HTTP con-

nection for AJAX Web pages is significantly higher than that for non-AJAX Web pages.

The data analysis from [58] shows that 81.8% of the HTTP payload was less than 10 KB

for complete HTTP traffic while 39.6% of the Google Maps [59] traffic was less than 10

16

2.1. USER ACTIVITIES AND THEIR NETWORK CHARACTERISTICS

KB. Therefore, we can characterize Web traffic as having relatively low bandwidth but

sometimes downloading a large amount of data on AJAX-type Web pages. Web browsing

is an interactive activity for users where latency tolerance is relatively low [60]. Because

users can take time to read the Web pages, the traffic can appear to be bursty at times as

the users click on a link to move to another Web page. Authors show that the inter-request

time ranges from 10 ms to 10 seconds for a complete HTTP traffic trace [58].

Downloading files File downloads and emails are also common user activities at home.

Users download documents, pictures, videos, and music over the Internet. File downloads

are commonly done over TCP connections for reliable transfer of data with various types

of application protocols.

Emails are commonly accessed through Post Office Protocol (POP) or Internet Message

Access Protocol (IMAP) servers, but Web versions of email are popular today. Services

such as HotMail [61], GMail [62], and Yahoo Mail [63] offer email access through browsers.

Web emails can be characterized as similar to the Web traffic explained above. However, if

users are using an e-mail application to download the e-mails and attachments, the traffic

resembles that of a file download.

Users prefer to complete downloads quickly but the latency tolerance is high because

they can do other activities while waiting for the download. There is no absolute bandwidth

requirement for file download, but this application tries to use all the available bandwidth

on the network.

Peer-to-peer networking Traditionally, file transfer was done over HTTP and File

Transfer Protocol (FTP), but Peer-to-Peer (P2P) protocols have grown to support file

downloads. A P2P survey [64] lists P2P protocols such as Freenet [65], Gnutella [66],

FastTrack/KaZaA [67], BitTorrent [68], and Overnet [69]/eDonkey [70]. Network traffic

on P2P networks differs greatly from traditional file transfers. As the name suggests, files

are transferred from one peer to another. P2P applications not only download parts of a

file that a user wants, but also upload files or parts of the file that have been downloaded

17

CHAPTER 2. BACKGROUND

already. Most P2P applications use all the available bandwidth for both downloading and

uploading and open up hundreds of connections. On a flow-by-flow basis, flows may look

like they are using a small amount of bandwidth, but the P2P application may be using a

large amount of bandwidth overall. Basher et al. analyze Web and Peer-to-Peer traffic [71].

Although P2P applications are designed to share relatively large files and over 80% of flows

are larger than 10 KB, there is a small fraction of packets that are less than 5 KB, which

carry control information. P2P applications use multiple flows as shown in [72] and [73].

P2P flows transferred data with a mean of 362.40 KB and a median of 1.17 KB while

lasting for a mean of 123.54 seconds and a median of 24.80 seconds. Once again, since

this is under the category of a file download, delay tolerance is high and all the available

bandwidth is used.

Instant messaging Users at home started online instant messaging in the early 1990s

through major online services such as America Online (AOL), Prodigy and CompuServe.

Instant messaging has become popular with the launch of ICQ developed by Mirabilis in

1996 [74]. ICQ client software allows users to connect to ICQ servers and to communi-

cate with other people online. The major online services adopted the ICQ model and

introduced their own instant messaging software. Billions Connected3 identifies Microsoft

Network (MSN) [75], America Online (AIM) [76], ICQ [74], Yahoo [77], Jabber [78], Google

(GTalk) [79], and QQ [80] as the most popular instant messaging clients around the world.

According to their research in July 2008, about 39% of users in the United States use AIM,

28% use Yahoo, and 26% use MSN [81]. According to research by comScore Media Metrix

in September 2004, 53 million adults trade instant messages and 24% of them exchange

instant messages more frequently than emails [82]. Not only adults but also teenagers

actively use instant messaging [83].

Xiao, Guo, and Tracey collect traces of AIM and MSN instant messaging sessions

and analyze the data [84]. In terms of bandwidth, AIM and MSN do not require much

bandwidth [84]. There are spikes of bandwidth up to 80 Kbps but these are due to one

3http://billionsconnected.com/blog/

18

2.2. WIRELESS NETWORKS

or two file transfers and/or video/audio conversations. Most of the bandwidth usage is

about 1 Kbps or less for instant messages. In terms of types of messages, there are fewer

chat messages compared to hint and/or presence messages to the server that notify the

server of users’ information such as status. About 90% of the chat messages are less than

50 bytes, which fit in just one packet. The instant messaging users engaged in up to 12

to 15 conversations at a given time. About 95% of the users stayed logged on to instant

messaging service for 10 hours or less.

Table 2.1 and Figure 2.1 summarize the network traffic characteristics of user activities

discussed thus far. Figure 2.1 shows the relative relationship between delay tolerance and

bandwidth usage of each activity. Delay sensitivity and bandwidth usage are generally in-

versely related. In other words, the higher bandwidth an activity uses, the higher tolerance

it has for delay and vice versa. This becomes our key observation that drives the credit

mechanism described in Chapter 4.

Table 2.1: User Activities and Network Characteristics

User Activity Bandwidth Delay Tolerance

Instant Messaging low low
Video games low low
VoIP low low
Web browsing low low
Audio streaming low high
E-mail download low-high high
Web browsing (AJAX) medium-high low
Video conferencing high low
File download (FTP) high high
File download (P2P) high high
Video streaming high high

2.2 Wireless Networks

Wireless networks have proliferated in the past decade and are now widely used not only in

businesses and academic institutions but also in homes. While applications and protocols

19

CHAPTER 2. BACKGROUND

Figure 2.1: Characteristics of Network Applications

in wireless networks also function in wired networks, the characteristics of wireless networks

impact their performance. This section reviews wireless networks and introduces Wireless

Local Area Networks (WLAN) to illustrate characteristics of wireless networks.

2.2.1 Overview of Wireless Network

All wireless networks use a shared radio medium with potential high bit error rate caused by

attenuation, interference, fading and collision. This section summarizes the characteristics

of the wireless medium and categories of wireless networks.

• Shared Medium. The wireless medium requires broadcasting unlike in the wired

media. All the wireless transmissions share the same medium, resulting in half-

duplex communications. Collisions and interference can further degrade network

performance. Moreover, the shared medium is regulated and the capacity cannot

be increased by adding more media because the wireless is restricted to a limited

available frequency band.

• Propagation. Attenuation, reflection, diffraction, and scattering effects can occur

during wireless transmission. These effects cause multipath fading, resulting in time-

varying channel conditions that affect the application performance perceived by users.

20

2.2. WIRELESS NETWORKS

• Bursty channel errors. Wireless transmissions typically suffer higher bit error rate

than wired transmissions. The bit error rate can be 10−3 or higher due to the

attenuation, interference, and fading effects.

All these wireless characteristics may contribute to wireless network performance degra-

dation. Therefore, most of the wireless network protocols implement ways to overcome

these effects in wireless networks. Techniques such as Forward Error Correction (FEC),

Automatic Repeat reQuest for retransmission (ARQ), and rate adaptation are discussed

in Section 2.2.2.

There are five major types of wireless networks:

• Wireless Personal Area Network (WPAN). A WPAN is for networks that have a small

range. Bluetooth [85] is an example of protocols used in WPAN. These are usually

used with personal mobile devices to communicate with others. A Bluetooth headset

is an example of a device in a WPAN.

• Wireless Local Area Network (WLAN). A WLAN is widely used in both businesses

and homes because of ease of deployment. The most popular protocol used in a

WLAN is IEEE 802.11 [86], reviewed in detail in Section 2.2.2. Relative to a WMAN

and a WWAN, a WLAN has shorter range but higher capacities.

• Wireless Sensor Network (WSN). A WSN is composed of spatially distributed sen-

sors that cooperatively monitor conditions such as temperature, luminance, sound

and motion. Applications of WSNs includes agricultural and industrial monitoring.

ZigBee [87] is one of the protocols used in WSNs. WSN protocols are designed to

lower the power consumption.

• Wireless Metropolitan Area Network (WMAN). A WMAN is a wider area network

that can stretch out to a metropolitan area, generally the size of a city. WiMax [88] is

an example of such a protocol. Unlike cellular networks, WMAN cannot be accessed

nationally but is only available in the city where the service is available.

21

CHAPTER 2. BACKGROUND

• Wireless Wide Area Network (WWAN). A WWAN has the broadest coverage and

widely deployed today via the cellular infrastructure for data transmission. 2.5G

(Generation) services such as General Packet Radio Service (GPRS), Enhanced Data

Rates for Global Evolution (EDGE) and the next-generation 3G services are examples

of techniques used in WWANs.

Out of these wireless network techniques, WLAN is the most widely deployed wireless

networks at home. Therefore, the research focuses only on WLANs.

2.2.2 IEEE 802.11 Wireless Local Area Network (WLAN)

IEEE 802.11 is limited in scope to the Physical (PHY) layer and Medium Access Control

(MAC) sublayer. The IEEE 802.11 MAC layer begins with IEEE 802.3 Ethernet standard,

while the PHY layer supports a few variations, such as Direct Sequence Spread Spectrum

(DSSS), Frequency Hopping Spread Spectrum (FHSS), Orthogonal Frequency Division

Multiplexing (OFDM), and InfraRed (IR). The list of WLANs defined in the IEEE 802.11

standard [89] includes:

• 802.11 - The WLAN standard was originally 1 Mbps and 2 Mbps, using 2.4 GHz RF

and IR (1997). All the other 802.11 standards listed below are Amendments to this

standard, except for Recommended Practices 802.11F and 802.11T.

• 802.11a - 54 Mbps, 5 GHz standard (1999, shipping products in 2001)

• 802.11b - Enhancements to 802.11 to support 5.5 and 11 Mbps (1999)

• 802.11c - Bridge operation procedures, included in the IEEE 802.1D standard (2001)

• 802.11d - International (country-to-country) roaming extensions (2001)

• 802.11e - Enhancements: QoS, including packet bursting (2005)

• 802.11F - Inter-Access Point Protocol (2003, withdrawn February 2006)

• 802.11g - 54 Mbps, 2.4 GHz standard (backwards compatible with b) (2003)

22

2.2. WIRELESS NETWORKS

• 802.11h - Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)

• 802.11i - Enhanced security (2004)

• 802.11j - Extensions for Japan (2004)

• 802.11k - Radio resource measurement enhancements (2008)

• 802.11n - Higher throughput improvements using MIMO (multiple input, multiple

output) antennas (2009)

• 802.11p - WAVE - Wireless Access for the Vehicular Environment (such as ambu-

lances and passenger cars) (2010)

• 802.11r - Fast roaming Working “Task Group r” - (2008)

• 802.11s - Mesh Networking, Extended Service Set (ESS) (2010)

• 802.11T - Wireless Performance Prediction (WPP) - test methods and metrics rec-

ommendation (2008)

• 802.11u - Interworking with non-802 networks (for example, cellular) (2010)

• 802.11v - Wireless network management (2010)

• 802.11w - Protected Management Frames (2009)

• 802.11y - 3650-3700 MHz Operation in the U.S. (2008)

• 802.11z - Extensions to Direct Link Setup (DLS) (2007 - 2011)

• 802.11aa - Robust streaming of Audio Video Transport Streams (2008 - 2011)

IEEE 802.11e is discussed further in Section 3.1.

IEEE 802.11 offers two modes: infrastructure and ad-hoc. Figure 2.2 depicts the differ-

ence between the two modes. In ad-hoc mode, a group of wireless nodes form a decentralized

network where each node forwards data to other nodes to enable data transmission and is

23

CHAPTER 2. BACKGROUND

(a) Ad-hoc Mode (b) Infrastructure Mode

Figure 2.2: Ad-hoc and Infrastructure Mode

in charge of routing packets. This is useful for nodes that are in each other’s transmission

range with data that are just meant for those participating in the network. Ad-hoc mode

is used in portable gaming consoles such as Sony PlayStation Portable (PSP) [90] and Nin-

tendo DS [91]. Players on those consoles set up games and play with each other, forming

separate ad-hoc networks for each game session.

Infrastructure mode is where all the wireless nodes must communicate with an access

point (AP). This is the mode of the WLAN that is widely deployed in businesses and

homes. The AP routes all the packets. Thus, the nodes do not communicate directly with

each other without going through the AP first. The AP can also be connected to another

network or the Internet. Wireless providers offer Internet access “hotspots” to customers

at coffee shops, airports and other public areas. Use of wireless APs is an easy way also to

connect devices to the Internet because it does not require any physical wiring.

There are three types of frames in IEEE 802.11: management frames, control frames,

and data frames. Management frames enable nodes to establish and maintain communica-

tion with other nodes. There are many subtypes of management frames: authentication,

deauthentication, association request, association response, reassociation request, reassoci-

ation response, disassociation, beacon, probe request, and probe response. Beacon frames

are sent periodically by the AP to announce its presence and broadcast information such

as Service Set IDentifier (SSID) to the nearby nodes. A node can send out a probe request

frame to obtain information from other nodes. For example, a laptop can send out a probe

request frame to locate the APs within its range. A probe response frame is sent out by

24

2.2. WIRELESS NETWORKS

nodes that received a probe request frame. A node uses an association request frame to

connect to an AP of its choosing. Then the AP can send back an association response

frame to let the node know whether the request is granted or rejected. A reassociation

request frame is used to associate to another AP with the same SSID but with a stronger

signal. The AP with a stronger signal responds with a reassociation response frame to let

the node know if the request is granted or rejected. Authentication and deauthentication

frames are used for encryption. With an open system authentication, a node sends an

authentication frame to the AP and the AP sends another authentication frame to either

accept or reject the node. In a shared key authentication, a node sends an authentication

frame and the AP responds with another authentication message containing a challenge

text. Then the node has to encrypt it correctly with the shared key and send the encrypted

text back to the AP. Depending on the correctness of this encrypted text, the AP sends an

authentication frame back to either accept or reject the node. A deauthentication frame is

used when a node decides to terminate secure communications.

Control frames help out with the data frame delivery between nodes. There are three

subtypes of control frames: Request to Send (RTS), Clear to Send (CTS) and Acknowl-

edgment (ACK). An ACK frame is used to acknowledge successful transmission of DATA

frame. Data frames are literally frames with higher layer data. RTS and CTS frames are

used in conjunction with each other. A node with data to transmit sends an RTS frame

first to see if there is any collision. The destination node responds with a CTS frame to

let the sender know that the channel is free. RTS/CTS frames are optional and are not

required for data transmissions.

In IEEE 802.11, there exist two mechanisms to control access to the medium: Dis-

tributed Coordination Function (DCF) and Point Coordination Function (PCF). DCF is

a random access scheme based on Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) and it is supported by all IEEE 802.11 compatible devices. PCF is a cen-

tralized protocol that uses a point coordinator to determine which node has the right to

25

CHAPTER 2. BACKGROUND

transmit. However, PCF is an optional component and not widely deployed4.

Figure 2.3: 802.11 Frame Transmission

Figure 2.3 depicts a typical transmission of an 802.11 frame with DCF, also showing

the optional RTS/CTS transmission. When a node wants to send a frame, it starts to

sense the channel for a Distributed Inter-Frame Space (DIFS) to see if the channel is idle.

Then it sends out a RTS frame to see if it gets back a CTS frame. After Short Inter-Frame

Space (SIFS), the CTS should be received. Reception of the CTS frame indicates that

the channel is idle and there will not be any collisions from other stations transmitting.

Then the node sends its DATA frame out and should receive back an ACK frame after a

SIFS. The node must stay idle for at least DIFS after reception of the ACK frame before

attempting to transmit another frame.

IEEE 802.11 supports different maximum number of transmission attempts of RTS

and DATA frames based on their frame sizes. The IEEE 802.11 standard suggests that the

number of transmission attempts for frames less than the RTS Threshold is seven while it

is four for frames larger than the RTS Threshold. The RTS Threshold determines the use

of the RTS/CTS mechanism. If the DATA frame is smaller than the RTS Threshold, the

transmission occurs without the RTS/CTS exchange. Setting the RTS Threshold larger

than the Maximum Transmission Unit (MTU) disables the RTS/CTS exchange for all

transmissions. In this case, all the DATA frames are considered short frames and are

transmitted at most four times.

4http://www.wi-fiplanet.com/tutorials/article.php/1548381/80211-Medium-Access-Methods.htm

26

2.3. PROCESS SCHEDULERS

IEEE 802.11 supports a multirate physical layer. For example, the Extended Rate

PHY (ERP) of IEEE 802.11g supports data rates of 1, 2, 5.5, and 11 Mbps using DSSS

modulation and 6, 9, 12, 18, 24, 36, 48 and 54 Mbps using OFDM modulation. Bit Error

Rate (BER) and Signal-to-Noise Ratio (SNR) have different relationships based on differ-

ent modulation schemes and data rates. Even with the same SNR, a lower BER can be

achieved by switching the modulation scheme to a different rate, resulting in better wire-

less network performance. However, the rate adaptation schemes cause dynamic capacity

changes in wireless networks and may impact the performance of applications running

in this environment. The rate adaptation mechanisms can be based on either sender’s

inference or receiver’s feedback of the current channel conditions.

Most residential wireless APs are manufactured by companies such as Linksys [92],

Netgear [93], and D-Link [94]. As of January 2009, Linksys, Netgear, and D-link offer both

802.11g and 802.11n access points. They also support 802.11b because 802.11g is backward

compatible with 802.11b. 802.11e is specifically designed for QoS and will be discussed in

further detail in Section 3.1.

As mentioned previously, wireless APs are used to set up 802.11 wireless networks in

infrastructure mode. This is the most convenient way for home users to share their Internet

access through one subscription. Figure 1.1 in Chapter 1 shows a typical setup at home.

Home users subscribe to a local Internet Service Provider (ISP) to provide access through

Cable, DSL, or FiberOptics. The ISPs provide an appropriate modem to provide more

common connection to home computers through Ethernet. There are cases where this

modem is a wireless AP as well. This modem connects to the ISP through the edge ISP

gateway, which can route traffic to and from the Internet. The wireless APs direct traffic

to and from the home devices.

2.3 Process Schedulers

Although this research focuses on packet queue management, process scheduling policies are

relevant because there are certain similarities. Process scheduling policies are implemented

27

CHAPTER 2. BACKGROUND

in the operating systems to manage many processes that are present in the system. Some

are running, waiting, and blocking depending on their activity and interaction with the

users. This has similarities to packet scheduling policies.

(a) Process States (b) Network Application States

Figure 2.4: Process States and Network Application States

Figure 2.4(a) depicts the states of processes and how a process moves from one state to

another, under the assumption of a single processor system. A process requires a number

of CPU cycles to complete its work. A process in the running state uses the CPU cycles.

A process in the waiting state wants to use the CPU but another process is in the running

state. A process in the blocked state does not want to use the CPU and is probably waiting

for I/O or other activity to go to the waiting state. Figure 2.4(b) depicts the corresponding

states of a network application and their packet states. A network application requires

a number of packets to complete its work. Once these packets are transmitted from the

application and enter a network packet queue, it can be either waiting or being transmitted.

Network applications can also go into the blocked mode if it does not have any data to

transmit.

There are many different types of process scheduling policies, but four basic forms are:

• First-Come-First-Serve (FCFS): This is the simplest type of process scheduler. The

processes in the queue are served based on the order in which they entered the queue.

It is not pre-emptive, and the processes in the queue have to wait until the process

using the CPU is finished.

• Shortest Job First (SJF): SJF chooses a process that requires the least amount of

28

2.3. PROCESS SCHEDULERS

CPU time. However, in practice, it is difficult to estimate how much CPU time each

process requires.

• Shortest Remaining Processing Time (SRPT): SRPT is a pre-emptive version of SJF

and can remove the process using the CPU if the newly arrived process requires less

CPU time.

• Round Robin (RR): Instead of giving the process all the time it needs to complete

its job, RR gives processes CPU time in epochs. Processes can only use the CPU for

a short amount of time and have to give up the CPU to another process.

• Priority: Instead of every process having equal priority, priorities can be pre-configured

for different processes or can be dynamically altered based on behavior. Processes

are selected to use the CPU based on their priority.

Traditional UNIX CPU scheduling policy involves a mechanism similar to credits. The

traditional UNIX scheduler is a priority queue using round robin within each priority. The

priorities of processes can change over time based on their behaviors. This nature of the

queue is similar to credits because credit-based schedulers choose the process with the

highest priority and the credits are incremented or decremented based on their behaviors.

The priority queue of the traditional UNIX uses the following two formulas [95]:

CPUj(i) =
CPUj(i− 1)

2
(2.1)

Pj(i) = Basej +
CPUj(i)

2
+ nicej (2.2)

where

• CPUj(i) = measure of processor utilization by process j through interval i

• Pj(i) = priority of process j at beginning of interval i; lower values equal higher

priorities

29

CHAPTER 2. BACKGROUND

• Basej = base priority of process j

• nicej = user-controllable adjustment factor

The priorities of processes are recomputed every second along with a new scheduling

decision. Base is used to separate processes into fixed bands of priority levels. CPU and

nice are restricted to prevent a process from leaving its assigned priority band.

Figure 2.5: Example of a Traditional UNIX Process Scheduling

Figure 2.5 depicts how P is calculated based on CPU cycles used by 3 processes with

the same Base of 60 and nice of 0. Shaded rectangles represent the process picked by the

scheduler to use the CPU. Since the lower number has higher priority, the process with the

lowest priority is selected by the scheduler. It is shown that P increases (lower priority)

30

2.3. PROCESS SCHEDULERS

as the process uses the CPU and lowered (higher priority) when it is not selected by the

scheduler.

Process scheduling in Linux has evolved through many revisions. Up to Linux kernel

2.4.x, process scheduling involved a form of credits called a counter. A process counter is

decremented when the timer interrupt is triggered, and the process gets suspended when its

counter reaches 0. If there are no runnable processes (meaning that all backlogged processes

have 0 for counter), the following equation is used to boost every process’ counter:

counter =
counter

2
+ priority (2.3)

This scheduling policy naturally favors processes that do not require CPU cycles as

often because the CPU heavy processes tend to drain their counters to 0, forcing the

counter boosts. Those processes that do not need the CPU cycles get the same boost as

all other processes even though they have not drained their counter.

The credit mechanism in Linux kernel 2.4.x is the main idea for this research as it favors

the processes that do not use the CPU often. Similarly, the home wireless access point

must give priority to those that do not use the wireless resources often. This is desirable

based on the properties demonstrated in Figure 2.1.

As mentioned above, the credit mechanism for process scheduling is used in Linux

kernel 2.4.x. In Linux kernel 2.6.x, the developers implemented a new process scheduler

known as O(1) scheduler.

O(1) scheduler is the process scheduling policy used in Linux before the latest Com-

pletely Fair Scheduler (CFS). O(1) refers to the fact that it takes constant amount of time

to schedule a process. It consists of multiple priority arrays and always picks the highest

priority task on a system. If there are multiple tasks at the highest priority, round-robin is

used. More specifically, it uses two priority arrays: the active and expired priority arrays.

Picking the highest priority task, switching between tasks with round-robin, and making

transitions between timeslice epochs5 are all done in constant time.

5An epoch is the time between when all runnable tasks begin with a fresh timeslice and when all runnable

31

CHAPTER 2. BACKGROUND

All processes in the O(1) scheduler have a static process priority called nice which

ranges from -20 to 19. Higher nice value means lower priority. By default, all processes

start with a static priority of 0 but these can be modified. O(1) scheduler favors I/O-bound

processes and punishes CPU-bound processes by modifying tasks’ static priorities. I/O-

bound or interactive processes get priority boosts up to 5 while CPU-bound processes get

priority penalties up to 5. These processes are assigned in priority arrays based on effective

priorities that are calculated by mapping a process’ sleep average onto the range 0-10. Then

the timeslices are calculated by increasing the minimum timeslice by an amount mapping

a process’ static priority to the possible time slice range (difference between minimum and

maximum timeslice).

Completely Fair Scheduler (CFS) is the latest addition to Linux as the new process

scheduling policy. It is also known as the Rotating Staircase Scheduler. Unlike previous

implementation of process schedulers, CFS is based on a red-black tree, which implements

a timeline of future task execution. Moreover, CFS has a granularity of nanoseconds, the

atomic unit of an individual process’ share of the CPU.

Both O(1) and CFS employ structures and processing that may be a challenge for

typical APs to support. Moreover, it is not clear that the added complexities have benefits

over the more simple 2.4.x kernel scheduler.

2.4 Active Queue Management

Active queue management (AQM) is a technique to manage a network packet queue during

congestion. Typically, a drop-tail queue drops incoming packets when the FIFO queue is at

its limit. However, this causes bursty losses of packets and degrades network performance.

Therefore, researchers came up with a variety of techniques to manage the queue before

it reaches the limit. Because AQM techniques manipulate the queue before it reaches its

limit, there is flexibility to either drop or mark incoming packets. Marking is a way to

signal the sender to slow down without dropping packets. However, marking only works

tasks have used up their timeslices.

32

2.4. ACTIVE QUEUE MANAGEMENT

with flows with Explicit Congestion Notification (ECN) enabled.

The functions of AQM can be divided into: [96]

• Congestion Monitor. Responsible for congestion detection and estimation.

• Bandwidth Controller. Responsible for output bandwidth management.

• Congestion Controller. Responsible for computation and application of the conges-

tion notification probability (CNP) to incoming traffic.

• Queue Controller. Responsible for merging buffer usage and packet scheduling.

The first task of AQM is efficient monitoring, detection, and estimation of congestion.

There are different measurements to estimate and detect congestion. Queue length and

traffic load are two high-level measures for congestion estimation. Queue length estimates

can be instantaneous or averaged, and be compared to a threshold to detect congestion.

Traffic load can be measured using various methods that rely on queue length or incoming

rate, and compared with service rate to estimate congestion.

An AQM may have a bandwidth controller for QoS guarantees. The most common

functionality of a bandwidth controller is to provide fairness protection for individual flows

or groups of flows. This can be accomplished on a per-class or per-flow basis. The per-class

method has less overhead compared to per-flow because a class is a group of flows. Per-flow

information is much larger in aggregate than per-class information to maintain. Because

of the great overhead in a per-flow method, a pseudo per-flow method can also be used to

reduce the overhead required. Instead of keeping information on all flows, a pseudo per-flow

method tracks only outstanding high bandwidth flows to minimize per-flow information.

In addition to fairness protection, an AQM can also support priority forwarding and loss

differentiation. Priority forwarding drops packets from lower priority flows before higher

priority flows upon congestion. Loss differentiation specifies a predefined drop rate for each

class.

The job of the congestion controller is to prevent or control network congestion by

notifying traffic sources of the impending congestion early so that congestion responsive

33

CHAPTER 2. BACKGROUND

sources such as TCP have opportunities to reduce their rates. Traditionally, packet loss

is used as notification to the sources that there is congestion. However, a packet drop is

costly enough to reduce network performance. Therefore, Explicit Congestion Notification

(ECN) has been developed to mark packets for congestion notification instead of dropping.

AQMs can either drop (implicit) or mark (explicit) packets using a congestion notification

probability (CNP). CNP can be uniform, per-class, or per-flow.

The last component of an AQM is a queue controller. A queue controller is responsible

for packet transmissions forwarded by the congestion controller or bandwidth controller.

AQMs can utilize a single queue or multiple queues based on their goal. Each queue can

either use First-In-First-Out (FIFO) discipline or other disciplines to serve their purpose.

One of the early AQM techniques is Random Early Detection (RED) [97], which keeps

track of an exponentially averaged queue size for congestion monitoring. RED does not use

a bandwidth controller but applies a uniformly increasing CNP based on the average queue

length in its congestion controller. RED starts to drop packets when the average queue

size exceeds minimum threshold. RED increases the CNP linearly from 0 to p between

minimum and maximum threshold. A variation of RED called Random Early Marking

(REM) [98] marks packets instead of dropping them for notification. It simply uses a

single FIFO queue for its queue controller. Later versions of RED support a “gentle” QoS

queue controller mechanism. These versions and other AQM techniques with QoS support

will be reviewed further in more detail in Section 3.2

2.5 Quality Metrics

The diversity of QoS requirements for applications makes it difficult to use one metric

to measure their quality. For example, packet loss causes significant degradation in the

quality of VoIP applications while it has minimal effect on the quality of online games.

This section discusses the quality metrics used to determine the quality of the following

simulated applications: game, VoIP, video, Web, File Transfer Protocol (FTP), and Peer-

to-Peer (P2P).

34

2.5. QUALITY METRICS

There is no standard way of measuring the quality of online games. Gamers often

talk about the game performance with regards to “latency” and “frame rates” reported in

their games. While these contribute to the overall quality of game, it does not capture all

factors that contribute to the quality of game performance. Because the game application

in simulation follows the traffic model for Halo 2, a popular First Person Shooter (FPS)

game, the perceived quality of online games is calculated by the G-model Mean Opinion

Score (MOS) [26], developed for Quake IV, another popular FPS game. The G-model MOS

depends on two parameters: the average ping (round-trip time) and jitter. Although jitter

usually refers to a variation in inter-arrival times between packets, the G-model MOS uses

a different measurement for the average jitter. The average jitter for the G-model MOS is

the difference of the average one-way delay of packets and the minimum one-way delay.

X = 0.104 × ping + jitter (2.4)

First, the network impairment (X) is given by Equation 2.4. The coefficients of the average

ping and jitter indicate that the average jitter has greater impact on the network impair-

ment. Authors found that packet loss hardly affects the perceived quality. The network

impairment is mapped to the G-model MOS by Equation 2.5.

G(X) = −0.00000587 ×X3 + 0.00139 ×X2 − 0.114 ×X + 4.37 (2.5)

The G-model MOS ranges from 0 to 4.37, where 5 is the best quality and 0 is the worst

quality.

Unlike for online games, there is a widely accepted way of measuring the perceived

quality of VoIP sessions called E-model [99]. While the quality of online games depends on

the average round-trip time and jitter, the quality of VoIP sessions depends on the average

delay and loss. The E-model R-Factor (R), based on degradation due to delay (i(d)) and

loss (i(l)), is given by Equation 2.6.

