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Abstract

As streaming techniques and wireless access networks become more widely deployed,

a streaming multimedia connection with the “last mile” being a wireless network is be-

coming increasingly common. However, since current streaming techniques are primarily

designed for wired networks, streaming multimedia applications can perform poorly in

wireless networks. Recent research has shown that the wireless network conditions, such as

the wireless link layer rate adaptation, contending traffic, and interference can significantly

degrade the performance of streaming media applications. This performance degradation

includes increased multimedia frame losses and lower image quality caused by packet loss,

and multiple rebuffering events that stop the media playout. This dissertation presents the

model, design, implementation and evaluation of an application layer solution for improving

streaming multimedia application performance in IEEE 802.11 wireless networks by using

enhanced bandwidth estimation techniques. The solution includes two parts: 1) a new

Wireless Bandwidth estimation tool (WBest) designed for fast, non-intrusive, accurate es-

timation of available bandwidth in IEEE 802.11 networks, which can be used by streaming

multimedia applications to improve the performance in wireless networks; 2) a Buffer and

Rate Optimization for Streaming (BROS) algorithm using WBest to guide the streaming

rate selection and initial buffer optimization. WBest and BROS are implemented and in-

corporated into an emulated streaming client-server system, Emulated Streaming (EmuS),

in Linux and evaluated under a variety of wireless conditions. The evaluations show that

with WBest and BROS, the performance of streaming multimedia applications in wireless

networks can be significantly improved in terms of multimedia frame loss, rebuffer events

and buffer delay.
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Chapter 1

Introduction

1.1 Motivation

The combination of the decrease in price of wireless LAN access points (APs) and the

increase in wireless link capacities has prompted a significant increase in the number of

wireless networks in homes, corporate enterprises, and academic campuses. The promise

of up to 54 Mbps capacity1 from a wireless AP means that users now expect to have

applications such as streaming video that require high bit rates run seamlessly from well-

connected wired media servers to wireless media clients. However, since many streaming

techniques are primarily designed for wired networks, streaming media applications may

perform poorly when running over a complex network environment with a last mile wireless

network.

In wired networks, streaming media quality is impacted by packet delay, jitter and

packet loss due to network congestion. To mitigate the impact of network congestion, vari-

ous techniques have been used to improve streaming media quality, such as initial capacity

estimation, media scaling and playout buffer optimization. For example, some stream-

ing products such as RealNetworks and Windows Streaming Media use network probes

or manually configuration to provide estimates of the underlying network characteristics

1IEEE 802.11g

1



CHAPTER 1. INTRODUCTION

prior to making key decisions about the streaming rate for the video stream sent over the

network [1, 2]. Media scaling is a method of adjusting the streaming media’s data rate in

response to the congestion levels in the networks [3, 4]. By adjusting the streaming rate,

the application can reduce the impact of congestion in the network. Client side buffer-

ing provides the essential functionality of removing jitter effects and playback disruption

caused by oscillations in the network bandwidth at the cost of initial start-up delay [1, 5].

Even though these techniques can reduce the degradation in quality when streaming

over wireless networks, they do not perform as effectively as in wired networks. The

streaming media quality is impacted not only by the network congestion, but also by the

wireless network conditions. Recent research shows that the wireless network conditions,

such as the wireless link layer rate adaptation, contention, and interference can significantly

degrade the performance of streaming media applications by incurring rebuffer events and

degraded perceptual quality [6, 7, 8, 9, 10].

Wireless media traits such as shared medium, bursty channel error, attenuation, and

fading make media access in wireless data networks more complex than in wired networks.

For example, the IEEE 802.11 Wireless LAN standard [11] uses a Carrier Sense Multiple

Access with Collision Avoidance (CSMA/CA) based Media Access Protocol (MAC) with

multirate physical layer and Automatic ReQuest for retransmission (ARQ) to reduce and

recover from frame loss in the physical layer. While these techniques can reduce the packet

loss seen at higher layers, they may impact the performance of streaming media applications

in multiple respects.

First, current packet pair techniques used by streaming media systems to estimate

capacity to a wireless LAN client [8] are inadequate for providing good bandwidth in-

formation. The wireless layer mechanisms, such as the ARQ with random backoff timer

and multirate adaptation can cause errors in bandwidth estimations. Moreover, assuming

a static bandwidth condition, the packet pair probes used by typical streaming appli-

cations can not provide sufficient channel characteristics in wireless networks. Wireless

phenomenon such as shifts in received signal strength and dynamic rate adjustments in

2



1.1. MOTIVATION

the MAC layer capacity wreak havoc on the assumption of static bandwidth. For example,

a simple packet pair estimation can not provide the dynamic characteristics of the wire-

less networks, such as the effective capacity, available bandwidth and variance in available

bandwidth.

Second, streaming rate control often does not perform well in wireless networks [8, 12].

For example, as for most media scaling techniques, the streaming rate control based on

packet loss or delay may misinform the rate scaling decision and converge slowly in wireless

networks [12]. In wireless networks, the packet loss and delay observed at higher layers are

different than in wired networks because extra delay and lower packet loss may be caused

by ARQ in the MAC layer. In addition, multirate adaptation in wireless networks may also

directly change the capacity due to loss and delay not observed at the application layer.

Finally, the initial client-side playout buffer designed according to the characterizations

of wired networks may not be large enough to overcome the oscillations in the available

bandwidth in wireless networks. The multirate adaptation and ARQ in the wireless MAC

layer create more changes in wireless networks. Playout buffer underflow can cause rebuffer

events, extra buffer time, and significantly degrade the media quality [8].

In summary, the current techniques of bandwidth estimation, media scaling and play-

out buffer can not perform as expected in wireless networks, which significantly impacts

the performance of streaming media applications. The streaming media application may

result in a higher or much lower streaming bit rate than the available bandwidth with an

insufficient initial buffer size. Therefore, the high loss rate or low quality streaming and

high number of rebuffer events can degrade the perceptual quality of the streaming media

applications.

Several researchers have proposed MAC layer, Transport layer [13, 14, 15] and even

cross-layer approaches to improve the performance of streaming media applications over

wireless networks. For example, cross-layer approaches are proposed to provide Unequal

Error Protection (UEP) for streaming traffic in [16, 17, 18, 19]. By applying protection

such as Forward Error Correction (FEC) to different frame types to reduce the packet loss
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and delay on important video frames, such as I frames, these approaches can improve the

quality of streaming video over wireless networks. However, these lower layer or cross-

layer approaches usually require modification of the protocol stack or access to the lower

layer information, which make them difficult to deploy in real systems. Moreover, these

techniques usually provide proactive loss protection, which does not solve the issues of

streaming rate selection and playout buffering in wireless networks.

Therefore, this dissertation presents the models, design, implementation, and eval-

uation of an application layer solution for improving streaming multimedia application

performance in IEEE 802.11 wireless networks by using enhanced bandwidth estimation

techniques. The solution includes two parts: 1) a new Wireless Bandwidth estimation

tool (WBest) designed for fast, non-intrusive, accurate estimation of available bandwidth

in IEEE 802.11 networks, which can be used by streaming multimedia applications to

improve their performance in wireless networks; 2) a Buffer and Rate Optimization for

Streaming (BROS) algorithm using WBest to guide the streaming rate selection and ini-

tial buffer optimization. WBest and BROS are implemented and incorporated into an

emulated streaming client-server system, Emulated Streaming (EmuS), in Linux and eval-

uated under a variety of wireless conditions. The evaluations show that with WBest and

BROS, the performance of streaming multimedia applications in wireless networks can be

significantly improved in terms of multimedia frame loss, rebuffer events and playout delay.

1.2 The Dissertation

The goal of the dissertation is to improve streaming media application performance over

a network path with a last mile wireless network by utilizing improved bandwidth esti-

mation techniques. The dissertation presents the modeling, design and evaluation of two

enhanced modules, the Wireless Bandwidth Estimation module and the Streaming Buffer

and Rate Optimization module. These two modules are designed to be able to work with

most streaming systems and provide explicit functionalities for improving the streaming

multimedia performance. Figure 1.1 depicts the block diagram of the dissertation. The
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two enhanced modules are represented by dark grey blocks in the diagram. The band-

width estimation module and the streaming buffer and rate optimization module reside on

both the client and server. However, the client side optimizer module only performs buffer

control functions. The relationships between modules and related network traffic are also

illustrated in the block diagram.

Bandwidth 
Estimator (WBest)

Bandwidth 
Estimator (WBest)

Buffer Optimizer
(BROS)

Wireless AP

Management ModuleManagement Module
Streaming Control

Bandwidth Estimation

Streaming Server Streaming Client

Wired Network
Wireless Network

BufferStreaming Service

Streaming Traffic

Playout

Control Information Network Traffic Moduler Proposed Module

Buffer and Rate Optimizer 
(BROS)

Figure 1.1: The Block Diagram of the Dissertation

The bandwidth estimation module uses WBest to estimate the bandwidth related met-

rics along the network path from streaming server to the client. Using packet dispersion

techniques, WBest provides fast, non-intrusive, accurate estimation of available bandwidth

in IEEE 802.11 networks. WBest applies a two-step algorithm: 1) a packet pair technique

to estimate the effective capacity of the wireless network; 2) a packet train technique to es-

timate the achievable throughput and report the inferred available bandwidth. The server

side WBest module initializes the packet pairs and packet train and sends them to the
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client using UDP. On receiving the packet pairs and packet train, the client side WBest

module processes the packets and reports the estimations back to the server. Related con-

trol messages and the estimation results are exchanged via a separate TCP control channel.

The advantage of WBest is that it does not depend upon search algorithms to detect the

available bandwidth but instead statistically detects the available fraction of the effective

capacity, mitigating estimation delay and the impact of random wireless channel errors.

WBest provides a broad range of bandwidth related information for the wireless networks,

such as the effective capacity, available bandwidth, achievable throughput and variance

of available bandwidth and achievable throughput. WBest is compared with other popu-

lar available bandwidth estimation tools in a wireless testbed under a variety of wireless

and network conditions. The evaluation shows that current bandwidth estimation tools

are significantly impacted by wireless network conditions, such as contention from other

traffic and rate adaptation. On the other hand, WBest consistently provides fast available

bandwidth estimation, with overall more accurate estimations and lower intrusiveness than

other techniques over all conditions evaluated.

The streaming rate and buffer optimizer module uses the BROS algorithm to select the

proper streaming rate and initial buffer size based on the bandwidth information provided

by WBest. By taking the available bandwidth distribution into consideration, the server

side streaming rate and buffer optimizer module selects the proper streaming rate and

buffer size to mitigate the probability of buffer underflow events. The optimized buffer

size is then sent back to the streaming client to control the playout buffer. The advantage

of the BROS algorithm over existing buffer optimizing approaches using jitter or Poisson

arrival models is that it takes the variation of available bandwidth into consideration,

which usually has a greater impact on streaming performance than delay jitter in wireless

networks. BROS is implemented in a streaming system (EmuS) and evaluated in an IEEE

802.11 wireless testbed under various wireless conditions. The evaluation shows that BROS

can effectively select the best streaming rate and optimize the initial buffer size based on

wireless network bandwidth conditions, thus achieving lower frame loss rate, fewer buffer
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underflow events and lower initial delay than buffers based on static rate selection, static

sizing, and jitter removal.

In general, analytical modeling may provide closed-form solutions that are easy to eval-

uate, but real systems usually have additional complexity and thus are hard to model

precisely. Simulations can provide evaluations for the models and techniques in circum-

stances close to that of the real systems with good repeatability and scalability. However,

simulations may not fully represent the complex network systems. Therefore, the combina-

tion of modeling, simulation and empirical measurement is used to re-enforce and evaluate

our approach in multiple aspects. In the dissertation, the following methodologies are

applied for the development and evaluation of WBest and BROS:

• Analytical Models. Three mathematical models are created in the dissertation: a

model of packet dispersion in IEEE 802.11 wireless networks; the WBest model for

performance and error analysis; and a Markov chain buffer model used by BROS.

• Simulations. NS-2 simulations are used to validate and evaluate the packet dispersion

models. Customized simulation modules including wireless rate adaptation, multi-

path fading and error models, are used to simulate realistic wireless network setups.

• Empirical Measurements. WBest and BROS are both implemented in the Linux

system and evaluated in a wireless testbed under a variety of wireless and network

conditions, including crossing traffic, contending traffic, rate adaptation and power

saving mode. WBest is evaluated in comparison with typical existing techniques

for bandwidth estimation. Additionally, an emulated streaming system (EmuS) is

developed to include both WBest and BROS modules to evaluate the improvement

of streaming multimedia performance in wireless networks.

1.3 Contributions

The main contributions of this dissertation are the design, simulation, implementation and

evaluation of improvements in streaming media performance in wireless networks using
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bandwidth estimation techniques. The specific contributions of the dissertation include:

1. Review and evaluation of current bandwidth estimation techniques in wireless net-

works. The applicability of currently publicly available bandwidth estimation tech-

niques in wireless networks are reviewed and discussed. The evaluation shows that

current bandwidth estimation tools are significantly impacted by wireless network

conditions, such as ARQ, contention from other traffic and wireless rate adaptation.

(Chapters 3, 4 and 5)

2. Analytical model of packet dispersion in IEEE 802.11 wireless networks. The ana-

lytical model is created to study the behavior of packet dispersion under different

wireless network configurations, including ARQ, rate adaptation, contending and

crossing traffic, and channel error. The model is validated with NS-2 simulations and

empirical measurements in an IEEE 802.11 wireless testbed. (Chapter 4)

3. NS-2 simulator extension of IEEE 802.11 MAC rate adaptation. Receiver Based Auto

Rate (RBAR) [20], a MAC layer rate adaptation protocol is re-implemented in NS-2

version 2.27. The documented implementation is available online2. (Chapter 4)

4. Wireless Bandwidth Estimation Tool (WBest). WBest is designed for fast, non-

intrusive, accurate estimation of available bandwidth in IEEE 802.11 networks. WBest

provides comprehensive bandwidth information of the wireless networks, such as

the effective capacity, available bandwidth, achievable throughput and variance of

available bandwidth and achievable throughput. The evaluation shows that WBest

consistently provides fast available bandwidth estimation, with overall more accurate

estimations and lower intrusiveness over all conditions evaluated. On average, WBest

effectively reduces the average relative error by 82% to 86%, the intrusiveness by 70%

to 90%, and the convergence time by 95% to 99%. Implemented as a shared library3

in Linux, WBest can be easily imported to most applications. (Chapter 5)

2Downloadable from http://perform.wpi.edu/downloads/#rbar
3Downloadable from http://perform.wpi.edu/downloads/#wbest
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5. Playout buffer model for available bandwidth oscillation in wireless networks. We

create a Markov chain model for client side playout buffer size for streaming multi-

media applications as a function of streaming rate and the distribution of available

bandwidth in the wireless network. A primary advantage of the buffer model over ex-

isting jitter or Poisson arrival models is that it takes into consideration the variation

in available bandwidth. (Chapter 6)

6. Buffer and Rate Optimization for Streaming (BROS) algorithm. BROS is designed

to select the proper streaming rate and initial buffer size based on the available band-

width estimations using WBest to reduce the buffer underflow events, buffer delay,

and improve the frame loss rate for multimedia streaming application over wireless

networks. The evaluation shows that BROS can effectively select the streaming rate

and optimize the initial buffer size based on wireless network bandwidth conditions,

thus achieving lower frame loss rate, fewer buffer underflow events and lower initial

delay than other algorithms evaluated. For example, comparing BROS with similar

streaming rate sessions with fixed and jitter removal buffer algorithms, BROS can

reduce the buffer underflow events and the frame loss rate by close to 100%, and

reduce the total buffer delay by about 80%. (Chapter 6)

7. Emulated Streaming (EmuS) client-server system with WBest and BROS support.

We develop an emulated streaming server/client system, called Emulated Streaming

(EmuS) in Linux with initial buffer and rate selection features. The streaming server

supports multiple encoded layers and configurable playout buffer sizes. The perfor-

mance information, such as buffer underflow, frame rate, frame loss, retransmission,

etc. are reported during playback. By including WBest and BROS, we use EmuS to

evaluate streaming multimedia performance under different wireless conditions. The

source code is available online4. (Chapter 6)

4Downloadable from http://perform.wpi.edu/downloads/#wstream
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1.4 Roadmap

The remainder of this dissertation is organized as follows: Chapter 2 provides background

knowledge to the work in this dissertation; Chapter 3 discusses related research in the areas

of streaming, bandwidth estimation and wireless networks; Chapter 4 presents the in-depth

study and modeling of the packet dispersion techniques in IEEE 802.11 wireless networks;

Chapter 5 presents the design, analysis and evaluation of WBest; Chapter 6 presents

the streaming buffer model and the design, analysis and evaluation of BROS; Chapter 7

outlines possible future work; and finally Chapter 8 summarizes this dissertation and draws

conclusions.
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Chapter 2

Background

This chapter reviews the fundamental techniques and terminologies that are referred to in

the thesis. Section 2.1 reviews the streaming multimedia techniques, such as the commer-

cials applications, media scaling, and quality metrics. Section 2.2 reviews wireless network

techniques, including general characteristics of wireless media, and the IEEE 802.11 Wire-

less LAN (WLAN) family.

2.1 Streaming Multimedia

Streaming multimedia is the technique that delivers media data directly from a server to

client and starts the playout of the media as it is being received. This results in relatively

short waiting times of only a few seconds buffering before the media starts playing at

the receiver. With the support of a streaming protocol, clients can perform a series of

playback controls, such as pause, fast forward, and rewind on the media content without

downloading the entire media clip.

Unlike typical Internet traffic, streaming multimedia is sensitive to delay and jitter,

but tolerates some data loss. Additionally, streaming multimedia typically prefers a steady

data rate rather than the bursty data rate associated with window-based network proto-

cols. Hence, streaming multimedia applications often use UDP rather than TCP. However,

commercial streaming applications do use TCP protocol in some special cases, for example,
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in the presence of firewalls.

This section reviews typical streaming applications, by using the example of Windows

Media Services, as well as typical media scaling techniques and general streaming quality

metrics that are used in the thesis.

2.1.1 Streaming Multimedia Applications

Given the fact that about 72% of the available video content on the Web are based on three

major commercial streaming media technologies: Real Player, Windows Media Services,

and Apple QuickTime [21], it is important to understand the behavior of commercial

streaming applications. It is difficult to ascertain the exact streaming implementations

hidden in the commercial applications due to the insufficient information available for the

implementation of those commercial applications. However, to provide some fundamental

understanding of the common features and behaviors of commercial streaming applications,

this section reviews Windows Media Services based on Microsoft online documents and the

results of previous research.

Streaming Protocols

Windows Media Services can stream media over several application-layer protocols: Real-

time Streaming Protocol (RTSP), Microsoft Media Server (MMS) Protocol, Hypertext

Transfer Protocol (HTTP), and multicast streaming. The MMS protocol, which is the

proprietary streaming media protocol developed for earlier versions of Windows Media

Services, is still in the most recent version of the software only for compatibility reasons.

For RTSP and MMS the underlying transport protocol can either be the User Datagram

Protocol (UDP) or the Transmission Control Protocol (TCP). The actual protocol used

is chosen through a process called protocol rollover [22] based on server and/or client

configuration.

For example, when Windows Media Player 9 Series attempts to connect to the server

using a URL with an mms:// prefix, the server automatically uses RTSP. If Fast Cache
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is enabled on the server (the default condition for all new publishing points), the server

tries to connect to the client using RTSP with TCP-based transport (RTSPT) first. If the

Player does not support that protocol, then the server attempts to connect using RTSP

with UDP-based transport (RTSPU). If that connection is also not successful, the server

then attempts to connect using the HTTP protocol if the WMS HTTP Server Control

Protocol plug-in is enabled. If Fast Cache is not enabled, the server first tries to connect

to the client using RTSPU, then RTSPT, and finally HTTP. Some clients may be unable

to connect using certain protocols for various reasons such as player version and network

firewall settings.

Similarly, Real Player supports RTSP, Progressive Networks Audio (PNA) protocol,

HTTP, and multicast streaming, while the PNA in the latest Real Server is only for com-

patibility with older versions of RealPlayer. For Apple QuickTime, RTSP, HTTP, and

multicast streaming are supported. For both of Real Player and Apply Quicktime applica-

tions, the transport protocol can be either TCP or UDP, and certain algorithms are used

to decide which transport protocol is used, respectively.

Playout Buffer

Streaming multimedia is usually delivered to users over a wide range of network qualities

and connection speeds. To mitigate errors caused by data being lost, delayed, and in-

completely received packets during data transmission, Windows Media Services maintain

a initial buffer with a default size of five seconds of playback equivalent data [23]. This

initial buffer can be used to reduce jitter and recover lost packets by fast retransmission.

The initial buffer size in seconds can also be customized at the player side to accommodate

different network conditions. In general, with a large buffer, streaming applications can

gain more tolerance towards unpredictable changes of network condition, while having the

disadvantage of increasing the starting playback delay.

To reduce the starting delay caused by the initial buffer, Windows Media Services (for

versions greater than Windows Media Services 9 Series) provides a new function, Fast
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Start [23], which causes data to be sent faster than the actual encoding bit rate of a stream

in order to quickly fill the buffer. After the buffer is filled, the bit rate returns to normal.

Fast Start can reduce initial buffering time and the Player begins playing the stream sooner,

but this may also cause network congestion and be TCP-unFriendly during the buffering

period [2].

Moreover, network congestion or other network conditions can change. For example,

a decrease in capacity in a Wireless LAN (WLAN) may exhaust the buffer during media

playback, which forces the client to stop playback and fill the streaming buffer before

it can continue the transmission. These unexpected rebuffer events cause media quality

degradation.

Similarly, both Real Player and Apple QuickTime apply initial streaming buffer and

fast buffering techniques [24, 25].

Media Scaling

To improve the streaming media quality, Windows Media Service deploys Intelligent Stream-

ing [26] to perform media scaling during the network congestion. Intelligent Streaming ad-

justs the bit rate of the content stream to counteract the changes in available bandwidth,

thereby reducing the packet loss in network and ensuring a continuous presentation by

reducing the rebuffer events.

Windows Media Services combines Multiple-Bit-Rate Encoding and Stream Thinning

techniques to perform Intelligent Streaming. In Multiple-Bit-Rate Encoding, a number of

discrete, user-definable audio and video streams are encoded into a single Windows Media

clip. The streams are encoded from the same content, but each is encoded at a different

bit rate. When Windows Media Player connects to a Windows Media Server to receive a

multiple-bit-rate Windows Media file or broadcast stream, the server only sends the set

of audio and video streams that is the most appropriate for estimated current bandwidth

conditions. In addition, the Windows Media client and server can also decrease the bit rate

to accommodate the current bandwidth by reducing media quality. This is referred to as
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Stream Thinning in Windows Media Services. The server decreases the video frame rate

first, and if the bit rate is still too high, the server stops sending video frames altogether.

Intelligent Streaming uses a series of strategies to modify the bit rate of the stream in

response to the change of available bandwidth. As conditions become worse, the server

attempts each strategy in the following list of options one by one until the bit rate is

optimized for the current bandwidth [26]:

• The server and client automatically estimate the current available bandwidth, and

then select and deliver the stream with the most appropriate bit rate.

• During transmission, if the available bandwidth is reduced, Windows Media Services

switches to a stream with a lower bit rate. If bandwidth increases, it switches to a

stream with a higher bit rate, but never higher than the original bit rate.

• If the bandwidth can no longer support streaming video, Windows Media Services

uses Streaming Thinning techniques to degrade image quality to avoid rebuffering.

After the server stops sending video frames, it uses Intelligent Streaming to maintain

a continuous audio stream. If audio quality starts to degrade, the client reconstructs

portions of the stream to preserve quality.

Packet Pair techniques, which will be discussed in detail in Section 3.2, are used to

determine the bandwidth that is available for streaming when a client first connects to

a server using RTSP or MMS with the UDP protocol [1]. However, the details on the

bandwidth estimation and responding mechanisms are not publicly available to general

users [2].

Real Player has a similar mechanism, known as SureStream analyzed in [27] and Quick-

Time also makes adjustments to the bit rate requirements of the stream by altering the

quality level [2].

15



CHAPTER 2. BACKGROUND

2.1.2 Media Scaling

Media scaling is a method of adjusting the streaming media’s data rate. Typical media

scaling techniques reviewed in this section include Temporal Scaling, Quality Scaling, and

Spatial Scaling [28].

Typical Media Scaling Methods

Temporal scaling reduces the streaming data rate by decreasing the video frame rate [29].

For example, in Motion Compensated Prediction (MCP) [29], temporal scalability can

be provided by strategic placement of reference frames and predicted frames and then

selectively decoding the frames. Therefore, by reducing the number of frames that need

to be decoded, the video data rate can also be decreased. Temporal Subband Coding

(TSB) [30] provides lower frame-rate video by decoding temporal low-pass subbands, giving

a natural multiresolution decomposition into frame rates that are halved at each analysis

level. Motion-Compensated Temporal Subband Coding (MC-TSB) [31] includes motion

compensation prior to the temporal subband coding to reduce the blurring caused by TSB

and increase coding efficiency. Conklin et al. [32] compare these three major temporal

scaling techniques and show MCP provides the best performance in terms of quality and

bit rate.

Spatial scaling encodes a video into multiple levels that have the same frame rate and

quantization level but different frame sizes. The streaming data rate can be decreased by

reducing the video resolution. For example, Naveen et al. [33] uses Motion Compensated

Multi-Resolution (MCMR) to transmit the High Definition (HD) video to a NTSC receiver.

Benzler et al. [34] uses multi-resolution streams and choose the appropriate one for the

current network conditions.

Quality scaling encodes a video into multiple layers with different quantization accu-

racy. A dynamic streaming data rate can be achieved by selecting different encoding layers

depending on the available network bandwidth. In [35, 36], the server keeps a hierarchical

set of streams as multiple layers. The different encoding layers are selected in response to
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network congestion to provide TCP-Friendly congestion control to streaming video appli-

cations. In [37], the server estimates the TCP-Friendly rate based on packet loss rate and

Round Trip Time (RTT) and chooses the appropriate quantization level for encoding.

Previous scaling methods can be used in combination. For example, [38] uses both

the temporal scaling and spatial scaling methods for MPEG video coding. As discussed

in Section 2.1, most of the commercial streaming applications, such as Real Player and

Windows Media Services, use combined scaling methods.

Since this thesis focuses on streaming rate selection but not the media scaling methods,

any methods discussed in this section can be combined with our rate selection algorithm.

Media Scaling Policy

Media scaling is usually performed by the server in response to network congestion based

on client feedback. However, the scaling can be triggered by different metrics, such as

the packet loss rate, RTT, estimated network bandwidth, or application quality metrics.

Moreover, the rate control mechanism on the server side is also critical for a media scaling

algorithm.

In [35, 36, 39], the transport layer packet loss and RTT are fed back to the server as

the media scaling trigger. For example, in [39], the feedback is sent by the receiver in one

second intervals. Loss of more than two packets or a latency increase of 50% over a moving

average of the previous five measurements is taken to indicate congestion. If four successive

feedback messages indicate no sign of congestion, the streaming data rate is increased.

Some research focuses on rate control that assumes the transmission rate is deter-

mined by the network transport protocol, such as TCP and TCP-Friendly Rate Control

(TFRC) 1 [40] protocol. For example, in MPEG-TFRCP [37], the TCP-Friendly rate is es-

timated by a TCP-Friendly rate equation and used to adjust the video streaming data rate.

The estimator transmits RTCP feedback packets to the receiver at the regular interval of

every five frames (5/29.97=0.167 sec). However, the rate control is performed at predeter-

1http://www.icir.org/tfrc/
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mine multiples of RTT. The research compares several settings of the control interval such

as 8-RTT, 16-RTT, 64-RTT and 96-RTT. The results show that frequent rate control in-

troduces a great variation in the video quality, and therefore worse subjective video quality.

On the other hand, for a longer control interval, the video application cannot follow the

network conditions and transmits the video data with undesirable quality. Furthermore,

as the interval becomes longer, users wait a longer time for a satisfactory video presen-

tation. Finally, the research concludes that either 16-RTT or 32-RTT control interval is

preferable for MPEG-TFRCP to maintain a TCP-Friendly share and good perceived video

quality. Streaming Media Congestion Control protocol (SMCC) [41] is an adaptive media

streaming congestion management protocol in which the connection’s packet transmission

rate is adjusted according to the dynamic bandwidth share of the connection. The band-

width share of a connection is estimated using algorithms similar to those introduced in

TCP Westwood [42], which is assumed to be a TCP-friendly rate. Research [43, 44] also

performs rate control for layered video streams based on the knowledge of the maximum

available bandwidth. [43] develops a heuristic real time algorithm for adaptive coding

rate control based on the maximum available bandwidth, while [44] uses control theory to

help select the best rate. Both of [43] and [44] are designed to work over either TCP or

TFRC transport protocols and assume the network tranmission rate is determined by a

TCP-Friendly rate.

Delgrossi et al. [28] monitor the video frame’s packet arrival and when the number

of lost or late packets exceeds a threshold, a scale down message is sent to the sender

side. However, since this monitoring can not provide any information about the termi-

nation of congestion, the research simply scales up the stream when a certain time span

after the previous scale down has elapsed. The research in [45] proposed a content-based

video adaption (CBVA) that uses a priori information from the video stream, such as the

frame information, to drive the adaptation policy. The CBVA combines quality and frame

rate adaptation and the adaptation policy is guided by the principle of correlated priority

between frame rate and quality. In some specially designed systems, such as in the Multi-
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media Database System described in [46], the server adjusts the streaming quality based

on the buffer utilization on the client side to reduce the data rate sent over the network.

For commercial streaming applications, the scaling mechanisms are not publicly avail-

able. However, several measurement research characterizes the congestion responsiveness

of these applications. Chung et al. [27] measure the media scaling behavior of Real Player

by using a Token Bucket Filter to emulate Internet congestion. The results show that most

RealVideo UDP streams respond to Internet congestion by reducing the application layer

encoding rate, and streams with a minimum encoding rate less than the fair share of the

capacity often achieve a TCP-Friendly rate. Furthermore, the TCP API hides network

information, such as loss rate and round-trip time, making it difficult to estimate the avail-

able capacity for effective media scaling. One result from this research is that it takes more

than 20 seconds for Real Player to adjust its rate while streaming over TCP. Nichols et

al. [2] uses a testbed to measure the congestion responsiveness of Windows Media Services,

showing that Windows Media streaming is responsive to available capacity, but it is often

unfair to TCP.

In wired networks, the scaling control mechanisms and related network metrics de-

scribed above are efficient for detecting network condition changes and triggering media

scaling to maintain good perceived quality. However, these mechanisms may not be as

efficient as in wired network due to the following reasons:

• In wireless networks, as discussed in Section 2.2, the delay and packet loss are not

only caused by network layer congestion, but also by changes in the wireless physical

layer and MAC layer conditions, such as bursty errors, dynamic rate adaptation,

MAC layer contention, etc. Packet loss and RTT alone no longer provide accurate

congestion information.

• These wired mechanisms usually depend on client feedback information to adjust

the streaming data rate because the assumption is that congestion often occurs in

one direction, such as the downstream direction. However, in wireless networks, the

wireless medium is shared by both upstream and downstream traffic. The feedback
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could suffer as well when the wireless network conditions change, thereby delaying

the media scaling actions.

• Given the fact that TCP and TFRC do not perform well [47, 13] due to the MAC

layer contention and retries as discussed in Section 2.2, the TCP-Friendly rate does

not accurately estimate the available bandwidth in wireless networks.

The streaming data rate is expected to scale down before it overloads the network

bottleneck so that it will not unduly contribute to the congestion. In wired drop-tail

networks, packet loss is usually caused by network congestion. A packet loss rate increase

usually indicates that network is already congested, and is not sufficient to predict a change

in network condition before it happens. Since bandwidth estimation techniques can provide

an early indication of network condition change, they can be used as a better trigger

mechanism for media scaling control.

Thus, our approach to control media streaming rate is based on enhanced bandwidth

estimation techniques, which are discussed in detail in Chapter 5 and 6.

2.1.3 Performance Metrics of Streaming Multimedia

In general, multimedia content can tolerate some loss. However, packet loss, combined with

packet delay and jitter in computer networks still impacts the streaming media quality.

Other factors specific for streaming multimedia, such as rebuffer events and buffering time

can also impact the user perceived quality. To evaluate the benefits of bandwidth estimation

techniques on streaming multimedia over wireless networks, it is necessary to measure

the streaming media quality. Since this research is mainly focused on the application

and network performance, some video level quality measurements, such as Peak Signal

Noise Ratio (PSNR), Video Quality Metric (VQM), and Subjective Measurement, are not

appropriate. This section defines the terminologies used to measure media quality that will

be used throughout the thesis.
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Service Rate

Streaming multimedia data rate is determined by the content encoding rate and the avail-

able bandwidth, or service rate [48]. The service rate of a streaming session directly affects

the PSNR of the streaming video [49], which has been shown to be related to user perceived

quality [50].

Rebuffer Event

When network conditions change, a streaming media player might exhaust its buffered

packets in spite of the initial buffering. The media player may pause the playback until it

has the buffer filled up again. The number of rebuffer events reflects the network condition

and can be used as a negative indicator of streaming media quality [48].

Buffering Time

The video is paused during a rebuffer event until the rebuffer is done. The duration of

the rebuffering period varies based on the network condition. The longer the rebuffering

period, the worse the streaming video performance [48]. Therefore, the total buffering time,

which includes initial buffering time and the rebuffering time, or the average rebuffering

time, can be used as indicators of streaming media quality.

Application Packets Loss

Application layer packet loss, which does not include those packets recovered by Forward

Error Correction (FEC) or successful retransmission, prevents the media frame from being

decoded correctly during playback, and therefore degrades video quality. Application layer

packets that arrive late at the client may also be considered as lost. The number or

the fraction of application packets lost during streaming can be used as indicators for

streaming media application quality [48]. For example, the “reception quality” in Windows

Media Player is defined as the percentage of packets that were not lost during the last 30

seconds [51].
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2.2 Wireless Network

Wireless networks had been widely deployed over the last few decades. Most of the pro-

tocols and applications that were developed for wired networks have been transferred to

wireless networks as de facto implementations. However, the wireless characteristics that

differ from wired networks may impact the performance of these applications in wireless

networks. To understand these characteristics of wireless networks, this section provides a

general review of the wireless networks and an introduction to a popular wireless network,

Wireless Local Area Network (WLAN).