35

CHAPTER 2. BACKGROUND

R = 94− i(d)− i(l) (2.6)

The degradation due to delay (id) can be computed by Equation 2.7. As long as the one-

way delay (d) is less than 177.3 ms, the degradation is minimal. Delays greater than 177.3

ms increases the degradation. id includes the degradation caused by packet jitter. One of

the ways to mitigate the variability in inter-arrival times of packets is to place a buffer to

hold packets before delivering them to the VoIP application. While it compensates for the

variability, it increases the delay in delivering packets to the application. Therefore, the

one-way delay (d) includes the buffer delay in addition to the network delay.

i(d) =

0.024 × d, d ≤ 177.3

0.024 × d + 0.11× (d− 177.3), d > 177.3
(2.7)

The degradation due to loss can be calculated using Equation 2.8. There is no degrada-

tion in quality with the loss of 0. As the loss (l) increases, the degradation (i(l)) grows

logarithmically.

i(l) = 30× log(1 + 15× l) (2.8)

The E-model R-Factor is mapped to the E-model MOS with Equation 2.9. While the

E-model R-Factor ranges from 0 to 94 where 94 is the best quality and 0 is the worst

quality, the E-model MOS ranges from 1.0 to 4.5 where 4.5 is the best quality and 1.0 is

the worst quality.

E(R) = 1.0 + 0.035 ×R + 0.000007 ×R× (R− 60) × (100 −R) (2.9)

There are various ways to determine the perceived quality of video streaming. The

video application in simulation is implemented to deliver frames over UDP following known

traces of encoded videos. Under the assumption that the video application can allocate

enough buffer to play the video smoothly, the playable frame rate is used to measure the

36

2.6. SUMMARY

quality of video streaming. The known traces of encoded videos include three types of

frames: I, P, and B. A frame is received successfully if all the packets of the frame are

received or the Forward Error Correction (FEC) data can be used to repair the frame.

The FEC mechanisms used in simulation are detailed in Section 6.1.3. A received I-frame

is independently playable. A received P-frame is playable if and only if the previous I or

P frame is playable. A received B-frame is playable if and only if the previous and next

frames are playable. The playable frame rate can range from 0 to the encoded frame rate

where 0 is the worst quality and the encoded frame rate is the best quality.

The quality of the Web browsing activity is measured in response time. Response time

refers to how long it takes for a user to retrieve all the objects of a Website after entering

the Website address or clicking on a link. The shorter the response time, the higher the

quality of Web browsing.

The purpose of the FTP and Peer-to-Peer (P2P) applications is to download files to

users’ devices. The quality of these applications is measured in throughput because the

throughput affects the time required to complete the file downloads. Higher throughput

results in faster downloads and vice versa. Therefore, high throughput corresponds to high

quality.

2.6 Summary

This chapter reviews fundamental techniques and terminologies referenced in the disser-

tation. Section 2.1 provides the network characteristics of user activities such as online

games, audio conferences, video streaming, Web browsing, and file downloads. The inves-

tigation reveals that there is a directly proportional relationship between delay tolerance

and bandwidth usage for most of the activities. Section 2.2 provides an overview of wireless

networks. It focuses on the IEEE 802.11 Wireless Local Area Networks (WLANs), and de-

scribes the frame exchange defined by the IEEE 802.11 standard. Section 2.3 demonstrates

the similarities between process and packet scheduling policies. It focuses on the Unix and

Linux CPU schedulers, part of which is relevant to the CHAP approach in Chapter 4.

37

CHAPTER 2. BACKGROUND

Section 2.4 provides an overview of Active Queue Management (AQM) techniques. Sec-

tion 2.5 explains quality metrics used for user activities such as online games, Voice over IP

(VoIP), video streaming, Web browsing and file downloads. Mean Opinion Scores (MOS’s)

based on G-model and E-model are used for online games and VoIP, respectively, while

the playable frame rate and response time are used for video streaming and Web browsing,

respectively. The quality of file downloads is determined by the application throughput.

38

Chapter 3

Related Work

This chapter reviews research work closely related to this dissertation. Section 3.1 reviews

IEEE 802.11e and other wireless enhancements designed to improve QoS in home networks.

Section 3.2 reviews AQM techniques developed to improve application QoS. Section 3.3

reviews traffic classification techniques to differentiate individual flows, and Section 3.4

reviews credit-based AQM techniques.

3.1 Wireless Home Networks and QoS

This section reviews 802.11e and other home network enhancement techniques to improve

QoS in the wireless environment. All these techniques involve explicit classification of

network traffic and require an external party to mark frames/packets in advance. Since

one of the strengths of CHAP is automatic classification, these techniques are not compared

to CHAP in terms of performance.

3.1.1 IEEE 802.11e

IEEE 802.11e is an amendment to IEEE 802.11 that focuses on improvement of QoS. Its

aim is to support IntServ and DiffServ architectures.

QoS levels are added to 802.11e in order to distinguish different classes of traffic and

access categories. Table 3.1 lists all the priority and access category levels with corre-

39

CHAPTER 3. RELATED WORK

Table 3.1: Priority and Access Categories of IEEE 802.11e

Priority Access Category Designation

0 0 Best Effort

1 0 Best Effort

2 0 Best Effort

3 1 Video Probe

4 2 Video

5 2 Video

6 3 Voice

7 3 Voice

sponding types of service. Priorities from 3 to 7 are considered high priority classes while

priorities from 0 to 2 are considered low priority classes. While 802.11 treats all traffic

classes equally, 802.11e uses classification based on these priorities and uses a scheduler to

resolve any virtual collisions due to frames from different classes.

To accommodate the newly added priority classes in 802.11, 802.11e introduces en-

hanced versions of Distributed Coordination Function (DCF) and Point Coordination Func-

tion (PCF) functions that are backward compatible. Enhanced DCF (EDCF) is the new

version of DCF and uses different parameters for different traffic classes and access cate-

gories. It replaces DIFS with Arbitration Inter-Frame Space (AIFS), which is longer than

DIFS. AIFS is shorter for audio and video traffic (access categories 1 and 2) where as AIFS

is at least DIFS. Moreover, the Contention Window (CW) has different values for audio,

video, and best effort traffic. CWmin and CWmax are smallest for audio and largest for

best effort. Table 3.2 shows the corresponding values for CWmin, CWmax, and AIFS of

different access categories.

Table 3.2: Typical QoS Parameters of 802.11e

AC CWmin CWmax AIFS

0 CWmin CWmax 2

1 CWmin CWmax 1

2 CWmin+1
2 − 1 CWmax 1

3 CWmin+1
4 − 1 CWmax+1

2 − 1 1

40

3.1. WIRELESS HOME NETWORKS AND QOS

Hybrid Coordination Function (HCF), an enhanced version of PCF, is used on top of

EDCF. Like PCF, HCF works in a Contention Period (CP) and a Contention-Free Period

(CFP). Using HCF, the Hybrid Coordinator (HC) can allocate transmission opportunities

(TXOP). During CP, a node can transmit if and only if the medium is available according

to EDCF rules or the HC sends the node a QoS CF-Poll frame. The HC can send a

QoS CF-Poll frame without back-off if it determines that the medium is idle for PIFS.

Therefore, the HC is capable of allocating TXOP using its priority medium access during

CP. During CFP, the HC determines the starting time and duration of TXOPs using QoS

CF-Poll frames. In other words, the nodes do not attempt to transmit and access the

medium unless TXOP is granted by the HC during the CFP. The CFP ends either when

the HC sends out a CF-End frame or after the time specified in the beacon frame.

802.11e requires the specific traffic and access categories to be set to guarantee the

QoS network traffic needs. It is possible that a greedy node sets all its traffic with the

highest priority traffic class to dominate the medium access and also that all the nodes use

the highest priority class in which the priorities are the same for everyone. Kyasanur and

Vaidya suggest that the traffic parameters are set by the HC, instead of individual nodes,

as a possible solution to this greedy problem [100].

If the traffic classes are set by the individual nodes, each application needs to indicate

the class it needs to use and this traffic class will remain static. If the traffic classes are

set by the HC, the HC needs to know the nature of different types of traffic to be able to

classify them correctly. Once the class is determined, it is likely to remain static as well.

As mentioned before, static priorities for a type of traffic can degrade performance due

to the dynamic nature of the wireless conditions. Giving high priority to delay-sensitive

traffic from a node with poor connectivity can degrade overall performance of the wireless

network.

41

CHAPTER 3. RELATED WORK

3.1.2 Home Network QoS Enhancement Research

Cuomo [101] proposes an architectural model for QoS support in home networks. Cuomo

states that home networks are complex in the sense that many devices are connected over

a variety of physical media: RF, infrared, and Ethernet, and different applications on

different devices require a wide range of QoS. The proposed QoS solution consists of three

parts [101]:

• mapping of WAN QoS parameters into the Home Area Network (HAN) parameters

and vice versa;

• marking of packets entering the HAN, as a function of the selected QoS parameters;

• a scheduling mechanism in the Residential Gateway (RG) that differentiates flow

performance in order to satisfy QoS requirements.

Cuomo assumes that QoS requirements of applications are marked in the WAN at layer

2 or 3 by the existing architecture. The proposed approach maps the QoS marks from the

WAN to layer 3 marks in two steps. First, it does a Network Terminator adaptation, which

is a WAN-LAN mapping. It maps the WAN QoS marks to IEEE 802.1p [102] priorities

that range from 0 to 7, a layer 3 to layer 3 mapping. Lastly it does RG adaptation, which

is a LAN-HAN mapping. Then it maps IEEE 802.1p priorities to IP DSCP (Differentiated

Service Code Point) [103], a layer 2 to layer 3 mapping. After mapping, there are two

proposed scheduling disciplines:

• PFIFO (Packet-limited FIFO), which uses three “bands” to enforce a strict priority

queueing discipline. The packets are assigned to different bands based on the values

in the Type of Service field in the IP headers.

• Hierarchical Token Bucket (HTB), which creates a number of classes and assigns

priorities and service rates to each class. HTB divides the available bandwidth into

multiple classes and specifies the average rate to be guaranteed and a maximum

42

3.1. WIRELESS HOME NETWORKS AND QOS

rate for each class. Child classes can borrow bandwidth from parent classes if there

exist unused resources. Packets are assigned to different classes based on their DSCP

marks as well as their IP addresses, protocols, and ports.

Palazzi et al. propose a mechanism to tweak the wireless MAC layer and to exploit

existing features of TCP [104]. Two parameters of interest to the authors in the IEEE

802.11 layer are the number of retransmissions and the buffer size. The authors state that

these parameters were determined when TCP traffic was dominant and claim that these

need to be changed to accommodate real-time application traffic, most of which is UDP. In

addition, the authors propose to limit the sending window of TCP flows to prevent probing

for more bandwidth. The maximum sending rate of a TCP flow is calculated by taking the

difference of the capacity of the link and sum of UDP traffic bandwidth and then dividing

the difference by the number of TCP flows. Palazzi et al. simulate their proposed approach

using NS2 and demonstrate that the combination of tweaking IEEE 802.11 parameters and

limiting the TCP advertised window helps to reduce one-way delay and jitter of real-time

applications with a small degradation in TCP application performance.

Rubino, Varela, and Bonnin propose enhancements at three levels [105]:

• The Application level. Addition of Forward Error Correction to repair incorrectly

received or lost packets instead of invoking retransmissions.

• The MAC level. Use of IEEE 802.11e for priority of classes and different MAC layer

parameters.

• The IP level. Use of a Differentiated Service (DiffServ) architecture.

IEEE 802.11e was described early in this chapter and the DiffServ architecture will be

explained in detail in Section 3.2. Application level enhancement is beyond the control of

home network devices because the application developers must incorporate modifications

into their programs. Rubino et al. demonstrate that the home network performance im-

proves with the addition of enhancements at all three layers [105]. The performance metric

43

CHAPTER 3. RELATED WORK

they developed is Pseudo-Subjective Quality Assessment (PSQA), which is computed in

real time with high accuracy that resembles quality perceived by users.

All the approaches described in this section require explicit classification of traffic and

pre-determined treatments for each class. Packets need to be marked for a specific class of

traffic, which maps to a specific treatment. None of these techniques consider the effects of

giving priority to nodes with poor connectivity, which may degrade overall home network

performance.

3.2 Active Queue Management for QoS improvement

Section 2.4 discussed tasks of AQMs and this section reviews a subset of AQMs that

support QoS. Like techniques discussed in the previous section, all these AQM techniques

also require explicit marks from either edge routers or end hosts. Therefore, these will not

be used for performance comparison with CHAP.

Quality of Service (QoS) has become an interesting research field because elasticity of

application quality varies with regards to different performance metrics. Elasticity refers to

how quality of application performance observed by users adjusts to available bandwidth

and experienced delay. Different applications offer different elasticity for quality. To max-

imize application QoS for users, Integrated Services (IntServ) and Differentiated Services

(DiffServ) have been proposed.

IntServ is composed of four components:

• Type of commitment: Services IntServ offers

• Packet scheduling: Methods IntServ uses to provide the services

• Service interface: Methods applications use to request the desired services

• Establishing the guarantee: Admission control for new applications

Type of commitment depends on the network characteristics of the applications. As

reviewed in Section 2.1, some applications prefer lower delay over higher throughput while

44

3.2. ACTIVE QUEUE MANAGEMENT FOR QOS IMPROVEMENT

other applications prefer higher throughput over lower delay. IntServ classifies traffic using

two dimensions: tolerance and rigidness. The difference between tolerant and intolerant

traffic is whether the applications can handle brief interruptions. The applications that

cannot handle brief interruptions are intolerant. Rigidness is determined by how adap-

tive the applications are with regard to deadlines. An application is rigid if packets must

meet a fixed deadline while an application is adaptive if it can deal with changes in net-

work conditions. Although combinations of two dimensions provide four possibilities, most

applications fit one of two combinations: intolerant and rigid, or tolerant and adaptive.

Therefore, IntServ offers three classes of services to accommodate these two combinations

plus a best effort service. Guaranteed service is for intolerant and rigid applications, and

offers fixed guarantees as long as applications match traffic agreements. Predictive service

is for tolerant and adaptive applications and takes steps to minimize performance degra-

dation. Best effort service serves all traffic that does not subscribe to either of the former

services.

The packet scheduling component is responsible for delivering the promises made in

each class. A token bucket filter is used to characterize network traffic. Token buckets

have two parameters: the rate r at which tokens are inserted into the bucket, and the

depth b, which is the capacity of bucket. The bucket is constantly being filled at rate r

and tokens are discarded if the bucket is full. Transmitting a packet of size P uses P

tokens from the bucket. As long as there are enough tokens in the bucket, the packets can

be transmitted at the maximum rate. If there are insufficient tokens in the bucket, the

packets need to wait until enough tokens accumulate in the bucket. In the long run, the

rate of traffic from the bucket is limited to rate r. In the short run, a burst of size b can

be sent at the maximum rate. Therefore, the maximum amount of traffic in interval T

can be bounded by b + rT . In addition to a token bucket filter, Weighted Fair Queueing

(WFQ) is used to handle each traffic flow. Parekh [106] [107] proves that the worst case

queueing delay is b
r

for any class of traffic in guaranteed service under the assumption that

the incoming traffic rate is less than the outgoing link speed at any router.

45

CHAPTER 3. RELATED WORK

For predictive service, IntServ needs to be able to isolate well-behaved traffic from

misbehaving traffic and to mix different traffic in a way to maximize benefits to all traffic.

WFQ used for guaranteed service can provide isolation but no sharing among traffic. FIFO

can provide sharing but no isolation. However, FIFO can amplify jitter when there are

multiple hops between source and destination. FIFO+ is an extension to FIFO to minimize

this effect. FIFO+ measures average delay of traffic classes at a router. For each incoming

packet, FIFO+ computes the difference between the queueing delay of the packet and

the average delay of the traffic class to which the packet belongs. Then, FIFO+ inserts

the packet into the queue based on the difference. Therefore, FIFO+ can reduce jitter

significantly by providing tighter control of delay at each router.

IntServ uses WFQ and FIFO+ to serve all three service types. Guaranteed service

flows get their own queue while predictive service and best effort flows aggregate into a

single, separate queue in WFQ. This single, separate queue uses multiple FIFO+ queues

separated by their priorities. Best effort traffic uses the lowest priority queue.

Applications in each service type uses different interfaces for specifying their needs. An

application in guaranteed service specifies its rate to IntServ. a higher rate to overcome

delay. An application in predictive service specifies delay D and loss rate L in addition

to both rate r and bucket size b. Based on this information, IntServ assigns a priority

class, and edge routers can either drop or tag packets to provide isolation between priority

classes.

The DiffServ architecture, depicted in Figure 3.1, serves network traffic based on Ser-

vice Level Agreements (SLA) between adjacent domains. Edge routers are responsible for

traffic conditioning while core routers process packets based on packet marks and Per-Hop

Behaviors (PHBs). This separation of pushing heavy tasks to edge routers and keeping

core routers’ tasks simple makes DiffServ much more scalable than IntServ.

Per-Hop Behavior specifies the behavior of individual routers and not services. It is

possible to have more services than behaviors specified in the router. The behavior that

services desire is marked inside the IP header using six bits of the TOS field. Currently,

46

3.2. ACTIVE QUEUE MANAGEMENT FOR QOS IMPROVEMENT

Figure 3.1: DiffServ Architecture

there are two types of PHBs defined: Expedited Forwarding (type P) and Assured For-

warding (type A). Expedited Forwarding is equivalent to having a virtual wire between

end hosts. The source node requests a profile and the network commits to delivery as long

as the node sends within its requested profile. The traffic is limited to rates between edge

routers using a token bucket filter. Packets using Assured Forwarding get transmitted with

minimal delay and loss up to the router’s capacity. Unlike Expedited Forwarding, users

and networks agree to some profile. Edge routers mark packets based on drop precedence

values. Packets from network traffic behaving within the profile parameters are marked

47

CHAPTER 3. RELATED WORK

with low drop precedence. All other packets are marked with high drop precedence. If a

DiffServ node gets congested, packets marked with higher drop precedence are discarded

to protect packets with lower drop precedence value. The drop mechanism is implemented

with RIO (Red with In or Out) [108], which uses two probability functions for In-Profile and

Out-of-Profile traffic. In addition, RIO keeps track of two exponentially averaged queue

sizes: one of all packets, and the other of In-profile traffic packets only. The parameter

minthresh for Out-of-profile traffic is lower so that packets from Out-of-profile traffic are

dropped before packets from In-profile traffic. As the average queue size increases, it will

eventually cross minthresh for In-profile traffic and start dropping packets from In-profile

traffic as well.

Class-Based Queueing (CBQ) [109] and Class-Based Threshold (CBT) [110] are queue

management strategies to guarantee bandwidth per traffic class by allocating fixed amounts

of bandwidth to each traffic class. CBQ is a queue controller with multiple FIFO discipline

queues. CBT is an extension of RED with a bandwidth controller with a “threshold” test.

Unlike CBQ, CBT uses a single packet queue and allocates a pre-determined buffer size for

each traffic class. The average buffer usage is monitored against the thresholds and CBQ

starts dropping packets from classes whose average buffer usage exceeds the threshold.

Dynamic-CBT (D-CBT) and ChIPS [111] extend CBT by allocating proportional buffer

space to the number of flows in each traffic class instead of using pre-determined values.

First, D-CBT uses the mechanism of counting the number of active flows from Fair Random

Early Drop (FRED) [112]. Then D-CBT uses the number of flows to compute the fair share

of buffer space for each flow. D-CBT monitors the average buffer usage of each flow and

compares it against its fair share of buffer space and drops the packets if the traffic uses

more buffer space than its fair share. ChIPS (Cut-In Packet Scheduling) is an alternative

packet scheduling for D-CBT to minimize multimedia jitter. ChIPS inserts the tagged

UDP packets at the average queue length instead of at the end of the queue. Therefore,

the tagged UDP flows tend to get queueing delays around the same average queue length,

reducing jitter.

48

3.2. ACTIVE QUEUE MANAGEMENT FOR QOS IMPROVEMENT

Alternate Best Effort (ABE) [113] identifies two classes of network traffic: delay sensi-

tive (green) and throughput sensitive (blue). ABE’s goal is to provide lower delay for green

traffic while providing comparable throughput to blue traffic. Therefore, ABE forces higher

loss rate to green traffic for the price of lower queueing delay. Green traffic is associated

with a certain delay bound and packets from green traffic are dropped if they do not meet

the delay bound inside the queue. AQM techniques like RED can be used on top of ABE

to provide congestion monitoring.

Rate-Delay (RD) network services [114] provides two classes: an R (rate) service and

a D (delay) service. The R service emphasizes high transmission rates while the D service

supports low queueing delays. IP packets are marked using a bit in the Type-of-Service

(ToS) field to indicate which service they desire. The unmarked packets correspond to the

R service class. An RD router estimates the number of flows every T interval using the

timestamp vector algorithm. Based on k (ratio of per-flow rates of R and D flows) and d

(upper limit on queueing delay of D packets), the RD router adjusts the buffer allocated to

the D service class. Because the buffer allocated to the D service class is smaller than the

buffer allocated to the R service class, the flows in the D service class experience higher

loss rates than the flows in the R service class.

Both ABE and RD require the traffic to be classified by an external entity or marked

by the source for these mechanisms to work properly. In addition, neither ABE nor RD can

distinguish the wireless conditions of the destination nodes of delay-sensitive traffic. Impos-

ing a higher drop rate on delay-sensitive traffic when the destination has poor connectivity

may result in application performance degradation.

RED-Worcester and RED-Boston are extensions of ARED [115] to support QoS for

different classes of traffic [116]. Both RED-Worcester and RED-Boston require the ap-

plications to inject delay preference as hints in their packets. RED-Worcester uses these

delay hints to calculate target based on capacity and packet size (target = C D
P

where C

is capacity, D is delay hint and P is packet size). target is exponentially averaged with

a weight of 0.02. If most of the packets that pass through RED-Worcester are marked

49

CHAPTER 3. RELATED WORK

with low delay, average target decreases. If most of the packets are marked with high

delay, average target increases. RED-Worcester provides queueing delay based on what

the majority of packets require.

RED-Boston takes advantage of delay hints in a slightly different manner. RED-Boston

provides different queueing delay for different classes of traffic instead of the same average

queueing delay for all packets. The drop probability p is calculated following the RED

mechanism. RED-Boston takes this probability p and scales it based on the delay hint.

RED-Boston keeps track of the average delay instead of average target. This average delay

is used against delay hints to scale the probability using the following formula: p′ = p
davg

D

where p is the normal probability calculated by RED, davg is the average delay and D is

the delay hint. In other words, flows in a delay-sensitive traffic class have a higher drop

probability than flows in a throughput-sensitive traffic class. In addition, RED-Boston

sorts incoming packets by weights based on their delay hints if they are not dropped. The

weight of a packet is calculated by adding the arrival time and the delay hint of the packet.

This mechanism provides RED-Boston with automatic aging and protection from packet

reordering.

The priority queue discipline uses strict priority of each class specified inside the queue.

Packets are enqueued in the corresponding priority queues based on their tags. Packets

from the highest priority queue are served first before packets from the next highest priority

queue. Although this queueing discipline is simple and easy to implement, it is possible

for packets from the lower priority queues to starve. The Probabilistic Priority Discipline

queue attempts to overcome the starvation by applying specific priorities to each priority

queue which each queue uses to determine if a packet from the queue is to be served.

Context-Aware Transport/Network Internet Protocol (CATNIP) [117] is a combina-

tion of protocol and queue management techniques to improve performance of network

applications. The context awareness is added to a baseline Reno TCP configuration in the

following forms:

• Rate-Based Pacing of the Last Window (RBPLW). A TCP source may choose to

50

3.2. ACTIVE QUEUE MANAGEMENT FOR QOS IMPROVEMENT

spread out the transmissions of the last few packets over a short interval if it is aware

of the number of packets remaining in its last window of data. This may reduce the

risk of packet losses.

• Early Congestion Avoidance (ECA). A TCP source may choose to switch from the

TCP slow-start algorithm to the TCP congestion avoidance algorithm if it is aware

of the number of packets remaining. Linear growth of the congestion window may

reduce the risk of packet losses with a small impact on transfer times.

• Selective Packet Marking (SPM). A TCP source may mark packets with “high” or

“low” (default) priority if it is aware of how many packets there are in the data

transfer. The congestion window is small (i.e., less than 4 packets) for data such as

Web documents. The losses of first and last few packets impact the transfer time

the most and therefore, the TCP source can mark these packets with “high” priority

while marking the rest of the packets with “low” priority. These priorities refer to

packet loss priority, not packet scheduling priority.

Wu et al. evaluate the performance of CATNIP with five queueing algorithms. Drop

Tail and RED are CATNIP-unaware while CATNIP-Good, CATNIP-Bad and CATNIP-

RED use information from CATNIP to influence their drop probabilities. CATNIP-Good

and CATNIP-Bad are based on the Drop Tail queueing algorithm. No packets are dropped

until the queue is filled, just like a Drop Tail queue. However, depending on the SPM of

the packet, the incoming packet may or may not be dropped. If the incoming packet is

marked with “low” priority, CATNIP-Good drops the packet normally. If the incoming

packet is marked with “high” priority, CATNIP-Good drops a “low” priority packet in

the queue to make room for the incoming “high” priority packet. If there is no “low”

priority packet in the queue, the incoming packet is dropped. CATNIP-Bad follows the

same algorithm as CATNIP-Good except it treats “low” and “high” priority packets in the

opposite manner. In other words, it prioritizes “low” priority packets instead of “high”

priority packets. CATNIP-RED uses RED’s congestion detection mechanism and it drops

51

CHAPTER 3. RELATED WORK

a “low” priority packet if there is an attempt to discard a packet from the RED algorithm.

All the techniques mentioned above have the same goal of prioritizing a certain class of

traffic to improve quality of applications in that class. However, the common shortcomings

of each technique is that the traffic needs to be tagged or marked so that the queue

management technique can differentiate and treat the traffic accordingly.

3.3 Traffic Classification

This section reviews real-time traffic classification techniques. Traffic classification tech-

niques are useful not only for trying to provide better QoS but also traffic shaping, as

well as intrusion prevention and detection. Although one of the goals is to improve QoS,

all these techniques must be tied to a treatment module to provide better performance.

Since the purpose of CHAP is to improve overall quality of applications and not to classify

network flows individually, these techniques are not used to compare the performance of

CHAP.

3.3.1 Port-based Classification

The most common identification technique involves the analysis of the complete or partial

packet header. The packet header includes information such as IP addresses, and the

transport protocol and ports of two end hosts. Based on the header information, the

application type and characteristics can be identified for a flow, especially when the flow is

connected over a “well known port”. Table 3.3 lists some “well known” transport protocols

and ports used by several applications.

Table 3.3 only lists ports used by several common applications, where the official list of

port assignment can be found at Internet Assigned Number Authority (IANA)1. Port-based

approaches are the simplest among all traffic classification techniques and highly scalable

since the port number from a single packet can be enough to identify the application.

However, port-based classification can be inaccurate. Inaccuracy results from mis-matches

1http://www.iana.org/assignments/port-numbers

52

3.3. TRAFFIC CLASSIFICATION

Table 3.3: Transport Protocols and Ports Used by “Well Known” Applications

Keyword Port# Protocol Description

ECHO 7 TCP, UDP Echo Protocol

FTP-Data 20 TCP File Transfer [Default Data]

FTP 21 TCP File Transfer [Control]

SSH 22 TCP, UDP SSH Remote Login Protocol

Telnet 23 TCP, UDP Telnet protocol - unencrypted text communications

SMTP 25 TCP SMTP - used for e-mail routing between mail servers

Name 42 TCP, UDP Host Name Server

DNS 53 TCP, UDP Domain Name System

HTTP 80, 8080 TCP HTTP - used for transferring web pages

POP3 110 TCP POP3 - used for retrieving E-mails

IRC 194 TCP Used for Internet Relay Chat

SMB 445 TCP Used for Microsoft SMB file sharing

RTSP 554 TCP, UDP Used for Real Time Streaming Protocol

MMS 1755 TCP, UDP Used for Windows Media Services

between the server ports and the applications. For example, many Peer-to-Peer (P2P)

applications allocate ports dynamically and these ports are not registered at IANA. More-

over, the inclusion of firewall capability in wireless access points forces applications to use

well-known ports of other applications. Although port 80 is a well-known port for HTTP,

other activities such as instant messaging and video streaming use port 80 as their back up

because firewalls and security software often do not filter port 80 traffic. Port 80 can also

be used to stream audio, play games, and download updates and patches. Users can use

port 22 to open an SSH session to access a server remotely. At the same time, users can

use SCP at port 22 to initiate a file transfer over an SSH session. The former is an highly

interactive activity with low delay tolerance while the latter is a passive activity with high

delay tolerance. Therefore, multiple applications using the same port makes it difficult to

differentiate the QoS requirements of each application by port-based classification alone.

Although port-based classification has limitations described above, Maier et al. demon-

strate that the port-based technique works quite well in home networks [73]. As modern

wireless access points allow users to input specific ports for prioritization, it is possible

53

CHAPTER 3. RELATED WORK

to configure access points manually to improve quality of applications. However, as new

applications emerge, users need to keep track of ports assigned to those applications. One

of CHAP’s strengths is the removal of such need for manual configuration and the ability

to adapt to emerging applications as long as the relationship depicted in Figure 2.1 holds.

3.3.2 Packet Payload-based Classification

To overcome the limitations of port-based techniques, alternative techniques to inspect the

content of packet payloads has been proposed. These techniques rely on the assumption

that packets in a given flow contain unique patterns or signatures to identify an application

unambiguously. The payload-based approaches are similar to those widely used in security

software that use virus signatures to detect the presence of malicious code in files.

Moore et al. propose a classification technique that inspects the payload of each packet

and approaches 100% accuracy [118]. Their approach involves a nine-step process (Ta-

ble 3.4) to gain sufficient confidence that the flow belongs to a specific application. Each

flow is tested against the nine classification procedures sequentially. Once a procedure

returns a positive output for a flow, the flow is verified by a verification module. If the

verification module passes, the flow identification is complete. If not, a manual inspection

is necessary to complete the flow identification.