2.2.1 Overview of Wireless Networks

In general, all wireless networks share similar physical characterizations due to the na-

ture of the radio medium, such as high bit error rate caused by attenuation, interference,

fading, and collisions. However, a variety of network standards are focusing on distinct

purposes and operating environments and the design can vary significantly. To provide the

background knowledge of wireless networks, this section summaries the characteristics of

wireless medium and general categorization of current existing wireless networks.

Characteristics of Wireless Media

The most important characteristics of wireless radio medium that differ from the wired

network are as follows [52].

• Shared Medium. Compare with the wired media, wireless medium has natural broad-

casting. Therefore, all the wireless transmissions share the same medium and wire-

less supports only half-duplex operation. Moreover, the shared medium causes more

collisions and interference over the air, which can further degrade the network perfor-

mance. Finally, the shared medium also makes it impossible to increase the capacity

by adding media as in a wired network. With the wireless medium, the network is

restricted to a limited available band for operation, and can not obtain new bands
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or duplicate the medium to accommodate more capacity.

• Propagation. Wireless radio transmissions that propagate over the air expects atten-

uation, reflection, diffraction and scattering effects. The multipath fading caused by

these effects results in time varying channel conditions, such that the received signal

power varies as a function of time.

• Bursty channel errors. Due to the attenuation, interference, and fading effects, the

wireless network expects a higher Bit Error Rate (BER) that can be 10−3 or even

higher.

• Location dependent carrier sensing. In wireless networks, such as the wireless LAN,

the wireless performance is effected significantly by the location. For example, the

hidden terminal and exposed terminal problem may impact the wireless performance

significantly. A hidden terminal is one that is within the range of the intended

destination but out of range of the sender. Therefore, collisions may happen at the

destination if the sender and the hidden terminal transmit at the the same time

because they can not detect each other. Similar, an exposed terminal is one that is

within the range of the sender but out of interference range of the destination. A

sender may unexpectedly backoff when an exposed terminal is transmitting, even if

that transmission will not collide with the sender’s transmission at the destination.

These wireless characteristics may degrade the wireless network performance exten-

sively. Therefore, most of the wireless network standards implement a variety of error

recover mechanisms, such as the Forward Error Correction (FEC), Automatic ReQuest for

retransmission (ARQ) and rate adaptation, which are discussed in Sections 2.2.2.

Wireless Network Categorization

The general way to categorize wireless data communication networks is based on the cov-

erage range.
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• Wireless Personal Area Networks (WPANs)

WPANs are small networks operating within a confined space, such as an office

workspace or room within the home. The coverage range is usually less than 30 feet.

For example, BlueTooth, which is defined under IEEE 802.15.1, can provide up to

720 Kbps capacity over less than 30 feet distance. Ultra Wideband (UWB, defined

in IEE802.15.3a), which is still under development, is designed to provide up to 480

Mbps throughput over a short distance [53].

• Wireless Local Area Networks (WLANs)

WLANs have broader range than WPANs, typically confined within office buildings,

restaurants, stores, homes, etc. WLAN has become the most popular wireless data

communication techniques as the production of the WLAN standards, such as IEEE

802.11 standard family, which is reviewed in detail in Subsection 2.2.2

• Wireless Metropolitan Area Networks (WMANs)

WMANs cover a much greater distance than WLANs, connecting buildings to one

another over a broader geographic area. For example, the emerging WiMAX tech-

nology (802.16d today and 802.16e in the near future) will further enable mobility

and reduce reliance on wired connections. Typical WMANs have a throughput up to

10-20 Mbps and cover a distance of approximately several miles[53].

• Wireless Wide Area Networks (WWANs)

WWANs have the broadest coverage range and are most widely deployed today in the

cellular voice infrastructure to provide the capability of transmitting data. The most

popular WWAN techniques include the currently available cellular 2.5G (Generation)

data services, such as General Packet Radio Service (GPRS) and Enhanced Data

Rates for Global Evolution (EDGE), and the next-generation cellular services based

on various 3G technologies.

Out of these wireless network techniques, WLANs are the most widely deployed wire-

less networks that are being used for streaming multimedia applications. Therefore, the
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research focuses only on WLANs. WLANs implement a highly reliable MAC/link layer by

using retransmission, error correction, or link adaptation techniques to reduce the impacts

caused by the high loss rate, high dynamic physical layer conditions. These techniques

provide the wireless network with better performance for traditional Internet applications,

such as Web, Email service and FTP service. However, these techniques may impact rate-

based or time sensitive applications, such as streaming multimedia and interactive Internet

telephone applications. To fully understand the techniques discussed in this thesis, it is

important to review the standards of typical WLANs in the following section.

2.2.2 IEEE 802.11 Wireless Local Area Networks (WLANs)

IEEE 802.11 is limited in scope to the Physical (PHY) layer and Medium Access Control

(MAC) sublayer. The IEEE 802.11 MAC layer begins with IEEE 802.3 Ethernet standard,

while the PHY layer supports a few variations, such as Direct Sequence Spread Spectrum

(DSSS), Frequency Hopped Spread Spectrum (FHSS), Orthogonal Frequency Division Mul-

tiplexing (OFDM) and InfraRed (IR). The IEEE 802.11 Standard [11] defines a family of

Wireless Local Area Networks (WLANs), including 802.11b, 802.11a, 802.11g, etc. A brief

comparison of these standards is given in Table 2.1. Note that all the standards use the

same MAC layer specification, but different physical layer specifications.

IEEE 802.11 standards support both the infrastructure network topology and ad-hoc

network topology. In an infrastructure network, there is a fixed infrastructure that sup-

ports communication between mobile stations and fixed stations via an Access Point (AP).

Conversely, in an ad-hoc network, there is no fixed infrastructure. The mobile stations

Table 2.1: IEEE 802.11a, b, and g WLAN Standards

Standard Maximum Data Rate Frequency Modulation Scheme

IEEE 802.11 2 Mbps 2.4 GHz FHSS/DSSS/IR

IEEE 802.11a 54 Mbps 5 GHz OFDM

IEEE 802.11b 11 Mbps 2.4 GHz DSSS with CCK

IEEE 802.11g 54 Mbps 2.4 GHz OFDM/DSSS
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communicate directly with each other without the use of an AP. Ad-hoc networking is out

of the scope of this thesis and will not be covered in this review.

IEEE 802.11 Distributed Coordination Function (DCF)

In IEEE 802.11, the main mechanism to access the medium is the distributed coordination

function (DCF), which is a random access scheme based on the Carrier Sense Multiple

Access with Collision Avoidance (CSMA/CA). The standard also defines the optional Point

Coordination Function (PCF), which is a centralized MAC protocol that uses a point

coordinator to determine which node has the right to transmit. DCF is a mandatory

component in all IEEE 802.11 compatible products, while PCF is an optional component

and is not widely implemented. Therefore, the DCF access function is widely assumed [54]

in most of cases. In this thesis, we also limit our investigation to the DCF scheme only.

CSMA/CA Mechanism

DCF defines two techniques for frame transmission: the default two-way handshake,

referred to as basic access mechanism, and an optional four-way handshake mechanism.

In the basic access mechanism, a station that wants to access the channel monitors the

channel to determine if another node is transmitting before initiating the transmission of

a new frame. If the channel is idle for a distributed interframe space (DIFS), the frame

is transmitted. Otherwise, the station defers the transmission for a random backoff time.

The receiving station checks the CRC of the received frame and if the CRC is correct,

the station sends an acknowledgment frame (ACK) after a period of time called the short

interframe space (SIFS).

The four-way handshake mechanism is used to mitigate the hidden terminal problem.

The four-way handshake mechanism involves the transmission of the request-to-send (RTS)

and clear-to-send (CTS) control frames prior to the transmission of the actual data frame.

A successful exchange of RTS and CTS frames attempts to reserve the channel for the

time duration needed to transfer the data frame under consideration. On receiving an RTS

frame, the receiver responds with a CTS frame after a SIFS time. After the successful
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exchange of RTS and CTS frames, the data frame can be sent by the transmitter after

waiting for a SIFS interval. If the CTS frame is not received within a predetermined time

interval, the RTS is retransmitted following the backoff rules as specified in the basic access

procedures described above. The RTS and CTS frames carry information about the time

period of the data frame to be transmitted. All stations receiving either RTS/CTS, set

a network allocation vector (NAV) containing information to indicate the period of time

in which the channel will remain busy. Therefore, when a node is hidden from either the

transmitting or the receiving node, by detecting just one frame among the RTS and CTS

frames, it will appropriately delay further transmissions to avoid collisions.

Exponential Backoff Timer

An Exponential Backoff Timer is used in DCF for deferring the data packets and RTS

packet transmission. The timer is decremented only when the medium is idle and it is

frozen when the medium is sensed busy. The slot size of the backoff timer is denoted by

the time needed by any node to detect the transmission of a packet by any other node. At

each frame transmission, the backoff time is uniformly chosen in the range (0,W − 1). The

value W is called the contention window and depends on the number of failed transmissions

for a frame, i.e., for each packet queued for transmission, the contention window W takes

an initial value Wmin that doubles after each unsuccessful frame transmission, up to a

maximum of Wmax. The contention window remains at Wmax for the remaining attempts.

In addition, to avoid channel capture, a node must wait for a random backoff time between

two consecutive frame transmissions, even if the medium is sensed idle in the DIFS time.

MAC Layer Retransmission

The IEEE 802.11 DCF MAC layer retransmits RTS and DATA frames a number of

times based on the frame size. The IEEE 802.11 standard suggests that the transmission

attempts for the frame with a size less than the RTS Threshold is seven, and for the frame

with a size larger than RTS Threshold is four. The RTS Threshold parameter is also used

as an indicator of the utilization of RTS/CTS mechanism. If the DATA packet is smaller
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than the RTS Threshold, the frame is considered as a short frame, and can be transmitted

without the RTS/CTS exchanges. Moreover, if a station has an RTS Threshold value

greater than the maximum allowed MTU, the RTS/CTS mechanism is simply disabled.

Then all DATA frames are retransmitted following the short frame retry limit.

IEEE 802.11 Multirate Physical Layer

The IEEE 802.11 medium access protocols provide support for multirate physical layer

modulations. For example, the Extended Rate PHY (ERP) of IEEE 802.11g supports the

payload data rates of 1 and 2 Mbit/s using DSSS modulation, the payload data rates of 1,

2, 5.5, and 11 Mbit/s using DSSS modulations, and additional payload data rates of 6, 9,

12, 18, 24, 36, 48, and 54 Mbit/s using OFDM modulation.
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Figure 1: Theoretial bit error rates (BER) as a
funtion of the signal-to-noise ratio (SNR) for sev-
eral modulation shemes and data rates.

802.11 [12℄, that have laid the foundation for o�-the-shelf
wireless devies apable of transmitting at high data rates.
For example, devies are now available that an transmit at
11Mbps, with 54Mbps expeted in the near future.

Higher data rates are ommonly ahieved by more eÆient
modulation shemes. Modulation is the proess of translat-
ing an outgoing data stream into a form suitable for trans-
mission on the physial medium. For digital modulation,
this involves translating the data stream into a sequene of
symbols. Eah symbol may enode a ertain number of bits,
the number depending on the modulation sheme. The sym-
bol sequene is then transmitted at a ertain rate, the symbol
rate, so for a given symbol rate, the data rate is determined
by the number of enoded bits per symbol.
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ause variations in the reeived signal-to-noise ratio (SNR).
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(BER), beause the lower the SNR, the more diÆult it is
for the modulation sheme to deode the reeived signal.
Sine high rate shemes typially use denser modulation en-
odings, a tradeo� generally emerges between data rate and

Figure 2.1: Bit Error Rate as a Function of Signal-to-Noise Ratio [20]

Figure 2.1 [20] shows the relation between the Bit Error Rate (BER) and Signal-to-

Noise Ratio (SNR) for several modulation schemes and data rates. For a given SNR, the

modulation scheme with a higher data rate has a higher BER. By adapting the date rate

with different modulation schemes under different wireless network conditions, a low BER

and therefore better performance can be produced. However, wireless rate adaptation
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results in a dynamic capacity changes in wireless networks, which may impact the perfor-

mance of rate-based applications, such as the streaming multimedia and Internet telephony

over wireless network.

The rate adaptation mechanisms are based on either sender’s inference or receiver’s

feedback of the current channel conditions. The adaptation schemes can be either SNR-

based (few implementations) or statistics-based, such as number of retries, packet error

rate (PER) or throughput based [55]. For instance, the scheme designed in [56] uses the

statistical data of sender retries and the scheme in [20] uses the SNR data feedbacked from

the receiver. Chapter 3 reviews the related rate adaptation mechanisms in detail.
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Chapter 3

Related Work

This chapter reviews the research work related to the work in this thesis. Three correspond-

ing research areas are covered, streaming multimedia performance, bandwidth estimation

techniques and wireless network performance.

3.1 Streaming Multimedia

As discussed in Section 2.1, streaming multimedia quality is impacted by packet delay,

jitter and loss due to the network congestion or other changes in network conditions. To

mitigate the impact on quality by the network, various techniques have been used to im-

prove streaming media quality, such as buffer optimization, streaming rate selection. This

section reviews the research work in buffering, streaming rate selection, and performance

study for streaming multimedia over wireless networks.

3.1.1 Streaming Buffer

To provide better performance for streaming multimedia over best effort networks, such

as the Internet and wireless networks, buffer techniques are often used on the server side,

network (caching and proxy), and on the client side [57]. Client side buffering techniques

play an important role in streaming multimedia. Generally, client side buffering provides

the essential functionality of removing the jitter effects and playback disruption caused by
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oscillations in the transmission rate at the cost of initial start-up delay [1, 5]. The oscilla-

tions in transmission rate may be caused by transport protocols, such as TCP and TFRC

that apply the Additive Increase and Multiplicative Decrease (AIMD) based congestion

control, the network congestion, or the connection rate adaptation in a wireless network.

Client side buffers can prevent playback disruptions when the available bandwidth

is temporarily below the streaming data rate, unless the buffer is also empty [58]. As

mentioned in Section 2.1.3, the number of rebuffer events, or the number of disruptions

during playback is a critical performance quality metric. In general, the larger the buffer

is, the lower the probability the buffer will underflow. However, the initial startup delay is

also an important quality metric, especially for real time and/or interactive applications.

For non-realtime or non-interactive streaming applications, buffer overflow is not a

critical issue because disk and memory capacity are outpacing the growth in bandwidth

available to single stream flow [59]. However, buffer overflow is an issue for mobile devices,

such as the PDAs and cellphones, which can still be subject to memory or disk space

constraints.

There are a variety of strategies proposed to improve the effectiveness of client side

buffering that include slowing down the media playout rate at the client to reduce its

consumption rate and help prevent buffer underflow [60, 61, 62, 63, 64, 65, 66] and media

scaling techniques as described in Section 2.1.2. Most of that research focuses on the

minimum buffer size required in a particular streaming environment, while still keeping a

low number of playback disruptions.

Buffer management is also associated with other research topics, such as the smoothing

of Variable Bit Rate (VBR) encoding and VCR like functionality on the client side, such

as rewinding or indexing to an arbitrary point, which may require additional buffer space

at the client [67].
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Buffer Required for Flow Control and Jitter Removing

Zimmermann et al. [68] describe buffer underflow and overflow behavior in detail under

the ideal network condition for their streaming media system. A simple flow control with

stream on/off watermarks are proposed with equations 3.1 and 3.2:

WMO ≤ B − (RN − RC) × Td (3.1)

where WMO is the buffer overflow watermark, B is the buffer size, RN is the streaming

send rate, RC is the consumption rate, and Td is the network delay.

WMU ≥ RC × Td (3.2)

where WMU is buffer underflow watermark. WMO ≥ WMU must hold to make B the

minimum buffer size required for the operating environment. However, in Equations 3.1

and 3.2, both the RN and RC are assumed as CBR, and all the buffered content is assumed

to be playable, which is usually not true in the real world environment.

In [5], the minimal buffering requirement for different adaptation policies is studied. A

minimum buffer requirement equation for TCP-Friendly AIMD protocol is developed as a

function of the average of the achievable transmission rate, RTT and packet size, as shown

in Equation 3.3:

∆ =
α

18MSS
× R2 × RTT 2 (3.3)

where ∆ is the minimum buffer size for removing the jitter caused by an AIMD protocol,

MSS is the packet size, R is the average achievable transmission rate, RTT is the round

trip time and α is the increasing parameter of the AIMD protocol AIMD(α, β), with the

TCP-Friendliness increase/decrease relationship α = 3(1−β)
1+β .

Research [5] also shows that the adaptation policies that maximize throughput are not

suitable for interactive applications with high bit rates or long RTTs due to the long delay
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caused by large buffer size.

In addition, there are a variety of strategies proposed to improve the effectiveness of

client side buffering by optimizing the buffer size based on jitter removal, such as [69, 70,

71, 72]. To study the buffer size required for removing the jitter in networks, Yuang et

al.[60, 73], Girod et al.[61, 64], and Laoutaris et al.[62] present Markov chain models based

on Poisson arrival. However, in wireless networks, the arrival of streaming traffic can not be

simply modeled as a Poisson distribution because the capacity changes in wireless networks

causes a variance in the streaming traffic arrival rate. Therefore, the jitter removal buffer

algorithm are not sufficient to avoid buffer underflow in wireless networks.

The buffer optimization approach presented in this thesis is based on estimation of

the network condition but does not only consider a TCP-Friendly rate. This allows it to

apply to some environments where the buffer underflow is not caused by transmission rate

changes of AIMD protocols, such as in some congested wireless networks, where MAC layer

rate adaptation dominates the transmission rate changes.

Buffer Required for VBR Traffic Smoothing

Another function of the client side buffer is to smooth the VBR media content. Various

techniques are used to reduce the traffic bursts of VBR encoded streaming content. Usually,

a modest buffering capability is required at the receiver side [73, 74]. For example, a

smoothing by temporal multiplexing algorithm is proposed in [74], whereby the VBR traffic

is made more uniform by grouping frames and sending them at the average bandwidth. The

smoothing algorithm also controls the critical bandwidth, which is defined as the minimum

bandwidth required to guarantee the receiver’s buffer will not underflow, to provide a

smoother bandwidth and a more effective use of buffering.

Salehi et al. [75] propose a work-ahead smoothing algorithm to reduce traffic bursts by

modeling the optimal transmission schedule which minimizes both the variance and peak

rate at which data is sent to the client for a given buffer size.

Alternate flow control algorithms, such as Multi-Threshold Flow Control (MTFC) [76]
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can also be used to improve buffer management and VBR traffic smoothing. By imple-

menting multiple thresholds in the client side buffer, feedback messages are sent back to the

server to adjust the sending rate. By combining the threshold control and a consumption

prediction module, the algorithm proposes to achieve fewer rate adjustments and a higher

buffer utilization.

Jenkac et al. [77] analyze the behavior of VBR media over VBR channels, such as

the variable bit rate caused by wireless Radio Link Control (RLC) layer retransmissions

in cellular networks. By modeling the deterministic and random channel conditions, the

algorithm determines appropriate initial delays and buffer sizes for streaming video over

variable bit rate wireless channels.

The research in this thesis focuses on wireless condition changes caused by MAC layer

retransmission and dynamic rate adaptation, which is similar to the condition described

in [77]. However, the goal of our buffer algorithm is to choose the optimal buffer size

based on the current estimation of the network condition including the available bandwidth

and variance of bandwidth, which promises to be applicable to a wider range of network

conditions. In practice, the client side buffer may include the extra buffer space required

for VBR traffic smoothing in addition to the buffer size optimized for bandwidth.

3.1.2 Characterization of Streaming over Wireless Networks

With the development of the streaming techniques and wireless networks, more wireless

streaming research has been conducted recently. This section reviews related areas of

characterization and performance study for streaming multimedia in wireless networks.

The research from Kuang et al. [6, 7] characterizes the Real Media traffic over an

IEEE 802.11b wireless network. Multiple network layer data gathered shows that the Real

Media performs well for excellent and good channel conditions, and performs poorly for fair

and poor channel conditions. The IEEE 802.11b MAC layer retransmission mechanism is

able to hide most physical layer burst errors from higher layer protocols, even in the poor

channel condition where 67.5% of the media packets sent require at least one retransmission.
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Furthermore, the Real Media application layer NACK-based (Negative Acknowledgment

based) error control is effective in recovering missing packets. However, the network RTT

changes and rebuffer events caused by MAC-layer retransmission and rate adaptation are

not studied in their research.

Our recent study [8] presents results from experiments that stream Windows Media

Service video over a wireless campus network and analyzes performance across application,

network and wireless link layers. Some of the key findings include:

• Wireless LANs, i.e. IEEE 802.11g, make it difficult for streaming video to gracefully

degrade as network performance decreases.

• Video streams with multiple encoding levels can more readily adapt to degraded

wireless network conditions than can clips with a single encoding level.

• Under degraded wireless network conditions, TCP streaming can provide higher video

frame rates than can UDP streaming, but TCP streaming will often result in signif-

icantly longer playout durations than will UDP streaming.

• Current techniques used by streaming media systems to determine effective capacity

over wireless LANs are inadequate, resulting in streaming target bit rates significantly

higher than can be effectively supported by the wireless network.

Ikkurthy et al. [78] characterize MPEG-4 traffic over IEEE 802.11b wireless LANs. A

tradeoff was found between the packet sizes and the amount of information lost such that

small packet sizes affect B and P frames most of the time. Conversely, small packet sizes

produce bigger error bursts that affect I frames more. In summary, a packet size of 750

bytes was found as a good compromise.

The effects caused by mobility and shared AP wireless networks are also studied in [9].

By measuring the performance of streaming MPEG-4 video over a mobile wireless network,

the authors conclude that streaming media performance can degrade significantly in the

presence of user mobility. Furthermore, the performance degradation affects all clients that

connect through the same AP, not just those who are mobile.
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In summary, recent characterization research [7, 8, 9, 10] shows that the media scal-

ing performance is limited when the optimal streaming rate is not correctly selected over

wireless networks. Typical streaming typical rate selection used in media scaling is based

on loss rate, round-trip time or a bandwidth estimate to adjust the streaming data rate

to reduce the network impact on media performance. However, these measurements do

not always provide clear indications of wireless network conditions and target rates for

adaptation. For example, research [8, 10] show that retransmissions and rate adaptation

at the wireless MAC layer may reduce the loss rate while increasing the round-trip times

measured by the applications. Thus, wireless network conditions hidden from the appli-

cation can cause bad media scaling decisions. Moreover, media scaling action is usually

taken during degraded performance and therefore is not effective in avoiding performance

degradation.

In addition, widely deployed client side playout buffer techniques adapt infrequently to

network characterizations in wireless networks [8]. Most current playout buffer techniques

use either a fixed sized buffer or choose the minimum buffer size necessary to remove delay

jitter. However, for wireless networks with dynamic capacity changes, insufficient buffer

sizes decided by jitter removal or static buffer size can produce an increased number of

rebuffer events or substantial delays [7, 8, 10].

3.1.3 Streaming Performance Improvement over Wireless Networks

In addition to the media scaling techniques discussed in Chapter 3 and playout buffer

techniques, this section reviews the related approaches to improve streaming performance

for wireless networks, including novel transport layer protocols, cross-layer approaches, and

bandwidth estimation approaches.

Transport Protocols

The performance of TCP Friendly protocols in wireless networks can be improved by using

wireless loss differentiation techniques, such as in Cen et al [79]. This can allow a streaming
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application to select the proper rate according to the TCP Friendly rate for the observed

wireless network conditions. Using similar techniques, Chen and Zakhor [80] and Yang et

al.[81] propose new transport protocols that use a TCP Friendly rate in a wireless networks

to control the streaming rate.

In addition, Chen et al. [15, 80] propose MULTFRC that establishes multiple TFRC

connections to achieve a higher utilization of the wireless networks. MULTFRC is vali-

dated via NS2 simulation and a 1xRTT (Radio Transmission Technology) CDMA network.

However, the RTT increase may also cause performance degradation for some interactive

streaming media applications. Other research targets streaming performance by lowering

the network delay. For example, [13] presents a rate estimation method by modeling

the optimal RTT in ad-hoc wireless networks. NS2 simulations show that RETFRC can

significantly reduce the RTT in ad hoc networks, while still keeping a fair throughput.

However, as discussed by Kazantzidis and Gerla [12], using a TCP Friendly rate control

provides only “trial-and-error” scaling, which is unreliable, converges slowly and cannot be

used for initial streaming rate selection.

Cross-layer Approach

Cross-layer approaches [82, 83] take the advantages of MAC and physical layer information,

such as the rate adaptation, amount of forward error correction and retransmissions, to

control the selection of the streaming rate. For example, Kazantzidis and Gerla [12] propose

a link-network feedback architecture to provide cross-layer information for the streaming

media applications to adapt their streaming rates. The research in [84] proposed a layered

video encoding method that incorporates MAC layer rate adaptation to provide robust

multicast streaming over IEEE 802.11 wireless networks. Thus each client in the same

network receives different quality of video based on the current wireless connection bit

rate. In addition, Yang et al. [85] combine the cross layer and TCP Friendly rate control

approach to propose a new protocol that utilizes link layer loss information to improve the

TCP Friendly rate control.
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Alternative crossing layer approaches are proposed to provide Unequal Error Protection

(UEP) for streaming traffic. For example, in [16, 17, 83], application layer information,

such as the frame type, is made available to link layer. Therefore, by applying different

protection to different frame types to reduce the packet loss and delay on important frames,

such as I frames, these approaches can improve the quality of streaming video over wireless

networks.

Li et al. [66] present a method to improve the performance by combining optimal

power control policy and optimal playout control policy. For example, the transmitter

may increase its power to overcome the channel interference and/or other impairment and

successfully push packets to the receiver buffer, while the receiver buffer may slow down

its playout rate in order to extend the time until underflow. The results show that the

heuristic has only a slight performance loss as compared to the optimal joint power-playout

control policy over the entire network condition range studied in the investigation.

However, cross-layer approaches require modifications to both end hosts and to proto-

col stacks, which may involve with multiple vendor implementations, thus making them

difficult to deploy.

Bandwidth Estimation

Bandwidth estimation approaches use application measurements to guide rate selection.

Commercial streaming media applications, such as Windows Media Service, uses packet

pair techniques to estimate the capacity and choose an appropriate streaming rate [1]. Most

recent research from Beek et al.[86, 87, 88] applies packet pair or receiver side statistical

bandwidth estimation techniques to guide the rate selection in wireless networks.

The advantage of the bandwidth estimation approach is that it usually does not de-

pend upon lower layer information or new protocol stacks, thus can be more easily to

deployed. In addition, with careful design, bandwidth estimation can avoid the “trial-

and-error” problem caused by a TCP Friendly approach to rate selection. However, Li et

al.[89], Lakshminarayanan et al.[90], and Angrisani et al.[91] show that traditional band-
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width techniques designed for wired networks can not accurately estimate the bandwidth

in wireless network. Moreover, these techniques usually provide capacity estimation, while

streaming rate selection needs a broader range of bandwidth information, such as the

available bandwidth and the variance in available bandwidth.

3.2 Bandwidth Estimation

Bandwidth estimation refers to the end-to-end measurement of bandwidth-related met-

rics, such as capacity, available bandwidth and bulk TCP transfer capacity, performed by

the end hosts of a path without requiring administrative access to intermediate routers

along the path. Several applications can benefit from knowing the bandwidth character-

istics of their network paths. For example, peer-to-peer applications, overlay networks,

Content Distribution Networks (CDN), intelligent routing systems, end-to-end admission

control, and multimedia streaming applications can all benefit from bandwidth estimation

techniques [92].

As discussed in Section 2.1, streaming multimedia applications usually prefer to be

rate-based, and often use UDP with higher layer congestion control mechanisms. Tradi-

tional congestion control mechanisms, which use a measured increase of packets/frames lost

and/or delay as the indicators of congestion in the network are not sufficient for the stream-

ing applications that require explicit rate based congestion control mechanisms. Loss rate

and RTT only provide some indicators of congestion, but do not provide the clear extent

of the congestion in the network. For example, the applications are not able to know the

amount of traffic that can be sent out without causing congestion. Therefore, it is hard for

the streaming applications to make the proper congestion control decisions. Moreover, for

streaming applications in wireless networks, the loss rate and delay may not be caused by

network congestion, thus this may misinform the streaming systems. Having the knowl-

edge of capacity and available bandwidth can make the congestion control of streaming

applications more efficient and accurate.

This section reviews bandwidth estimation related metrics, techniques, taxonomy and
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evaluations by extending the bandwidth estimation survey [92] to more recent and wider

areas.

3.2.1 Bandwidth Related Metrics

The term bandwidth is often imprecisely applied to a variety of network throughput re-

lated concepts, such as capacity, available bandwidth, bulk transfer capacity and achievable

throughput. Applications are usually concerned with different bandwidth related metrics.

Therefore differentiating these concepts is important for the developing, evaluating and

applying bandwidth estimation tools.

Capacity

Capacity is defined as the maximum possible bandwidth that a link or end-to-end path

can deliver [92]. At the link layer, the transmission rate of each segment is usually fixed

and constrained by the physical layer medium and the propagation delay. At the IP layer,

each hop, which could be multiple link layer segments, delivers data at a rate lower than

its nominal transmission rate due to the overhead of link layer encapsulation and framing.

Prasad et al. [92] define the IP layer capacity by Equation 3.4:

CL3 = CL2
1

1 + HL2

LL3

(3.4)

where CL3 is the IP layer capacity, CL2 is the link layer capacity, HL2 is the total link layer

overhead, and LL3 is the size of an IP packet.

Given a certain type of link layer network, the authors assume that the link layer over-

head is fixed. Therefore, the IP layer capacity of a hop is defined based on the Maximum

Transmission Unit (MTU) of the IP layer network.

Furthermore, the authors also define the end-to-end capacity C as

C = min
i=1,...,H

Ci (3.5)
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where Ci is the capacity of i-th hop, and H is the number of hops in the end-to-end path.

The hop with the minimum capacity is the narrow link on the path.

Some link layer technologies, such as IEEE 802.11 WLAN as described in Section 2.2.2,

do not operate with a constant transmission rate. The capacity definitions in Equation 3.4

and 3.5 can be only used for those techniques during the time intervals in which the capacity

remains constant.

Available Bandwidth

Available Bandwidth is defined as the maximum unused bandwidth at a link or end-to-end

path in a network, which depends on not only the link capacity, but also the traffic load,

and is typically a time-varying metric [92].

In [92], the available bandwidth Ai of a hop i of a end-to-end link over a certain time

interval is given by the unutilized fraction of capacity:

Ai = (1 − ui)Ci (3.6)

where ui is the average utilization of hop i in the given time interval, and the Ci is the

capacity of hop i. By extending the available bandwidth definition to an H-hop path,

the authors define the available bandwidth of the end-to-end path, A, as the minimum

available bandwidth of all H hops:

A = min
i=1,...,H

Ai (3.7)

The hop with the minimum available bandwidth is called the tight link of the end-to-

end path. The narrow and the tight link are both indicate the bottleneck of a network.

However, based on the definitions, they are not necessarily at the same hop [92].
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Bulk Transfer Capacity

Bulk Transport Capacity (BTC) [93] defines a metric that represents a network’s ability to

transfer significant quantities of data with a single congestion-aware transport connection

(e.g., TCP). Thus, the BTC is the maximum long term average throughput obtainable by

a single flow of an ideal TCP implementation on an end-to-end network path. The ideal

TCP implementation here means that the TCP must implement all standard congestion

control algorithms specified in IETF RFC 2581 [94]. However, RFC 2581 leaves several

implementation details open, so different implementations on these details will yield non-

comparable measures of BTC. Therefore, any BTC measurement must specify the details

about the congestion control algorithms that are not specified in RFC 2581.

In RFC 3148 [93], the BTC of a end-to-end path is defined as:

BTC = data sent/elapsed time (3.8)

where data sent represents the unique data bits transfered, which does not include header

bits or emulated header bits or retransmitted data, and elapsed time is the measurement

interval.

BTC is different from available bandwidth in term of bandwidth metrics. BTC is

TCP-specific, but available bandwidth does not depends on a specific transport proto-

col. Furthermore, BTC takes bandwidth sharing with other TCPs into the consideration,

but available bandwidth assumes the average traffic load is constant and estimates the

bandwidth available to the additional traffic [92].

Achievable Throughput

Achievable throughput is defined as the throughput of a host-to-host path under a com-

pletely specified set of conditions, such as transmission protocol, end host hardware, operat-

ing system, tuning method and parameters, etc. [95]. Achievable throughput is extremely

application specific, and thereby represents the throughput that an application in this
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specific setting might achieve.

Achievable throughput is different from the available bandwidth because the bottleneck

could be in an end host, so achievable throughput may or may not correlate with available

bandwidth. In addition, achievable throughput only takes into account the portion of

the capacity that can be used by the specific application. For instance, a TCP friendly

protocol may yield a lower achievable throughput than the available bandwidth as discussed

above, while a UDP application may yield a higher achievable throughput than available

bandwidth if it aggressively takes the bandwidth from other TCP-based applications. The

definition of achievable throughput is close to the BTC measurement from the bandwidth

sharing point of view. However, achievable throughput allows the use of parallel connections

and could apply to both transport protocols with or without congestion control, i.e. TCP

and UDP protocols.

Achievable throughput can be used as a guideline for local application configurations

to fully utilize the available bandwidth without interfering with other traffic. For instance,

Jin et al. [95] suggest to use parallel TCP streams under certain conditions to achieve a

fully utilized available bandwidth.

Summary

In summary, the general relationship between the terminologies used as bandwidth related

metrics can be presented as:

Capacity > Achievable Throughput ≥ Available Bandwidth > BTC

Figure 3.1 illustrates the relationship with the presence of crossing traffic. The capacity

is the maximum possible bandwidth that includes the volume used by the crossing traffic.

The achievable throughput could get a higher volume than the Available Bandwidth, which

is the Capacity−Crossing Traffic. The reason is that Achievable Throughput considers

the bandwidth that may be aggressively taken from responsive crossing traffic, such as

TCP. Furthermore, the BTC only considers TCP traffic, which will take the congestion

control into consideration. Therefore, the BTC volume is likely to be smaller than Available
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Bandwidth since it needs to maintain a TCP-Friendly share with the crossing traffic in the

network.

Figure 3.1: Bandwidth Related Terminology

3.2.2 Bandwidth Estimation Techniques

Based on the taxonomy and detailed review of current available bandwidth estimation

techniques from the survey paper [92], and other related research, this section discusses

four major active bandwidth estimation techniques: Variable Packet Size (VPS) prob-

ing, Packet Dispersion, Self-loading Probing, Probe Gap Model (PGM) and other related

methodologies.