Table 3.4: Procedures of Payload-based Classification

Identification Method Example

1 Port-Based classification (only) -
2 Packet Header (including 1) simplex flows
3 Single Packet Signature Many Virus/Worm
4 Single Packet Protocol IDENT
5 Signature on the first KBytes P2P
6 First KByte Protocol SMTP
7 Selected flow(s) Protocol FTP
8 (All) Flow Protocol VNC, CVS
9 Host History Port-scanning

Although this approach can identify flows with near 100% accuracy, it is a computation-

54

3.3. TRAFFIC CLASSIFICATION

intensive process. In the worst case, when the automatic classification fails, it involves nine

sequential procedures, one verification process, and one manual inspection process. Due

to its computational intensity, payload-based classification is difficult to perform in real-

time and is often done offline. Moreover, payload approaches require prior knowledge of

unique patterns or signatures of all the applications to identify flows correctly. Finding

unique patterns and signatures of applications is a difficult task because of constantly

evolving applications and lack of public documentation. Furthermore, encryption offered

by applications such as VoIP and P2P makes it harder, if not impossible, to identify flows

using payload-based approaches.

Meeting QoS requirements of applications often do not require a 100% accurate iden-

tification of each application. As long as applications are grouped into similar categories,

treatments by categories are sufficient to provide enough network resources and assistance

to improve their quality. For example, one of CHAP’s strengths is the automatic placement

of each flow in categories following the relationship depicted in Figure 2.1.

3.3.3 Behavior-based Approaches

Karagiannis et al. propose a classification technique called BLINC to identify applications

by analyzing the transport layer behaviors of end hosts [119]. While both port-based and

payload-based approaches use transport ports to map flows to applications, BLINC utilizes

port numbers only as an index without any application information. The information gath-

ered by packet headers is used to identify host behavior patterns at the transport layer on

three levels of increasing detail: Social Level (hosts that it communicates with), Functional

Level (server vs. clients or peer nodes) and Application Level (transport layer interactions

between particular hosts on specific ports). BLINC analyzes the three-level information us-

ing a set of heuristic rules empirically derived by inspecting interactions present in various

applications. These rules refine BLINC’s classification results and are controlled by a set of

operator-defined thresholds to balance between aggressive and conservative classification.

The authors demonstrate BLINC’s ability to classify 80-90% of real traffic samples with

55

CHAPTER 3. RELATED WORK

more than 95% accuracy by comparing BLINC’s classification results and payload-based

classification results. Although BLINC can identify types of applications and has potential

to identify unknown applications such as new P2P applications and malicious flows based

on expected behavior, BLINC cannot handle encrypted traffic and short-lived flows.

3.3.4 Statistical Approaches

Because of the shortcomings of previously discussed approaches, researchers recently have

focused their attention on machine learning and statistical approaches to differentiate ap-

plications. Claffy’s investigations on the joint distribution of flow duration and number of

packets demonstrated the differences between the distributions of some application proto-

cols [120]. Following Claffy’s research, other researchers have characterized and modeled

particular applications [121, 122, 123]. Statistical approaches focus on application (pay-

load) independent features such as packet length or inter-arrival times to classify flows [124].

A statistical classifier is trained on a representative set of flow instances where the net-

work applications are known, allowing the classifier to determine the types of unknown

flows. Thus, statistical approaches consist of selection of features and machine learning

algorithms.

Features can be selected in five levels: Single Packet, Flow, Connection, Intra-flow, and

Multi-flow levels. Single Packet level captures features such as mean packet length and

various moments such as variance. These can be calculated directly from packet header

information and are simple to compute. Flow level provides flow duration, mean data

volume per flow, mean number of packets per flow, and variance of these metrics. Con-

nection level offers behaviors associated with transport level connections, and information

such as advertised window size and throughput distribution. Intra-flow provides statistics

about the packets within a flow, such as inter-arrival times between packets and loss ra-

tios. Multi-flow level can capture statistics across multiple flows or connections, providing

valuable information on applications that use multiple flows for their communication.

A minimum set of features can be selected for an application to reduce learning and

56

3.4. CREDIT-BASED ACTIVE QUEUE MANAGEMENT

classification times and to increase classification accuracy. Then machine learning algo-

rithms can be used to compare network traffic to models created by the known sets of

features for various applications. Statistical approaches offer higher accuracy than port-

based approaches while providing much less computational complexity than payload-based

approaches. However, measured features can be inconsistent in wireless networks. For

example, the presence of management and control frames and retransmissions can alter

packet inter-arrival information. To improve quality of applications, it is more important

how to treat different network traffic rather than identifying specific applications.

3.4 Credit-based Active Queue Management

CHAP is not the first AQM to use credits for transmission scheduling. Credit-Based Fair

Queueing (CBFQ) [125] and Wireless Credit-based Fair Queueing (WCFQ) [126] are queue-

ing disciplines designed to ensure bandwidth fairness of flows using credits. Although there

are many AQMs that seek bandwidth fairness for flows such as FRED [112], SCFQ [127],

CSFQ [128], and DRR [129], CBFQ and WCFQ claim to ensure bandwidth fairness with

delay bounds and the most simplicity. Although CBFQ and WCFQ are credit-based, their

goal is to ensure bandwidth fairness of flows and not QoS. Moreover, the lack of details

makes it difficult to implement and reproduce the results presented in the papers [125, 126].

Therefore, CBFQ and WCFQ are not used in a performance comparison with CHAP.

Figure 3.2 lists steps in the CBFQ algorithm in pseudo code where Si is the bandwidth

share of flow i, Ki is the credit of flow i and J is the total number of flows. Initially, every

flow has no credits and gains credits when it is backlogged at the queue and does not get

a turn to send its packets. CBFQ picks a flow from the backlogged flows by inspecting the

credits. More specifically, it computes Li−Ki

Si
for all backlogged flows and sorts them in

increasing order. In other words, CBFQ calculates the difference between the HOL packet

size and the credit and scales them by the flow’s bandwidth share. Therefore, the value of

this computation increases with bigger HOL packet, lower credit, and/or lower bandwidth

share. Since the priority is given to a flow with the lowest value, a flow with a small Head-

57

CHAPTER 3. RELATED WORK

1 Initialization phase:

2 ∀l, l ∈ 1, ..., J , SetKl ← 0;

3 Operation:

4 Let F = j1, ..., jk such that queues j1, ..., jk are currently backlogged;

5 Let Ljn be the size of the HOL packet of queue jn ∈ F ;

6 sort the backlogged queues according to
Lj1

−Kj1
Sj1

≤
Lj2

−Kj2
Sj2

≤ ... ≤
Ljk

−Kjk

Sjk

7 Transmit the HOL packet of queue j1, and update the counters as follows:

Kjn ← Kjn +
Lj1

−Kj1
Sj1

Sjn , ∀jn ∈ F \ j1

Kj1 ← 0

8 Goto 4:

Figure 3.2: CBFQ Algorithm

of-Line (HOL) packet, high credit and/or higher bandwidth share gets priority. Once the

flow is selected, the HOL packet from that flow is served and the credits of all backlogged

flows are updated following the formulas shown in Step 7. The flow CBFQ picks loses all

its credit (reset to 0) while all the other backlogged flows are increased by
Lj1

−Kj1
Sj1

Sjn . In

other words, all the other flows that waited gain what the served flow lost, scaled by their

own share of bandwidth.

Wireless Credit-based Fair Queueing (WCFQ) [126] is an extension of CBFQ to ensure

bandwidth fairness in wireless environments. The WCFQ algorithm is similar to CBFQ

but it includes the “cost” of a packet in the wireless network. The “cost” of a packet is

estimated and is reflected in a packet selection process. Table 3.5 shows the difference in

the flow selection.

Table 3.5: Flow selection criteria of CBFQ and WCFQ

CBFQ mini∈F
Li−Ki

si

WCFQ mini∈B(p)
Li(p)−Ki(p)+Ui(p)

φi

p is the index of the packet in service, B(p) is the set of backlogged flows, Ui(p) is the

58

3.4. CREDIT-BASED ACTIVE QUEUE MANAGEMENT

transmission cost of the packet and φi is the weight of flow i. As seen in Table 3.5, the

only difference is the inclusion of Ui(p). The WCFQ credit update algorithm is slightly

different from CBFQ and is depicted in Figure 3.3.

1 for (i = 1; i ≤ N ; i + +)

2 if (i ∈ B(p + 1) && i 6= fp+1)

3 Ki(p + 1) = Ki(p) + max(
Lfp+1

(p)−Kfp+1
(p)

φp+1
, 0)φi

4 elseif (not (i ∈ B(p + 1)))

5 Ki(p + 1) = 0

6 end for

7 if (fp+1 ∈ B(p + 1))

8 Kfp+1(p + 1) = max(0,Kfp+1(p)− Lfp+1(p))

9 else

10 Kfp+1(p + 1) = 0

Figure 3.3: WCFQ Algorithm

Steps 1 through 6 iterate through all active flows. Step 2 checks if flow i is backlogged

after transmission of packet p and that flow i is not the flow from which packet p + 1 is

picked. With these conditions satisfied, the credit of flow i is increased either by 0 or by

the amount similar to that in CBFQ scaled by its own weight in Step 3. If not, Step 4

checks if flow i is not backlogged after transmission of packet p. If it is not backlogged, it

resets the credit of flow i to 0. Step 7 checks if the flow fp+1, the flow from which a packet

is served after packet p, is backlogged. If it is backlogged, it updates the credit to the

maximum of 0 and the difference between the current credit and the size of HOL packet

of flow fp+1. If not, the credit of flow fp+1 is reset to 0. The “cost” function is used in the

selection of the next flow but not in the calculation of the credits.

The “cost” function of flow i is expressed in the following equation:

Ui = −βlog(1 − Ei) (3.1)

59

CHAPTER 3. RELATED WORK

where Ei is a uniform distribution in [0, 1] and β is a configurable parameter. β ranges

from 0 to ∞, where 0 represents perfect CBFQ fairness where wireless channel condition

has no impact and ∞ represents best channel-condition scheduling. For simulations, Ei is

expressed as a function of time t with the following equation:

Ei(t) = 0.5 + dcos(2πfi,t(t) + θi) + zi(t) (3.2)

where θi are independent and uniformly distributed in [0, 2π] giving the channel conditions

statistically independent phases, fi,t is a random process following a Gaussian moving

average process, and zi(t) is the additive noise to model the effects of Rayleigh and Shadow

fading with the conservative assumption of additive noise in the range of [−w,w].

3.5 Summary

This chapter reviews research work closely related to the dissertation. Section 3.1 reviews

techniques such as IEEE 802.11e to improve Quality of Service (QoS) in home networks.

All the techniques discussed in the section require explicit classification of traffic and pre-

determined scheduling of classes. Section 3.2 reviews Active Queue Management techniques

used to improve QoS. All the approaches discussed in the section need packets to be tagged

or marked to specify their quality requirements and also a pre-determined scheduling based

on these tags or marks. Section 3.3 reviews traffic classification techniques to differentiate

individual flows. Classification of individual flows is required to schedule packets according

to their quality requirements. Port-based classification provides a simple method to identify

flows based on transport ports. Packet payload-based classification offers a more accurate

classification at the cost of complex computation. Behavior-based classification classifies

flows based on the social, functional and application level based on a set of heuristic

rules. Statistical approaches identify flows based on distributions of characteristics such as

mean packet length, flow duration, and mean data volume. All these approaches require

a manually configured scheduling policy to accommodate different quality requirements of

60

3.5. SUMMARY

classified flows. Section 3.4 reviews credit-based AQM techniques such as Credit-Based

Fair Queueing (CBFQ) and Wireless Credit-based Fair Queueing (WCFQ). CBFQ and

WCFQ use credits to provide throughput fairness among flows. Their algorithms become

the base for Credit-based Home Access Point (CHAP) explained in Chapter 4.

61

Chapter 4

Approach

4.1 Overview

This chapter proposes CHAP, an approach for improving overall quality of service for

typical applications on a wireless network at home using a credit-based queue management

system at the wireless access point. The approach focuses on using credits to classify

flows implicitly, taking wireless condition of flows into account, to lower latency for delay-

sensitive flows while maintaining reasonable throughput for delay-insensitive flows. The

assumed conditions suitable for the proposed approach include:

• A focus on IEEE 802.11 networks. While 802.11 is the focus, CHAP can be applied

to other types of wireless networks that may be deployed at home in the future, so

the related issues are discussed in this dissertation.

• A focus on actively calculating credit for all flows that go through the wireless APs

in a home wireless infrastructure network. Therefore, ad-hoc wireless networks are

not studied in this research. This chapter discusses credit calculation for downstream

traffic only.

• An assumption that the increase in latency for delay-sensitive flows results from

packet queue build-up at the wireless AP. With home broadband access getting higher

63

CHAPTER 4. APPROACH

bandwidths and wireless capacity lower than wired capacity historically, the queue is

most likely to exist at the wireless AP.

• A cross-layer approach where the IP layer traffic queue requires information from

the data link layer. The credit is calculated using the transmission time information

relayed from the data link layer.

• Delay sensitivity of flows based on flow bandwidth usage. In other words, CHAP does

implicit classification based on flow rates but also takes into account their wireless

condition to dynamically adjust priorities.

The following methodologies are applied to investigate the proposed approach:

• Analytical Models. Mathematical modeling is used to study the effect of credit-based

queue management on latency and determine guidelines for some CHAP parameters.

(Chapter 5)

• Simulations. NS2 simulations are used to evaluate CHAP in home wireless networks

and to validate the analytical model. (Chapter 6)

• Implementation. Real hardware implementation and measurements are used as proof

of concept and to validate the simulations. (Chapter 7)

Analytical modeling can provide closed-form solutions that are easy to evaluate, but

real systems usually have additional complexity and thus are hard to model precisely. Simu-

lations can provide evaluations for the models and circumstances close to real systems with

good repeatability and scalability. However, they may still not fully represent the complex

network systems. Therefore, implementation and measurements are used to reinforce and

evaluate the proposed approach in real home networks. Section 4.2 describes the approach

for improving QoS in wireless home networks. Chapter 5 describes the mathematical model

to analyze the latency characteristics using the credit-based queue management. The sim-

ulation and implementation methodologies are discussed in Chapters 6 and 7, respectively.

64

4.2. ALGORITHM

4.2 Algorithm

A flow is defined by a five-tuple: source address, source port, destination address, destina-

tion port, and protocol. Residential wireless access points keep track of all the flows that

they serve because they need to know the network address translation (NAT) for proper

routing of packets belonging to these flows. We propose that wireless access points track

one additional piece of information - flow credits. The credit of a flow is an indication of

the volume of information exchanged and also how costly it is to serve packets from the

flow. In other words, high credits suggest that the flow is sending and/or receiving little

information or it does not take much time to serve packets from this flow. Low credits

suggest that the flow is sending and/or receiving a large amount of information or it takes a

relatively long time to serve packets from this flow. We propose to give priority to packets

with the highest credits at a given time.

A static credit system is equivalent to a system with explicit classification with priority.

We make the credits dynamic by subtracting the cost of a packet upon dequeueing. The

cost of a packet is measured by the amount of time it takes to transmit at the data link

layer. In the case of a wireless data link layer, this includes the preamble, DATA/ACK

frame, retransmissions, and timeouts. Even in the case of a lost frame, the cost includes

all the attempts to transmit the frame. The longer it takes at the data link layer, the

more credits a flow spends for having its packet transmitted. In addition, it is necessary to

boost the credits to prevent a system to prevent all the credits from converging to negative

infinity. The credit boost occurs when all the flows with backlogged packets have 0 or

fewer credits. The system uses Equation 4.1 to boost credits for not only those flows with

backlogged packets but also all active flows at that time:

α′

i =
αi

2
+ I (4.1)

where αi is the credit of flow i before the boost while α′

i is the credit of flow i after the

boost. The parameter I is in units of time, consistent with the unit of credits (the value of

65

CHAPTER 4. APPROACH

which is determined in Section 5.4). Due to the memory limitations of wireless APs, it is

impossible to keep track of all flows forever. Therefore, the last time a packet was served

from a particular flow and a timeout value are required to get rid of old flows that have

not transmitted in a long time. The timeout value follows some default values such as 120

and 3600 seconds, used in current access point implementations.

dequeue()

1 find k such that αk = max[α1, ..., αn] and k ∈ set of backlogged flows

2 if (αk ≤ 0) then

3 αi = αi

2 + I for all i ∈ active flows

4 end if

5 p = the first packet from flow k in the queue

6 return p

7 ... αk = αk − cost

enqueue(p)

1 j = flow ID of p

2 add p to the end of the queue

3 if the queue is full then

4 find k such that αk = min[α1, ..., αn] and k ∈ set of backlogged flows

5 ptmp = the first packet from flow k in the queue

6 drop(ptmp)

7 end if

Figure 4.1: CHAP Algorithm for Downstream Traffic

Figure 4.1 summarizes the dequeue and enqueue functions for downstream traffic in a

wordy, pseudo code format. dequeue() returns the first packet that belongs to the flow

with the most credits in the queue. Step 1 finds the flow with the most credits. If a credit

boost is necessary in steps 2-4, CHAP boosts credits for all active flows. Step 5-6 dequeue

the packet from the flow picked in Step 1. After the packet is transmitted, the wireless

66

4.3. COST TO TRANSMIT A PACKET

data link layer decreases the credits by the corresponding channel usage time (Step 7).

enqueue(p) adds the incoming packet p to the queue. If the queue is full with the

incoming packet, CHAP drops the first packet that belongs to the flow with the least

credits in the queue. This mechanism ensures that CHAP can protect incoming packets

from flows with more credits. Step 1 retrieves the flow ID of the incoming packet p. Step

2 adds the incoming packet to the queue. Step 3 checks if the queue is full. If the queue

is full, CHAP proceeds to find a packet to drop from the backlogged flow with the fewest

credits following Steps 4-6. Steps 3-7 ensure that there is always room for an incoming

packet by limiting the maximum number of packets in the queue to qsize − 1.

Similar algorithms have been used in CBFQ [125] and WCFQ [126]. However, these al-

gorithms involve more complex credit calculation and update methods. CBFQ, as detailed

in Figure 3.2, keeps multiple queues of packets and involves sorting of the queues. WCFQ

uses a slightly more complicated but similar algorithm and employs the credit update algo-

rithm as detailed in Figure 3.3. Updating credits in WCFQ requires the calculation of the

cost based on wireless channel scheduling. The CHAP algorithm explained above has been

chosen for simplicity. CHAP takes advantage of the Network Address Translation (NAT)

module to store per-flow information and augments it to store credits. It adopts the Linux

credit update and boost methods and uses the channel usage time as cost for simpler com-

putation complexity. While CBFQ and WCFQ algorithms allow only one packet per flow

to be transmitted for more complete fairness among flows, CHAP allows a flow with the

most credits to burst as long as it has the most credits compared to any other flows with

backlogged packets. CHAP also provides an additional protection for flows with many

credits by dropping packets from flows with few credits through the enqueue(p) function.

In 802.11, downstream and upstream traffic share the same medium. However, down-

stream traffic typically dominates in home networks [73]. Therefore, the CHAP algorithm

focuses on enqueueing and dequeueing of packets of downstream traffic.

67

CHAPTER 4. APPROACH

(a) One transmission attempt (b) Two transmission attempts

(c) Timeout

Figure 4.2: Cost of a packet

4.3 Cost to Transmit a Packet

Figure 4.1 shows that a flow loses credits upon sending a packet. The cost of a transmitted

packet in Step 7 of dequeue() is the corresponding channel usage time in the wireless

medium. Because the AP maintains the credits of all flows, the AP updates the credits

only upon dequeueing packets it transmits. Packets received at the AP from wireless

stations do not affect the credits. The cost of a packet is calculated from the time the

AP starts its first transmission attempt. Figure 4.2 depicts how the cost of a packet is

calculated in three situations. Figure 4.2(a) shows the cost of a packet when the AP

transmits the packet successfully in one transmission attempt. The cost of the packet is

the sum of the transmission time of the DATA frame, a SIFS and the transmission time of

the ACK frame. Figure 4.2(b) shows the cost of a packet when the AP transmits the packet

successfully in two transmission attempts. In this case, the cost of the packet includes one

additional transmission of the DATA frame, a timeout and a backoff period on top of the

cost of a packet successfully transmitted in one attempt. Figure 4.2(c) shows the cost of

68

4.4. EXAMPLE

a packet when the AP fails to transmit the packet. Although the packet never reaches its

destination, CHAP charges the time spent attempting to transmit the packet because the

AP is unable to transmit any other packets while attempting to transmit this packet. The

cost of a lost packet is the difference between the time of the first transmission attempt

and the expiration time of the timeout of the last transmission attempt.

When CHAP selects a packet to dequeue, the cost of the packet is unknown because

it is computed only after the wireless data link layer attempts its transmission. Therefore,

it is possible for CHAP to select a packet from a flow with credits less than the cost. The

boost mechanism in the algorithm ensures that the credits of active flows are positive once

CHAP detects that it selects a packet from a flow with negative credits.

4.4 Example

To illustrate the mechanism further, consider an example of 3 flows. Let us assume that

the ratio of bandwidth use for flows 1 through 3 is 2:3:5 and the cost of each frame is 5 for

all flows. In addition, the increment value of I is 10 and every flow starts with 10 credits.

If multiple backlogged flows have the same number of credits, the flow with lower index

gets to send its packet. Also assume that the packets come as a burst of 10 packets total

and the next batch of 10 packets come when the queue is empty. Table 4.1 shows how

credits are decremented and incremented over time and which flow is chosen to send.

The first row shows every flow starting with 10 credits according to the assumption.

The scheduler always picks the flow with the highest credits to send a packet. If we extend

this over a longer period of time, the credits over time are shown in Figure 4.3 with a bar

graph. Flow 3 reaches 0 the most, triggering the credit boost.

Table 4.2 shows queueing delays of each packet that entered the queue. With 10 packets

entering every 10 time slots, FIFO provides 4.5 time slots of queueing delay on average for

all packets. Packets from flow 1 experience queueing delays of 0 and 3 time slots, packets

from flow 2 experience queueing delays of 1, 4, and 6 time slots and packets from flow

3 experience queueing delays of 2, 5, 7, 8, and 9 time slots. In other words, the average

69

CHAPTER 4. APPROACH

Table 4.1: Example: Table of credits vs. time for flows 1, 2, and 3

Time Index Flow 1 Flow 2 Flow 3 Packet from Flow Note

0 10 10 10 - Start
1 5 10 10 1
2 5 5 10 2
3 5 5 5 3
4 0 5 5 1
5 0 0 5 2
6 0 0 0 3
7 10 10 10 - Boost

10 5 10 2
8 10 5 5 3
9 10 5 0 3

10 15 12.5 10 - Boost
15 12.5 5 3

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

C
re

di
t

Time

Flow 1

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

C
re

di
t

Time

Flow 2

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

C
re

di
t

Time

Flow 3

Figure 4.3: Example: Graph of credits vs. time of flows 1, 2 and 3

queueing delay for flow 1, 2, and 3 are 1.5, 11
3 , and 31

5 time slots, respectively. The average

queueing delays for flows 1 and 2 are lower than the average queueing delay of 4.5 time

slots experienced using the FIFO discipline.

4.5 Summary

This chapter provides an overview of CHAP, an approach for improving overall quality of

service for typical applications on a wireless network at home using a credit-based queue

management system at the wireless access point. Section 4.1 provides the assumptions

on which the CHAP algorithm is based and introduces the methodologies to investigate

70

4.5. SUMMARY

Table 4.2: Example: Table of queueing delays of each packet

Flow ID Packet ID Queueing Delay

1 1 0
2 3

3 1
2 4 4

5 6

6 2
3 7 5

8 7
9 8
10 9

CHAP. The CHAP algorithm, described in Section 4.2, details how CHAP classifies flows

implicitly using credits, lowers latency for delay-sensitive flows, and maintains reasonable

throughput for delay-insensitive flows while taking wireless conditions into account. Sec-

tion 4.3 describes how CHAP measures the cost of a packet. The cost of a packet is the time

difference between the first transmission attempt of the packet and the reception of the

corresponding ACK frame for a successful transmission. In case of an unsuccessful trans-

mission, the cost of a packet is the time difference between the first transmission attempt

of the packet and the timeout of the last transmission attempt. The example provided in

Section 4.4 demonstrates that CHAP provides shorter queueing delays for low-bandwidth

flows than FIFO.

71

Chapter 5

Analytical Model

Chapter 5 explains the analytical model behind the credit-based queue management. It

is important to analyze how rates of different flows drive their own credits and give each

other dynamic priority. The flexibility of allowing limited burstiness and queueing delay

from the credit-based algorithm are also important.

5.1 Credit Analysis

Assume the AP queueing system has reached steady state, meaning that all flows have

reached their steady rates. Table 5.1 lists all the variables used in the analysis.

Table 5.1: Summary of all the variables

Variable Description

C Total outgoing rate (pkt/s)

i Flow index

ri Outgoing rate of ith flow (pkt/s)

αi Credit of ith flow (s)

αh
i Upper bound of αi (s)

αl
i Lower bound of αi (s)

θi Change in αi over one second

I Increment (s)

For the simplicity of analysis, we also assume that the cost to transmit all frames at the

73

CHAPTER 5. ANALYTICAL MODEL

data link layer is constant and is equal to 1/C.

Equation 5.1 demonstrates that the sum of rates of all the flows equals the total outgoing

rate C.

n
∑

i=1

ri = C (5.1)

Equation 4.1 shows the basic formula for boosting the credit of all flows when all the

flows with backlogged packets have 0 or fewer credits. Since all n flows are active and

backlogged, the credits of all flows get boosted with the equation once the flow with the

highest credit draining rate reaches 0 or lower.

Since the cost in credits is the transmission time of each packet at the data link layer,

the sum of changes in credits of all flows within a 1 second interval must equal 1 as shown

in Equation 5.2. In other words, since each packet costs 1/C and there are C packets

outgoing every second, the total change in credits from all flows must equal 1.

n
∑

i=1

θi = 1 (5.2)

Equation 5.3 shows the change in credits of the ith flow. The cost of transmission time

of each packet is 1/C and the ith flow sends ri packets per second.

θi = ri

1

C
(5.3)

It is necessary to find out which flow will trigger the credit boost for all the flows. Let

k be the index of a flow that uses the most credits within a one second interval:

θk = max[θ1, ..., θn]

This means that the kth flow will drain its credits to 0 before any other flows. Then, let t

be the time it takes for the kth flow to drain its credits.

t =
I

θk

=
CI

rk

(5.4)

74

5.1. CREDIT ANALYSIS

After t seconds, all the flows will have drained their credits by ∆Bi, which is propor-

tional to their change in credits, θi.

∆Bi = θit =
ri

C

CI

rk

=
ri

rk

I (5.5)

So far, we have ∆Bi for every flow after t seconds. The credit boost happens every

t seconds when flow k drains its credits from I to 0. Therefore, every t seconds, every

flow’s credits are boosted using Equation 4.1. If we use every boost as an index, we can

generalize the upper limit of the credit of a flow in steady state. Let us assume that αh
i (y)

is the upper limit of credit of the ith flow and it started with some arbitrary value x after

the yth boost. In other words, αh
i (0) = x. After one t second interval, the credits of the

ith flow are decremented by ∆Bi and the boost mechanism is triggered by the kth flow.

Equation 5.6 shows the new value of the credit after the first boost. Equation 5.7 shows

the credit after the second boost while Equation 5.8 shows the value of credit after the

third boost.

αh
i (1) =

x−∆Bi

2
+ I =

x−∆Bi + 2I

2
(5.6)

αh
i (2) =

x−∆Bi+2I
2 −∆Bi

2
+ I =

x− 3∆Bi + 6I

4
(5.7)

αh
i (3) =

x−3∆Bi+6I
4 −∆Bi

2
+ I =

x− 7∆Bi + 14I

8
(5.8)

By generalizing the pattern in Equations 5.6 to 5.8 to an equation with an arbitrary

number of boosts y, we get Equation 5.9:

αh
i (y) =

x− (2y−1 − 1)∆Bi + (2y − 2)I

2y−1
(5.9)

Equation 5.10 is the result of taking y to infinity from Equation 5.9.

75

CHAPTER 5. ANALYTICAL MODEL

αh
i = 2I −∆Bi = 2I −

ri

rk

I (5.10)

The lower limit is obtained by subtracting ∆Bi from the upper limit αh
i .

αl
i = αh

i −∆Bi = 2I − 2
ri

rk

I (5.11)

Now, we have the range of the credits for any given flow in steady state. Equation 5.12

combines Equation 5.10 and 5.11 to demonstrate the range using inequality:

2I − 2
ri

rk

I ≤ αi ≤ 2I −
ri

rk

I (5.12)

Therefore, the average credit of the ith flow is the average value which is shown in

Equation 5.13.

E(αi) = 2I −
3

2

ri

rk

I (5.13)

Assuming that the flows are sorted by their rates in increasing order, the average burst

length allowed in terms of time is calculated by Equation 5.14. It is basically the difference

of the average credits of flow i and flow i + 1.

E(αi − αi+1) =
3

2

(ri+1 − ri)

rk

I (5.14)

5.2 Delay Analysis

Delay is one of the most important performance metrics relevant to QoS. One of our

objectives is to reduce latency for delay-sensitive flows. In order to analyze the delay for

all flows, we apply the delay analysis from the Probabilistic Priority Discipline Queue with

the probabilities calculated from the credit-based queue management.

76

5.2. DELAY ANALYSIS

5.2.1 Probabilistic Priority Discipline

Strict priority discipline queues work on a simple principle that packets from a higher

priority queue get serviced before packets from lower priority queues. It provides the

proper quality of service as long as the high priority queues are not backlogged at all

times. In such a case, the packets from lower priority queues will starve and never get

service.

In order to mitigate this side effect of starving low priority queues, a probabilistic pri-

ority discipline is introduced [130]. Just like a strict priority discipline queue, probabilistic

priority discipline queues have a certain number of discrete priority queues. The core

difference is that a probabilistic priority discipline queue starts from the highest priority

queue but does not always dequeue packets from that queue, instead having probabilities

associated with each priority queue. On dequeue(), it starts with the highest priority queue

that is not empty and serves a packet from that queue based on the probability associated

with that queue.

Jiang et al. [130] analyze the delay from the probabilistic priority discipline queue in

[131]. Figure 5.1 depicts the queueing diagram of a probabilistic priority discipline queue.

The authors introduce two different approaches for estimating delay and we will introduce

one approach in this section. For the simplicity of analysis, Jiang et al. choose two classes

of traffic that are independent Poisson processes with rates λ1 and λ2. The total arrival

rates of two classes are the sum of each class’s arrival rate: λ = λ1 + λ2. Further, Jiang et

al. assume that the service times of class i packets are independent, identically distributed,

Figure 5.1: Probabilistic Priority Discipline Queue

77

CHAPTER 5. ANALYTICAL MODEL

stochastic variables that follow a general distribution with finite first and second moments

si and s
(2)
i . Therefore, the queue for each class is essentially an M/G/1 queue. Table 5.2

lists other notations used in the analysis.

Table 5.2: Variables used in delay analysis

Variable Description

T i E[sojourn time for class i packets]

W i E[waiting time in queue for class i packets]

N i E[number of packets waiting in queue i]

W 0 E[residual service time]

pi probability of service assigned to class i

ρi λisi

ρ
∑n

i=1 ρi

i class other than class i

qi probability that class i queue is nonempty

ωi probability that the head packet from class i is served when class i is nonempty

The sojourn time of a packet is its waiting time plus its service time, and the traffic

intensity is less than unity to ensure stability. From this definition, we have:

T i = W i + si (5.15)

From little’s theorem, we have:

N i = λiW i (5.16)

The work conservation law [132] states that if the scheduler is work-conserving, the

sum of the average waiting times, weighted by their share of the network utilization, is

independent of the service discipline. Since we are using M/G/1 queues here:

2
∑

i=1

ρiW i =
ρW 0

1− ρ
, forρ < 1 (5.17)

where

78

5.2. DELAY ANALYSIS

W 0 =
∑2

i=1 ρi
s
(2)
i

2si
.

As shown in Table 5.2, W 0 is the average residual service time which is the average

remaining service time for the packet found in service by a newly arriving packet.

Because Jiang et al. consider two classes (i = 1, 2), i = 1, 2, i = 2, 1 respectively. From

the definition of ωi, we have:

ω1 = p1, ω2 = 1− p1, and ωi + ωi = 1 (5.18)

Jiang et al. use a decomposition approach to analyze delay. For any newly arriving

packet of class i, the mean delay is composed of three components: the average resid-

ual service time, the delay in its own queue and the delay waiting for the other queues.

Therefore, the decomposition can be expressed as:

W i = W 0 + siN i + sini, for i = 1, 2 (5.19)

where ni is the average number of packets from class i served before the newly arrived

packet.

In order to calculate qi, the probability that queue i is non-empty, Jiang et al. examine

an arbitrarily long time interval τ under the assumption that ρ < 1 for system stability.

The number of newly arrived packets in the time interval for class i is close to λiτ . In

addition, the portion of the time interval that the system is busy serving packets from

class i is equal to qi[ωiqi + (1 − qi)]. ωiqi is the probability that class i is picked while

queue i is nonempty and (1 − qi) is the probability that queue i is empty. The sum of

these two terms is the probability that queue i is picked. Multiplying this sum with qi

gives the overall probability that queue i is picked and non-empty. In order to convert

this probability to the number of packets, we can multiply by τ
si

, which is the maximum

number of packets from class i that can be served in the time interval:

λiτ =
τ

si

qi[ωiqi + (1− qi)] (5.20)

79

CHAPTER 5. ANALYTICAL MODEL

As we take τ to infinity, we get:

ρi = qi[ωiqi + (1− qi)] (5.21)

Since there are only two flows, Equation 5.21 can be expressed in two equations:

ρ1 = q1(1− ω2q2) (5.22)

ρ2 = q2(1− ω1q1) (5.23)

Solving Equations 5.22 and 5.23 for q1 and q2 results in the following equations.

q1 =
[1 + ω1ρ1 − ω2ρ2]−

√

(1 + ω1ρ1 − ω2ρ2)2 − 4ω1ρ1

2ω1
(5.24)

q2 =
[1 + ω2ρ2 − ω1ρ1]−

√

(1 + ω2ρ2 − ω1ρ1)2 − 4ω2ρ2

2ω2
(5.25)

The missing piece from the decomposition approach is ni, the number of packets of

class i that are served before the newly arrived packet. First, the newly arrived packet has

to wait for N i packets from its own queue i before it reaches the head of the queue. Let

βi be the probability that the packet that has reached the head of the queue and contends

with packets from queues i. The packet from queue i is served with probability 1 if queue

i is empty and with probability ωi otherwise. Therefore:

βi = (1− qi) + ωiqi (5.26)

Define a random variable X, for the number of class i packets served before the packet

at the head of queue i is. Then X is distributed with the following probability function:

P (X = l, l ≥ 0) = (1− βi)
lβi (5.27)

80

5.2. DELAY ANALYSIS

The average number of packets from queue i served before the packet at the head of

queue i can be estimated by:

X ≈

∞
∑

l=0

lP (X = l) =
1− βi

βi

(5.28)

Therefore, ni is approximately:

ni = (N i + 1)X ≈ (N i + 1)
1 − βi

βi

(5.29)

Substituting all the pieces from the above analysis into Equation 5.19, the delay is as

shown in the following equation:

W i =
W 0 + si

1−βi

βi

1− ρi − λisi
1−βi

βi

(5.30)

5.2.2 Credit-based Probability

Section 5.2.1 analyzes the delay on a Probabilistic Priority Discipline Queue. In order

to apply this analysis to the delay of credit-based queue management, it is necessary to

derive the probabilities of each priority queue. For credit-based queue management, we

can assume that each priority class belongs to a flow. The priorities are determined by

the steady state credits. As shown in Section 5.1, each flow has its own range of credits

in steady state (Equation 5.12). In credit-based queue management, the flow with the

highest credit receives the highest priority. In other words, as long as the credits of a flow

are higher than any other flows’ at a given time, its packet gets served. However, the ranges

of credits do overlap and there are times when a flow with higher average credit can have

lower credit than a flow with lower average credit. Therefore, calculating the probability

that a flow with higher average credit has higher credit than a flow with lower average

credit allows us to apply it to the Probabilistic Priority Discipline Queue analysis.

Figure 5.2 shows flows i through i + 3 having their credit ranges overlap. We assume

that the probability is uniform within the range of credits for all the flows for simplicity

81

CHAPTER 5. ANALYTICAL MODEL

Figure 5.2: Example of overlapping four ranges of credits

of the analysis. Let us use ∆αi = αh
i − αl

i for simplifying the equations. We also sort the

flows by their rates in increasing order. In other words, r1 ≤ r2 ≤ ... ≤ rn.

First, let us consider the simplest case where the ith flow’s credit does not overlap with

any other flows. In that case, pi = 1 because there is zero probability that the ith flow’s

credit is ever less than that for any flows with lower priority.

Let us assume that we have ith and i + 1th flow and they do overlap. Then we have

to calculate the probability from two regions: W and XYZ. In region W, we only need to

consider the uniform probability that the credit is in region W. It is simply the range of

region W over the entire range of credit of the ith flow. Let us call that probability pw:

pw =
αh

i − αh
i+1

∆αi

(5.31)

For region XYZ, let us look at Figure 5.3 that depicts flows i and i+1 from Figure 5.2.

We need the conditional probability that the credit of the ith flow is in region XYZ and

also greater than the credit of the i + 1th flow. For any given credit of the ith flow within

region XYZ, we can calculate the probability that the credit of the i+1th flow is less than

that. Since the range is continuous, we construct an integral to calculate the sum of the

probabilities. Let us call this probability pxyz:

82

5.2. DELAY ANALYSIS

Figure 5.3: Conditional probability for overlapping regions between flows i and i + 1

pxyz =

∫ αh
i+1−αl

i

0

1

∆αi

∆αi+1 − x

∆αi+1
dx (5.32)

Therefore, pi in the case there are two flows with overlapping ranges of credits is the

sum of pw and pxyz as shown in Equation 5.33.

pi =
αh

i − αh
i+1

∆αi

+

∫ αh
i+1−αl

i

0

1

∆αi

∆αi+1 − x

∆αi+1
dx (5.33)

Likewise, we can calculate pi when there are 3 flows with overlapping ranges of credits.

With reference to Figure 5.2, it would involve the ith, i+1th and i+2th flow and 3 distinct

regions: W, X and YZ. pi is shown as below in Equation 5.34.

pi =
αh

i −αh
i+1

∆αi
+

∫ αh
i+1−αh

i+2

0
1

∆αi

∆αi+1−x

∆αi+1
dx

+
∫ αh

i+2−αl
i

0
1

∆αi

∆αi+1−x−(αh
i+1−αh

i+2)

∆αi+1

∆αi+2−x

∆αi+2
dx

(5.34)

Similarly, we can calculate pi for 4 flows with overlapping ranges of credits.

pi =
αh

i −αh
i+1

∆αi
+

∫ αh
i+1−αh

i+2

0
1

∆αi

∆αi+1−x

∆αi+1
dx

+
∫ αh

i+2−αh
i+3

0
1

∆αi

∆αi+1−x−(αh
i+1−αh

i+2)

∆αi+1

∆αi+2−x

∆αi+2
dx

+
∫ αh

i+3−αl
i

0
1

∆αi

∆αi+1−x−(αh
i+1−αh

i+3)

∆αi+1

∆αi+2−x−(αh
i+2−αh

i+3)

∆αi+2

∆αi+3−x

∆αi+3
dx

(5.35)

83

CHAPTER 5. ANALYTICAL MODEL

From Equations 5.33, 5.34, and 5.35, we can see the pattern and generalize it to an

arbitrary number of overlapping flows. Let us use m for the number of flows with overlap-

ping ranges of credits. Then pi for m flows with overlapping ranges of credits is shown in

Equation 5.36 when there are m overlapping flows:

pi =
αh

i −αh
i+1

∆αi

+
∑m−2

w=1

∫ αh
i+w−αh

i+w+1

0
∆αi+w−x

Qw
y=0 ∆αi+y

∏w−1
z=1 (∆αi+z − x− (αh

i+z − αh
i+w))dx

+
∫ αh

i+m−1−αl
i

0
∆αi+m−1−x
Qm−1

y=0 ∆αi+y

∏m−2
z=1 (∆αi+z − x− (αh

i+z − αh
i+m−1))dx

(5.36)

5.2.3 Application of Probability Priority Discipline Queue on CHAP

Section 5.2 calculated pi for any flow in a steady state that has m flows with higher rates

whose ranges of credits overlap. Since credit-based queue management introduces dynamic

priority based on flows’ credits and each flow has its own priority queue, the probability pi

is applied to each flow i.

For simplicity of analysis, a two flow case is considered, where one flow is delay-sensitive

with low throughput and the other is delay-insensitive. Let the delay-sensitive flow be flow

1 and the other be flow 2 because lower numbers indicate higher priority. Following the

delay analysis in [131], p1 is necessary to calculate the expected delays for both flows. Since

there are only two flows, Equation 5.33 can be used to calculate p1. The queueing delays

are analyzed, varying ρ (0.2, 0.5, and 0.8) and the ratios of rates of the two flows (r1
r2

= κ).

Using Approach 1 explained in Section 5.2.1, we require the following parameters:

W 0, si, s
(2)
i , βi, ρi, λi. We assume si and s

(2)
i to be 1 for the simplicity of the analysis.

Then, κ relates to the ratio between λ1 and λ2. Since we assume ρ = 0.5, 0 < λ1 ≤ 0.25

and 0.25 ≤ λ2 < 0.5 for i = 1, 2 depending on κ.

The range of credits is necessary to compute p1. Equation 5.12 shows that Flow 2

ranges from 0 to I while Flow 1 ranges from 2I(1− κ) to I(2− κ). Now, these ranges will

only overlap if and only if 2I(1− κ) < I. Therefore, there is an overlap of the range if and

only if κ > 0.5. This means that Flow 2 has to be less than twice as fast as Flow 1 to result

84

5.2. DELAY ANALYSIS

in their ranges to overlap. Otherwise, there is no overlap and this forces the system to act

as a strict priority queue. The cases with overlap and no overlap makes us work with two

different values of p1. If there is no overlap, p1 = 1 because it is a strict priority system. If

there is an overlap, Equation 5.33 can be used to calculate the appropriate value using κ.

Equation 5.37 shows the result of applying κ in Equation 5.33 ∀κ > 0.5.

p1 =
−4κ2 + 6κ− 1

2κ
(5.37)

Once p1 is known, ω1 and ω2 can be computed using Equation 5.18. However, ω2 needs

to be non-zero to compute qi. Therefore, p1 is capped at 0.9999 for the rest of the analysis.

Values for qi are obtained using Equations 5.24 and 5.25. Once ωi, qi, and βi based on p1

are computed, the queueing delays can be estimated based on Equation 5.30.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

Rate ratio of Flow 1 to Flow 2

Flow 2
Flow 1

(a) ρ = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

Rate ratio of Flow 1 to Flow 2

Flow 2
Flow 1

(b) ρ = 0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

Rate ratio of Flow 1 to Flow 2

Flow 2
Flow 1

(c) ρ = 0.8

Figure 5.4: Change in delay relative to κ

Figure 5.4 depicts the delay estimates for both flows with a variation of κ and ρ. The

horizontal axis shows the rate ratio between Flow 1 and Flow 2. It ranges between 0

and 1 where Flow 1 and Flow 2 have the same rate at 1. The vertical axis shows the

average queueing delay of packets. All three values of ρ demonstrates the same trend of

the average queueing delay experienced by Flow 1 and Flow 2. When κ < 0.5, credit-

based queue management behaves like a strict priority queue. Delays from both flows are

increasing because as κ increases, there are more packets from Flow 1 to be served before

switching to packets from Flow 2. As κ increases beyond 0.5, there is a possibility that Flow

1’s credit is lower than Flow 2’s. It can be observed that this probability is insignificant

up to κ = 0.55. Then, the delay for Flow 2 starts decreasing because credit-based queue

85

CHAPTER 5. ANALYTICAL MODEL

management starts serving only some of the packets from Flow 1 instead of all of them

before getting to packets from Flow 2. As κ increases, both curves eventually converge to

the same point at κ = 1 because they have the same rates. At this point, credit-based

queue management is serving packets from both flows following a round-robin mechanism.

Figure 5.4 demonstrates that credit-based queue management does provide lower delay to

delay-sensitive flows without any prior configuration.

5.3 Wireless Considerations

All the analysis done up to this point has been based on the fact that it costs a constant

amount of time to transmit a packet at the data link layer, whether it is wired or wireless.

In a wired environment, this assumption is closer to being true. However, in a wireless

environment, we need to relax this assumption due to the fact that there are many factors

affecting the transmission of a data frame over IEEE 802.11.

Relaxation of this assumption changes the rate at which each flow drains its credits.

In other words, the flow rate is not proportional to the rate at which it drains its credit.

Even with low bandwidth, a flow can drain its credit faster than a high bandwidth flow

depending upon the cost to send packets. Therefore, the interval used in credit analysis in

Section 5.1 will be calculated differently by a flow that drains its credits fastest.

The difference in delay analysis is that the service time for every packet is not equal

but depends on the wireless condition. Fortunately, the model already incorporates dif-

ferences in service times. For our analysis in Section 5.2.3, we used the same value for

all si, but we can use different values to observe the differences in the transmission delay

affected by the packet size and wireless connectivity. This implies that the flows with weak

wireless connectivity are punished due to the fact that their frames take much longer to

be transmitted. For overall QoS improvement, it is recommended to give relatively lower

priority to those flows with weak connectivity because these flows tend to spend most of

their time on losses and retransmissions. If the majority of the wireless time is spent on

retransmissions, it brings down the overall throughput of the wireless network.

86

5.3. WIRELESS CONSIDERATIONS

Let us walk through an example with flows 1, 2, and 3, where the rate ratio among the

flow rates is still 2:3:5 respectively, but the cost of frames sent from each flow is now 15,

3, and 5 respectively. Therefore, the idea is that flow 1 should not get as much priority

compared to when it has good wireless connectivity. We follow the same set of assumptions

as discussed in the example in Section 4.2.

Flow 1 does not get priority any more since it costs too much to send the packet. While

Table 4.1 showed that flow 1 was able to send its 2 packets by time index 4, Table 5.3 shows

that flow 1 sends its 2nd packet at time index 8. In this example, flow 1 triggers the credit

boost at time index 7 but flow 3 also triggers the credit boost at time 10. This is due to

the fact that flow 3 has more packets to send compared to flow 1 and it can also drain

its credits. Figure 5.5 depicts credits of flows 1, 2, and 3 over time. Flow 1 sometimes

sits just below 0 because it does not have any packets to send at that time or some other

backlogged flow has positive credit. Both flow 1 and 3 are triggering the credit boosts.

-10

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

C
re

di
t

Time

Flow 1

-10

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

C
re

di
t

Time

Flow 2

-10

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

C
re

di
t

Time

Flow 3

Figure 5.5: Wireless Example: Graph of credits vs. time of flows 1, 2 and 3

Table 5.4 shows queueing delays of each packet that entered the queue. With 10 packets

entering every 10 time slots, FIFO provides 4.5 time slots of queueing delay on average

to all the packets. Packets from flow 1 experience queueing delays of 0 and 7 time slots,

packets from flow 2 experience queueing delays of 1, 3, and 5 time slots and packets from

flow 3 experience queueing delays of 2, 4, 6, 8, and 9 time slots. In other words, average

queueing delay for flow 1, 2, and 3, are 3.5, 3, and 29
5 time slots, respectively. Unlike the

previous example where the cost of each packet was the same for all flows, flow 1 gets

higher queueing delay than flow 2. Because it costs more to serve packets from flow 1, flow

87

CHAPTER 5. ANALYTICAL MODEL

Table 5.3: Wireless Example: Table of credits vs. time of flows 1, 2 and 3

Time Index Flow 1 Flow 2 Flow 3 Packet from Flow Note

0 10 10 10 - Start
1 -5 10 10 1
2 -5 7 10 2
3 -5 7 5 3
4 -5 4 5 2
5 -5 4 0 3
6 -5 1 0 2
7 7.5 10.5 10 - Boost

7.5 10.5 5 3
8 -7.5 10.5 5 1
9 -7.5 10.5 0 3

10 6.25 15.25 10 - Boost
6.25 15.25 5 3

2 gets higher priority than flow 1.

Table 5.4: Example: Table of queueing delays of each packet

Flow ID Packet ID Queueing Delay

1 1 0
2 7

3 1
2 4 3

5 5

6 2
7 4

3 8 6
9 8
10 9

5.4 Bursts and Effect on CHAP Parameter I

It is important for any queue disciplines to prevent starvation of any particular flow. PPDQ

is an attempt to make a strict priority discipline queue to prevent starvation. Under an

extreme case, CHAP can starve a flow from having its packets served. This case occurs

88

5.4. BURSTS AND EFFECT ON CHAP PARAMETER I

when a new flow or a flow that has been inactive keeps entering the system before the

packets from a flow in service are exhausted. However, the case of an infinite number of

such flows entering the system serially is unlikely. This section discusses the derivation of

a reasonable limit of such systems occurring at the same time.

The extreme case of the situation described above happens under the following condi-

tions: 1) A delay-sensitive flow reaches just above zero credit; 2) n flows that have been

inactive and have 2I credits start bursting at the same time.

Figure 5.6 depicts the credits of such flows over time for two different cases. In both

cases, there is one delay-sensitive flow. This flow reaches near-zero credits at the end of

region A. For the first case, a burst from one flow enters at the beginning of region B. The

burst is enough to last over 2I and continues until the end of region B, following the red

dotted line. Therefore, the delay-sensitive flow must wait 2I before its packets get service.

However, there can be bursts from more than one flow. The second case demonstrates

bursts from two flows at the same time, starting at the beginning of region B and following

the dotted line, reaching 0 at the end of Region C. Because there are two flows bursting

together, their packets get served in a round-robin fashion until they exhaust both of their

credits. Because there are two flows, it takes twice as long as the first case to spend all

the credits. The delay-sensitive flow gets its packets served after 4I at the end of region

C. Therefore, we can conclude that with n flows bursting at the same time, the worst case

waiting time for the delay-sensitive flow is 2nI.

Although these cases can be extended to include n simultaneous bursts, we would like

to set n to a reasonable limit. For possible candidates for bursty flows, we examine Web

traffic and video traffic. Although Web traffic does not usually change state, it tends to

be “bursty” in the sense that it starts a new flow, downloads a set of pages and objects

and disappears. Video flows transmit Groups of Pictures (GoPs), which usually include

one I frame and a bunch of P and B frames. Because I frames are much larger than P or

B frames, video flows are bursty whenever I frames are transmitted. We investigate the

time a flow takes to download these bursts of information under the maximum application

89

CHAPTER 5. ANALYTICAL MODEL

Figure 5.6: Bursts and Effects on Credits

throughput and compare it to mean idle time before the next burst.

Mean HTML container page size, mean embedded object size, mean number of em-

bedded objects, and mean reading time are specified by [133]. Mean HTML container

page size is 11,872 bytes, mean embedded object size is 12,460 bytes, mean number of

embedded objects is 5, and mean reading time is 39.70 seconds. Using these mean values,

we can calculate the total activity time. The total number of bytes to be retrieved is the

sum of the HTML container page and embedded objects, which is 74,172 bytes. Assum-

ing the maximum application throughput is about 27 Mbps in an IEEE 802.11g network,

the time it takes to receive 74,172 bytes is 74172∗8
27∗106 = 0.022 seconds. In addition, there

are two round trip times involved: the three-way handshake and the request transmission

and data reception. Maier et al. find that there are three modes of round-trip times for

TCP from residential networks in Europe: 13 ms, 100 ms and 160 ms. These round-trip

times correspond to destinations in Europe, Eastern United States, and Western United

States, respectively. We choose 100 ms for subsequent analysis. Therefore, the total activ-

ity time is 0.022 + (0.100 ∗ 2) = 0.222 seconds. On average, a flow will burst 222 ms out

of 39.700 + 0.222 seconds. This produces the activity fraction of 0.144
39.922 = 0.0036, meaning

that there is 0.36% chance that one flow will burst at any given time.

We examined the video traces from [13] and [14] to find out the maximum frame sizes

of each trace. The maximum frame sizes from Indiana Jones, Die Hard 1, Matrix 1 and

90

5.4. BURSTS AND EFFECT ON CHAP PARAMETER I

Lord of the Rings 1 are 50427, 37359, 63092, and 55971 bytes respectively. Therefore, we

use the largest, 63092 bytes from Matrix 1, for our calculation as the worst case. Each of

these movies was encoded using G16B3, meaning that a GoP consists of 16 frames with

3 B frames between I/P frames. Since Matrix 1 was encoded at 30 frames per second,

it introduces an I frame every 533 ms. It takes 18.69 ms to transmit 63092 bytes over a

wireless link with about 27 Mbps of application-level throughput. Therefore, the activity

fraction is 0.01869
0.533 = 0.0351.

The probability that one flow bursts is p, where p is the activity fraction calculated

above. Once a flow has burst, another flow can burst anytime between when the first burst

starts and ends. Let p(n) be the probability that n flows continue to starve another flow

as demonstrated in Figure 5.6.

p(2) = p

∫ p

0
1dx = p2 (5.38)

p(3) = p

∫ p

0
(

∫ p+x

0
1dy)dx = 2p3 (5.39)

Equation 5.38 shows the probability of two flows delaying another flow based on the

activity ratio p. Once a flow is bursting, the second flow can burst anywhere between 0 and

p scaling the time period to 1 to match the activity ratio. Assuming that there is uniform

probability that the second flow starts within the time period of 1, the probability that it

will start between 0 and p, so that the second flow’s burst duration overlaps with the first,

is calculated by
∫ p

0 dx. Equation 5.39 shows the probability of three flows delaying another

flow based on the activity ratio p.

Based on activity ratios of 0.0036 and 0.0351 from Web browsing and video streaming

respectively, the corresponding probabilities can be calculated using the equations above.

The probability of one flow bursting is 0.0036 and 0.0351 for Web browsing and video

streaming, respectively. The probabilities of bursts are 0.00362 = 0.00001296 and 0.03512 =

0.00123201 for two flows and 2 × 0.00363 = 9.33 × 10−8 and 2 × 0.03513 = 8.65 × 10−5.

91

CHAPTER 5. ANALYTICAL MODEL

Therefore, we bound the maximum number of simultaneous bursts to 2 flows, which limits

the waiting time for the delay sensitive flow to 4I. As the human response time is in the

order of 100 ms, we would like 4I to be less than 100 ms. This provides the upper bound

for I as 25 ms.

For a lower bound, the parameter I should not be set too small because CHAP will not

be able to distinguish one flow from another. Ideally, we would like CHAP to be effective

for a reasonable burst length. We discussed the mean burst of Web flows and the maximum

burst of video flows above. Assuming full packets, bursts of Web and video flows consist of

50 and 42 packets, respectively. Therefore, we would like I to be big enough to handle at

least 50 packets. The time it takes to transmit 50 full packets can be calculated by dividing

the total number of bytes of 50 packets with the maximum application throughput.

50 packets × 1500 bytes/packet × 8 bits/byte/27000000 Mbps = 0.02222 s (5.40)

Considering that Web flows are usually new and assigned the default credit of I, I has

to be at least 22.22 ms to support the average burst of Web flows. Equation 5.41 shows

the lower and upper bounds for I. We set the parameter I to 25 ms.

22.22 ≤ I ≤ 25.00 (5.41)

5.5 Summary

This chapter provides the analytical model of CHAP. Section 5.1 explores the steady state

credit ranges for flows with different rates. The derived credit ranges demonstrate that

they map the relationship between bandwidth and delay tolerance shown in Figure 2.1

to priorities as intended. Section 5.2 adapts the delay analysis of a Probabilistic Priority

Discipline Queue (PPDQ) to derive the average queueing delays of flows with CHAP. The

corresponding service probabilities are derived from the credit ranges from Section 5.1

92

5.5. SUMMARY

and applied to the PPDQ model. The analytical model shows that the average queueing

delay for a low-bandwidth flow is lower than a high-bandwidth flow and that the average

queueing delays converge to the same point as the rates of two flows get closer to each

other. Section 5.3 discusses how the model is affected by relaxing the assumption that the

service rate is constant. An example demonstrates how the behavior of credits differs from

the example presented in Section 4.2. Section 5.4 explores factors influencing the CHAP

parameter I, which is based on the average nature of bursts. The recommended value of I

is 25 ms.

93

Chapter 6

Simulation

This chapter discusses the validation and performance evaluation methods for CHAP. Sec-

tion 6.1 describes the implementation details of simulation activities. Section 6.2 describes

experimental strategies to validate NS2 simulations. Section 6.3 presents simulations to

validate the mathematical model derived in Chapter 5. Section 6.4 covers the NS2 shad-

owing model for radio propagation and demonstrates the distribution of successful and

unsuccessful frame transmissions in NS2. Sections 6.6-6.13 describe various combinations

of simulation topologies and network traffic mixes to evaluate CHAP against FIFO and

Strict Priority Queue (SPQ) using metrics explained in Section 2.5. FIFO, the default

queue management mechanism in wireless access points, provides the baseline performance

while SPQ provides the best performance, given an explicit, static classification of flows

and corresponding priorities.

6.1 User Activities in NS2

This section describes the implementation details of the simulated user activities. On-

line games, Voice over IP (VoIP), video streaming, Web browsing, and file downloads are

discussed in the following subsections.

95

CHAPTER 6. SIMULATION

6.1.1 Online Games

There are many genres of games such as First Person Shooter (FPS), Real Time Strategy

(RTS), and Massively Multiplayer Online (MMO). FPS games are generally more fast-

paced and interactive compared to other genres. The online game traffic is simulated

with the built-in UDP packet generators following the traffic model for Halo 2, a popular

FPS [22]. The game server sends a 72-byte payload to the game client every 40 ms while

the game client sends a 44-byte payload to the game server every 40 ms.

6.1.2 Voice over IP

There are many protocols that Voice-over-IP (VoIP) applications use to allow users around

the world to talk to one another using audio. Although each protocol has different packet

sizes and intervals to transmit and receive audio data between users, the overall bandwidth

of VoIP protocols are similar from one protocol to another. Therefore, G.711 is selected

to simulate the VoIP network traffic in NS2. The built-in UDP traffic generator sends a

constant rate stream of 200-byte packets between two nodes every 20 ms.

6.1.3 Video Streaming

There are many applications and protocols for video streaming along with a variety of

methods to encode videos. We implement a video application to send video frames over

a UDP connection. The sizes of frames are extracted from pre-encoded video traces. The

simulated video application can also modify the frame sizes with three settings of Forward-

Error-Correction (FEC): no FEC, small FEC, and large FEC [134]. FEC introduces re-

dundancy to frames so that frames with lost packets can be repaired. Assume that a frame

is composed of n packets and there are k redundant packets for repair. A total of n + k

packets are transmitted for the frame, tolerating loss of up to k packets. The original frame

can be reconstructed with loss of up to any k packets. “No FEC” does not add any FEC

bytes. Any loss of packets in a frame results in a frame loss. “Small FEC” adds one full

packet (1500 bytes) to all the I-frames. Therefore, all the I-frames can be reconstructed

96

6.1. USER ACTIVITIES IN NS2

with up to one packet loss. “Large FEC” adds 15% of the bytes in a frame to all types of

frames.

The video application uses the Indiana Jones I movie trace encoded in a single layer

Common Intermediate Format (CIF) from Arizona State University [13, 14]. The movie

has a resolution of 352 × 288 pixels with 30 frames per second. The length of Group

of Pictures (GoP) is 16 frames with 3 B-frames between each pair of I/P frames. The

quantization scales used for I, P, and B frames are 10, 10, and 12, respectively. Only the

second layer with the full 30 frames per second is used by the video application to send

the movie.