Variable Packet Size (VPS) Probing

VPS measures the capacity of each hop along an end-to-end path. VPS was first proposed

by Bellovin [96] and first implemented in pathchar [97] by Jacobson in 1997. Subsequent

research including clink [98], pchar [99], and ACCSIG [100] improved VPS and implemented

it in several ways.

The RTT to each hop in the network can be approximated by the summary of three

delay components: serialization delays, propagation delays, and queuing delays. VPS

makes the following assumptions to utilize the RTT information to estimate the capacity

of each hop:
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• VPS assumes that each hop of a path increases the one-way delay of a packet by

a serialization latency given by L/C, where L is the packet size and C is the hop’s

capacity.

• By sending multiple packets of the same size to each hop of the network, VPS assumes

at least one packet will not encounter any queuing delay.

• Propagation delays are independent of the packet size and are constant for each hop.

Therefore, the minimum RTT, Ti(L), for a given packet size L up to hop i consists of

only two parts, the propagation delay and the serialization latency, which can be repre-

sented as [92]:

Ti(L) = α +
i
∑

k=1

L

Ck
= α + βiL (3.9)

where Ck is the capacity of kth hop, α is the propagation delay up to hop i, and βi is the

slope of the minimum RTT up to hop i against packets size L, given by:

βi =
i
∑

k=1

1

Ck
(3.10)

Therefore, by computing the serialization latency at each hop using Equation 3.9, the

capacity of each hop i can be estimated as:

Ci =
1

βi − βi−1
(3.11)

The required RTTs for different packet sizes can be measured by sending ICMP mes-

sages to the network. VPS sends out ICMP messages with the Time-To-Live (TTL) field

of IP header set to force the packets to expire at a particular hop. The router at that hop

will discard the expired packet and return a Time Exceeded ICMP messages to the sender,

which can be used to measure the RTT to a particular hop.

The VPS model has some advantages compared to other related bandwidth estimation

techniques. First, VPS is able to measure the network capacity in an uncooperative en-

46



3.2. BANDWIDTH ESTIMATION

vironment, meaning it does not need special software on both the source and destination.

Additionally, the VPS technique can measure the entire network path at each hop along

the path. Finally, because VPS sends a large number of probing packets and records the

minimum traversal times, it can mitigate the effects caused by crossing traffic [101].

However, the VPS model has several important limitations. First, most of VPS tools

rely on a functional ICMP implementation at each router along the measured network

path. Second, this technique measures bandwidth in a single direction, from the local host

to the remote endhost. Moreover, the large number of probing packets generated by the

tools adds considerable stress and interference to the network path which implies that the

tools might be unscalable, slow and inflexible to bandwidth changes [101]. Finally, recent

research [102] shows that the VPS tools may yield significant capacity underestimation

errors if the measured path includes store-and-forward layer-2 switches.

Packets Dispersion

Packet dispersion techniques, such as packet pair or packet train probing, measure the

end-to-end capacity of a network path. The packet pair dispersion techniques were first

introduced in [103, 104, 105]. Subsequently research and tools, such as bprobe/cprobe [106],

nettimer [107, 108], sprobe [101] and pathrate [109, 110] improved the packet pair/train

dispersion techniques in several ways.

Packet pair dispersion sends two packets with the same size back-to-back into the

network. After the packets traverse the narrow link, the time dispersion between the two

packets is linearly related to the narrow link capacity. Packet train dispersion probing

extends packet pair probing by using multiple back-to-back probing packets, however, the

concepts are similar to that with of single pair.

Figure 3.2 [92] illustrates the basic concept of packet dispersion. The most important

assumption of packet dispersion techniques is that there is not crossing traffic during the

packet pair probing. When packets of size L with initial dispersion ∆in go through the

link of capacity Ci, the dispersion after the link ∆out becomes [92]:
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Figure 3.2: Packets Dispersion

∆out = max(∆in,
L

Ci
) (3.12)

After packets go through each link along an H hop end-to-end path, the final dispersion

∆R at the receiver is:

∆R = max
i=1,...,H

(
L

Ci
) =

L

mini=1,...,H Ci
=

L

C
(3.13)

where C is the end-to-end capacity. Therefore, the end-to-end path capacity can be esti-

mated from C = L/∆R.

Compared to other bandwidth estimation techniques, packet dispersion techniques usu-

ally have a faster measurement time, and induce less stress on the network path. However,

the effects caused by crossing traffic may significantly degrade the accuracy of the link

capacity measurement [92]. Several statistical filtering methodologies are proposed to mit-

igate the effects caused by crossing traffic. For instance, [109] analyzes the local modes of

the packet pair dispersion distribution and uses a lower bound of the path capacity mea-

sured with long packet trains. [106, 111] proposed methods to detect the local modes in

the packet pair bandwidth distribution. [112] uses delay variations instead of packet pair

dispersion, and peak detection rather than local mode detection. Another disadvantage of

packet dispersion techniques is that it requires the tool to be executed on both end-hosts

of the network path, which makes it hard to apply to uncooperative environments.
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Packet dispersion techniques have been used in some commercial applications. For

instance, as discussed in Section 2.1, Windows Media Service uses a packet train probing

of three packets to estimate the end-to-end capacity before beginning the streaming from

server to client.

Self-loading Probe

Self-loading techniques, including the Self-loading Periodic Streams (SLoPS) [113] and

Train of Packet Pairs (TOPP) [114, 115], measure the available bandwidth of the end-

to-end network path. Self-loading techniques are also known as self-induced congestion

from the definition in [116]. There are several tools that implement a variety of self-

Loading techniques, such as pathload [113], Packet Transmission Rate (PTR) [117] and

pathChirp [116]. In addition, some methodologies, such as Bfind [118] Cartouche [119] and

Pathneck [120], use similar self-loading probe techniques together with hop by hop delay

measurements to locate the bottleneck in an end-to-end network path.

Self-loading techniques probe the end-to-end network path using multiple rate traf-

fic. When the probing rate exceeds the available bandwidth, the probing packets become

queued at the tight link router, which results in an increased delay on the receiver side.

On the other hand, if the probing rate is lower than available bandwidth at the tight

link, the probing packets will go through the tight link without causing an increased de-

lay. By analyzing the packet delay at the receiver, the available bandwidth at the tight

link can be obtained at the turning point probing rate, at which the queuing delay starts

increasing. The changing of the probing rate can be managed in different ways. For ex-

ample, SLoPS [113] uses a binary search to adjust the probing rate, TOPP [114, 115] and

Bfind [118] use a linearly increased probing rate, while pathchirp [116] uses a exponentially

increased probing rate.

The self-loading technique assumes FIFO queuing at all routers along the path. Also it

assumes that the average rate of cross traffic changes slowly and is constant for the duration

of the measurement [121]. However, most of the self-loading tools can detect a change in
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the available bandwidth during the measurement by reporting a grey region [113].

The self-loading technique may stress the network path due to self-induced congestion.

Furthermore, depending on the implementation, the probing may take a long time to detect

the available bandwidth.

Probe Gap Model (PGM)

The Probe Gap Model (PGM) uses a concept similar to packet dispersion probing. How-

ever, PGM measures the available bandwidth by estimating the cross traffic at the tight

link. Examples that uses PGM techniques includes delphi [122], Initial Gap Increase

(IGI) [117], Spruce [121] and the methods proposed in [123].

Figure 3.3: Probe Gap Model

PGM assumes a single bottleneck which is both the narrow and tight link for that

path and that the queue is not empty between the two packets in a probing packet pair.

Thus, as shown in Figure 3.3 [121], a probing pair is sent with a initial time gap time ∆in,

and reaches the receiver with a receiving time gap ∆out. ∆out is the time taken by the

bottleneck to transmit the second probing packet in the pair and the crossing traffic that

arrived during ∆in. Therefore, the time spend on transmitting the crossing traffic at the

bottleneck is ∆out − ∆in. If the bottleneck capacity C is known, the rate of the crossing

traffic Rc can be presented as [121]:

Rc =
∆out − ∆in

∆in
× C (3.14)
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and the available bandwidth A can be computed as:

A = C × (1 −
∆out − ∆in

∆in
) (3.15)

Compared with the available bandwidth estimation using a self-loading probe, PGM

usually has a fast measurement time and lower stress on the end-to-end network. PGM

assumes that the narrow link capacity is known and constant. However, this may not

be true in special cases such as in wireless networks. Therefore, the unknown-capacity

problem limits the usage of PGM in a uncooperative environment.

BTC and Achievable Bandwidth Estimation Techniques

Several other bandwidth estimation tools are proposed to measure Bulk Transport Capacity

(BTC) and achievable throughput. For instance, Treno [124] uses UDP or ICMP packets to

emulate TCP traffic to get end-to-end delay information. Thus, the BTC of the end-to-end

path can be estimated by applying flow control and congestion control algorithms that are

similar to TCP. Cap [125] is another BTC measurement tool that uses UDP to emulate

both TCP and ACK packets to measure the BTC of an end-to-end network path.

Other benchmarking tools, such as TTCP 1, Netperf 2 and Iperf 3 are also used to

estimate TCP achievable throughput. These tools usually use large TCP transfers and/or

parallel TCP connections, and therefore can cause stress on the network under test.

Passive Wireless Characterization Estimation

As discussed in Section 2.2, the MAC layer retransmission and rate adaptation make it

much more difficult to estimate bandwidth over wireless networks. However, recent re-

search [126] proposes a passive measurement methodology to estimate the link characteris-

tics based on wireless link quality and contention status of the IEEE 802.11 network. More-

over, [127] presents a similar approach to estimate per-neighbor available bandwidth. It

1http://www.pcausa.com/Utilities/pcattcp.htm
2http://www.netperf.org/netperf/NetperfPage.html
3http://dast.nlanr.net/Projects/Iperf/
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measures running average transmission and decay of successfully transmitted MAC frames,

then calculates the throughput normalized to a pre-defined packet size. By normalizing

the estimated available bandwidth, the author solves the problem of wireless throughput

of a packet depending on the size of the packet. In addition, two case studies, the ad hoc

network admission control and a rate based flow control, are presented as the applications

of the bandwidth estimation techniques.

However, without sending probing packets to the network, the estimation is limited to

the local wireless network only. In addition, the estimation is usually implemented in the

MAC layer, which does not include higher layer information, such as congestion in the IP

layer. Therefore this approach can not be used to guide the application unless combined

with other bandwidth estimations techniques.

Taxonomy of Bandwidth Estimation Tools

Based on the taxonomy in the survey [92] and the reviews in this section, Table 3.1 summa-

rizes most of the currently published bandwidth measurement tools, along with the target

bandwidth metrics and the basic technology. Additionally, a mostly up-to-date taxonomy

is also available at CAIDA’s webpage 4.

3.2.3 Evaluation of Bandwidth Estimation Techniques

Evaluation of bandwidth estimation techniques is not easy because of the mixture of mea-

surement metrics and mixture of techniques based on a variety of assumptions. Therefore,

only those techniques with similar measurement target metrics can be compared and eval-

uated side by side.

Some general evaluation criteria may include:

• Accuracy. How close does the measurement result compare to the real network con-

dition?

• Convergence time. How long does it take to get meaningful results?

4http://www.caida.org/tools/taxonomy/
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Table 3.1: Taxonomy of Published Bandwidth Estimation Tools

Tool Measurement metrics Methodology

pathchar [97] Per-hop Capacity Variable Packet Size
clink [98] Per-hop Capacity Variable Packet Size
pchar [99] Per-hop Capacity Variable Packet Size

bprobe [106] End-to-end Capacity Packet Dispersion
nettimer [108] End-to-end Capacity Packet Dispersion
pathrate [110] End-to-end Capacity Packet Dispersion
sprobe [101] End-to-end Capacity Packet Dispersion

cprobe [106] End-to-end Available Bandwidth Packet Dispersion
TOPP [115] End-to-end Available Bandwidth Self-loading Probe
PTR [117] End-to-end Available Bandwidth Self-loading Probe
pathload [113] End-to-end Available Bandwidth Self-loading Probe
pathChirp [116] End-to-end Available Bandwidth Self-loading Probe
delphi [122] End-to-end Available Bandwidth Probe Gap Model
IGI [117] End-to-end Available Bandwidth Probe Gap Model
Spruce [121] End-to-end Available Bandwidth Probe Gap Model

BFind [118] Bottleneck Locatora Self-loading Probe
Pathneck [120] Bottleneck Locator Self-loading Probe
Cartouche [119] Bottleneck Locator Self-loading Probe

Treno [124] Bulk Transfer Capacity Emulated TCP Throughput
cap [125] Bulk Transfer Capacity Emulated TCP Throughput

Ttcp Achievable TCP Throughput TCP Connection
Iperf Achievable TCP Throughput Parallel TCP Connections
Netperf Achievable TCP Throughput Parallel TCP Connections

aBottleneck Locator combines the Available Bandwidth estimation with ICMP like hop by hop
measurement to allocate the bottleneck in the end-to-end network path.

• Intrusiveness. How much probing traffic is sent into the network and will this traffic

stress the network? The intrusiveness should consider not only the amount but also

the burstiness of the probing traffic.

• Robustness. Is the tool robust enough to achieve an accuracy result in complex

network environments, such as multiple bottlenecks or wireless networks?

• Usability. Does the tool need to be installed on both ends of the network path or

need support by intermediate routes?
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There are a number of evaluation and comparison studies for most of the popular

bandwidth estimation tools. For instance, in [121], Spruce, IGI and Pathload are evalu-

ated from the aspects of accuracy, failure patterns, probe overhead, and implementation

issues by measurement in 400 different Internet-wide paths. The measurement results show

that first, Spruce is more accurate than Pathload and IGI; almost 70% of Spruce’s mea-

surements had a relative error smaller than 30%. Second, Pathload tends to overestimate

the available bandwidth whereas IGI becomes insensitive when the bottleneck utilization

is large. Finally, Pathload generated between 2.5 and 10 MBytes of probing traffic per

measurement while the average per-measurement probing traffic generated by IGI is 130

KB and that generated by Spruce is 300 KB.

Hu et al. [117] compare IGI, PTR with Pathload for both accuracy and convergence

time using 13 network paths with different capacities and RTTs. The results show that

those three methodologies provide fairly similar accuracy. However, the IGI/PTR method

is on average more than 20 times faster than Pathload for their setup.

Easwaran et al. [128] compares Pathload, IGI and pathChirp in terms of their accuracy,

intrusiveness and overhead in a network simulation environment. A 2k factorial design is

used to analyze the importance of the packet size, number of trains, number of packets

per train and frequency of runs in these performance metrics. The results show that all

three tools perform very well in terms of accuracy when only UDP cross traffic is present.

However, pathChirp performs poorly in the scenario where only one TCP flow is present. In

addition, the authors also found that IGI has the best (smallest) convergence time followed

by pathChirp and Pathload.

A general summary of the currently available bandwidth estimation techniques is listed

in Table 3.2. The accuracy, convergence time and intrusiveness are compared across the

major active bandwidth estimation techniques and the passive wireless characterization

technique. The comparison is not based on precise measurement; instead, it is only based

on the general review of the techniques in each category. For instance, the VPS technique

of sending multiple variable size packets into the network, is considered as a “High” in-
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trusiveness approach. VPS takes a relatively long time to decide the per-hop capacity,

which results in a “Slow” convergence time. In addition, the result is expected to be im-

pacted by the Layer 2 equipment, as well as by cross traffic, which results in a “Medium”

accuracy. Similarly, for Probe Gap Model and Packet Dispersion, the estimation can be

done by only a few packets and in a short time period, thus both have “Low” intrusiveness

and “Fast” convergence time. However, the Packet Dispersion technique is more sensi-

tive to the crossing traffic, therefore it has a “Medium” accuracy, while Probe Gap Model

has a “High” accuracy. For Self-loading Probe techniques, depending on the convergence

methodologies, which could be linear, exponential or binary search, it could have variable

intrusiveness. However, the searching nature of self-loading techniques results in “Slow”

convergence time in general. Finally, the “Remark” column lists the additional applicable

characterizations of each technique. Thus, even without precise measurement, the table

can still be used by applications as a basic guideline for selecting an appropriate bandwidth

estimation technique.

Table 3.2: Summary of Bandwidth Estimation Tools

Methodology Measurement Accuracy Converge Intru- Remark
Metrics siveness

Variable Packet Size Per-hop Capacity Medium Slow High Uses ICMP
[97, 98, 99]
Packet Dispersion End-to-end Medium Fast Low
[101, 106, 108, 110] Capacity
Self-loading Probe End-to-end High Slow Varies
[113, 115, 116, 117] Available Bandwidth
Probe Gap Model End-to-end High Fast Low Need to
[117, 121, 122] Available Bandwidth know capacity
Emulated TCP Bulk Transfer Medium Fast Low Only for TCP
[124, 125] Capacity
TCP Connection(s) Achievable TCP High Slow High Only for TCP

Throughput
Passive Wireless Wireless Available Medium Fast None Passive
[126, 127] Bandwidth Wireless only

However, as discussed in [129], evaluation of the effectiveness of these techniques should

consider the actual accuracy and latency constraints of real applications. Different classes
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of applications may focus on different criteria. For instance, our research is focused on

the bandwidth estimation techniques used for streaming media applications over wireless

networks, which may not require high accuracy, but instead, need a fast convergence time.

The evaluation criteria used in our research is described in Chapter 5 in detail.

3.3 Wireless Network Performance Study

Wireless network performance research can be done in number of ways, such as using an-

alytical models, simulations, emulations and measurements. This thesis focuses on the

performance improvement of streaming applications over wireless networks by using band-

width estimation techniques. The performance study methodologies used in this disserta-

tion include the modeling of bandwidth estimation over wireless networks and performance

evaluation by simulation and measurement in wireless networks. This section reviews the

related work of wireless network performance studies that are referred to or used in this

thesis.

3.3.1 Analytical Modeling

Modeling of wireless network performance can provide a low cost, fast way to analyze

wireless conditions with varied configurations. However, as discussed in Section 2.2, the

wireless network performance is affected by many factors, such as the signal attenuation,

fading, interference, bit errors and contention. Accurate modeling of wireless network

performance in a complex configuration is still a challenge. Most of the modeling research

has focused on throughput and delay based on different assumptions.

The research in [130] uses Markov chain models to analyze DCF operation and calcu-

lates the saturated throughput of the 802.11 protocol. The model assumes an idealistic

channel condition of collision-only errors and unlimited packet retransmissions, such that a

lost packet is retransmitted until its successful reception. In addition, the model assumes a

fixed number of stations in the network, and the network operates in saturation conditions,

i.e. the transmission queue in each station is assumed to be always nonempty.
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Based on the derivation from the Markov chain model, the probability τ that a station

transmits in a randomly chosen time slot can be presented as:

τ =
2(1 − 2p)

(1 − 2p)(W + 1) + pW (1 − (2p)m)
(3.16)

where W is the initial contention window size, m is the maximum number of backoff stages,

and p is conditional collision probability:

p = 1 − (1 − τ)n−1 (3.17)

where n is the number of stations in the network.

The author proves that there is a unique solution for τ and p from the nonlinear system

presented by Equation 3.16 and 3.17. Therefore, τ and p can be obtained by numerical

techniques.

The throughput S is modeled by

S =
E[payload transmitted in a slot time]

E[length of a slot time]

=
PsPtrE[P ]

(1 − Ptr)σ + PtrPsTs + Ptr(1 − Ps)Tc
(3.18)

where Ptr is the probability that there is at least one transmission in the time slot:

Ptr = 1 − (1 − τ)n (3.19)

Ps is the probability that a transmission occurring on the channel is successful:

Ps =
nτ(1 − τ)n−1

Ptr
=

nτ(1 − τ)n−1

1 − (1 − τ)n
(3.20)

The average length of a slot time is given by:
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E[length of a slot time] = (1 − Ptr)σ + PtrPsTs + Ptr(1 − Ps)Tc (3.21)

where Ts is the average time the channel is sensed busy because of a successful transmission

and Tc is the average time the channel is sensed busy by each station during a collision.

Equations 3.22, 3.23 and Equations 3.24, 3.25 give the value for T bas
s , T bas

c and T rts
s , T rts

c ,

which are Ts and Tc of the basic access case and RTS/CTS access mechanism, respectively:

T bas
s = H + E{P} + sifs + δ + ack + difs + δ (3.22)

T bas
c = H + E{P} + difs + δ (3.23)

T rts
s = rts + sifs + δ + cts + sifs + δ + H + E{P}

+sifs + δ + ack + difs + δ (3.24)

T rts
c = rts + difs + δ (3.25)

where rts, cts, ack, H and E{P} are the transmission times of RTS, CTS, ACK, packet

header (physical layer plus MAC layer) and data packets, respectively, and E{P} = P

for a fixed packet size. δ is the propagation delay. sifs (Short Interframe Space), difs

(Distributed Interframe Space) and other specific values for DSSS and FHSS are listed in

Table 3.3.

Recent research, such as in [54, 131, 132, 133, 134], extend the analytical model in [130]

in a number of ways. For instance, Wu [131] extends the analysis to include the finite

packet retry limits as defined in the IEEE 802.11 standard. Research in [54] also shows

that the average delay (the service time) of a single hop ad hoc network at saturation can

be modeled based on the Markov chain model used in [130]. Chatzimisios [132] calculates

the packet delay without considering any packet dropping due to retry limits. In their
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Table 3.3: IEEE 802.11 Physical Layer Parameters

DSSS FHSS

Wmin 32 16

Wmax 1024 1024

MAC header 34 bytes 34 bytes

Phy header 24 bytes 16 bytes

ACK 38 bytes 30 bytes

CTS 38 bytes 30 bytes

RTS 44 bytes 36 bytes

Slot time 20 µsec 50 µsec

SIFS 10 µsec 28 µsec

DIFS 50 µsec 128 µsec

follow-on research [133], which uses a performance model of 802.11 DCF by means of the

Markov chain model similar to the one from [131], the authors consider the effect of retry

limits and calculates the packet delay, the packet drop probability and the packet drop

time. Their successive research in [134] further extends the existing model to include the

effect of transmission errors.

As modeled in [133], the average packet delay E[D] of a packet that is not discarded,

is given by:

E[D] = E[X] × E[length of a slot time] (3.26)

where E[X] is the average number of slot times required to successfully transmit a packet

and is given by:

E[X] =
m
∑

i=0

[
(pi − pm+1)Wi+1

2

1 − pm+1
] (3.27)

where (1−pm+1) is the probability that the packet is not dropped and (pi−pm+1)/(1−pm+1)

is the probability that a packet that is not dropped at stage i.

In addition, the research from Cal̀ı [135, 136, 137] models the theoretical IEEE 802.11

network capacity and by designing a new dynamic backoff algorithm, the authors im-
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proved the network throughput close to the theoretical throughput limit. Similarly, the

research [138, 139, 140] focuses on the modeling of the theoretical maximum throughput of

IEEE 802.11 networks with different physical layer modulation techniques and therefore,

different data rates.

3.3.2 Network Simulations

Network Simulation had been widely used in wireless network performance studies and

for validations of performance modeling. For instance, Bianchi [130] uses a customized

simulation program developed in C++. Chatzimisios [134] uses commercially available

simulation suites OPNET5 and Carvalho [54] used NS26 to validate their analytical models.

The other popular wireless network simulators include Parsec/GloMoSim7, and QualNet8,

which is the commercial version of the Parsec simulator.

Among this set of simulators, NS2 is the most widely used open source network sim-

ulator. In addition to the basic IEEE 802.11 MAC and physical layer implementation in

NS2 [141], there are number of extended modules publicly available. For instance, the

Dynamic Rate Adaptation with Ricean fading modules, and GPRS module are reviewed

in this section.

Rate Adaptation Simulation

The Auto Rate Fallback (ARF) protocol [56] was the first commercial implementation of a

MAC that utilizes the rate adaptation feature. With ARF, senders attempt to use higher

transmission rates after consecutive transmission successes (which indicate high channel

quality) and revert to lower rates after failures. Under most channel conditions, ARF

provides a performance gain over pure single rate IEEE 802.11.

In [20], a protocol termed Receiver Based Auto Rate (RBAR) is proposed. The core

idea of RBAR is for receivers to measure the channel quality using physical layer analysis

5http://www.opnet.com/
6http://www.isi.edu/nsnam/ns/
7http://pcl.cs.ucla.edu/projects/glomosim/
8http://www.scalable-networks.com/products/
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of the RTS message. Receivers then set the transmission rate for each packet according to

the highest feasible value allowed by the channel conditions and send the rate information

via the CTS packet back to the sender. Moreover, as the RTS/CTS messages are sent

at the base rate so that all nodes can overhear them, overhearing nodes are informed of

the modified data transmission times so that they can set their backoff timers accordingly.

However, the RBAR is only available in RTS/CTS access mode but not for the basic access

mode because the mandatory request of RTS/CTS exchanges. Similar research from [142]

also uses signal strength measurement. However, it only uses the sender’s received signal

strength, and therefore does not request the RTS/CTS access mode.

The Opportunistic Auto Rate (OAR) protocol [143] is presented to better exploit du-

rations of high-quality channels conditions. The key mechanism of the OAR protocol is to

opportunistically send multiple back-to-back data packets whenever the channel quality is

good.

However, these solutions of multi-rate adaptation modules are not always publicly avail-

able in NS2. One of the available versions of multi-rate simulation of OAR and RBAR is

provided by [143] in NS2 2.1b7, which can be downloaded from the Rice Networks Group

webpage. 9 Our recent research [144] re-implements the algorithm in NS 2.27 and ex-

tends the physical layer parameters with the specification of the Lucent OriNOCO wireless

PC card10. Section 4.2 discusses the RBAR module for NS 2.27 in detail and uses it to

demonstrate the issues of using packet dispersion techniques in wireless networks.

3.3.3 Performance Measurements

Modeling and simulation of the wireless network performance usually provides analysis

in controlled environments. However, the wireless network’s uncertainties make it diffi-

cult to achieve accurate models. Thus, wireless measurement and physical emulations are

important methods in conjunction with performance models.

Wireless measurements can be performed either on the Access Point (AP), mobile

9http://www-ece.rice.edu/networks/
10http://www.agere.com/client/wlan.html
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host, or by a special designed network monitoring/sniffing system. For instance, the re-

search in [145] characterizes user behavior and wireless network performance in a public

IEEE 802.11 network at a conference by collecting Simple Network Management Proto-

col (SNMP) traces from the APs. Similarly, research in [146, 147, 148] analyzes either

metropolitan area or campus wide wireless networks by collecting AP system log and

SNMP information. In addition, Ho et al. [149] present VISUM, a scalable framework for

wireless network monitoring based on similar methodology. VISUM relies on a distributed

set of agents within the network to monitor network devices and therefore supports a much

larger scale of networks.

Wireless measurement can be applied to the mobile host. Wireless Research API

(WRAPI) [150] is a software library that allows applications running in user-space on

mobile hosts (and APs) to query/set information in the IEEE 802.11 network. WRAPI

provides an interface for applications to monitor the WLAN in real time by interacting

with Network Driver Interface Specification (NDIS) stack of Windows XP. Since WRAPI

does not make direct contact with the hardware driver, it is hardware independent and

supports all 802.11b and g compliant hardware in Windows XP systems. However, WRAPI

can not provide detailed information, such as packet level statistical information and does

not work in promiscuous mode, which limits its capability as a network monitoring tool.

Recent research [8] uses WRAPI to capture the WLAN performance information, including

wireless layer Received Signal Strength Indicator (RSSI), MAC layer retry count, multiple

retry count, ACK failure count, and duplicated frame count.

To get MAC level frame information of a wireless network, a wireless sniffing system

is usually used. A wireless sniffer can be installed on a measured host, but in most cases,

it is installed on an independent device, such as a mobile computer or a PDA system.

Therefore the sniffer can monitor the wireless network in promiscuous mode without in-

terfering with the stations under measurement. Wireless sniffers can capture not only the

data frames, but also management frames, such as beacon frames, and RTS/CTS/ACK

frames. However, the wireless sniffer requires special hardware and driver support. The
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most popular wireless sniffer and analyzer software includes Ethereal11, Kismet12 and some

commercially available wireless sniffers such as Sniffer Wireless (Used to be Network As-

sociates Sniffer)13, AiroPeek NX14, etc. Wireless sniffers have been widely used in wireless

performance research, such as the independent sniffer used in the measurement of stream-

ing media over wireless research [6, 9], and the on host software sniffer used in the link

level measurement research for a wireless roof network [151]. Moreover, in the network

monitor research in [152], a complete wireless sniffer system is implemented and used to

characterize a typical computer science department WLAN traffic.

However, wireless measurement is usually performed under an uncontrolled environ-

ment with random errors and fading effects, the results are usually difficult to accurately

reproduce. Therefore, a wireless channel emulator is usually used to create controlled and

repeatable channel conditions. The commercial channel emulators, such as PROPSim15

and Spirent16, are designed to support fine-grained emulation of the wireless channel be-

tween either a pair of devices or between a small number of base stations. Judd et al. [153]

present a similar physical channel emulation by using the Digital Signal Processing (DSP)

engine to model the effects of signal propagation (e.g. large-scale attenuation and small-

scale fading) on each signal path between wireless interfaces. The approach is used by [151]

to emulate the multipath fading in a 802.11 wireless network.

In this thesis, we create an IEEE 802.11b/g wireless testbed17 to validate out models

and evaluate the algorithms. By controlling the wireless AP and client’s configuration and

applying variable traffic loads, we perform measurements under multiple wireless network

conditions. Addition, we use an independent wireless sniffer to validate the configurations

in our wireless testbed. Chapter 5 and 6 describe the testbed in detail.

11Renamed to Wireshark, online at http://www.wireshark.org/
12http://www.kismetwireless.net/index.shtml
13http://www.sniffer.com
14http://www.wildpackets.com/elements/AiroPeek NX.pdf
15http://www.propsim.net/
16http://www.spirentcommunications.com/
17http://perform.wpi.edu/wsml/
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Chapter 4

Packet Dispersion in IEEE 802.11

Wireless Networks

This chapter presents the in-depth study of packet dispersion techniques in IEEE 802.11

wireless networks. Combining an analytical model of packet dispersion, simulations and

measurement studies in wireless networks, two packet dispersion measurements, effective

capacity and achievable throughput are introduced. Section 4.1 gives a brief overview of

packet dispersion in wireless networks. Section 4.2 introduces rate adaptation and fading

extensions to NS-2 simulations and discusses the issues of bandwidth estimation in wire-

less networks by using the simulations. Section 4.3 provides a packet dispersion model

for IEEE 802.11 networks and the model validation using simulations and measurements.

Section 4.4 uses the model to analyze packet dispersion and defines the terminologies of

effective capacity and achievable throughput in wireless networks. Finally, Sections 4.5

summarizes the chapter. The model and measurements studied in this chapter are used by

our bandwidth estimation tool in Chapter 5.
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4.1 Overview

The differences in wired and wireless packet dispersion are the major source of wireless

bandwidth estimation errors. Thus, reducing measurement errors and improving perfor-

mance in wireless local area networks (WLANs) requires a better understanding of packet

dispersion in wireless networks.

While many research models have been developed for wireless networks, few consider

WLAN bandwidth estimation. Moreover, current research tends to focus on simplified

conditions such as fixed wireless capacities or error free wireless networks [154] to cre-

ate tractable models. While previous research [90] has demonstrated the impact of IEEE

802.11 packet size and rate adaptation on bandwidth estimation tools, it is difficult to

improve the bandwidth estimation tools without an in-depth model of wireless packet dis-

persion. Therefore, this investigation puts forth both an analytic and a simulation model

for WLANs that includes packet dispersion under conditions such as channel contention,

fading, BER and dynamic rate adaptation. The analytical model captures WLAN packet

dispersion behavior to study the impact of such channel conditions and wireless configu-

ration parameters such as packet sizes, link rate and RTS/CTS on the mean and variance

of bandwidth estimation results. Using the packet dispersion model, two wireless packet

dispersion measures, effective capacity and achievable throughput are introduced. This

chapter also shows that in a saturated WLAN a fluid flow model is not applicable because

of the probability-based fairness for channel access across WLAN nodes. The packet dis-

persion model is validated using network measurements in a wireless 802.11b testbed and

an NS-2 simulator modified to include dynamic rate adaptation in the face of challenging

environmental conditions. Armed with analytic models, simulation tools and network mea-

surements, this chapter provides a preliminary study of bandwidth estimation techniques

based on a WLAN using packet dispersion and provides insight into possible improvements

to WLAN bandwidth estimation techniques.
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4.2 Packet Dispersion Issues in Wireless Networks

4.2.1 Rate Adaptation Simulation

We use NS-2 simulations to illustrate the issues of packet dispersion techniques in wireless

networks. However, while NS-21 provides IEEE 802.11 components such as CSMA/CA,

MAC layer retries, contention, propagation and error models, it lacks a rate control algo-

rithm (RCA). Since the 802.11 standard [11] does not specify a specific RCA, each WLAN

card manufacturer is free to implement their own RCA. RCAs adjust link rates based on

the signal strength or by reacting to accumulated statistics, such as number of retries,

packet error rate or throughput [55, 155]. Auto Rate Fallback (ARF) [56], the first com-

mercial RCA implementation, raises the data rate after consecutive transmission successes

and lowers the date rate after link layer transmission failures. Under most wired channel

conditions, ARF outperforms fixed-rate 802.11, but when transmission failures are caused

by wireless link layer congestion, ARF can have a negative impact [156].

Receiver Based Auto Rate (RBAR) [20] uses RTS frame analysis to measure channel

quality. An RBAR receiver determines the highest feasible frame transmission rate that

channel conditions can tolerate and notifies the sender of the chosen rate via a CTS frame.

Since RTS/CTS messages are sent to the AP, all wireless nodes become aware of the new

transmission rate and set their backoff timers accordingly. However, RBAR is not available

in basic mode where RTS/CTS is disabled.

Starting with an RBAR simulation module provided by [143] for NS-2 2.1b7,2 RBAR

was re-implemented in NS 2.27. We extended the physical layer parameters using the spec-

ifications of the Lucent OriNOCO wireless PC card.3 Our documented RBAR implemen-

tation is available online.4 Figure 4.1 provides NS-2 throughput results versus separation

distance for two simulated wireless nodes moving away from each other. Average through-

put is measured using 1000-byte packets for a single CBR flow with RTS/CTS enabled.