6.1.4 Web Browsing

There are many analyses of Web traffic through core routers, but these do not describe

the Web traffic in the user’s perspective. Lee and Gupta model the Web traffic based

on user behavior [133]. Table 6.1 lists the HTTP model and its parameters. Following

this model, the built-in TCP data generator is used to model the Web traffic. Most of

the random number generators are already built in NS2 but the missing Gamma random

number generator was written in TCL.

Table 6.1: HTTP Model Parameters

Parameters Mean Std. Dev. Best Fit (Parameters)

HTML Object Size 11872 B (Max 2 MB) 38306 Truncated Lognormal
(µ 7.90272, σ 1.7643)

Embedded Object Size 12460 B (Max 6 MB) 116050 Truncated Lognormal
(µ 7.51384, σ 2.17454)

Number of 5.07 (Max 300) - Gamma
Embedded Objects (κ 0.141385, θ 40.3257)

Reading Time 39.70s (Max 10,000s) 324.92 Lognormal
(µ -0.495204, σ 2.7731)

Request Size 318.59 B 179.46 Uniform (350 B)

The simulated Web application uses a built-in TCP traffic generator to connect to the

Web server. The Web application transmits a request to the Web server. Upon receiving

97

CHAPTER 6. SIMULATION

the request, the Web server responds with one HTML object. After receiving the HTML

object, the Web application computes the number of embedded objects and the size of each

embedded object. If there is at least one embedded object, the Web application transmits

another request to the Web server. Finally, the Web server responds with an object whose

size is the sum of all the embedded objects. The sequence of Web requests and responses

assumes that 1) all the objects in a Web page are on one server; and 2) the Web application

and server use HTTP/1.1 for a persistent connection and pipelining.

6.1.5 Downloading Files

We simulate two types of file downloads: FTP and P2P. The FTP traffic is generated using

the FTP application in NS2 with TCP. The TCP congestion control mechanisms used in

modern operating systems vary from one operating system to another. Microsoft Windows

supports TCP Compound [18] while Linux 2.6.x kernel supports TCP CUBIC [17]. While

Windows supports TCP Compound, it is not enabled by default, and the default TCP

congestion control mechanism for Windows is unknown. Because the Linux 2.6.x kernel

uses TCP CUBIC by default, we use TCP CUBIC with the built-in FTP application.

Unlike traditional file transfer applications, peer-to-peer (P2P) applications connect to

“peers” to distribute files. Not only do P2P applications download files, they also provide

files or parts of files to other peers. Therefore, it is a combination of both downstream and

upstream activity. As discussed earlier in the dissertation (Section 4.2), we concentrate

only on the downstream traffic part of P2P applications. Because P2P applications are

able to share their own files with other peers, they use multiple flows to download a single

file. Basher et al. examine P2P flow characteristics in a campus environment [?]. The

results show that Gnutella uses only one flow to download a file while BitTorrent uses

more flows. 50% of BitTorrent clients use fewer than 20 concurrent flows. Maier et al.

examine residential DSL characteristics in Europe [73]. Their study of concurrent flows of

BitTorrent and eDonkey clients shows that eDonkey clients use about 10 concurrent flows

while BitTorrent clients use 10 to 15 concurrent flows. Therefore, we use 10 concurrent

98

6.2. SIMULATION VALIDATION

built-in FTP applications sending data from distinct sources to a single destination.

6.2 Simulation Validation

This section describes experimental strategies to validate NS2 simulations. It is impor-

tant to validate simulation results with experimental results to reinforce the validity of

simulation results presented throughout the rest of this chapter.

(a) Equipment Setup (b) Flow Schedule

Figure 6.1: Simulation Validation Setup

Figure 6.1 depicts the experiment setup and flow schedule. Six laptops are connected

in an internal network using a wireless access point. Three laptops are connected over

the 100 Mbps Ethernet connections while the other three laptops are connected over the

IEEE 802.11g 54 Mbps connections. Table 6.2 lists all the hardware details of each device

used in the experiment. The game/ping server and client run Microsoft Windows XP SP3

while the FTP servers and clients run Debian Linux (Lenny). Linux is chosen for the

FTP servers and clients to ensure they use TCP CUBIC for data transfers. The game

application is simulated using MGEN1 to send UDP packets at a fixed interval following

the average packet size and interval from the Halo 2 traffic model [22]. The server and

1http://cs.itd.nrl.navy.mil/work/mgen/

99

CHAPTER 6. SIMULATION

client send 72-byte and 44-byte packets, respectively, every 40 ms. The time differences in

the machines makes it difficult to measure one-way delays. UDP Ping2 is used to measure

the round-trip delay from the client to the server and later halved as an estimated measure

of one-way delay. The FTP application is written as a simple TCP server and client to

produce per-packet logs for analysis. Since the FTP application is run on Linux, the TCP

congestion control mechanism used is CUBIC. Most of the network traffic is downstream

from the servers to the clients and the only upstream traffic consists of TCP ACKs of the

FTP application and the game client UDP packets. In the experiment, the emulated game

traffic runs for 5 minutes starting at 0 seconds and ending at 300 seconds. UDP Ping runs

for the full duration of the experiment. Two bulk file downloads run for 3 and 1 minutes

each, starting at 60 and 120 seconds and ending at 240 and 180 seconds, respectively. The

same topology and flow schedule are set up in NS2 without the hardware details. RTS/CTS

exchange is disabled for IEEE 802.11g in both simulation and experiment.

Table 6.2: Simulation Validation Equipment Specification

Role Hardware and Software

Game/Ping Server/Client HP Elitebook 6930p
Intel Core2Duo T7300 @ 2.00 GHz
2 GB of RAM
Intel Wireless Wifi 3945ABG
Windows Vista SP1 (32bit)

FTP Servers/Clients HP Compaq 6710b
Intel Core2Duo P8600 @ 2.40 GHz
2 GB of RAM
Intel Wireless Wifi 4965AGN
Debian Linux 5.0 Kernel 2.6.26 (32bit)

Wireless Access Point Linksys WRT54GL Rev. 1.1
Official Firmware 4.30.12

Figure 6.2 depicts the throughputs of each application run in both simulation and

experiment. Throughputs in simulation and experiment are measured by counting the

number of bytes received at the destination node and machine, respectively. The total

2http://perform.wpi.edu/tools/

100

6.2. SIMULATION VALIDATION

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

FTP 1
FTP 2
Total

(a) Throughput (Simulation)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

FTP 1
FTP 2
Total

(b) Throughput (Experiment)

Figure 6.2: Simulation vs. Experiment: Throughput

throughput in the simulation is about 27 Mbps while the total throughput in the experiment

is about 23 Mbps. The first bulk file download is enough to saturate the wireless bandwidth

by itself. When the second bulk file download starts, they share the bandwidths equally

with some noise around their fair share in both simulation and experiment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Jitter (ms)

Experiment
Simulation

(a) 0-60

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Jitter (ms)

Experiment
Simulation

(b) 60-120

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Jitter (ms)

Experiment
Simulation

(c) 120-180

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Jitter (ms)

Experiment
Simulation

(d) 180-240

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Jitter (ms)

Experiment
Simulation

(e) 240-300

Figure 6.3: Simulation vs. Experiment: Inter-arrival Times of Game Packets

Figure 6.3 depicts the inter-arrival times of game packets at the game client in five

1-minute intervals. The expected inter-arrival time of game packets is 40 ms because the

game server sends its packets every 40 ms. In the first and last minutes, the distributions

101

CHAPTER 6. SIMULATION

in simulation and experiment are almost identical. However, in the middle 3 minutes, the

distributions differ from the simulation to the experiment. The simulation results show a

tighter range of inter-arrival times than the experiment.

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

G
-M

od
el

 M
O

S

Time (s)

Simulation
Experiment

(a) All Data

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300
G

-M
od

el
 M

O
S

Time (s)

Simulation
Experiment

(b) Filtered Data

Figure 6.4: Simulation vs. Experiment: G-model MOS

Figure 6.4(a) depicts the G-model MOS calculated every 5 seconds throughout the

simulation and experiment runs. The simulation and experiment show the same trend over

the 5 minutes where G-model MOS drops when the first bulk file download starts and

stays low until it ends after 3 minutes. The G-model MOS shows more variance in the

experiment than in the simulation. The G-model MOS in the experiment is lower than

the G-model MOS in the simulation in general due to the greater variation in inter-arrival

times of game packets. We believe that the noise in the experiment is caused by different

TCP implementations and/or factors that are not simulated in NS2 such as system level

overheads and interference from cordless phones and other wireless networks. Further

investigation is necessary to pinpoint the exact causes of the differences and is outside the

scope of this work. In order to compensate for the noise, the top and bottom 2.5% of jitter

data within each one minute intervals are filtered as outliers. The filtered data produce a

much cleaner G-model MOS line, shown in Figure 6.4(b).

102

6.3. MODEL VALIDATION

6.3 Model Validation

An analytical model for average queueing delay for CHAP is derived in Chapter 5. An NS2

simulation is run to validate this model, which uses the delay analysis of a Probabilistic

Priority Discipline Queue (PPDQ) along with derived service probabilities based on CHAP

credits. The analysis of a PPDQ assumes M/G/1 queues for each priority, where the inter-

arrival times of each incoming traffic flow follow an exponential distribution. Therefore,

the NS2 Telnet application, which utilizes an exponential distribution to compute inter-

packet times, is used on top of a UDP protocol to generate packets. Wireless nodes are

situated 1m away from the wireless access point and connected over an IEEE 802.11g 54

Mbps network with RTS/CTS disabled. 100 Mbps Ethernet connections with 1 ms latency

connect the wireless AP to a switch and the switch to two wired nodes. Each wired node

generates UDP packets using the built-in Telnet application. The network traffic with a

slower rate is “Flow 1” while the one with a faster rate is “Flow 2”. Flow 1 is varied such

that the ratio of rates of Flow 1 to Flow 2 increases in steps of 1
9 while keeping the total

rate at 13.5 Mbps. 13.5 Mbps is chosen to match ρ = 0.5 in the analysis because the IEEE

802.11g network can accommodate the throughput of about 27 Mbps in NS2. The average

rates of flows are configured by calculating the average inter-packet times for each Telnet

application in NS2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

Rate ratio of Flow 1 to Flow 2

Flow 2
Flow 1

(a) Analytical Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

Rate ratio of Flow 1 to Flow 2

Flow 2
Flow 1

(b) Simulation

Figure 6.5: Mean Queueing Delay from Analytical Model and Simulation

Figure 6.5 depicts the average queueing delay from the analytical model and the sim-

103

CHAPTER 6. SIMULATION

ulations. Figure 6.5(a) shows the average queueing delay from the derived model in

Chapter 5. From the simulation result, the average queueing delay is calculated for ev-

ery packet sent from Flows 1 and 2. Then, it is normalized relative to the transmis-

sion time of a packet with 1500 byte payload over the wireless network, which is 306 µs

(= 50 + (1500+34)×8×106

54×106 + 10 + 14×8×106

6×106)3. Figure 6.5(b) shows the normalized average

queueing delay from the simulation. Both graphs show similar trend as the rate of Flow 1

gets closer to the rate of Flow 2. When the rates of Flow 1 and Flow 2 are equal, they get

about the same average queueing delay in both the analytical model and simulation.

6.4 Shadowing Model and Transmission Statistics over Dis-

tance

NS2 supports three types of radio propagation models: free space, two-ray ground reflection

and shadowing. The free space model and two-ray ground reflection models provide a

deterministic signal degradation over distance. Therefore, they both represent wireless

communication in a perfect, open circle. In the real world, many factors contribute to

wireless signal degradation and introduce a random nature to the signal strength at the

receiver.

The shadowing model is a more general model that consists of two parts: path loss and

variation. The path loss model predicts Pr(d), the mean received power at distance d and

uses Pr(d0), a close-in distance d0 as a reference.

Pr(d0)

Pr(d)
=

(

d

d0

)β

(6.1)

Equation 6.1 demonstrates the relative relationship between Pr(d) and Pr(d0) where β

is the path loss exponent. Equation 6.1 is equivalent to the free space model when β = 2.

The greater the path loss exponent is, the more obstructions there are, resulting in faster

decrease in averaged received power over distance. Equation 6.1 can be transformed to

3DATA and ACK frames are transmitted at 54 Mbps and 6 Mbps, respectively.

104

6.4. SHADOWING MODEL AND TRANSMISSION STATISTICS OVER DISTANCE

Equation 6.2 because the path loss is measured in dB.

[

Pr(d)

Pr(d0)

]

dB

= −10βlog

(

d

d0

)

(6.2)

Variation is added to Equation 6.2 with a log-normal random variable. XdB is a Gaus-

sian random variable with zero mean and standard deviation σdB , the shadowing deviation.

Equation 6.3 represents the overall shadowing model.

[

Pr(d)

Pr(d0)

]

dB

= −10βlog

(

d

d0

)

+ XdB (6.3)

Table 6.3: Some typical values of path loss exponent β

Environment β

Outdoor - Free space 2

Outdoor - Shadowed urban area 2.7 to 5

Indoor - Line-of-sight 1.6 to 1.8

Indoor - Obstructed 4 to 6

Table 6.4: Some typical values of shadowing deviation σdb

Environment σdB (dB)

Outdoor 4 to 12

Office, hard partition 7

Office, soft partition 9.6

Factory, line-of-sight 3 to 6

Factory, obstructed 6.8

The NS2 manual4 lists typical values for path loss exponent and shadowing deviation.

Table 6.3 depicts some typical values of path loss exponent β while Table 6.4 depicts some

typical values for shadowing deviation.

Figure 6.6 depicts the loss statistics from sending a UDP stream of packets at a constant

rate over a IEEE 802.11g infrastructure network with one wireless node. RTS/CTS is

4http://www.isi.edu/nsnam/ns/ns-documentation.html

105

CHAPTER 6. SIMULATION

 0%

 20%

 40%

 60%

 80%

 100%

1 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 F

ra
m

es

Distance (m)

Loss
7 TX
6 TX
5 TX
4 TX
3 TX
2 TX
1 TX

Figure 6.6: Transmission Statistics over Distances

disabled and the shadowing model is used for the radio propagation. The wireless node is

located at distances ranging from 1m to 30m. All frame transmissions are successful in one

transmission at 1m. At 5m, 92.9% and 6.5% of frames are successful in one transmission

and two transmissions, respectively. At 10m, the AP transmitted 48.3%, 24.9%, and 12.9%

of frames in one, two, and three transmissions respectively, while 1.0% of frames is lost

after 7 transmissions. At 30m, 97.3% of frames is lost after 7 transmissions.

6.5 Simulation Topology

(a) Simulation Topology (b) Flow Schedule

Figure 6.7: Simulation Setup

Figure 6.7 depicts the simulation topology and flow schedule for all the simulation runs.

There are two wireless nodes connected to the access point (AP) with distances D1 and

106

6.6. QUEUE SIZE

D2 respectively. The wireless nodes and AP are connected over a single channel, IEEE

802.11g infrastructure network at 54 Mbps. RTS/CTS frame exchange is disabled. The

AP is configured to send beacon frames every 100 ms. The radio propagation model for

wireless transmission is the shadowing model described in Section 6.4. The parameters for

the shadowing model are 3.0 and 7.0 for the path loss exponent and standard deviation,

respectively. The path loss exponent of 3.0 corresponds to an obstructed indoor environ-

ment while standard deviation of 7.0 corresponds to an office with hard partitions. The

rate adaptation is not enabled due to lack of NS2 support for the simulations. The AP is

connected to a switch over a symmetric 100 Mbps Ethernet line with 1 ms latency. The

switch is connected to multiple wired nodes over 100 Mbps Ethernet lines with varying

latencies of L1 through Ln. The AP uses different queueing disciplines for the downstream

traffic coming from the wired nodes S1 through Sn and going to the wireless nodes W1 and

W2. The queueing disciplines used are First-In-First-Out (FIFO), Strict Priority Queue

(SPQ), and CHAP. The queue size limit is configured to q packets. Unless specified, the

queue size at the AP is set to 35 packets [135], the latencies to the wired nodes are 1 ms,

and the distances between the AP and the wireless nodes are 1m. CHAP uses 25 ms for

the parameter I, and SPQ is configured to prioritize Application 1 over Application 2.

There are two types of network traffic in the simulation topology. Each wireless node

runs one application. Wireless node W1 runs Application 1, which starts at 30 seconds

after the simulation starts and ends at 330 seconds for the total duration of 5 minutes.

Wireless node W2 runs Application 2, which starts at 90 seconds and ends at 270 seconds

for the total duration of 3 minutes. Two applications run concurrently between 90 seconds

and 270 seconds. All the measurements and quality metrics between 90 and 270 seconds

are used for analysis.

6.6 Queue Size

This section describes a series of simulation runs with varying queue sizes. Table 6.5 lists

all the parameters of the simulation runs. Residential and commercial APs have different

107

CHAPTER 6. SIMULATION

queue sizes, and this set of simulation results demonstrates how different queue sizes affect

the application quality under FIFO, CHAP, and SPQ. The queue size ranges from 35 to

350 packets in increments of 35 packets.

Table 6.5: Parameters for Queue Size Scenario

Parameter Setting/Value

S1, W1 Game (FPS), VoIP, Video, Web

S2, W2 FTP

L1 1 ms

L2 1 ms

D1 1m

D2 1m

q 35, 70, 105,...,350 packets

Q FIFO, CHAP, SPQ

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

A
vg

. Q
ue

ue
 S

iz
e

(p
kt

s)

Queue Size (pkts)

FIFO
CHAP

SPQ

(a) Avg. Queue Size

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350

M
O

S

Queue Size (pkts)

FIFO
CHAP

SPQ

(b) G-model MOS

Figure 6.8: Improvement of Game vs. Queue Size

Figure 6.8 depicts the average queue size at the wireless access point and the G-model

MOS of the game application. The average queue size demonstrates that the queue is

almost always full as the queue size increases for all three queueing disciplines in the

presence of the game application. The G-model MOS of the game application with the

FIFO queue shows degradation in quality from 3.5 to 1.5 as the queue size increases.

The increase in the queueing delay contributes to the degradation in quality of the game

application. On the contrary, the game application performance stays constant at 4.27

108

6.6. QUEUE SIZE

with both CHAP and SPQ because CHAP and SPQ prioritize the game traffic regardless

of the queue size.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

A
vg

. Q
ue

ue
 S

iz
e

(p
kt

s)

Queue Size (pkts)

FIFO
CHAP

SPQ

(a) Avg. Queue Size

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350

M
O

S

Queue Size (pkts)

FIFO
CHAP

SPQ

(b) E-model MOS

Figure 6.9: Improvement of VoIP vs. Queue Size

Figure 6.9 depicts the average queue size at the wireless access point and the E-model

MOS of the VoIP application. The average queue size demonstrates that the queue is almost

always full as the queue size increases for all three queueing disciplines in the presence of the

VoIP application. The E-model MOS of the VoIP application with the FIFO queue shows

little degradation in quality as the queue size increases. The only factor that contributes to

the degradation in the E-model MOS in the simulation scenario is packet loss. The VoIP

application performance stays constant at 4.3 with both CHAP and SPQ because CHAP

and SPQ prioritize the VoIP traffic regardless of the queue size.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350

A
vg

. F
ra

m
e

P
er

 S
ec

on
d

Queue Size (pkts)

FIFO (No FEC)
FIFO (Small FEC)
FIFO (Large FEC)

(a) Frame Rate (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350

A
vg

. F
ra

m
e

P
er

 S
ec

on
d

Queue Size (pkts)

CHAP (No FEC)
CHAP (Small FEC)
CHAP (Large FEC)

(b) Frame Rate (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350

A
vg

. F
ra

m
e

P
er

 S
ec

on
d

Queue Size (pkts)

SPQ (No FEC)
SPQ (Small FEC)
SPQ (Large FEC)

(c) Frame Rate (SPQ)

Figure 6.10: Improvement of Video vs. Queue Size

Figure 6.10 depicts the average frame rate of the video streaming application. The

video frame rate with FIFO increases as the queue size increases as the probability of

109

CHAPTER 6. SIMULATION

losing frames is lower with a larger buffer. The use of small and large FEC helps the video

frame rate for FIFO but only by about 2 frames. CHAP and SPQ demonstrate a constant

rate of 30 frames per second regardless of the amount of FEC. Since the benefits of FEC

are marginal, no FEC is used for subsequent video results, unless otherwise stated.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

A
vg

. Q
ue

ue
 S

iz
e

(p
kt

s)

Queue Size (pkts)

FIFO
CHAP

SPQ

(a) Avg. Queue Size

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350

A
vg

. R
es

po
ns

e
T

im
e

(m
s)

Queue Size (pkts)

FIFO
CHAP

SPQ

(b) Response Time

Figure 6.11: Improvement of Web vs. Queue Size

Figure 6.11 depicts the average queue size at the wireless access point and the average

response time of the Web application. The average queue size demonstrates that the

queue is almost always full as the queue size increases for all three queueing disciplines in

presence of the Web application. The average response time of the Web application with

the FIFO queue increases as the queue size increases. This is due to the increase in the

queueing delay as the queue size increases. On the contrary, the Web application responds

consistently faster with both CHAP and SPQ because CHAP and SPQ prioritize the Web

traffic regardless of the queue size.

6.7 Distances

This section describes a series of simulation runs with varying distances. Physical distances

between the AP and the wireless nodes affect the nodes’ wireless connectivity. Even one

node with poor connectivity can cause performance degradation of the entire wireless net-

work. This set of simulation results demonstrates how varying distances of different nodes

affect the application quality under FIFO, CHAP, and SPQ.

110

6.7. DISTANCES

6.7.1 Distance of the Application Node under Test

This section discusses how the application quality is affected by varying distances of the

node running the application under test. The FTP application node is placed at 1m away

from the AP. Table 6.6 lists all the parameters of the simulation runs.

Table 6.6: Parameters for Application Node Distance Scenario

Parameter Setting/Value

S1, W1 Game (FPS), VoIP, Video, Web

S2, W2 FTP

L1 1 ms

L2 1 ms

D1 1,5,10,15,20,25,30m

D2 1m

q 35 packets

Q FIFO, CHAP, SPQ

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

M
O

S

Distance (m)

FIFO
CHAP

SPQ

(a) G-model MOS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(b) FTP Throughput

Figure 6.12: Application Distance Case (Game)

Figure 6.12 depicts how the G-model MOS of the game application and the throughput

of the FTP application are affected by the distance of the game application node. The

G-model MOS of the game application stays relatively constant at 3.5, 4.27, and 4.27 for

FIFO, CHAP, and SPQ respectively. Although the game application experiences higher

packet loss rate, the G-model assumes that the game application is capable of handling

losses. The FTP throughput decreases as the game application node moves farther away

111

CHAPTER 6. SIMULATION

from the AP because the game packets take a longer transmission time due to the signal

attenuation and retransmissions. The FTP performance degradation is about the same for

FIFO, CHAP and SPQ.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

M
O

S

Distance (m)

FIFO
CHAP

SPQ

(a) E-model MOS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(b) FTP Throughput

Figure 6.13: Application Distance Case (VoIP)

Figure 6.13 depicts how the E-model MOS of the VoIP application and the throughput

of the FTP application are affected by the distance of the VoIP application node. The E-

model MOS of the VoIP application degrades as the VoIP application node moves farther

away from the AP. Increasing packet loss rate due to increases in the distance contributes

to the degradation of the VoIP application quality. Like in the game application scenario,

the FTP throughput decreases as the VoIP application node moves farther away from the

AP because the VoIP packets take longer transmission times due to the signal attenuation

and retransmissions. Although the FTP performance degradation is similar across FIFO,

CHAP, and SPQ, it is worse compared to the game scenario because the VoIP application

sends and receives packets at twice the rate of the game application.

Figure 6.14 depicts how the FTP throughputs and the frame rate of the video applica-

tion are affected by the distance of the video application node. The total throughput of the

wireless network degrades similarly for FIFO and SPQ. FIFO, CHAP, and SPQ degrade

the FTP throughput differently. The FTP throughput under FIFO reaches 0 Mbps at 20m

while the FTP throughput under SPQ reaches 0 Mbps at 15m. CHAP degrades the FTP

throughput of the wireless network more gracefully compared to FIFO and SPQ because

112

6.7. DISTANCES

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO (No FEC)
FIFO (Small FEC)
FIFO (Large FEC)

(a) FTP Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

CHAP (No FEC)
CHAP (Small FEC)
CHAP (Large FEC)

(b) FTP Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

SPQ (No FEC)
SPQ (Small FEC)
SPQ (Large FEC)

(c) FTP Throughput (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

FIFO (No FEC)
FIFO (Small FEC)
FIFO (Large FEC)

(d) Frames per Second (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

CHAP (No FEC)
CHAP (Small FEC)
CHAP (Large FEC)

(e) Frames per Second (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

SPQ (No FEC)
SPQ (SMall FEC)
SPQ (Large FEC)

(f) Frames per Second (SPQ)

Figure 6.14: Application Distance Case (Video)

CHAP adjusts the priority of the video traffic as the video application node moves farther

away from the access point. Increases in the transmission time for video packets increase

the cost in credits, pulling the video application’s priority down. Therefore, the FTP ap-

plication achieves higher throughput at distances greater than 10m with CHAP compared

to FIFO and SPQ. Increases in distance of the video application also affect the degradation

of the video application. The video is no longer viewable at distances greater than 15m

with the achievable rate of about 2 frames per second. Therefore, it is reasonable to stop

prioritizing the video traffic at such distances. Under FIFO, large FEC helps with losses

when the video application is close to the AP. As the video application node is further

away from the AP, the benefit of FEC decreases due to high loss rates. FEC does not help

improve frame rates under CHAP and SPQ.

Figure 6.15 depicts how the distance of the Web application affects the average response

time, the number of completed requests, and the throughput of the FTP application.

The average response time increases as the distance of the Web application increases.

SPQ provides the shortest average response time as it is manually configured to always

prioritize the Web traffic regardless of the Web application node’s distance to the access

113

CHAPTER 6. SIMULATION

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

W
eb

 R
es

po
ns

e
T

im
e

(m
s)

Distance (m)

FIFO
CHAP

SPQ

(a) Response Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

N
um

be
r

of
 R

eq
ue

st
s

Distance (m)

FIFO
CHAP

SPQ

(b) Number of Completed Re-
quests

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(c) FTP Throughput

Figure 6.15: Application Distance Case (Web)

point. Because of differences in the number of completed requests under FIFO, CHAP,

and SPQ, the average response time is calculated with only the completed requests that

exist under all three scenarios.

6.7.2 Distance of the FTP Node

This section discusses how the application quality is affected by varying distances of the

FTP application node. The node running the application under test is placed at 1m away

from the AP. Table 6.7 lists all the parameters of the simulation runs.

Table 6.7: Parameters for FTP Node Distance Scenario

Parameter Setting/Value

S1, W1 Game (FPS), VoIP, Video, Web

S2, W2 FTP

L1 1 ms

L2 1 ms

D1 1m

D2 1,5,10,15,20,25,30m

q 35 packets

Q FIFO, CHAP, SPQ

Figure 6.16 depicts how the G-model MOS of the game application and the throughput

of the FTP application are affected by the distance of the FTP application node. The G-

model MOS of the game application decreases up to a certain distance and then increases

for FIFO, CHAP, and SPQ. The game application experiences longer queueing delays and

114

6.7. DISTANCES

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

M
O

S

Distance (m)

FIFO
CHAP

SPQ

(a) G-model MOS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(b) FTP Throughput

Figure 6.16: FTP Distance Case (Game)

higher variation in jitter. The G-model MOS for FIFO, CHAP, and SPQ increases to

the maximum quality past 25 m because the FTP application is hardly transmitting any

packets. The G-model MOS for CHAP and SPQ are relatively unaffected compared to

FIFO over all distances. The FTP throughput decreases as the FTP application node

moves farther away from the AP because the FTP packets take longer transmission time

due to the signal attenuation and retransmissions. The FTP performance degradation is

about the same for FIFO, CHAP, and SPQ.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

M
O

S

Distance (m)

FIFO
CHAP

SPQ

(a) E-model MOS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(b) FTP Throughput

Figure 6.17: FTP Distance Case (VoIP)

Figure 6.17 depicts how the E-model MOS of the VoIP application and the throughput

of the FTP application are affected by the distance of the FTP application node. Unlike

the G-model MOS, the E-model MOS is resilient to delays up to 177.3 ms while it is prone

115

CHAPTER 6. SIMULATION

to packet losses. Because the delays do not exceed 177.3 ms and there is no VoIP packet

loss, the E-model MOS of the VoIP application stays constant at all distances for FIFO,

CHAP and SPQ. The FTP throughput decreases as the FTP application node moves

farther away from the AP because the FTP packets take longer transmission time due to

the signal attenuation and retransmissions. The FTP performance degradation is about

the same for FIFO, CHAP, and SPQ.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO (No FEC)
FIFO (Small FEC)
FIFO (Large FEC)

(a) FTP Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

CHAP (No FEC)
CHAP (Small FEC)
CHAP (Large FEC)

(b) FTP Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

SPQ (No FEC)
SPQ (Small FEC)
SPQ (Large FEC)

(c) FTP Throughput (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

FIFO (No FEC)
FIFO (Small FEC)
FIFO (Large FEC)

(d) Frames per Second (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

CHAP (No FEC)
CHAP (Small FEC)
CHAP (Large FEC)

(e) Frames per Second (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

SPQ (No FEC)
SPQ (SMall FEC)
SPQ (Large FEC)

(f) Frames per Second (SPQ)

Figure 6.18: FTP Distance Case (Video)

Figure 6.18 depicts how the FTP throughputs and the frame rate of the video appli-

cation are affected by the distance of the FTP application node. The FTP throughput

decreases as the FTP application node is further away from the AP. Viewable frame rate

starts low under FIFO when the FTP application node is close to the AP. The frame rate

increases under FIFO as the FTP application moves away, allowing the video application

enough bandwidth to send all its frames without losses. CHAP and SPQ are able to pro-

vide close to 30 frames per second regardless of the distance of the FTP application node.

Under FIFO, large FEC helps with losses when the video application is close to the AP.

As the video application node is further away from the AP, the benefit of FEC decreases

due to high loss rates. FEC does not help improve frame rates under CHAP and SPQ.

116

6.7. DISTANCES

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

W
eb

 R
es

po
ns

e
T

im
e

(m
s)

Distance (m)

FIFO
CHAP

SPQ

(a) Response Time

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(b) FTP Throughput

Figure 6.19: FTP Distance Case (Web)

Figure 6.19 depicts how the distance of the FTP application affects the average response

time and the throughput of the FTP application. The FTP throughput decreases as the

FTP application node is further away from the AP. The average response time for FIFO

decreases as the distance of the FTP application increases. CHAP and SPQ provide average

response times lower than FIFO. SPQ provides the shortest average response time as it is

manually configured to always prioritize the Web traffic regardless of the FTP application

node’s distance to the access point.

6.7.3 Distance of Both Nodes

This section discusses how the application quality is affected by varying distances of both

nodes. In each simulation run, the nodes running the application under test and the FTP

application are placed at the same distances, ranging from 1m to 30m. Table 6.8 lists all

the parameters of the simulation runs.

Figure 6.20 depicts how the G-model MOS of the game application and the throughput

of the FTP application are affected by the distance of both nodes. The G-model MOS

of the game application degrades up to 10m for FIFO while it stays relatively constant

between 3.5 and 4.3 for CHAP and the G-model MOS for FIFO increases back to around

4 past 20m. Although the game application experiences higher packet loss rates at greater

distances, the G-model assumes that the game application is capable of handling losses.

117

CHAPTER 6. SIMULATION

Table 6.8: Parameters for Both Node Distance Scenario

Parameter Setting/Value

S1, W1 Game (FPS), VoIP, Video, Web

S2, W2 FTP

L1 1 ms

L2 1 ms

D1 1,5,10,15,20,25,30m

D2 1,5,10,15,20,25,30m

q 35 packets

Q FIFO, CHAP, SPQ

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

M
O

S

Distance (m)

FIFO
CHAP

SPQ

(a) G-model MOS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(b) FTP Throughput

Figure 6.20: Both Distance Case (Game)

The FTP throughput decreases as the FTP application node moves farther away from the

AP and behaves the same for FIFO, CHAP, and SPQ.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

M
O

S

Distance (m)

FIFO
CHAP

SPQ

(a) E-model MOS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(b) FTP Throughput

Figure 6.21: Both Distance Case (VoIP)

118

6.7. DISTANCES

Figure 6.21 depicts how the E-model MOS of the VoIP application and the throughput

of the FTP application are affected by the distance of both nodes. The E-model MOS

of the VoIP application stays constant at around 4.3 until 10m and starts to degrade,

eventually reaching 0 at 30m, similar for FIFO, CHAP, and SPQ. Higher packet loss

rates at higher distances cause the E-model MOS degradation over distance. The FTP

throughput decreases as the FTP application node moves farther away from the AP and

behaves the same for FIFO, CHAP, and SPQ.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO (No FEC)
FIFO (Small FEC)
FIFO (Large FEC)

(a) FTP Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

CHAP (No FEC)
CHAP (Small FEC)
CHAP (Large FEC)

(b) FTP Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

SPQ (No FEC)
SPQ (Small FEC)
SPQ (Large FEC)

(c) FTP Throughput (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

FIFO (No FEC)
FIFO (Small FEC)
FIFO (Large FEC)

(d) Frames per Second (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

CHAP (No FEC)
CHAP (Small FEC)
CHAP (Large FEC)

(e) Frames per Second (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

m
e

R
at

e
(f

ps
)

Distance (m)

SPQ (No FEC)
SPQ (SMall FEC)
SPQ (Large FEC)

(f) Frames per Second (SPQ)

Figure 6.22: Both Distance Case (Video)

Figure 6.22 depicts how the FTP throughputs and the frame rate of the video appli-

cation are affected by the distance of both nodes. The FTP throughput decreases as the

FTP application node is further away from the AP. Frame rates decrease as the video

application node is further away from the AP. Under FIFO, large FEC helps with losses

when the video application is close to the AP. As the video application node is further

away from the AP, the benefit of FEC decreases due to high loss rates. FEC does not help

improve frame rates under CHAP and SPQ.

Figure 6.23 depicts how the Web response time of the Web application and the through-

put of the FTP application are affected by the distance of both nodes. FTP throughputs

119

CHAPTER 6. SIMULATION

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

W
eb

 R
es

po
ns

e
T

im
e

(m
s)

Distance (m)

FIFO
CHAP

SPQ

(a) Response Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

N
um

be
r

of
 R

eq
ue

st
s

Distance (m)

FIFO
CHAP

SPQ

(b) Number of Completed Re-
quests

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO
CHAP

SPQ

(c) FTP Throughput

Figure 6.23: Both Distance Case (Web)

behave the same for FIFO, CHAP, and SPQ. The throughputs eventually reach 0 Mbps

as the FTP application node is further away from the AP. The Web application is able

to handle more requests under SPQ because SPQ prioritizes Web traffic regardless of the

wireless condition. CHAP provides similar performance to SPQ until 10m. Because of

differences in the number of completed requests under FIFO, CHAP, and SPQ, the aver-

age response time is calculated with only the completed requests that exist under all three

scenarios.

6.8 Multiple Applications

This section describes a series of simulation runs with multiple activities taking place

concurrently. This set of simulation results demonstrates how the concurrency affects the

quality of applications under FIFO, CHAP, and SPQ.

For this scenario, SPQ is configured to treat network traffic in two classes: delay-

sensitive and delay-insensitive applications. The game, VoIP, video and Web applications

fall under the delay-sensitive application class, while the FTP application falls under the

delay-insensitive application class. Separate simulations are run with three different FEC

settings for the video application.

Table 6.10 shows the summary of application performance from the three simulation

runs. The performance results for the game, VoIP, and Web applications are from the

simulation run with no FEC. The G-model MOS for the game application with CHAP

120

6.8. MULTIPLE APPLICATIONS

Table 6.9: Parameters for Multiple Applications Scenario

Parameter Setting/Value

S1, W1 Game (FPS)

S2, W2 VoIP

S3, W3 Video (No FEC, Small FEC, Large FEC)

S4, W4 Web

S5, W5 FTP

L1−5 1 ms

D1−5 1m

q 35 packets

Q FIFO, CHAP, SPQ

Table 6.10: Summary of Performance Metrics

App. (Unit) FIFO CHAP SPQ % Impr

Game (MOS) 3.57 4.27 4.25 +20%

VoIP (MOS) 4.31 4.42 4.42 +3%

Video - No FEC (fps) 15.58 30.00 30.00 +93%

Video - Small FEC (fps) 17.44 30.00 30.00 +72%

Video - Large FEC (fps) 23.16 30.00 30.00 +30%

Web (ms) 113.39 56.07 41.85 +51%

FTP (Mbps) 22.95 22.91 22.91 0%

shows an improvement of 20% over FIFO from 3.57 to 4.27. The E-model MOS for the

VoIP application with CHAP shows an improvement of 3% over FIFO from 4.31 to 4.42.

The response time for the Web application with CHAP shows an improvement of 51% over

FIFO from 113 ms to 56 ms. The frame rate of video streaming with CHAP increases to 30

frames per second regardless of the use of FEC. The improvement over FIFO is 93%, 72%,

and 30% from 15.58, 17.44, and 23.16 frames per second with no FEC, small FEC, and

large FEC, respectively. While CHAP provides such improvement for these delay-sensitive

applications over FIFO, the FTP throughput remains unchanged with 22.95 Mbps and

22.91 Mbps for FIFO and CHAP respectively. Again, CHAP’s performance for these

delay-sensitive applications is close to SPQ’s. The game, VoIP, and video applications

perform the same under CHAP and SPQ. The response time for the Web application with

121

CHAPTER 6. SIMULATION

CHAP is not as low as with SPQ.

6.9 Peer-to-Peer Application

This section describes a series of simulation runs with a Peer-to-Peer (P2P) application as

the background traffic. Simulation results show the effects on the quality of delay-sensitive

applications in the presence of a P2P application, which uses multiple concurrent TCP

flows to download files. Table 6.11 lists all the parameters of the simulation runs.

Table 6.11: Parameters for Peer-to-Peer Scenario

Parameter Setting/Value

S1, W1 Game (FPS), VoIP, Video, Web

S2−11, W2 P2P

L1 1 ms

L2 1 ms

D1 1m

D2 1m

q 35 packets

Q FIFO, CHAP, SPQ

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

P2P
Total

(a) Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

P2P
Total

(b) Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

P2P
Total

(c) Throughput (SPQ)

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300
 0

 30

 60

 90

 120

 150

M
O

S

T
im

e
(m

s)

MOS
Mean One-way Delay

Mean Jitter

(d) G-model (FIFO)

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300
 0

 30

 60

 90

 120

 150

M
O

S

T
im

e
(m

s)

MOS
Mean One-way Delay

Mean Jitter

(e) G-model (CHAP)

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300
 0

 30

 60

 90

 120

 150

M
O

S

T
im

e
(m

s)

MOS
Mean One-way Delay

Mean Jitter

(f) G-model (SPQ)

Figure 6.24: P2P Throughput and Game Quality

122

6.9. PEER-TO-PEER APPLICATION

Figure 6.24 depicts the G-model MOS of the game application and the P2P application

throughput over time. The P2P application throughputs are the same for FIFO, CHAP,

and SPQ. The game application throughput is excluded in the figure because the game

application uses only 14.4 Kbps. The G-model MOS drops to around 3 when the P2P

application is active in the background between 90 and 270 seconds for 3 minutes. The

G-model MOS stays almost constant at around 4.3 for both CHAP and SPQ. CHAP is

able to keep the G-model MOS up because the throughput of the game application is still

less than an individual flow of the P2P application.

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

P2P
Total

(a) Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

P2P
Total

(b) Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

P2P
Total

(c) Throughput (SPQ)

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300
 0

 30

 60

 90

 120

 150

M
O

S

T
im

e
(m

s)

MOS
Mean One-way Delay

(d) E-model (FIFO)

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300
 0

 30

 60

 90

 120

 150

M
O

S

T
im

e
(m

s)

MOS
Mean One-way Delay

(e) E-model (CHAP)

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300
 0

 30

 60

 90

 120

 150

M
O

S

T
im

e
(m

s)

MOS
Mean One-way Delay

(f) E-model (SPQ)

Figure 6.25: P2P Throughput and VoIP Quality

Figure 6.25 depicts the E-model MOS of the VoIP application and the P2P application

throughput over time. The P2P application throughputs are the same for FIFO, CHAP,

and SPQ. The VoIP application throughput is excluded in the figure because the game

application uses only 80 Kbps. The E-model MOS drops to around 3.5 when the P2P

application is active in the background between 90 and 270 seconds for 3 minutes. The

E-model MOS stays almost constant at around 4.3 for both CHAP and SPQ. CHAP is

able to keep the E-model MOS up because the throughput of the VoIP application is still

less than an individual flow of the P2P application.

123

CHAPTER 6. SIMULATION

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(a) Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(b) Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(c) Throughput (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(d) FPS (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(e) FPS (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(f) FPS (SPQ)

Figure 6.26: Throughputs and Video Quality with No FEC

Figure 6.26 depicts the video frame rate of the video application without FEC and

the throughputs of both applications over time. The total throughputs are the same

for FIFO, CHAP, and SPQ, while the individual application throughputs are different.

The video application throughput under SPQ is the encoded video throughput because

SPQ prioritizes the video traffic regardless of the presence of the P2P application. The

video application throughput under FIFO follows the same trend as the video application

throughput under SPQ. The video application throughput under CHAP only follows the

same trend when the input video throughput is less than 2.33 Mbps because 2.33 Mbps

is the fair share of a flow when there are 11 flows present. Therefore, CHAP keeps the

video application throughput at around 2.33 Mbps until 200 seconds while the input video

throughput is mostly greater than 2.33 Mbps. However, the video frame rate does not

follow the throughput. The video application under FIFO is able to play only about 1

frame per second in the presence of the P2P application while it can play 30 frames per

second under SPQ. CHAP is able to play 12 frames per second on average in the presence

of the P2P application. When the input video throughput is greater than the fair share

of 2.33 Mbps, it also drops to around 1 frame per second like FIFO but provides higher

124

6.9. PEER-TO-PEER APPLICATION

frame rate once it drops below 2.33 Mbps.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)
Video

P2P
Total

(a) Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(b) Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(c) Throughput (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(d) FPS (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(e) FPS (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(f) FPS (SPQ)

Figure 6.27: Throughputs and Video Quality with Small FEC

Figure 6.27 depicts the video frame rate of the video application with Small FEC and

the throughputs of both applications over time. The throughputs and frame rates look

similar to those shown in Figure 6.26.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(a) Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(b) Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Video
P2P

Total

(c) Throughput (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(d) FPS (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(e) FPS (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

F
ra

m
es

 p
er

 S
ec

on
d

(f) FPS (SPQ)

Figure 6.28: Throughputs and Video Quality with Large FEC

125

CHAPTER 6. SIMULATION

Figure 6.28 depicts the video frame rate of the video application with Large FEC and

the throughputs of both applications over time. The throughputs and frame rates look

similar to those shown in Figure 6.26.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Web
P2P

Total

(a) Throughput (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300
T

hr
ou

gh
pu

t (
M

bp
s)

Web
P2P

Total

(b) Throughput (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Web
P2P

Total

(c) Throughput (SPQ)

 0.001

 0.01

 0.1

 1

 10

 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

(s
)

(d) Web Response Time (FIFO)

 0.001

 0.01

 0.1

 1

 10

 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

(s
)

(e) Web Response Time (CHAP)

 0.001

 0.01

 0.1

 1

 10

 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

(s
)

(f) Web Response Time (SPQ)

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30 35

R
es

po
ns

e
T

im
e

(s
)

Request #

(g) Web Response Time (FIFO)

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30 35

R
es

po
ns

e
T

im
e

(s
)

Request #

(h) Web Response Time (CHAP)

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30 35

R
es

po
ns

e
T

im
e

(s
)

Request #

(i) Web Response Time (SPQ)

Figure 6.29: Throughputs and Web Quality

Figure 6.29 depicts the response time of the Web application with the P2P application in

the background and the throughputs of both applications over time. The total throughputs

are the same for FIFO, CHAP, and SPQ. SPQ provides the shortest average response time

of 39 ms while FIFO provides the longest average response time of 530 ms. CHAP provides

the average response time of 153 ms, closer to SPQ than FIFO. CHAP is able to provide

benefit to Web application because Web flows are generally short-lived and tend to use

little bandwidth. Figures 6.29 (d)-(f) show the response time of each Web request against

the simulation time on the horizontal axis while Figures 6.29 (g)-(i) show the response time

126

6.10. EDGE BEHAVIOR

of each Web request by its request number.

6.10 Edge Behavior

CHAP’s performance improvement for delay-sensitive applications relies heavily on the

relationship depicted in Figure 2.1. The simulation results from Section 6.9 demonstrate

that the video application performance varies as the input video throughput varies across

the fair share of the bandwidth. In this section, we explore such edge conditions of CHAP

and show how it performs compared to FIFO and SPQ with different visualizations of the

same simulation results from Section 6.9.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(a) No FEC (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(b) No FEC (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(c) No FEC (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(d) Small FEC (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(e) Small FEC (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(f) Small FEC (SPQ)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(g) Large FEC (FIFO)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(h) Large FEC (CHAP)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5

V
id

eo
 F

ra
m

e
R

at
e

(f
ps

)

Video Throughput (Mbps)

(i) Large FEC (SPQ)

Figure 6.30: Edge Condition (Video)

Figure 6.30 depicts the scatter plots of video frame rates and corresponding video

127

CHAPTER 6. SIMULATION

throughputs with the system sampled every second in each simulation run. The vertical

line represents 2.33 Mbps, the fair share of bandwidth among 11 flows. Regardless of the

FEC scheme, the scatter plots for FIFO show that the video frame rate suffers and stays

at around 1 frame per second. Similarly, SPQ provides for a full 30 frames per second

regardless of the FEC scheme and video throughput. CHAP is able to provide close to 30

frames per second when the video throughput is below 2.33 Mbps, as expected. However,

as the video throughput exceeds 2.33 Mbps, the video frame rate starts to degrade. The

additional FEC in the video stream helps to mitigate the frame rate degradation as the

video throughput crosses the edge.

 10

 100

 1000

 0.1 1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

(m
s)

Total Response Size (bytes)

(a) Web Response Time (FIFO)

 10

 100

 1000

 0.1 1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

(m
s)

Total Response Size (bytes)

(b) Web Response Time (CHAP)

 10

 100

 1000

 0.1 1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

(m
s)

Total Response Size (bytes)

(c) Web Response Time (SPQ)

Figure 6.31: Edge Condition (Web)

Figure 6.31 depicts the scatter plots of response times of Web requests and correspond-

ing total response size of Web objects. The vertical lines show the median of the total

response sizes. SPQ shows the shortest possible response times because SPQ prioritizes

Web traffic regardless of the presence of the P2P traffic. FIFO offers the worst response

time. CHAP is able to offer response times close to SPQ below the median total response

size. Because CHAP allows a short burst determined by the parameter I and switches to

round-robin for the remainder of the data, CHAP provides response times greater than

SPQ but still less than FIFO as the total response size increases.

6.11 Latency and Web Application Performance

This section describes a series of simulation runs with varying network latencies in the

presence of the FTP application in the background. End hosts involved in users’ activities

128

6.11. LATENCY AND WEB APPLICATION PERFORMANCE

are placed all around the world and their end-to-end latencies vary from one to another.

Maier et al. show a wide range of round-trip times of flows from residential networks with

modes of 13 ms, 100 ms, and 160 ms [73]. This set of simulation results demonstrates how

different network latencies affect application quality under FIFO, CHAP, and SPQ.

Table 6.12: Parameters for Latency Scenario

Parameter Setting/Value

S1, W1 Web

S2, W2 FTP

L1 1, 4, 9, 24, 49, 74, 99, 124, 149 ms

D1 1m

q 35 packets

Q FIFO, CHAP, SPQ

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140

R
es

po
ns

e
T

im
e

(m
s)

Latency (ms)

FIFO
CHAP

SPQ

(a) Web Response Time

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

W
eb

 R
eq

ue
st

s

Latency (ms)

FIFO
CHAP

SPQ

(b) Number of Completed Requests

Figure 6.32: Web Performance over Different Latencies

Figure 6.32 depicts the average response time of Web requests as the latency increases

between the Web server and client. FIFO consistently provides longer response time com-

pared to CHAP and SPQ. The difference in response time between FIFO and CHAP/SPQ

increases as the latency increases. The total number of requests fulfilled decreases as the

latency increases for FIFO, CHAP, and SPQ. As it takes longer to retrieve the Web pages,

the user is able to browse fewer pages per given amount of time.

129

CHAPTER 6. SIMULATION

6.12 TCP Congestion Control and Performance

Modern operating systems use different TCP congestion control mechanisms. NewReno [15]

is the latest modification to TCP’s Fast Recovery Algorithm. Microsoft Windows supports

TCP Compound [18] but it is not enabled by default. Windows 2000 follows RFC 2581 [136]

for TCP congestion control5. Linux uses CUBIC [17], which is an extension of BIC [16].

This section shows how TCP NewReno, BIC, CUBIC, and Compound congestion control

mechanisms behave differently in terms of queue sizes and throughputs with respect to

latencies. Table 6.13 lists all the parameters of the simulation runs.

Table 6.13: Parameters for TCP Congestion Control and Latency Scenario

Parameter Setting/Value

S1, W1 FTP

L1 1, 4, 9, 24, 49, 74, 99, 124, 149 ms

D1 1m

q 35 packets

Q FIFO

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

M
bp

s)

Latency (ms)

CUBIC
BIC

NewReno
Compound

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

A
vg

. Q
ue

ue
 S

iz
e

(p
kt

s)

Latency (ms)

CUBIC
BIC

NewReno
Compound

(b) Average Queue Size

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

M
ax

. Q
ue

ue
 S

iz
e

(p
kt

s)

Latency (ms)

CUBIC
BIC

NewReno
Compound

(c) Maximum Queue Size

Figure 6.33: TCP Performance and Impact on Queue Size over Different Latencies

Figure 6.33 summarizes the throughput, average queue size and maximum queue size

across NewReno, BIC, CUBIC, and Compound. BIC and CUBIC are more resilient against

changes in latencies compared to NewReno and Compound. The FTP throughputs using

BIC and CUBIC drop the throughput from 26.1 Mbps and 26.0 Mbps to 19.1 Mbps and

18.2 Mbps, respectively, as the latency increases from 2 ms to 150 ms. Increases in the

5http://technet.microsoft.com/en-us/library/bb726981.aspx

130

6.12. TCP CONGESTION CONTROL AND PERFORMANCE

latency decrease the FTP throughputs using NewReno and Compound from 25.8 Mbps

and 26.1 Mbps to 11.9 Mbps and 12.5 Mbps, respectively. Average queue sizes decrease

for NewReno, BIC, CUBIC, and Compound as the latency increases. NewReno, BIC,

CUBIC, and Compound are able to fill up the queue as the queue sizes reach the maximum.

NewReno does not fill up the queue to the limit when the latency is 150 ms because it is

not able to increase cwnd high enough to do so within the simulation duration.

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(a) CUBIC (Throughput)

 0

 5

 10

 15

 20

 25

 30

 35

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(b) CUBIC (queue size)

 0

 200

 400

 600

 800

 1000

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(c) CUBIC (cwnd)

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(d) BIC (Throughput)

 0

 5

 10

 15

 20

 25

 30

 35

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(e) BIC (queue size)

 0

 200

 400

 600

 800

 1000

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(f) BIC (cwnd)

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(g) NewReno (Throughput)

 0

 5

 10

 15

 20

 25

 30

 35

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(h) NewReno (queue size)

 0

 200

 400

 600

 800

 1000

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(i) NewReno (cwnd)

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(j) Compound (Throughput)

 0

 5

 10

 15

 20

 25

 30

 35

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(k) Compound (queue size)

 0

 200

 400

 600

 800

 1000

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(l) Compound (cwnd)

Figure 6.34: Queue Size over Time (L1 = 125ms) (q = 35 packets)

131

CHAPTER 6. SIMULATION

Figure 6.34 depicts the throughput, instantaneous queue size, and cwnd of NewReno,

BIC, CUBIC, and Compound for the latency of 125 ms and the queue size of 35 packets.

The queue size is not large enough to stabilize the FTP throughput. The throughputs using

NewReno, BIC, and CUBIC range from 15 Mbps to 25 Mbps, while the throughput using

Compound ranges from 10 Mbps to 25 Mbps. The cwnd of each TCP variant corresponds

to its FTP throughput. The instantaneous queue size remains below 10 packets most of

the time for NewReno, BIC, CUBIC, and Compound.

Figure 6.35 depicts the throughput, instantaneous queue size, and cwnd of NewReno,

BIC, CUBIC, and Compound for the latency of 125 ms and the queue size of 350 packets.

In contrast to the queue size of 35 packets, the throughput stabilizes at around 27 Mbps

once it is reached. The cwnd of each TCP variant also corresponds to its FTP throughput.

The instantaneous queue size remains high for BIC and CUBIC at around 250 packets,

while the instantaneous queue size remains below 50 packets for Compound.

6.13 TCP Fairness

This section explores the TCP throughput fairness between FIFO and CHAP. Table 6.14

lists the simulation parameters for the latency scenario. SPQ is omitted from this scenario

because the two FTP applications are in the same class and SPQ treats them exactly the

same way as the FIFO queue does within a class.

Table 6.14: Parameters for Latency Scenario

Parameter Setting/Value

S1, W1 FTP 1

S2, W2 FTP 2

L1 1, 4, 9, 24, 49, 74, 99, 124, 149 ms

D1 1m

q 35 packets

Q FIFO, CHAP

Figure 6.36 depicts TCP throughput fairness and Jain’s Fairness Index between FIFO

132

6.13. TCP FAIRNESS

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(a) CUBIC (Throughput)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(b) CUBIC (queue size)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(c) CUBIC (cwnd)

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(d) BIC (Throughput)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(e) BIC (queue size)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(f) BIC (cwnd)

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(g) NewReno (Throughput)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(h) NewReno (queue size)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(i) NewReno (cwnd)

 0

 5

 10

 15

 20

 25

 30

 100 120 140 160 180 200 220 240 260

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

(j) Compound (Throughput)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

(k) Compound (queue size)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

(l) Compound (cwnd)

Figure 6.35: Queue Size over Time (L1 = 125ms) (q = 350 packets)

and CHAP using TCP NewReno and CUBIC while varying the latency of one FTP appli-

cation node (FTP 1) and keeping the latency of the other FTP application node (FTP 2)

constant. Jain’s Fairness Index is calculated using the following equation:

fairness =
(
∑

xi)
2

n×
∑

x2
i

(6.4)

133

CHAPTER 6. SIMULATION

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Latency (ms)

FIFO (FTP 2)
CHAP (FTP 2)
CHAP (FTP 1)
FIFO (FTP 1)

(a) Throughputs (TCP NewReno)

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Latency (ms)

FIFO (FTP 2)
CHAP (FTP 2)
CHAP (FTP 1)
FIFO (FTP 1)

(b) Throughputs (TCP CUBIC)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

Ja
in

’s
 F

ai
rn

es
s

In
de

x

Latency (ms)

FIFO
CHAP

(c) Jain’s Fairness Index (TCP NewReno)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

Ja
in

’s
 F

ai
rn

es
s

In
de

x

Latency (ms)

FIFO
CHAP

(d) Jain’s Fairness Index (TCP CUBIC)

Figure 6.36: TCP Fairness over Distances

The closer Jain’s Fairness Index is to 1, the fairer are the FTP throughputs. When both

FTP application nodes are at the same latency from the servers, they achieve about

the same average throughput for both NewReno and CUBIC. Jain’s Fairness Index for

NewReno and CUBIC under FIFO and CHAP at 2 ms latency for both FTP applications

are both 1.000. However, as the latency increases for one of the FTP application nodes

(FTP 1), its throughput under FIFO decreases quickly to 0 for NewReno while the other

FTP application takes the remaining bandwidth. Jain’s Fairness Index decreases from

1.000 at 2 ms to 0.509 at 150 ms. CHAP is able to mitigate the unfairness for NewReno

while providing similar total throughput of the system. Jain’s Fairness Index decreases

from 1.000 at 2 ms to 0.789 at 150 ms under CHAP. CUBIC provides better fairness than

NewReno under both FIFO and CHAP. Jain’s Fairness Index of FTP throughputs with

Cubic under FIFO at 150 ms is 0.580. Jain’s Fairness Index decreases only to 0.966 under

134

6.13. TCP FAIRNESS

CHAP. CHAP is able to preserve the fairness feature of credit-based algorithms.

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (FIFO)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP CUBIC (FIFO)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP CUBIC (CHAP)

Figure 6.37: Congestion Window (L1 = 2 ms)

Figure 6.37 depicts the cwnd of TCP used by both FTP applications when the latencies

between the FTP server and client for both applications are 2 ms. Both NewReno and

CUBIC have the same range of cwnd under FIFO and CHAP.

Figure 6.38 depicts the cwnd of TCP used by both FTP applications when the latency

between the FTP server and client for FTP 1 is increased to 150 ms. Under FIFO, FTP 1’s

NewReno is unable to advance its cwnd for more throughput due to its increased latency.

The use of CUBIC for FTP 1 under FIFO helps to advance its cwnd but introduces wider

variation compared to FTP 2. CHAP helps FTP 1 to advance its window in the case of both

NewReno and Cubic, improving fairness between the two FTP application throughputs.

135

CHAPTER 6. SIMULATION

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (FIFO)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP CUBIC (FIFO)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP CUBIC (CHAP)

Figure 6.38: Congestion Window (L1 = 150 ms)

6.14 Summary

This chapter provides the validation and performance evaluation of CHAP using a series

of NS2 simulations.

Section 6.2 describes an experiment with hardware conducted to validate NS2 simu-

lations. Although the NS2 simulation results do not align with the experimental results

exactly, they demonstrate similar behaviors such as the degradation in the G-model MOS

in the presence of a concurrent FTP download. Section 6.3 demonstrates the validation of

the model derived in Section 5.2. The average queueing delays observed by the analytical

model and simulation results show similar trends such as the increasing queueing delay

with the increasing rate of the low-bandwidth flow and the same queueing delay when two

flows have the same rate.

136

6.14. SUMMARY

Section 6.6 describes the performance evaluation of CHAP with varying queue sizes.

The benefits of CHAP to applications whose quality is affected by delay and jitter, such

as online games and Web browsing, increases as the queue size increases.

Section 6.7 discusses the performance evaluation of CHAP with varying distances of

wireless nodes. CHAP provides higher application quality of the delay-sensitive applica-

tions while providing similar throughput for the delay-insensitive application in the back-

ground. Section 6.7.1 describes simulation scenarios where the node running the delay-

sensitive application is further away from the AP. In the case of the unresponsive video

streaming application, CHAP is able to mitigate the degradation of the FTP throughput

compared to FIFO and SPQ as the video client is further away from the AP. Section 6.7.2

describes simulation scenarios where the node running the delay-insensitive application

moves further away from the AP. The delay-insensitive application degrades the quality

of the delay-sensitive applications under FIFO while it is in range of the AP to achieve

a reasonable throughput. CHAP is able to provide higher quality consistently regardless

of the distance of the delay-insensitive application. Section 6.7.3 describes simulation sce-

narios where both nodes are further away from the AP. The quality of the delay-sensitive

and delay-insensitive applications degrade as they are further away from the AP. CHAP

provides higher or similar application quality compared to FIFO at all distances.

Section 6.8 shows the benefits of CHAP while running multiple applications concur-

rently. CHAP provides higher application quality for all the delay-insensitive applications

while maintaining the FTP throughput similar to FIFO and SPQ.

Section 6.9 demonstrates CHAP behavior with a P2P application. CHAP’s behavior

is similar to other results except for the video application. Because the game, VoIP and

Web applications receive less than the fair share of bandwidth, CHAP prioritizes these

applications over the individual flows of the P2P application. The range of throughputs

of the video application overlaps with the fair share of bandwidth. Therefore, P2P flows

are sometimes prioritized over the video application. Such edge conditions are explored in

more detail in Section 6.10. As the throughput of the delay-sensitive application crosses

137

CHAPTER 6. SIMULATION

the fair share of bandwidth in the network, CHAP’s benefits declines gracefully.