1The Network Simulator - NS-2. Online at http://www.isi.edu/nsnam/ns/
2Downloadable from http://www-ece.rice.edu/networks/.
3http://www.agere.com/client/wlan.html
4http://perform.wpi.edu/downloads/#rbar
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The fixed-rate approaches (1, 2, 5.5 and 11 Mbps) have a relatively fixed throughput as

the distance increases until the link is dropped when the nodes move out of transmis-

sion range. RBAR (labeled “Multiple Rate”) dynamically adjusts the rate downward as

distance increase.

To more accurately simulate physical condition effects on RCAs, an additional NS-2

extension modeled Ricean (or Rayleigh) fading [157] was implemented and imported into

NS 2.27. Figure 4.2 shows simulated effects of Ricean fading for two wireless nodes 390

meters apart where, with fading turned off, RBAR would fix the data rate at 11 Mbps.

The figure tracks RBAR dynamically adjusting the rate between 11, 5.5, 2 and 1 Mbps in

response to fading strength variability as a function of time.

4.2.2 The Impact of Wireless Networks

This section discusses wireless physical layer and MAC layer issues that may cause band-

width estimation techniques to perform poorly.

Most wireless MAC layers use frame retries or Forward Error Correction (FEC) to

recover lost frames. IEEE 802.11 networks retransmit up to a fixed number of times with

exponential backoff between retransmissions. While frame retries reduce packet loss, frame

retries increase the variance in packet delay that yields packet dispersion inconsistencies

and large variations in time measurements. Namely, dispersion between packet pairs can

be compressed or expanded when traversing a wireless AP even without congestion in the

network or without changes in the link capacity.

Figure 4.3 depicts a typical network topology for studying packet dispersion in a WLAN.

To characterize the effects of wireless traffic on packet dispersion, the wireless network traf-

fic is divided into probing, crossing and contending traffic. Probing traffic is the packet pairs

or trains sent along the estimated network path through the AP to the client (1). Wireless

channel conditions and other traffic may vary the probing traffic dispersion behavior and

produce estimation errors.

While crossing traffic does not contend with probe packets, crossing traffic does share
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Figure 4.3: Probing, Crossing and Contending Traffic in a WLAN

the bottleneck and thereby strongly impacts the accuracy of bandwidth estimates on the

WLAN. Figure 4.3 shows crossing traffic coming from the AP to associated clients (2). After

subtracting contending effects from other wireless traffic, wireless crossing traffic shares

the bandwidth with the probing traffic. However, even though statistically contending

effects caused by crossing traffic indirectly impact bandwidth estimates, this impact can be

captured by packet dispersion techniques. Since several statistical filtering methodologies

have been proposed to mitigate the effects of cross traffic [106, 110], crossing traffic effects

in WLANs are not considered further in this chapter.

Contending traffic accesses the shared wireless channel and competes with probe packets

on the estimated path. Figure 4.3 shows contending traffic sent by clients to the same AP

(3) and between other clients and APs (4) within interference range (referred to as co-

channel interference). To avoid channel capture, which is a channel being monopolized

by a single node, or subset of nodes in a given geographic region, 802.11 uses random

backoff between two successive frames sent from the same node. When packet pairs arrive

back-to-back at the AP, the AP delays the second packet by inserting a random backoff

time between the packets. Thus, bandwidth estimates using packet dispersion on 802.11

networks are vulnerable to contending traffic that transmits during the delay between the

two packets and further delays the second packet in the pair.
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Dynamic rate adaptation impedes bandwidth estimation methods because these tech-

niques assume a fixed capacity during the measurement. Figure 4.2 shows WLAN capac-

ity varying frequently under bad channel conditions. Hence, wireless bandwidth estima-

tion changes with the same granularity. Figure 4.4 uses NS-2 wireless simulations with

RTS/CTS enabled to illustrate the impact of network conditions on packet pair estimation

techniques. Each simulation sends continuous packet pairs downstream over a single hop

wireless 802.11b network. Both the packet pair and the contending traffic send 1000-byte

packets. In all cases, contention is simulated as a 1 Mbps upstream CBR flow. For the

ideal channel, simulation errors and fading are disabled. In the fading channel, Ricean

propagation from Section 4.2.1 is used. For the BER channel, a uniform bit error rate of

5.0× 10−4 is used. Each CDF curve represents estimates from 1000 packet pairs sent over

the wireless network.
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In Figure 4.4, the estimated bandwidth of the ideal channel is uniformly distributed

over the range of 3.1 Mbps to 4.1 Mbps due to the random backoff between two successive

packets. The multiple mode distribution in the fading channel case is due to dynamic

rate adaptation. The strong offset on the capacity estimation at about 1.8 Mbps for
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the contending channel is due to delay induced by contending packets. The estimated

bandwidth results with bit errors yield a continuous cumulative distribution function (CDF)

under the 1.8 Mbps range due to frame retries and exponential backoff delay between

consecutive retransmissions. However, the step trend between 1.8 Mbps and 3.1 Mbps is

similar to the distribution of the contending channel. The ‘Ideal CBR’ and ‘Fading CBR’

vertical lines represent average CBR throughputs which approximate average capacity in

the ideal and fading channel cases, respectively. Compared to the CBR throughputs, the

packet pair estimates are spread over a wide range. This clearly shows the packet dispersion

technique is significantly impacted by wireless channel conditions.

4.3 Wireless Network Packet Dispersion Model

This section develops an analytical model based on existing IEEE 802.11 wireless network

models to explore the relationship between packet dispersion and WLAN conditions.

Capturing packet transmission delay is key to modeling bandwidth estimation tech-

niques that use packet pair (or train) dispersion. The bottleneck (both the narrow and the

tight link) on the end-to-end network path is assumed to be the last hop WLAN. While

not necessarily true for all flows, this assumption decouples wireless behavior from other

issues and simplifies the wireless analysis. To further simplify modeling WLAN packet pair

dispersion, no crossing traffic is assumed.

4.3.1 Packet Dispersion Model

The model characterizes the dispersion T between two packets in a packet pair in terms of

the average, E[T ], and the variance, V [T ], of packet dispersion for a given wireless network

that includes packet size, link rate, BER and access methods. Our packet dispersion model

is built from two Markov chain models: 1) Bianchi [130] uses a Markov model that assumes

an idealistic, collision-free channel with a number of stations to analyze DCF operation.

To simplify the model, frame retransmissions are considered unlimited such that frames

are retransmitted until successful transmission and the 802.11 channel is saturated with
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each station always having a frame to send. 2) Chatzimisios et al [134] extend this model

to include transmission error effects. For a given BER, their model derives the probability

τ that a station transmits in a randomly chosen time slot as:

τ =
2(1 − 2p)(1 − pm+1)

Wmin(1 − (2p)m+1)(1 − p) + (1 − 2p)(1 − pm+1)
(4.1)

where Wmin is the initial contention window size, m is the maximum number of backoff

stages, and p is conditional packet error probability:

p = 1 − (1 − τ)n−1(1 − BER)L+H (4.2)

n is the number of contending stations in the network, L and H are the packet and packet

header sizes (physical layer plus MAC layer) in bits. Since the authors prove there exists a

unique solution for τ and p from the nonlinear system presented by Equation 4.1 and 4.2,

these two probabilities can be obtained by numerical techniques.

Characterizing any given MAC layer time slot as either idle, collision, error, or success-

ful, the average length of the slot time is given by:

E[slot] = (1 − Ptr)σ + PtrPsTs + PtrPcTc + PtrPerTer (4.3)

where Ptr is the probability that there is at least one transmission in the time slot:

Ptr = 1 − (1 − τ)n (4.4)

Ps is the probability that a transmission occurring on the channel is successful:

Ps =
nτ(1 − τ)n−1

1 − (1 − τ)n
(1 − PER) (4.5)

and PER is the packet error rate, computed from the BER as PER = 1− (1−BER)L+H .

The probability Pc of a collision when two or more stations simultaneously transmit is:
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Pc = 1 −
nτ(1 − τ)n−1

1 − (1 − τ)n
(4.6)

and the probability Per that a packet is received in error is:

Per =
nτ(1 − τ)n−1

1 − (1 − τ)n
PER (4.7)

In Equation 4.3, σ is the idle slot time, Ts is the average time the channel is busy because

of a successful transmission, Tc and Ter are the average time the channel is sensed busy by

each station during a collision or packet error, respectively.

Equations 4.8-4.11, defined in [130], define T bas
s , T bas

c , T rts
s , and T rts

c , which are Ts and

Tc for the basic access and RTS/CTS access, respectively:

T bas
s = H + E{L} + sifs + δ + ack + difs + δ (4.8)

T bas
c = H + E{L} + difs + δ (4.9)

T rts
s = rts + sifs + δ + cts + sifs + δ + H

+E{L} + sifs + δ + ack + difs + δ (4.10)

T rts
c = rts + difs + δ (4.11)

rts, cts, ack, H and E{L} are the transmission times of RTS, CTS, ACK, packet header

(physical layer plus MAC layer) and data packets, respectively. E{L} = L for a fixed

packet size. δ is the propagation delay. sifs (Short Interframe Space), difs (Distributed

Interframe Space) and other specific values for DSSS are defined in the IEEE 802.11 Stan-

dard [11]. Since Ter assumes only basic access [134], Ter = Tc = Ts. This is incorrect if

RTS/CTS is enabled.

As modeled in [134], the average packet delay E[D] of a packet that is not discarded,

is given by:
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E[D] = E[X] × E[slot] (4.12)

where E[X] is the average number of slot times required to successfully transmit a packet

and is given by:

E[X] =
m
∑

i=0

[
(pi − pm+1)Wi+1

2

1 − pm+1
] (4.13)

(1 − pm+1) is the probability that the packet is not dropped, (pi − pm+1)/(1 − pm+1) is

the probability that a packet that is not dropped at the stage i, and Wi is the contention

window size at stage i.

From these previous models, we build a new model for wireless packet dispersion. The

dispersion T between two packets in a packet pair is the delay between the arrival times

of the first and second packets. Since the model must include both the delay before the

transmission of the second packet, E[D], and the time to transmit it, Ts, the dispersion is

represented by [54]:

E[T ] = E[D] + Ts (4.14)

where Ts is modeled by Equation 4.8 or Equation 4.10. E[D] is a function of the average

slot time length given in Equation 4.3 and the average number of slot times to transmit a

data packet. Since E[D] depends on n (the number of nodes in the contention domain),

the wireless link rate Cl and average packet size L, we have:

E[D] = d(Cl, L, n) (4.15)

Similarly, to include the impact caused by wireless link rate Cl and the probe packet

size L, Equation 4.8 and Equation 4.10 are modified as:

Ts = ts(Cl, L) (4.16)
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Thus, the packet dispersion estimation Cest can be computed as:

E[Cest] =
L

E[T ]
=

L

d(Cl, L, n) + ts(Cl, L)
(4.17)

Note that while Cest is the average bandwidth estimate from packet dispersions, it does not

equal throughput. Throughput, the average achievable data rate, takes into consideration

the probability of transmitting and the probability of successful transmission.

WLAN contending traffic causes extra delay to the probing packets. For packet dis-

persion techniques, this extra delay can result in an under-estimate of the capacity. The

impact caused by contending traffic is more sensitive to the number of nodes in the network

than the traffic load at the individual nodes. Assuming each WLAN node always has data

to send, E[D] includes the contending traffic based on the number of WLAN nodes.

Wireless channel conditions can be characterized by received signal strength indication

(RSSI), SNR, and BER. However, modeling the effects of such channel conditions on packet

dispersion is left as future work. Instead, our simplified model only uses BER to charac-

terize the channel condition and assumes the other wireless factors impact BER. As the

number of backoffs increases, E[D] increases exponentially until it successfully transmits

or until the retry limit has been exceeded.

The impact of the channel condition on the bandwidth estimation is evaluated by mod-

eling the packet dispersion variance, V [T ]. Assuming the variance is caused by contention

and errors, similar to Equation 4.14:

V [T ] = V {D + Ts} =
m
∑

i=0

(Dk − E[D])
2
Pi

=
m
∑

i=0

[

i
∑

k=0

E[slot](Wk + 1)

2
+ iT∗ − E[D]

]2

Pi

(4.18)

where Pi = (pi − pm+1)/(1 − pm+1), is the probability that a packet is not dropped at
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stage i. Dk is the average delay for k stage backoff given by Dk =
∑i

k=0
E[slot](Wk+1)

2 + iT∗,

where T∗ is the average delay time due to a collision or packet error:

T rts
∗ =

T rts
c P rts

c + T
rts
er P

rts
er

Pc + P
rts
er

(4.19)

T bas
∗ = T bas

c = T bas
er (4.20)

The average delay caused by a packet error for RTS/CTS access method T
rts
er can be

modeled as:

T
rts
er =

T rts
c (P rts

er + P cts
er ) + T rts

s (P data
er + P ack

er )

P
rts
er

(4.21)

and the expected overall probability of a packet error for RTS/CTS access P
rts
er can be

modeled as:

P
rts
er = P rts

er + P cts
er + P data

er + P ack
er (4.22)

where the P rts
er , P cts

er , P data
er , P ack

er are the probabilities that a packet error occurs in RTS,

CTS, DATA and ACK packets, respectively.

Given that the capacity function Cest = L/T is twice differentiable and the mean and

variance of T are finite, the variance of the estimated capacity can be approximated by the

Delta method using second-order Taylor expansions:5

V [Cest] ≈ V [T ]

[

(

L

T

)′
]2

E[T ]

= V [T ]

(

L

E2[T ]

)2

(4.23)

4.3.2 Model Validation

This section provides two distinct sets of validation results for the packet dispersion model.

First, the ideal WLAN channel dispersion model with no contending traffic or bit errors

5http://en.wikipedia.org/wiki/Variance
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is validated via both NS-2 simulations and wireless testbed measurements. Then with

contention and BER included in the models, a large set of simulations with randomized

wireless nodes are used to validate the more complex packet dispersion model. Table 4.1

lists the set of MAC layer parameters used for all instances of the dispersion model and all

the reported simulations.

Parameterization for the packet dispersion model required creating programs based on

the equations in Section 4.3 to obtain the numerical solutions for p and τ since no closed-

form solutions exist. Furthermore, the computation of the times for Ts and Tc was modified

to account for the lower transmission rate of the PLCP header [11].

The ideal WLAN scenario consists of an AP and a single wireless client with both basic

and the RTS/CTS access methods possible. In this case, since E[slot] is simply the slot

time σ and E[D] is the backoff between two successive packets with contention window

size Wmin, the delay model simplifies to:

E[D] =
E[slot](Wmin + 1)

2
=

σ(Wmin + 1)

2
(4.24)

The ideal simulations varies the packet size from 100 to 1500 bytes with the wireless

capacity set to 11 Mbps. The wireless testbed consists of a Windows XP PC sending packet

pairs over a 100 Mbps channel through a Netgear 802.11b AP/router to a Windows XP

laptop wirelessly connected to the AP via a Dell TrueMobile 1300 Mini PCI card. The PC

sends at full capacity, with packet pairs at the specified packet size. The wireless receiver

computes estimations using packet pair dispersion.

Figure 4.6 graphs the bandwidth estimation results from the models, simulations and

measurements for the ideal WLAN scenario. For each packet size in either RTS/CTS or

basic access mode (BAS), the simulation results and the error bar in the figure are the av-

erage and standard deviation from 500 packet pair estimations. The measurement includes

100 packet pair dispersions with the same packet sizes6 and channel rate. For basic access,

6Due to the Ethernet MTU limit, 1460 application layer bytes are used instead of 1500 bytes as the
maximum packet size in the measurement.
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Table 4.1: IEEE 802.11 Physical Layer Parameters (DSSS)

DSSS modulation

Wmin 32

Wmax 1024

MAC header 34 bytes

Phy header 24 bytes

ACK 38 bytes

CTS 38 bytes

RTS 44 bytes

Slot time 20 µsec

SIFS 10 µsec

DIFS 50 µsec

0

300

0 300

M
et

er
s

Meters

AP
Nodes

Figure 4.5: A Randomly Generated Topology with 50 Nodes and an AP in the Center
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the model, simulation and measurement results all closely match. This indicates that the

model and simulation both provide high fidelity compared to real 802.11b networks. With

RTS/CTS enabled, the measurement results are slightly higher than the model and simula-

tion. In-depth analysis shows that this difference is because the testbed sends management

frames, such as RTS/CTS/ACK at 2 Mbps, which is higher than the 1 Mbps base rate

used in the model and simulation.

A random simulation topology was created (see Figure 4.5) to study the packet dis-

persion model with contention and bit errors. Since all the nodes are within transmission

range of each other, there are no hidden terminals in this topology. Bandwidth estimation

is computed with L/T , where T is the average dispersion time from 500 packet pairs.

The number of sending nodes is increased from 2 to 50 to increase the contention level

in the models. By assuming every node always has traffic to send, the model estimates

packet dispersion under saturation conditions. To simulate saturation, an upstream 10

Mbps CBR flow is sent from each wireless node to the AP, while the packet pair traffic

is sent downstream from the AP to a single node. The wireless data rate is fixed at 11

Mbps and both the CBR flows and the packet pair probes send 1500-byte packets. To

avoid severely impacting the estimation results, packet pairs are sent at a lower rate of 100

Kbps.

All the contention simulations without errors were repeated with a typical wireless

network bit error rates of 1 × 10−5. With Bmod and Bsim as the modeled and simulated

bandwidth estimations, respectively, the relative error E for each topology from 2 to 50

nodes is defined as:

E =
|Bsim − Bmod|

Bsim
(4.25)

and the mean and standard deviation of error are defined as the average and standard

deviation of the E values. Table 4.2 summarizes the dispersion model with contention

validation results performed under different channel conditions and shows a close match

between the model and simulations for both ideal and bit error channels. Further model
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Figure 4.6: Bandwidth Estimation Validation for an Ideal WLAN

parameter tests comparing modeled throughput to simulated throughput generally yield a

close match. Additional details of the parameter validation process are in [158].