Section 6.11 explores different latencies for Web browsing. CHAP benefits the quality

of Web browsing as the network latency increases between the Web server and client.

Section 6.12 examines different TCP variants as there is a variety of TCP congestion

control mechanisms deployed in modern operating systems. BIC, CUBIC, NewReno and

Compound demonstrate different behaviors with respect to the AP queue size and their

congestion window and throughput. Section 6.13 explores the fairness of TCP NewReno

and CUBIC under FIFO and CHAP. Inheriting the fairness feature of credit-based mech-

anisms, CHAP provides much fairer throughput to two FTP flows using NewReno and

CUBIC.

138

Chapter 7

Implementation

This chapter discusses the implementation of CHAP and subsequent performance eval-

uation of the implementation. Section 7.1 describes a Linux Queue Discipline (Qdisc)

implementation of CHAP. Section 7.2 describes a set of controlled experiments to validate

the implementation. Section 7.3 describes a case study conducted at home to evaluate the

performance of network applications using the CHAP implementation.

7.1 Linux Qdisc

Linux allows users to connect multiple network interfaces to create a bridge. Each network

interface can be associated with a Qdisc using the Traffic Control (TC) to manage its

queue. Outgoing packets for a network interface are first queued by the associated Qdisc

before being passed to the network interface device queue. CHAP is implemented using

Stochastic Fair Queue (SFQ) Qdisc as the base. CHAP hashes each incoming packet based

on flow information determined by the source address, destination address, and protocol

type, and keeps track of their corresponding credits.

Because of difficulties with the existing Linux code base1 for the host AP and madWifi

driver in an IEEE 802.11 infrastructure network, we emulated IEEE 802.11g frame trans-

mission over a 100 Mbps Ethernet connection. The FIFO and CHAP Qdiscs are developed

1Kernel panics and frequent disassociation of wireless hosts.

139

CHAPTER 7. IMPLEMENTATION

using a kernel timer interrupt to schedule packet departures. The IEEE 802.11 delay of

each packet is calculated by:

d = DIFS +
pdata + pheader

Rdata

+ SIFS +
pack

Rbasic

(7.1)

where d is the emulated delay, pdata is the packet size, pheader is the IEEE 802.11 header

size (34 bytes), pack is the ACK frame size (14 bytes), Rdata is the data rate (54 Mbps for

IEEE 802.11g) and Rbasic is the basic rate (1 Mbps). The minimum value of dtrans is 177

µs when pdata is 0 bytes and a psize of 1500 bytes results in a dtrans of 399 µs.

Because IEEE 802.11g is emulated over a wired connection, frame error rate is im-

plemented for every wireless frame transmission. It uses an Independent and Identically-

Distributed (IID) random variable to introduce errors. Therefore, the probability of a

successful transmission in n transmissions can be calculated with the frame error rate of p.

ps(n) = (p + (1− p)p)n−1(1− p)2 (7.2)

The maximum number of retransmissions is set to 4 to allow 5 transmission attempts

total. Figure 7.1 depicts how the success probabilities change with respect to different

frame error rates. The 6th transmission attempt in the figure refers to losses.

Each unsuccessful transmission results in a random exponential back-off, which chooses

a random number of slots to wait before attempting to transmit again. IEEE 802.11 has

minimum and maximum contention windows (Wmin and Wmax, respectively) which are set

to 32 and 1024. Each unsuccessful transmission doubles the contention window size while

restricting it to Wmax at the largest. The back-off after n-th unsuccessful transmission is

calculated by Equation 7.3.

b(n) =

random(Wmin × 2n−1)× slot, Wmin × 2n−1 ≤Wmax

random(Wmax)× slot, Wmin × 2n−1 > Wmax

(7.3)

Therefore, the total cost of frames transmitted successfully at n-th transmission can be

140

7.2. VALIDATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l T
ra

ns
m

is
si

on

n-th Transmission

FER = 0.1
FER = 0.3
FER = 0.5
FER = 0.7
FER = 0.9

Figure 7.1: Probability of Successful Transmissions

calculated by Equation 7.4.

cost(n) = n× d +

n−1
∑

i=1

b(i) (7.4)

7.2 Validation

This section describes the method for validating the CHAP implementation, along with

the results. This validation seeks to ascertain the accuracy of the implementation and also

to compare the distances in the simulation and general frame error rates in the implemen-

tation.

7.2.1 Validation Setup

Figure 7.2 depicts the experimental setup for the validation of the Linux implementation

of CHAP. All the devices in the setup are connected over 100 Mbps Ethernet connections.

The Linux bridge running the Linux implementation of CHAP is a IBM ThinkPad T60 with

a Core2Duo processor and 2 GB of RAM while the four computers running the game and

141

CHAPTER 7. IMPLEMENTATION

Figure 7.2: Controlled Experiment Topology

FTP applications are HP Elitebook 6930p’s with a Core2Duo processor and 2 GB of RAM

each. The left pair of laptops are running the game and ping applications on Windows

XP SP3 while the right pair of laptops are running the FTP application on Debian Linux

(Lenny). The Linux bridge is set to use either FIFO or CHAP Qdisc for the eth1 interface

with the queue size of 350 packets on Debian Linux. Each scenario tests the FIFO and

CHAP queues. The CHAP queue uses 25 ms for the parameter I. The game application

starts first and the FTP application starts 60 seconds later. The FTP application stops

after 3 minutes while the game application continues for another minute before stopping.

The game application is simulated using MGEN2 to send UDP packets at a fixed

interval following the average packet size and interval from the Halo 2 traffic model [22].

The server and client send 72-byte and 44-byte packets, respectively, every 40 ms. The

time differences in the machines makes it difficult to measure one-way delays. UDP Ping3

2http://cs.itd.nrl.navy.mil/work/mgen/
3http://perform.wpi.edu/tools/

142

7.2. VALIDATION

is used to measure the round-trip delay from the client to the server and later halved as

an estimated measure of one-way delay. The FTP application is written as a simple TCP

server and client to produce per-packet logs for analysis. Since the FTP application is run

on Linux, the TCP congestion control mechanism used is CUBIC. Most of the network

traffic is downstream from the servers to the clients and the only upstream traffic consists

of TCP ACKs of the FTP application and the game client UDP packets.

7.2.2 Without Frame Errors

This section describes an experiment without induced frame errors to validate the quality

of applications against simulation results. Figure 7.3 depicts the G-model MOS and total

throughputs of both simulation and experiment results. The G-model MOS for FIFO

in the experiment is slightly lower than the G-model MOS for FIFO in the simulation.

In addition, the G-model MOS in the experiment is almost cyclical. Depending on the

oscillation of the queue size, the G-model’s jitter parameter is small or large in each 5

second interval, causing the G-model MOS to jump up and down. The G-model MOS’s for

CHAP in both simulation and experiment look identical, staying at around 4.2 for both.

Total throughputs in both simulation and experiment look the same for FIFO and CHAP.

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

G
-M

od
el

 M
O

S

Time (s)

FIFO (Sim)
FIFO (Exp)

CHAP (Sim)
CHAP (Exp)

(a) G-model MOS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

T
ot

al
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (s)

FIFO (Sim)
FIFO (Exp)

CHAP (Sim)
CHAP (Exp)

(b) Total Throughput

Figure 7.3: Controlled Experiment (Validation)

Figure 7.4 depicts the queue size sampled every second in both simulation and exper-

iment for FIFO and CHAP. Solid lines in both graphs show the queue size in simulation.

143

CHAPTER 7. IMPLEMENTATION

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

FIFO (Sim)
FIFO (Exp)

(a) FIFO

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300

Q
ue

ue
 S

iz
e

(p
kt

s)

Time (s)

CHAP (Sim)
CHAP (Exp)

(b) CHAP

Figure 7.4: Controlled Experiment (Validation) - Queue Size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 60 80 100 120 140 160 180 200 220 240
 0

 1

 2

 3

 4

 5

Q
ue

ue
 S

iz
e

(p
kt

s)

G
-M

od
el

 M
O

S

Time (s)

Queue Size
G-Model MOS

(a) Simulation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 60 80 100 120 140 160 180 200 220 240
 0

 1

 2

 3

 4

 5

Q
ue

ue
 S

iz
e

(p
kt

s)

G
-M

od
el

 M
O

S

Time (s)

Queue Size
G-Model MOS

(b) Experiment

Figure 7.5: Controlled Experiment (Validation) - G-model and Queue Size (FIFO)

In the simulation, it takes longer to reach the queue limit of 350 packets than in the ex-

periment but it stays above 250 packets consistently. The queue size in the experiment

reaches over 300 packets quickly but it has a wider range of variation between 150 and

350 packets. Figure 7.5 depicts the correlation between the variation in the queue size and

G-model MOS. The G-model MOS relies on one-way delay and jitter and the variation in

the queue size over time affects the jitter. Simulation results show that the G-model MOS

is low due to high queue size, which contributes to longer one-way delay. The variation in

the queue size is almost consistently between 250 and 350 packets. The G-model MOS does

not vary much as the delay and jitter are relatively constant. The experiment result shows

lower queue size and higher variation in queue size. Lower queue size and low variation in

queue size in some periods contribute to high G-model MOS. When there is high variation

144

7.2. VALIDATION

in queue size, G-model MOS drops to the 1-2 range.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(a) CPU Usage (FIFO)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(b) CPU Usage (CHAP)

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(c) Memory Usage (FIFO)

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(d) Memory Usage (CHAP)

Figure 7.6: Controlled Experiment (Validation) - CPU and Memory Usage

Figure 7.6 depicts the CPU and memory usage of all the systems in the experiment

over time. CPU and memory usage look about the same for both FIFO and CHAP at the

Linux bridge. It suggests that CHAP does not add much more overhead than FIFO. Both

the game server and client use 50% of the CPU when transmitting and receiving packets

because MGEN uses busy waiting. The CPU usage is higher for the FTP server than the

FTP client at around 12-13% because it uses a busy waiting while loop to send packets as

fast as it can.

7.2.3 With Frame Errors

As explained in Section 7.1, emulated frame error rates can be forced at the Linux bridge.

Frame error rates are induced for the FTP traffic to emulate the FTP client machine

145

CHAPTER 7. IMPLEMENTATION

moving further away from the AP. Validation of such frame error rates requires matching

the frame error rates and simulated distances in NS2. Frame error rates of 0.01, 0.10,

0.25, 0.50 and 0.75 are run in experiments. Figure 7.7 depicts the IID probability curve

generated following Equation 7.2 along with the measured fraction of successful frame

transmissions in NS2 simulations. Since both the simulation and experiment are set to

try up to 4 retransmissions (total of 5 transmission attempts) the 6th transmission in the

figure refers to losses of frames. Simulations were run with distances ranging from 1m up

to 20m every 1m. The closest matches are found visually and shown in Figure 7.7. Frame

error rate of 0.01, 0.10, 0.25, 0.50, and 0.75 match the simulated distances of 1m, 6m, 9m,

13m and 19m, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7P
ro

ba
bi

lty
 o

f S
uc

ce
ss

fu
l T

ra
ns

m
is

si
on

n-th Transmission

FER - 0.01
Distance - 1m

(a) FER 0.01 and Distance 1m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7P
ro

ba
bi

lty
 o

f S
uc

ce
ss

fu
l T

ra
ns

m
is

si
on

n-th Transmission

FER - 0.10
Distance - 6m

(b) FER 0.10 and Distance 6m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7P
ro

ba
bi

lty
 o

f S
uc

ce
ss

fu
l T

ra
ns

m
is

si
on

n-th Transmission

FER - 0.25
Distance - 9m

(c) FER 0.25 and Distance 9m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7P
ro

ba
bi

lty
 o

f S
uc

ce
ss

fu
l T

ra
ns

m
is

si
on

n-th Transmission

FER - 0.50
Distance - 13m

(d) FER 0.50 and Distance 13m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7P
ro

ba
bi

lty
 o

f S
uc

ce
ss

fu
l T

ra
ns

m
is

si
on

n-th Transmission

FER - 0.75
Distance - 19m

(e) FER 0.75 and Distance 19m

Figure 7.7: Matching Frame Error Rates and Simulation Distances

Frame error rates are induced for the FTP traffic to emulate the FTP client machine

moving further away from the AP because the G-model MOS is resilient to packet loss.

Figure 7.8 depicts G-model MOS’s and total throughputs for the simulations and exper-

iments. The G-model MOS from the experiments was calculated with the lowest 2.5%

of jitter values dropped to account for outliers. As explained in Section 6.2, the outliers

may be the result of unsimulated factors such as system level overheads and differences

146

7.3. CASE STUDY

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

G
-M

od
el

 M
O

S

Distance (m)

FIFO (Sim)
CHAP (Sim)
FIFO (Exp)

CHAP (Exp)

(a) G-model MOS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Distance (m)

FIFO (Sim)
CHAP (Sim)
FIFO (Exp)

CHAP (Exp)

(b) Total Throughput

Figure 7.8: Controlled Experiment (Distance Error Emulation)

between TCP implementations. Further investigation is necessary to pinpoint the exact

causes of differences, and it is discussed in Section 8.2. Simulation and experiment results

demonstrate the same trend although they have slight differences in values. As the FTP

client moves away from the AP, the G-model MOS for FIFO stays around 2 up to about

10m for both simulation and experiment. Then, the G-model MOS increases towards 4.27

as the FTP client is further away. For CHAP, the G-model MOS in simulations stays

around 4.27 while the G-model MOS in experiments ranges between 3.8 and 4.2. The

throughputs between FIFO and CHAP are almost identical in the simulations and exper-

iments. The throughputs in the simulations and experiments also demonstrate the same

decreasing trend as the FTP client is further away, eventually reaching 0 Mbps at 19m.

We believe that the differences are due to the TCP Cubic implementations and the timer

granularity of the Linux implementation whose timer intervals are 1
4096 = 0.000244 (244

µs). As explained in Section 7.1, the lowest timer with small packets can be close to 177

µs, which the Linux system is not capable of handling with the given timer intervals.

7.3 Case Study

This section describes a case study conducted in a home network showing the performance

evaluation of Web browsing and online games.

147

CHAPTER 7. IMPLEMENTATION

7.3.1 Case Study Setup

Figure 7.9 depicts the experiment setup used to represent a home network. The Internet

is connected by a 7 Mbps downstream, 768 Kbps upstream ADSL connection. The Linux

bridge with FIFO and CHAP connect the home network and the ADSL modem. Both

FIFO and CHAP allow up to 350 packets in queue. An additional wireless-emulation

delay of 2 ms is added to the emulated delay calculated by Equation 7.1 to ensure the

Linux bridge acts as the bottleneck to the home network. The additional delay limits the

incoming bandwidth to about 5 Mbps, which is less than the home ADSL’s downstream

bandwidth of 7 Mbps. No frame error rates are induced to emulate wireless clients close

to the AP. One computer runs one of the two delay-sensitive applications: Firefox for Web

browsing and Quake IV for an online game. The other computer runs Firefox for bulk file

download of the Debian Linux DVD ISO. Each scenario tests the FIFO and CHAP queue

in the absence of the bulk file download and then tests them again with the competing

bulk file download.

7.3.2 Web Browsing

Four popular news Web sites – Google News, Yahoo, Wall Street Journal (WSJ), and CNN

– were used for the Web browsing tests. Table 7.1 indicates the composition of each Web

site in terms of its total size in bytes and the number of text and non-text objects. Text

objects are HTML pages while non-text objects include images, flash objects, etc. CNN is

Figure 7.9: Case Study Experiment Topology

148

7.3. CASE STUDY

the heaviest in terms of the total size while WSJ has the most non-text objects. Google

News is the lightest with respect to the size and the total number of objects. The Web

response time is used to evaluate the performance of the Web browsing activity. Web

response time is the time a user must wait after clicking on a link or entering a URL until

the entire Web page, text plus images, is retrieved. Lifehacker.com’s modified version of

Webmonkey’s Browser Load Time Stopwatch4 is used to time the load time for each Web

page.

(a) Google News (b) Yahoo

(c) Wall Street Journal (d) CNN

Figure 7.10: Sample Websites

Figure 7.11 depicts the average Web response times for five visits to each of the four

Web sites. Error bars represent the standard deviation of the samples. In the absence of

the bulk file download, all the Web sites loaded in less than 5 seconds for both FIFO and

CHAP. Google News loaded the fastest in 0.525s and 0.514s, Yahoo in 1.43s and 1.45s,

Wall Street Journal in 3.22s and 3.36s, and CNN in 3.54s and 3.40s using FIFO and CHAP

4http://cache.lifehacker.com/assets/resources/stopwatch.php

149

CHAPTER 7. IMPLEMENTATION

Table 7.1: Website Composition Data

Website # of Text Objs # of Non-Text Objs Total # of Objs

Google News 2 4 6

Yahoo 6 48 54

WSJ 19 132 151

CNN 33 103 136

Website Size of Text Objs (KB) Size of Non-Text Objs (KB) Total Size (KB)

Google News 146 9 155

Yahoo 45 277 322

WSJ 97 652 749

CNN 190 952 1142

�
�
�
�

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���� �
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
� ���� �

�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��

�
�
�
�

 0

 5

 10

 15

 20

 25

Google Yahoo WSJ CNN

R
es

po
ns

e
T

im
e

(s
)

Websites

FIFO (web)
 FIFO (web with download)
 CHAP (web)
 CHAP (web with download)

Figure 7.11: Web Response Time

respectively. When loading Web sites while downloading the Linux DVD ISO, the Web

response times for FIFO increased by 300% to 700%. Google News finished loading in

3.81s (+625%), Yahoo in 11.11s (+678%), WSJ in 14.40s (+347%), and CNN in 20.18s

(+470%) for FIFO. On the contrary, CHAP managed to keep the Web response time low

and close to the Web response time in the absence of the bulk file download. Google News

loaded in 0.574s (+12%), Yahoo in 1.81s (+25%), WSJ in 3.77s (+12%), and CNN in

5.69s (+67%). Videos of loading CNN have been recorded to illustrate the differences in

150

7.3. CASE STUDY

browsing performance under these conditions.5

7.3.3 Quake IV

Quake IV is used to evaluate performance for online games. Quake IV is a first person

shooter game, representing a genre of fast paced, highly interactive online games. Previous

work has demonstrated that Quake requires round-trip times of about 150-180 ms or lower

for users to find it playable [31]. Quake measures server “ping” times as the averaged round-

trip times from the game client to the Quake servers. We use qstat6 to contact the Quake

IV master server for a list of active game servers and to act as a game client in obtaining

the average ping times to each server. The IP addresses returned by qstat are mapped to

longitudes and latitudes according to GeoIP7. Figure 7.12 depicts the geographical locations

of active Quake IV servers around the world in March 2010, with the white circle indicating

Worcester, MA, USA.

Figure 7.12: Quake IV Servers around the World

Figure 7.13 depicts the CDFs of all the server ping times recorded using FIFO and

CHAP in the absence and presence of file bulk download. When there is no competing

5http://perform.wpi.edu/chap/
6http://www.qstat.org/
7http://www.maxmind.com/app/ip-location

151

CHAPTER 7. IMPLEMENTATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Quake IV Server Ping (ms)

Playable Threshold

qstat
qstat with download

(a) FIFO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Quake IV Server Ping (ms)

Playable Threshold

qstat
qstat with download

(b) CHAP

Figure 7.13: CDF of Quake IV Server Pings

download, the median server ping times are 133 ms and 135 ms for FIFO and CHAP,

respectively. About 70% of server ping times are under the playable threshold of 150 ms

for both FIFO and CHAP. When there is a competing download, the CDF of server ping

times shifts to the right for FIFO, as indicated by the dotted line. The median server

ping time increases by 429 ms to 562 ms, and none of the server ping times are below the

playable threshold of 150 ms. CHAP, however, is able to keep server ping times comparable

to the ping times in the absence of bulk file download. The median ping time stays the

same at 135 ms and about 70% of server ping times are still below the playable threshold.

Videos have been recorded to illustrate the differences in game performance under these

conditions.8

7.4 Summary

This chapter provides the implementation of CHAP and performance evaluation of the im-

plementation. Section 7.1 describes the implementation details of CHAP using a queueing

discipline (Qdisc) in Linux. Section 7.2 offers a series of controlled experiments to validate

the implementation against the equivalent simulation results. Similarly to Section 6.2, the

simulation and experiment results show a similar trend such as the degradation in the G-

model MOS in the presence of a concurrent FTP download, even if they do not align exactly

8http://perform.wpi.edu/chap/

152

7.4. SUMMARY

with each other. Section 7.3 demonstrates how CHAP benefits delay-sensitive applications

in a real home network. Web browsing and an online game (Quake IV) are tested with a

concurrent HTTP download. CHAP provides a significant improvement in the quality of

Web browsing and Quake IV over FIFO while providing a comparable throughput for the

concurrent HTTP download.

153

Chapter 8

Conclusions and Future Work

The dissertation provides a queue management solution, called Credit-based Home Access

Point (CHAP), which can be deployed in wireless access points for home networks to:

1) minimize network delays to support quality of service (QoS) requirements of delay-

sensitive applications such as Web, VoIP, steaming media, and network games; 2) adjust

to dynamic wireless conditions to provide better overall quality of applications; and 3)

provide an automatic classification of network activities without any manual configuration

from users. CHAP has been implemented as a queue controller in NS2 simulator and as a

queueing discipline (Qdisc) in Linux for performance evaluation. Section 8.1 summarizes

this dissertation research and Section 8.2 lists possible future work.

8.1 Summary

The core of the home network is the wireless access point that connects all the devices

at home through a single, shared Internet connection. Credit-based Home Access Point

(CHAP) can be implemented in the existing wireless access points to minimize network

delays for delay-sensitive applications and maintain overall application quality in dynamic

wireless conditions.

CHAP is an active queue management approach designed to minimize queueing delay

through efficient per-flow management. CHAP detects bandwidth and wireless channel

155

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

usage costs for each flow and manages credits accordingly. Unlike other QoS mechanisms,

CHAP provides a single parameter that is pre-configured for practical deployment and

removes the need for home users to configure their access points for quality improve-

ment. Unlike other credit-based queue management mechanisms such as CBFQ [125] and

WCFQ [126], CHAP allows bursts of packets from flows as long as they have more credits.

CHAP meets a few requirements for “smart middle” devices recommended by Calvert

et al. in their paper [10]. The single, pre-configured parameter satisfies the self-configuring

requirement by relieving home users of the burden of AP configuration. CHAP is an active

queue management approach that does not require any modifications to end hosts, preserv-

ing the compatibility with existing external TCP/IP-based applications. Moreover, CHAP

achieves application independence by relying on the relationship between the bandwidth

and delay tolerance of user activities instead of the properties, patterns, and/or signatures

of specific applications.

Through a simulation study using NS2, this dissertation demonstrates that CHAP can

efficiently support a wide range of traffic conditions, providing high overall application

quality. CHAP can provide application quality that is significantly improved over FIFO

and similar to SPQ, but without the explicit classification required of SPQ. In addition, this

dissertation shows that the benefits of CHAP increases with the queue size of the wireless

access point. Edge behavior of CHAP with a P2P application in the background shows that

CHAP slowly degrades performance of delay-sensitive applications crossing the edge, where

the throughput of a delay-sensitive application becomes smaller than the throughput of a

delay-insensitive application. As the network latency between end hosts increased, TCP

applications benefit more with CHAP.

Distances of wireless nodes to the AP in the simulation runs affect the wireless connec-

tivity of the nodes to the AP. CHAP improves the quality of the delay-sensitive application

close to SPQ regardless of its wireless connectivity. In the video scenario, SPQ prioritizes

the video traffic, sacrificing the FTP throughput even when the viewable frame rate of

the video is near 0. In the same case, CHAP reduces the priority of the video traffic

156

8.1. SUMMARY

due to its frames experiencing longer transmission times. Therefore, the FTP application

achieves higher throughput under CHAP compared to FIFO and SPQ. In the cases where

the wireless connectivity of the FTP application node varies, CHAP consistently provides

quality higher than FIFO and similar to SPQ for the delay-sensitive applications. The

FTP throughput degradation due to varying wireless connectivity is the same for FIFO,

CHAP, and SPQ. In the scenarios where the wireless connectivity of both nodes degrade

together, CHAP generally provides quality higher than FIFO and similar to SPQ for both

the delay-sensitive application and FTP application.

The exploration of different TCP variants, network latencies, and queue sizes demon-

strates that each factor has a significant impact on application performance. Unfortunately,

none of these are fixed on the Internet. Different operating systems and versions default

to different TCP congestion control mechanisms. Manufacturers impose a range of queue

sizes in their wireless APs. Network latencies depend on where home users access the

Internet and where the systems their applications communicate with are. When examined

independently, TCP CUBIC seems to provide the best throughput regardless of queue sizes

and network latencies. Large queue sizes help all tested TCP variants in terms of their

throughput. Long and diverse network latencies result in a degradation and unfairness in

TCP throughputs.

Finally, this dissertation evaluates CHAP using a Linux implementation. The Linux

implementation connects end hosts over an emulated IEEE 802.11g WLAN with and with-

out induced error rates on top of wired 100 Mbps Ethernet connections. Validation of the

implementation shows that CHAP does not use more system resources than FIFO with

respect to CPU and memory. Case studies of Web browsing and online games in a home

network demonstrate significant decrease in Web page loading times and game server ping

times compared to FIFO in the presence of bulk data download.

157

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Work

Section 6.2 and Section 7.2 demonstrate the differences between simulation and experiment

results. Although it is likely that system level overheads, wireless interference and different

TCP implementation contribute to the differences, further investigation into the exact

causes can help refine the simulator to mimic the real world more closely.

This dissertation evaluates CHAP with the parameter I set to 25 ms. Large values for

I may accommodate longer bursts from flows but they make CHAP behave more like SPQ.

Small values make it difficult for CHAP to distinguish one flow from another with respect

to their credits. Section 5.4 presents an analytical justification for this value, but it will be

beneficial to conduct a sensitivity analysis of I on CHAP performance.

Although this dissertation evaluates CHAP with an emulated IEEE 802.11 data link

layer, CHAP needs to be implemented to support a real IEEE 802.11 infrastructure net-

work. In Linux, it may be as easy as setting it up as a wireless access point using hostAP1

software. As explained in the dissertation, constant kernel panic and disassociation of wire-

less nodes impeded such implementation. In addition, there are many commercial access

points that support custom Linux firmware2.

Depending on the size of the residence, more than one access point (AP) may be

required to provide wireless connectivity all around the residence. Network configurations

with multiple APs may or may not satisfy the assumption that each AP is the bottleneck

to home networks. For example, the Internet connection may be the bottleneck for a house

with a 100 Mbps Internet connection with two 802.11g (54 Mbps) APs that are equally

active. In such cases, CHAP needs to be aware of other APs to keep providing higher

application quality.

This dissertation does not consider upstream traffic as network traffic in home networks

is generally asymmetric. However, upstream traffic shares the wireless medium with down-

stream traffic. Applications, such as P2P file sharing and Skype, with both downstream

1http://hostap.epitest.fi/
2http://www.dd-wrt.com/

158

8.2. FUTURE WORK

and upstream network traffic have become popular. Therefore, it may be beneficial for

CHAP to consider upstream traffic as much as downstream traffic in its mechanism to

provide high application performance.

The focus of CHAP in this dissertation is to improve home network application per-

formance. Wireless networks are deployed not only at homes but also in corporations

and educational institutions. Although the network traffic composition may be different,

CHAP may also be beneficial to these networks. Network configurations in these networks

may differ from residential networks, placing bottlenecks at different points in the network

topology. It will be necessary to analyze the types of common activities in such networks

to see if CHAP can improve quality of such activities in those networks.

Although this dissertation covers CHAP tied to IEEE 802.11 networks, the mechanism

does not rely on anything specific to IEEE 802.11. The cost for each packet for a flow

is merely the transmission time for the packet, and it can be obtained from any other

wireless data link layer. Therefore, it is possible to apply the general CHAP algorithm in

other types of wireless local area networks. Furthermore, it can be extended to wireless

personal area networks (WPANs), metropolitan area networks (WMANs), and even wide

area networks (WWANs).

The video application implemented in NS2 simulates an unresponsive UDP video stream-

ing that uses encoded video traces [13, 14]. These traces of videos encoded using scalable

video coding (SVC) include multiple layers at different frame rates. Enhancements such as

sending frames over TCP and switching between layers according to available bandwidth

will help the video application to generate more realistic video streaming network traffic.

159

Appendix A

List of Acronyms

ABE Alternate Best Effort

ACK ACKnowledgement

AIFS Arbitration Inter-Frame Space

AJAX Asynchronous Javascript and XML

AP Access Point

AQM Active Queue Management

ARED Adaptive Random Early Detection

BBS Bulletin Board Service

BER Bit Error Rate

BIC Binary Increase Congestion control

BLINC BLINd Classification

CATNIP Context-Aware Transport/Network Internet Protocol

CBFQ Credit-Based Fair Queueing

161

APPENDIX A. LIST OF ACRONYMS

CBQ Class Based Queue

CBT Class Based Threshold

CF Contention Free

CFP Contention Free Period

CFS Completely Fair Scheduler

CHAP Credit-based Home Access Point

ChIPS Cut-In Packet Scheduling

CNP Congestion Notification Probability

CP Contention Period

CPU Central Processing Unit

CSFQ Core Stateless Fair Queueing

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS Clear-to-Send

CUBIC Enhanced Binary Increase Congestion control

CVS Concurrent Versions System

CW Contention Window

D-CBT Dynamic Class Based Threshold

DCF Distributed Coordination Function

DiffServ Differentiated Service

DIFS Distributed Inter-Frame Space

DLS Direct Link Setup

162

DRR Deficit Round Robin

DSCP Differentiated Service Code Point

DSL Digital Subscriber Line

DSSS Direct Sequence Spread Spectrum

ECA Early Congestion Avoidance

ECN Explicit Congestion Notification

ERP Extended Rate Physical layer

FCFS First-Come-First-Serve

FEC Forward Error Correction

FHSS Frequency Hopping Spread Spectrum

FIFO First-In-First-Out

FiOS Fiber Optic Service

FPS First Person Shooter

FRED Fair Random Early Detection

FTP File Transfer Protocol

GoP Group of Pictures

HAN Home Area Network

HC Hybrid Coordinator

HCF Hybrid Coordination Function

HD High Definition

HOL Head-of-Line

163

APPENDIX A. LIST OF ACRONYMS

HTB Hierarchical Token Bucket

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IANA Internet Assigned Number Authority

IMAP Internet Message Access Protocol

IntServ Integrated Service

IP Internet Protocol

IR InfraRed

ISP Internet Service Provider

MAC Medium Access Control

MIMO Multiple Input Multiple Output

MMO Massive Multiplayer Online

MOS Mean Opinion Score

MSN Microsoft Network

MTU Maximum Transmission Unit

NAT Network Address Translation

NS2 Network Simulator

OFDM Orthogonal Frequency Division Multiplexing

P2P Peer-to-Peer

PCF Point Coordination Function

PDA Personal Digital Assistant

164

PFIFO Packet First-In-First-Out

PHB Per-Hop Behavior

PIFS Point coordination Inter-Frame Space

POP Post Office Protocol

PPDQ Probabilistic Priority Discipline Queue

PSP PlayStation Portable

PSQA Pseudo-Subjective Quality Assessment

Qdisc Queueing Discipline

QoS Quality of Service

RBPLW Rate-Based Pacing of the Last Window

RD Rate-Delay

RED Random Early Detection

RG Residential Gateway

RIO RED with In or Out

RR Round Robin

RTP Real-time Transport Protocol

RTS Real Time Strategy

RTS Request-to-Send

RTSP Real-Time Streaming Protocol

SCFQ Self-Clocked Fair Queueing

SCP Secure Copy

165

APPENDIX A. LIST OF ACRONYMS

SIFS Short Inter-Frame Space

SJF Shortest Job First

SLA Service Level Agreement

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SNR Signal to Noise

SPM Selective Packet Marking

SPQ Strict Priority Queue

SSH Secure Shell

SSID Service Set IDentifier

TC Traffic Control

TCP Transmission Control Protocol

TOS Type of Service

TXOP Transmission Opportunity

UDP User Datagram Protocol

VNC Virtual Network Computing

VoIP Voice over IP

WAVE Wireless Access for the Vehicular Environment

WCFQ Wireless Credit-based Fair Queueing

WFQ Weighted Fair Queueing

WLAN Wireless Local Area Network

166

WMAN Wireless Metropolitan Area Network

WoW World of Warcraft

WPAN Wireless Personal Area Network

WPP Wireless Performance Prediction

WSM Windows Streaming Media

WSN Wireless Sensor Network

WWAN Wireless Wide Area Network

WWW World Wide Web

167

Appendix B

Supplementary Figures

Table B.1: Multiple Application Scenario - Summary of Performance Metrics (No FEC)

App. (Unit) DropTail CHAP SPQ % Impr

Game (MOS) 3.57 4.27 4.25 +20%

VoIP (MOS) 4.31 4.42 4.42 +3%

Video (fps) 15.58 30.00 30.00 +93%

Web (ms) 113.39 56.07 41.85 +51%

FTP (Mbps) 22.95 22.91 22.91 0%

Table B.2: Multiple Application Scenario - Summary of Performance Metrics (Small FEC)

App. (Unit) DropTail CHAP SPQ % Impr

Game (MOS) 3.56 4.27 4.25 +20%

VoIP (MOS) 4.31 4.42 4.42 +3%

Video (fps) 17.44 30.00 30.00 +72%

Web (ms) 100.60 53.94 41.41 +46%

FTP (Mbps) 22.94 22.89 22.89 0%

168

Table B.3: Multiple Application Scenario - Summary of Performance Metrics (Large FEC)

App. (Unit) DropTail CHAP SPQ % Impr

Game (MOS) 3.61 4.27 4.24 +18%

VoIP (MOS) 4.30 4.42 4.42 +3%

Video (fps) 23.16 30.00 30.00 +30%

Web (ms) 124.08 58.09 42.73 +53%

FTP (Mbps) 22.57 22.51 22.51 0%

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP Cubic (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP Cubic (CHAP)

Figure B.1: Congestion Window (10ms)

169

APPENDIX B. SUPPLEMENTARY FIGURES

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP Cubic (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP Cubic (CHAP)

Figure B.2: Congestion Window (20ms)

170

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260
C

on
ge

st
io

n
W

in
do

w
 (

pk
ts

)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP Cubic (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP Cubic (CHAP)

Figure B.3: Congestion Window (50ms)

171

APPENDIX B. SUPPLEMENTARY FIGURES

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP Cubic (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP Cubic (CHAP)

Figure B.4: Congestion Window (100ms)

172

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260
C

on
ge

st
io

n
W

in
do

w
 (

pk
ts

)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP Cubic (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP Cubic (CHAP)

Figure B.5: Congestion Window (150ms)

173

APPENDIX B. SUPPLEMENTARY FIGURES

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP Cubic (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP Cubic (CHAP)

Figure B.6: Congestion Window (200ms)

174

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(a) TCP NewReno (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260
C

on
ge

st
io

n
W

in
do

w
 (

pk
ts

)

Time (s)

FTP 1
FTP 2

(b) TCP NewReno (CHAP)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(c) TCP Cubic (DropTail)

 0

 50

 100

 150

 200

 250

 300

 350

 100 120 140 160 180 200 220 240 260

C
on

ge
st

io
n

W
in

do
w

 (
pk

ts
)

Time (s)

FTP 1
FTP 2

(d) TCP Cubic (CHAP)

Figure B.7: Congestion Window (250ms)

175

APPENDIX B. SUPPLEMENTARY FIGURES

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(a) CPU Usage (DropTail)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(b) CPU Usage (CHAP)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(c) Memory Usage (DropTail)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(d) Memory Usage (CHAP)

Figure B.8: Controlled Experiment (FER = 0.0001) - CPU and Memory Usage

176

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(a) CPU Usage (DropTail)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(b) CPU Usage (CHAP)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(c) Memory Usage (DropTail)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(d) Memory Usage (CHAP)

Figure B.9: Controlled Experiment (FER = 0.01) - CPU and Memory Usage

177

APPENDIX B. SUPPLEMENTARY FIGURES

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(a) CPU Usage (DropTail)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(b) CPU Usage (CHAP)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(c) Memory Usage (DropTail)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(d) Memory Usage (CHAP)

Figure B.10: Controlled Experiment (FER = 0.10) - CPU and Memory Usage

178

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(a) CPU Usage (DropTail)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(b) CPU Usage (CHAP)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(c) Memory Usage (DropTail)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(d) Memory Usage (CHAP)

Figure B.11: Controlled Experiment (FER = 0.25) - CPU and Memory Usage

179

APPENDIX B. SUPPLEMENTARY FIGURES

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(a) CPU Usage (DropTail)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(b) CPU Usage (CHAP)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(c) Memory Usage (DropTail)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(d) Memory Usage (CHAP)

Figure B.12: Controlled Experiment (FER = 0.50) - CPU and Memory Usage

180

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(a) CPU Usage (DropTail)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(b) CPU Usage (CHAP)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(c) Memory Usage (DropTail)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Bridge
FTP Server
FTP Client

Game Server
Game Client

(d) Memory Usage (CHAP)

Figure B.13: Controlled Experiment (FER = 0.75) - CPU and Memory Usage

181

183

Bibliography

[1] Wikipedia, “IEEE 802.11n.” Online at http://en.wikipedia.org/wiki/IEEE 802.11n.
1

[2] Linksys by Cisco, “Simultaneous Dual-N Band Wireless Router (WRT610N).”
Online at http://www.linksysbycisco.com/US/en/products/WRT610N. 1

[3] Verizon, “Verzion FiOS Internet Plans.” Online at
http://www22.verizon.com/Residential/FiOSInternet/Plans/Plans.htm. 2

[4] AllBusiness, “HKBN launches world’s first 1 Gbps residential broadband services..”
Online at http://www.allbusiness.com/media-telecommunications/data-
transmission-broadband/7322542-1.html.
3

[5] Converge, “Hong Kong Broadband Launches 1 Gbps Home Service for
US$215/month..” Online at
http://www.convergedigest.com/Bandwidth/newnetworksarticle.asp?ID=14545. 3

[6] Japan Today, “KDDI to launch 1Gbps fiber-optic service in Oct.” Online at
http://www.japantoday.com/category/technology/view/kddi-to-launch-1gbps-fiber-
optic-service-in-oct.
3

[7] ElectronicDesign, “Hanaro 100 Mbps Broadband Thrives In Korea..” Online at
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=17215. 3

[8] BroadbandReports, “Amsterdam Tests Residential 1Gbps Fiber..” Online at
http://www.broadbandreports.com/shownews/Amsterdam-Tests-Residential-
1Gbps-Fiber-97642.
3

[9] TheLocal, “Sigbritt, 75, has world’s fastest broadband..” Online at
http://www.thelocal.se/7869/20070712/. 3

[10] K. L. Calvert, W. K. Edwards, and R. E. Grinter, “Moving Toward the Middle: The
Case Against the End-to-End Argument in Home Networking,” in Proceedings of
the Sixth ACM Conference on Hot Topics in Networks (HotNets-VI), 2007. 3, 156

184

BIBLIOGRAPHY

[11] J. Cao, Y. Wu, and C. Williamson, “A Station-Based Adaptation Algorithm to
Improve Robustness of IEEE 802.11,” in Proceedings of the 2006 International
Symposium on on World of Wireless, Mobile and Multimedia Networks, 2006. 5, 6

[12] U. of California Berkeley, “The Network Simulator - ns-2.” Online at
http://www.isi.edu/nsnam/ns/. 7

[13] P. Seeling, M. Reisslein, and B. Kulapala, “Network Performance Evaluation with
Frame Size and Quality Traces of Single-Layer and Two-Layer Video: A Tutorial,”
IEEE Communications Surveys and Tutorials, vol. 6, no. 3, pp. 58–78, 2004. 9, 90,
97, 159

[14] G. V. der Auwera, P. T. David, and M. Reisslein, “Traffic and Quality
Characterization of Single-Layer Video Streams Encoded with H.264/MPEG-4
Advanced Video Coding Standard and Scalable Video Coding Extension,” in IEEE
Transactions on Broadcasting, vol. 54, pp. 698–718, September 2008. 9, 90, 97, 159

[15] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” 2004. 9, 130

[16] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control for Fast,
Long Distance Networks,” in Proceedings of the 23rd Conference of the IEEE
Communications Society (INFOCOM), March 2004. 9, 130

[17] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” ACM SIGOPS Operating Systems Review, vol. 42. 9, 98, 130

[18] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP Approach for
High-speed and Long Distance Networks,” in Proceedings of the 25th Conference of
the IEEE Communications Society (INFOCOM), April 2006. 9, 98, 130

[19] Sony, “Playstation Network.” Online at http://www.us.playstation.com/PSN. 12

[20] Microsoft, “Xbox LIVE.” Online at http://www.xbox.com/en-US/live/. 12

[21] Bungie, “Halo 2.” Online at http://www.bungie.net/Projects/Halo2/default.aspx.
12

[22] S. Zander and G. Armitage, “A traffic model for the xbox game halo 2,” in
Proceedings of the International Workshop on Network and Operating Systems
Support for Digital Audio and Video, 2005. 12, 96, 99, 142

[23] Blizzard Entertainment, “Starcraft.” Online at
http://www.blizzard.com/us/starcraft/. 13

[24] A. Dainotti, A. Pescape, and G. Ventre, “A packet-level traffic model of starcraft,”
in Proceedings of the 2005 Second International Workshop on Hot Tipics in
Peer-to-Peer Systems (HOT-P2P ’05), 2005. 13

[25] Blizzard Entertainment, “Battle.Net.” Online at http://www.battle.net/. 13

185

BIBLIOGRAPHY

[26] R. A. Bangun, E. Dutkiewicz, and G. J. Anido, “An Analysis of Multi-Player
Network Games Traffic,” in Proceedings of the 9th ACM international conference on
Multimedia, (Ottawa, Canada), 2001. 13, 35

[27] Blizzard Entertainment, “World of Warcraft.” Online at
http://www.worldofwarcraft.com/. 13

[28] MMOGCHART.COM, “MMOG Subscriptions Market Share - April 2008.” Online
at http://www.mmogchart.com/Chart7.html. 13

[29] MMOGCHART.COM, “MMOGCHART.COM.” Online at
http://www.mmogchart.com/. 13

[30] P. Svoboda, W. Karner, and M. Rupp, “Traffic analysis and modeling for world of
warcraft,” in Proceedings of the IEEE International Conference on communications,
2007. 13

[31] G. Armitage, “An experimental estimation of latency sensitivity in multiplayer
Quake 3,” in 11th IEEE International Conference on Networks (ICON 2003),
(Sydney, Australia), September-October 2003. 13, 151

[32] Skype Limited, “skype.” Online at http://www.skype.com/. 14

[33] S. Sharafeddine, A. Riedl, J. Glasmann, and J. Totzke, “On traffic characteristics
and bandwidth requiremetns of voice over ip applications,” in Proceedings of the 8th
IEEE International Symposium on Computers and Communication, 2003. 14

[34] “ITU-T Recommendation G.108: Application of the E-Model: A Planning Guide,”
September 1999. 14

[35] “Implementation Architecture Specification for the Premium IP Service, 2002.
Gn1(Gant) deliverable d9.7-addendum 1.” Online at
http://archive.dante.net/geant/public deliverables/GEA-02-079v2.pdf. 14

[36] MacInTouch, “MacInTouch Special Report: Streaming Media Market Report -
2001.” Online at http://www.macintouch.com/stream2001.html. 15

[37] MacInTouch, “MacInTouch: The original mac news and information site since
1994.” Online at http://www.macintouch.com/. 15

[38] Real, “Real Player.” Online at http://www.real.com/. 15

[39] Microsoft, “Windows Media.” Online at
http://www.microsoft.com/windows/WindowsMedia. 15

[40] Apple, “QuickTime.” Online at http://quicktime.apple.com/. 15

[41] BNET Business Network, “Media Player Format Share for 2006 Confirms Windows
Media Remains Dominant with A 50.8% Share of Video Streams Served, Followed
By Flash At 21.9% - ‘CDN Growth and market Share Shifts: 2002-2006’.” Online at
http://findarticles.com/p/articles/mi m0EIN/is 2006/ Dec 18/ai n16912185/. 15

186

BIBLIOGRAPHY

[42] Research and Markets, “Research and Markets.” Online at
http://www.researchandmarkets.com/. 15

[43] Adobe, “Flash.” Online at http://www.adobe.com/products/flashplayer/. 15

[44] M. Li, M. Claypool, and R. Kinicki, “MediaPlayer versus RealPlayer - A
Comparison of Network Turbulence,” in Proceedings of the ACM SIGCOMM
Internet Measurement Workshop, (Marseille, France), November 2002. 15

[45] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP),”
1998. 15

[46] Sling Media, “SlingBox.” Online at http://www.slingmedia.com/. 15

[47] Sony, “LocationFree.” Online at http://www.sonystyle.com/. 15

[48] Orb Networks Inc., “Orb.” Online at http://www.orb.com/. 16

[49] W3C, “W3C HTML.” Online at http://www.w3.org/html/. 16

[50] NCSA, “Mosaic Browser.” Online at
http://www.ncsa.uiuc.edu/Projects/mosaic.html. 16

[51] Microsoft, “Internet Explorer.” Online at http://www.microsoft.com/ie/. 16

[52] mozilla, “Firefox Browser.” Online at http://www.mozilla.com/en-US/firefox/. 16

[53] Google, “Chrome Browser.” Online at http://www.google.com/chrome/. 16

[54] Apple, “Safari.” Online at http://www.apple.com/safari/. 16

[55] Opera Software, “Opera Browser.” Online at http://www.opera.com/. 16

[56] tcpdump.org, “tcpdump/libpcap.” Online at http://www.tcpdump.org/. 16

[57] J. Charzinski, “Measured HTTP Performance and Fun Factors,” in Proceedings of
ITC, (Salvador, BA, Brasil), Dec. 2001. 16

[58] F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann, “The New Web:
Characterizing AJAX Traffic,” in Proceedings of the 2008 Passive and Active
Measurement Conference, (Cleveland, OH, USA), April 2008. 16, 17

[59] Google, “Google Maps.” Online at http://maps.google.com/. 16

[60] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating User-Perceived Quality into
Web Server Design,” in Computer Networks, (Amsterdam, Netherlands), 1999. 17

[61] Microsoft, “HotMail.” Online at http://www.hotmail.com/. 17

[62] Google, “GMail.” Online at http://www.gmail.com/. 17

[63] Yahoo!, “Yahoo! Mail.” Online at http://mail.yahoo.com/. 17

187

BIBLIOGRAPHY

[64] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” Second Quarter 2005. 17

[65] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed
anonymous information storage and retrieval system.” Online at
http://freenetproject.org/. 17

[66] Wikipedia, “Gnutella.” Online at http://en.wikipedia.org/wiki/Gnutella. 17

[67] Kazaa, “Kazaa media desktop.” Online at http://www.kazaa.com/. 17

[68] BitTorrent Inc., “BitTorrent.” Online at http://www.bittorrent.com/. 17

[69] Overnet, “The overnet file-sharing network.” Online at http://www.overnet.com/.
17

[70] eDonkey2000, “The eDonkey2000 file-sharing network.” Online at
http://www.edonkey2000.com/. 17

[71] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt, “A Comparative
Analysis of Web and Peer-to-Peer Traffic,” in Proceedings of WWW2008, (Beijing,
China), pp. 287–296, April 2008. 18

[72] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt, “A comparative
analysis of web and peer-to-peer traffic,” in Proceeding of the 17th international
conference on World Wide Web, 2008. 18

[73] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On Dominant Characteristics
of Residential Broadband Internet Traffic,” in Proceedings of the ACM Internet
Measurement Conference (IMC), (Chicago, IL, USA), November 2009. 18, 53, 67,
98, 129

[74] ICQ, “icq.” Online at http://www.icq.com/. 18

[75] Microsoft, “Windows Live Messenger.” Online at http://messenger.msn.com/. 18

[76] American Online, “AOL Instant Messenger.” Online at http://www.aim.com/. 18

[77] Yahoo, “Yahoo! Messenger.” Online at http://messenger.yahoo.com. 18

[78] Jabber Software Foundation, “Jabber.” Online at http://www.jabber.org/. 18

[79] Google, “Google Talk.” Online at http://www.google.com/talk/. 18

[80] qq, “QQ.” Online at http://qq.co.za/. 18

[81] Billions Connected, “Global Instant Messaging Market Share - Open Data.” Online
at http://billionsconnected.com/blog/2008/08/global-im-market-share-im-usage/.
18

188

BIBLIOGRAPHY

[82] Pew
Internet & American Life Project, “How Americans use instant messaging.” Online at
http://www.pewinternet.org//̃media/Files/Reports/2004/PIP Instantmessage Report.pdf.pdf.
18

[83] R. E. Grinter and L. Palen, “Instant messaging in teen life,” in Proceedings of the
2002 ACM conference on Computer supported cooperative work, 2002. 18

[84] Z. Xiao, L. Guo, and J. Tracey, “Understanding instant messaging traffic
characteristics,” in Proceedings of the 27th International Conference on Distributed
Computing Systems, 2007. 18

[85] Bluetooth SIG, Inc., “Bluetooth.” Online at http://www.bluetooth.org/. 21

[86] I. C. S. L. M. S. Committee, “IEEE 802.11, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications.” Standard, Aug. 1999. 21

[87] ZigBee Alliance, “ZigBee.” Online at http://www.zigbee.org/. 21

[88] Wikipedia, “WiMax.” Online at http://en.wikipedia.org/wiki/Wimax. 21

[89] Wikipedia, “IEEE 802.11.” Online at http://en.wikipedia.org/wiki/802.11. 22

[90] Sony, “PlayStation Portable (PSP).” Online at
http://www.us.playstation.com/PSP. 24

[91] Nintendo, “Nintendo DS.” Online at http://www.nintendo.com/ds. 24

[92] “Linksys by Cisco.” Online at http://www.linksysbycisco.com/. 27

[93] “NETGEAR.” Online at http://www.netgear.com/. 27

[94] “D-Link.” Online at http://www.dlink.com/. 27

[95] W. Stallings, Operating Systems: Internals and Design Principles. Pearson,
Prentice Hall, sixth ed., 2009. 29

[96] J. W. Chung, Congestion Control for Streaming Media. PhD thesis, Computer
Science Dept. at Worcester Polytechnic Institute, 2005. 33

[97] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion
Avoidance,” IEEE/ACM Transactions on Networking, Aug. 1993. 34

[98] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: active queue management,”
IEEE Network, vol. 15, pp. 48–53, May 2001. 34

[99] L. Carvalho, E. Mota, R. Aguiar, A. F. Lima, J. N. de Souza, and A. Barreto, “An
E-Model Implementation for Speech Quality Evaluation in VoIP Systems,” in
Proceedings of the 10th IEEE Symposium on Computers and Communications,
(Washington, DC, USA), 2005. 35

189

BIBLIOGRAPHY

[100] P. Kyasanur and N. Vaidya, “Detection and Handling of MAC Layer misbehavior in
Wireless Networks,” in Proceedings of the 2003 International Conference on
Dependable Systems and networks, pp. 173–182, June 2003. 41

[101] F. Cuomo, “An Architectural Model to Provide QoS in a Home Network and its
Evaluation in a Real Testbed,” Journal of Networks, pp. 44–53, June 2008. 42

[102] Wikipedia, “IEEE 802.1p.” Online at http://en.wikipedia.org/wiki/IEEE 802.1p.
42

[103] K. Kilkki, “Differentiated Services for the Internet,” in Macmillan Technology
Series, Technical Publishing, (Indianapolis, IN, USA), June 1999. 42

[104] C. E. Palazzi, G. Pau, M. Roccetti, S. Ferretti, and M. Gerla, “Wireless home
entertainment center: reducing last hop delays for real-time applications,” in
Proceedings of the 2006 ACM SIGCHI international conference on Advances in
computer entertainment technology, (New York, NY, USA), 2006. 43

[105] G. Rubino, M. Varela, and J.-M. Bonnin, “Controlling Multimedia QoS in the
Future Home Network Using the PSQA Metric,” Oxford Computer Journal, vol. 49,
no. 2, pp. 137–155, 2006. 43

[106] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to
flow control in integrated services networks; the single-node case,” IEEE/ACM
Transactions on Networking (TON), vol. 1, no. 3, pp. 344–357, 1993. 45

[107] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to
flow control in integrated services networks; the multiple node case,” IEEE/ACM
Transactions on Networking (TON), vol. 2, no. 2, pp. 130–150, 1994. 45

[108] D. Clark and W. Fang, “Explicit Allocation of Best-Effort Service,” IEEE/ACM
Transactions on Networking, Aug. 1998. 48

[109] S. Floyd and V. Jacobson, “Link-sharing and Recourse Management Models for
Packet Networks,” IEEE/ACM Transactions on Networking, vol. 3, no. 4, 1995. 48

[110] M. Parris, K. Jeffay, and F. D. Smith, “Lightweight Active Router-Queue
Management for Multimedia Networking,” Multimedia Computing and Networking,
SPIE Proceedings Series, vol. 3020, January 1999. 48

[111] J. Chung and M. Claypool, “Dynamic-CBT and ChIPS - Router Support for
Improved Multimedia Performance on the Internet,” in Proceedings of the
Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), (Chapel Hill, NC, USA), June 2000. 48

[112] D. Lin and R. Morris, “Dynamics of Random Early Detection,” in Proceedings of
ACM SIGCOMM Conference, (Cannes, France), Sept. 1997. 48, 57

[113] P. Hurley, M. Kara, J. L. Boudec, and P. Thiran, “ABE: Providing a Low Delay
within Best Effort,” IEEE Network Magazine, May/June 2001. 49

190

BIBLIOGRAPHY

[114] M. Podlesny and S. Gorinsky, “RD Network Services: Differentiation through
Performance Incentives,” in Proceedings of ACM SIGCOMM 2008, 2008. 49

[115] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm for
Increasing the Robustness of RED’s Active Queue Management,” tech. rep., 2001.
49

[116] V. Phirke, M. Claypool, and R. Kinicki, “Traffic Sensitive Active Queue
Management for Improved Multimedia Streaming,” in Proceedings of the
International Workshop on QoS in Multiservice IP Networks (QoS-IP), (Milano,
Italy), February 2003. 49

[117] Q. Wu and C. Williamson, “Context-aware TCP/IP,” in Proceedings of the 2002
ACM SIGMETRICS international conference on Measurement and modling of
computer systems, (Marina Del Rey, CA, USA), June 2002. 50

[118] A. Moore and K. Papagiannaki, “Toward the Accurate Identification of Network
Applications,” in Proceedings of the 6th Passive and Active Measurement Workshop
(PAM), March/April 2005. 54

[119] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel Traffic
Classification in the Dark,” in Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), pp. 229–240, 2005. 55

[120] K. C. Claffy, Internet Traffic Characterization. PhD thesis, Computer Science
Department at University of California at San Diego, 1997. 56

[121] B. Krishnamurthy and J. Rexford, “Web Protocol and Practice.” Chapter 10: Web
Workload Characterization, Addison-Wesley, 2001. 56

[122] M. Chesire, A. Wolman, G. Voelker, and H. Levy, “Measurement and Analysis of a
Streaming Media Workload,” in Proceedings of USNIX Symposium on Internet
Technologies and Systems, (San Francisco, CA), March 2001. 56

[123] P. Barford, J. Kline, D. Plonka, and A. Ron, “ A Signal Analysis of Network Traffic
Anomalies,” in Proceedings of ACM SIGCOMM Internet Measurement Workshop
(IMW), (Marseille, France), Novemeber 2002. 56

[124] N. Williams, S. Zander, and G. Armitage, “A Preliminary Performance Comparison
of Five Machine Learning Algorithms for Practical IP Traffic Flow Classification,”
SIGCOMM Computer Communication Review, vol. 36, no. 5, pp. 5–16, 2006. 56

[125] B. Bensaou, D. H. K. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ):
a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM
Transactions on Networking (TON), vol. 9, pp. 591–604, October 2001. 57, 67, 156

[126] Y. Liu, S. Gruhl, and E. W. Knightly, “WCFQ: an opportunistic wireless scheduler
with statistical fairness bounds,” IEEE Transactions onWireless Communications,
vol. 2, pp. 1017–1028, September 2003. 57, 58, 67, 156

191

BIBLIOGRAPHY

[127] S. J. Golestani, “A self-clocked fair queueing scheme for broadband applications,”
in Proceedings of IEEE INFOCOM ’94, (Toronto, Ont., Canada), 1994. 57

[128] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing: Achieving
Approximately Fair Bandwidth Allocations in High Speed Networks,” in
Proceedings of ACM SIGCOMM Conference, (Vancouver, British Columbia,
Canada), pp. 118 – 130, Sept. 1998. 57

[129] M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using Deficit Round
Robin,” in Proceedings of ACM SIGCOMM Conference, (Boston, MA, USA),
pp. 231 – 243, Sept. 1995. 57

[130] Y. Jiang, C.-K. Tham, and C.-C. Ko, “A probabilistic priority scheduling discipline
for multi-service networks,” in IEEE ISCC, 2001. 77

[131] Y. Jiang, C.-K. Tham, and C.-C. Ko, “Delay analysis of a probabilistic priority
discipline,” Nov./Dec. 2007. 77, 84

[132] L. Kleinrock, Queueing Systems, vol. 2. Wiley-Interscience, first ed., 1976. 78

[133] J. J. Lee and M. Gupta, “White Paper: A New Traffic Model for Current User Web
Browsing Behavior,” 2007. Online at http://blogs.intel.com/research/HTTPr.pdf.
90, 97

[134] H. Wu, M. Claypool, and R. Kinicki, “Guidelines for Selecting Practical MPEG
Group of Pictures,” in Proceedings of IASTED International Conference on
Internet and Multimedia Systems and Applications (EuroIMSA), (Innsbruck,
Austria), February 2006. 96

[135] F. Li, M. Li, R. Lu, H. Wu, M. Claypool, and R. Kinicki, “Tools and Techniques for
Measurement of IEEE 802.11 Wireless Networks,” in Proceedings of the Second
International Workshop on Wireless Network Measurement (WiNMee), (Boston,
MA, USA), 2006. 107

[136] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” 1999. 130

192

	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	The Dissertation
	Contributions
	Roadmap

	Background
	User Activities and Their Network Characteristics
	Wireless Networks
	Overview of Wireless Network
	IEEE 802.11 Wireless Local Area Network (WLAN)

	Process Schedulers
	Active Queue Management
	Quality Metrics
	Summary

	Related Work
	Wireless Home Networks and QoS
	IEEE 802.11e
	Home Network QoS Enhancement Research

	Active Queue Management for QoS improvement
	Traffic Classification
	Port-based Classification
	Packet Payload-based Classification
	Behavior-based Approaches
	Statistical Approaches

	Credit-based Active Queue Management
	Summary

	Approach
	Overview
	Algorithm
	Cost to Transmit a Packet
	Example
	Summary

	Analytical Model
	Credit Analysis
	Delay Analysis
	Probabilistic Priority Discipline
	Credit-based Probability
	Application of Probability Priority Discipline Queue on CHAP

	Wireless Considerations
	Bursts and Effect on CHAP Parameter I
	Summary

	Simulation
	User Activities in NS2
	Online Games
	Voice over IP
	Video Streaming
	Web Browsing
	Downloading Files

	Simulation Validation
	Model Validation
	Shadowing Model and Transmission Statistics over Distance
	Simulation Topology
	Queue Size
	Distances
	Distance of the Application Node under Test
	Distance of the FTP Node
	Distance of Both Nodes

	Multiple Applications
	Peer-to-Peer Application
	Edge Behavior
	Latency and Web Application Performance
	TCP Congestion Control and Performance
	TCP Fairness
	Summary

	Implementation
	Linux Qdisc
	Validation
	Validation Setup
	Without Frame Errors
	With Frame Errors

	Case Study
	Case Study Setup
	Web Browsing
	Quake IV

	Summary

	Conclusions and Future Work
	Summary
	Future Work

	List of Acronyms
	Supplementary Figures
	Bibliography