4.4 Analysis

4.4.1 Packet Dispersion in 802.11

Since the model developed does not extend over the whole network path, the analysis

focuses on a WLAN with the assumptions that all packet dispersion occurs at the AP and

that there is no crossing traffic in the downstream direction.

Understanding packet dispersion in wireless networks requires separating the non-

saturated and saturated scenarios. Given a non-saturated WLAN with low BER where

Table 4.2: Errors in the Bandwidth Estimation Model Compared with Simulations

Error Free BER = 10−5

RTS/CTS Basic RTS/CTS Basic

Mean Error 8.05% 4.90% 9.40% 7.67%
Stdev 6.72% 4.28% 5.30% 3.82%
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the probability of packet pair dispersion due to contending traffic is relatively low, the

packet pair dispersion estimate represents the maximum channel capability for forwarding

traffic for a given packet size. However, this capability includes overhead caused not only

by packet headers, but also by the random delay between successive packets, MAC layer

contention backoff, MAC layer retries and basic two way hand-shake (DATA/ACK) or

four hand-shake (RTS/CTS/DATA/ACK). Emphasizing this difference, the term effective

capacity indicates the maximum capability of the wireless network to deliver network layer

traffic. Unlike in wired networks, wireless dynamic rate adaptation alters effective capacity

by adjusting the packet transmission rate. Therefore, effective capacity is defined as a

function of time and packet size:

Ce =

∫ t1
t0

L
T (t)

dt

t1 − t0
(4.26)

where T (t) is the average packet pair dispersion at time t. Moreover, given discrete packet

pair samples, the effective capacity is:

Ce =

∑n
i=1

L
T (i)

n
(4.27)

where n is the number of samples from packet pair measurements and T (i) is the dispersion

of the nth packet pair.

However, in a wireless network with considerable contending traffic or BER, MAC layer

retries due to bit errors and collisions between the probing traffic and contending traffic add

delay to packet dispersion. Hence, average packet pair dispersion represents the average

time used to forward one single packet. This represents the traffic the network can forward

given the contending traffic and BER. The rate computed from the average packet pair

dispersion is not the available bandwidth because it includes the impact of the contending

traffic. This metric, referred to as achievable throughput for the current level of contending

traffic, is:
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At
L

1
n

∑n
i=1 T (i)

(4.28)

MAC layer retries caused by contention and BER are major sources of achievable through-

put degradation. Achievable throughput is greater than available bandwidth because it

aggressively takes bandwidth from the crossing traffic and it represents the average through-

put along the same direction as the probing traffic. Therefore, the following relationship

exists among the available bandwidth (A), achievable throughput (At) and effective capac-

ity (Ce): A ≤ At ≤ Ce. Moreover, in a non-saturated WLAN that has available bandwidth

for new traffic, the achievable throughput can be modeled using a fluid model because

contending effects can be ignored if total throughput in the wireless network is less than

the effective capacity.

A saturated wireless network is caused by multiple non-responsive traffic sources, such

as UDP flows, transmitting above the flow’s fair-share bandwidth. However, in a saturated

wireless network no bandwidth is available, and each node contends with other traffic

to access the wireless channel. Overall throughput is reduced by contending effects and

achievable throughput represents the fair share of the effective capacity for all the active

contending nodes.

To illustrate achievable throughput in a saturated wireless network, packet pair results

are compared with CBR throughput using the simulation topology in Figure 4.5. Achiev-

able throughput is computed from the dispersion time of 500 packet pairs with a sending

rate of 100 Kbps and a 10 Mbps CBR flow. The contending traffic at each node is 10

Mbps, and the packet size for packet pairs, contending traffic and CBR traffic are all 1500

bytes. Figure 4.7 shows that the packet pair estimates are nearly the same as the average

CBR throughput for both the model and simulations. In this saturated scenario, CBR

throughput represents achievable throughput.

Packet train techniques apply the same packet dispersion ideas to packet pair disper-

sions. However, the large number of packets in a train make it more vulnerable to con-

tending traffic. Therefore, packet train dispersion in wireless networks does not measure
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Figure 4.7: Packet Pair Estimations and CBR Throughput

the effective capacity, but rather indicates the achievable throughput.

Wireless networks are a mixture of contending, bit errors and rate adaptation condi-

tions. It is difficult to distinguish packet dispersion results that are impacted by MAC layer

retries from results due to WLAN rate adaptation. Even though the achievable throughput

can be estimated, it can be difficult to determine the effective capacity from the estimation

results in such mixed channel conditions. Therefore, other techniques may be needed to

remove MAC layer retries caused by contention and BER to get more accurate effective

capacity estimates.

4.4.2 Analysis of the Estimation Results

As discussed in [127], packet size significantly impacts the measurement of wireless network

throughput because of the wireless overhead. Similarly, probe packet size effects estimation

results dramatically. Generally, as packet size increases relative overhead due to headers

decreases. For example, Figure 4.6 depicts the effective capacity of an ideal channel at 11

Mbps, with both basic and RTS/CTS access methods. To effectively estimate bandwidth,

probing packet size must be close to the packet size of the applications that use the band-

width estimation. For example, streaming video should use a probing packet size close to

84



4.4. ANALYSIS

the video packet size to pick an effective streaming rate.

MAC layer rate adaptation impacts the effective capacity significantly. However with-

out knowing wireless channel conditions and the vendor-implemented rate adaptation algo-

rithm, it is difficult to model the practical effects of rate adaptation. Figure 4.8 illustrates

the relationship between effective capacity and the channel rate in a ideal condition with

1500 byte packets for both basic and RTS/CTS access methods. Although the adaptation

algorithm and channel conditions may vary the result of rate adaptation, the relationship

between the channel rate and the effective capacity still holds because of the statistical

nature of the model. Therefore, the model can be used to predict the effective capacity by

using the average channel rate instead of a fixed date rate.

Bit errors reduce achievable throughput in wireless networks because MAC layer retries

reduce the efficiency of the wireless network. Moreover, packet drops due to exceeding

MAC layer retry limits also directly reduce the achievable throughput in wireless networks.

Figure 4.9 shows the packet dispersion results of the model and simulation for 1500-byte

packets sent on a 5-node (contending node) wireless basic access network with BER ranging

from 1 × 10−7 to 1 × 10−3. Achievable throughput decreases as the BER increases. As

the BER reaches approximately 1 × 10−3, the wireless network gets almost no achievable

throughput. This is because the high BER of 1× 10−3 results in a packet error rate closed

to one, thus almost no packets can be successfully transmitted even with maximum number

of retries.

The RTS/CTS four-way handshake lowers the impact of hidden terminals by reducing

the cost of collisions while introducing considerable WLAN overhead. Without considering

the hidden terminal problem, RTS/CTS can still improve the network average throughput

under high traffic load conditions. Figure 4.10 uses the model to illustrate the crossover

point for 1500-byte packets where RTS/CTS gets higher achievable throughput compared

to basic access for different link rates. The crossover point is measured as the number of

fully loaded nodes in the wireless network. The higher the link data rate, the more likely

basic mode will have a higher throughput than RTS/CTS. For example, RTS/CTS will
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Figure 4.8: The Impact of Channel Data Rate
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Figure 4.9: The Impact of Channel Bit Error Rate (BER)

86



4.4. ANALYSIS

only have a higher throughput if there are more than 57 fully loaded nodes in an 11 Mbps

network. Moreover, BER increases the crossover point where RTS/CTS achieves higher

throughput than basic access. This figure demonstrates why RTS/CTS is disabled in most

wireless networks.
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Figure 4.10: Comparison of RTS/CTS with Basic Access for Achievable Throughput

4.4.3 Analysis on the Variance of the Bandwidth Estimation

The packet dispersion model provides the variance and standard deviation of the bandwidth

estimates. Figure 4.11 shows the standard deviation of the estimations from the model

and simulations with 1500-byte packets and basic access. The standard deviation of the

simulated estimation is computed based on 500 packet pair dispersions. As the traffic load

increases, the standard deviation decreases because more contending sources more evenly

distribute backoff delay across multiple estimates. However, for fewer than five nodes, the

modeled standard deviations do not match the simulation results. This is because the

variance of a randomly selected number of backoff time slots in the contention window is

not included in Equation 4.18. With high traffic load, the variance from multiple random

backoff time slots can be safely ignored because it is relatively small compared to the
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variance due to the number of retries. However, retry probability is low for the network

with fewer than five nodes. Thus the time slot variance dominates the overall variance and

causes the mismatch between the model and simulation.
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Figure 4.11: Simulating and Modeling Standard Deviations of Estimation

Analysis of variance of the bandwidth estimations is helpful for designing new band-

width estimation algorithms, such as for deciding the number of packet pairs in an estimate

or the length of a packet train. Furthermore, packet dispersion variance also provides ad-

ditional information for inferring network conditions, such as the traffic load and the bit

error rate.

Packet size also affects the variance in the bandwidth estimations. Larger packet sizes

yield a relatively larger variance. Figure 4.12 depicts the standard deviation of packet pair

estimations in a basic access, 5-node wireless network, with no errors and BER = 10−5.

The BER curve shows a higher standard deviation than the error free channel for the same

packet size. This is because packet error rate increases with BER, and this raises the

probability of MAC layer retries which produces more packet pair estimation variance.

Figure 4.13 shows the standard deviation of packet pair estimations with 1500-byte

packets in a 5-node wireless network with no errors and BER = 10−5. The variance of

88



4.4. ANALYSIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600

S
td

ev
 o

f E
st

im
at

ed
 B

an
dw

id
th

 (
M

bp
s)

Packet Size (Bytes)

Error Free
BER=0.00001

Figure 4.12: The Impact of Packet Sizes on the Standard Deviation of Bandwidth Estima-
tion

bandwidth estimations increases as the channel data rate increases. This implies that the

higher the link data rate, the higher the relative error in the estimation. Compared to the

channel without errors, the channel with errors has a higher variance for all data rates.

This is because the bit errors cause more MAC layer retries and more variance in the

estimation results.

Bit errors impact not only the packet dispersion result in wireless networks, but also its

variance. Figure 4.14 shows the standard deviation for 1500-byte packets on a 5-node 11

Mbps wireless network with BER ranging from 1 × 10−7 to 1 × 10−3. For BERs less than

10−5, the standard deviation of the bandwidth estimations increases as the BER increases.

The variance starts to decrease as BER increases over 10−5. This is because the number

of retries reaches the retransmission limit, therefore reducing the variance in the backoff

delay across multiple packet pairs. In fact, for a BER higher than 10−4, the packet drop

rate is so high that only a few packets get through the network (with a large number of

retries). Note, the RTS/CTS access method has a lower standard deviation than the basic

method in all cases.
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Figure 4.13: The Impact of Channel Data Rate on the Standard Deviation of Bandwidth
Estimation
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Figure 4.14: The Impact of BER on the Standard Deviation of Bandwidth Estimation
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4.5 Summary

This chapter presents an analytic model to investigate packet dispersion behavior in IEEE

802.11 wireless networks. The packet dispersion model is validated by an extended NS-2

simulator and with wireless 802.11b testbed measurements. Utilizing the packet dispersion

model, the following observations can be made:

1. Packet dispersion measures the effective capacity and the achievable throughput of a

wireless network instead of the capacity as in a wired network. Effective capacity,

defined as a function of packet size and time, represents the ability of a wireless

network to forward data over a given time period. Achievable throughput is the

maximum throughput that a node can achieve when contending with other existing

traffic on a wireless network.

2. Wireless channel conditions, such as packet sizes, link data rate, BER and RTS/CTS

access method impact the bandwidth estimation results and the variance of the re-

sults. The packet size and link data rate have a positive correlation with both the

bandwidth estimations and variances of the estimations. The BER of the channel

has a negative correlation with the bandwidth estimations and a positive correlation

with variances of the estimations. RTS/CTS reduces estimated bandwidth and the

variance of the estimations.

With the model of packet dispersion and the studies of the impacts of wireless net-

work conditions, a novel bandwidth estimation tool for wireless networks, the Wireless

Bandwidth Estimation tool (WBest) is developed in Chapter 5.
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Chapter 5

WBest: Wireless Bandwidth

Estimation Tool

This chapter presents a new Wireless Bandwidth Estimation Tool (WBest) designed for

fast, non-intrusive, accurate estimation of available bandwidth and variance of available

bandwidth in IEEE 802.11 networks. WBest applies a two-step algorithm: 1) a packet

pair technique to estimate the effective capacity of the wireless network; 2) a packet train

technique to estimate the achievable throughput and report the inferred mean and stan-

dard deviation of available bandwidth. Section 5.1 gives a brief overview of the bandwidth

estimation techniques in wireless networks. Section 5.2 discusses the requirements of mul-

timedia streaming applications. Section 5.3 discusses the WBest algorithm and related

issues. Section 5.4 describes the experimental setup used to evaluate WBest. Section 5.5

analyzes the experimental results. Finally, Section 5.6 summarizes the chapter.

5.1 Overview

Due to the shared nature of wireless network communication and MAC layer mechanisms

such as wireless layer retries and dynamic rate adaptation, bandwidth estimation is far

more challenging when the underlying network includes wireless networks. Fluctuating
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wireless channel conditions cause variability in wireless capacity and available bandwidth,

and other wireless factors such as reception signal strength and bit error rates (BER) due

to path loss, fading, interference and contention limit the effective bandwidth that the

wireless network actually provides. While providing satisfying results on wired networks,

current bandwidth estimation tools have been shown [90, 91, 127, 154] to be adversely

impacted by IEEE 802.11 wireless network conditions.

Tools that provide only capacity estimates are not useful for Internet applications that

adjust their traffic rate in response to other concurrent flows. Moreover, applications such

as multimedia streaming need an available bandwidth estimate within a few seconds to

avoid client-side buffer underflows and to satisfy users waiting to use the application. This

implies a much faster convergence time requirement than some bandwidth estimation tools

provide. The variability of the wireless channel conditions implies that multiple bandwidth

estimation invocations are typically used within a single application stream. This adds an

additional requirement that a bandwidth estimation tool must be minimally intrusive so

as to not adversely impact the application’s performance during measurements.

As discussed in Chapter 3, most available bandwidth estimation techniques are de-

signed to provide accurate bandwidth information for wired networks at the cost of long

convergence times and high intrusiveness. Recent research has proposed improvements

to bandwidth estimation specific to wireless networks. Most of these wireless bandwidth

estimation techniques are based on improvements to existing bandwidth estimation tech-

niques designed for wired networks. For example, SenProbe [159] and AdhocProbe [160]

present the capacity estimations for wireless sensor and Ad-hoc networks. They are based

on CapProbe, which applies packet delay and dispersion techniques to estimate the capac-

ity in wired networks. However, SenProbe and AdhocProbe only provide an estimation

of capacity and are designed for Sensor and Ad-hoc networks not infrastructure networks.

ProbeGap [90] estimates the fraction of time that a link is idle by probing for gaps in the

one-way packet delays, and then use this idle fraction to estimate the available bandwidth

in broadband access networks including IEEE 802.11 networks. However, ProbeGap does
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not provide capacity estimation and needs to use third party capacity estimation tools,

such as pathrate [109]. DietTOPP [161] uses a reduced TOPP [115] algorithm with a mod-

ified search algorithm to determine available bandwidth in wireless networks. While these

techniques [90, 161] have shown promise in improving the accuracy of available bandwidth

estimation in wireless networks, they do not consider the improvement of convergence time

and intrusiveness. The evaluations from research [90] and [161] focus only on the accuracy

in comparison with existing wired approaches, such as pathload [113] and spruce [121].

In addition to application layer bandwidth estimation techniques, Shah et al. [127] and

Lee et al. [162] present cross layer approaches to estimate the available bandwidth in IEEE

802.11 wireless networks. For instance, [162] uses MAC layer NAV to measure the busy

and idle times and uses these MAC layer measurements to infer the available bandwidth in

the wireless network. [127] measures the channel busy time and uses it to characterize the

impact of contention and fading, thus providing link layer available bandwidth information.

However, both [127] and [162] were developed based on simulations and have not been

evaluated in real systems. Moreover, their dependence upon cross layer techniques makes

them difficult to develop widely.

The issues of inaccurate results, high intrusiveness and long convergence time make

it difficult to apply current bandwidth estimation mechanisms to applications, such as

multimedia streaming, over wireless networks and leads to the development of the Wire-

less Bandwidth Estimation tool (WBest). To address accuracy and convergence, WBest

employs packet dispersion techniques to provide capacity and available bandwidth infor-

mation for the underlying wireless networks. Chapter 4 models packet dispersion behavior

in wireless networks under varying conditions. Using an analytical model, two packet dis-

persion measures, effective capacity and achievable throughput, were shown to be suitable

for wireless networks. Combining these two metrics, WBest employs a two-step algorithm

to determine available bandwidth. In the first step, a packet pair technique estimates the

effective capacity of the wireless network. In the second step a packet train scheme de-

termines achievable throughput and infers available bandwidth. By modeling WBest, this
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research investigates the tradeoffs of accuracy and convergence time, and possible sources

of error to optimize the algorithm. Thorough evaluation in a wireless testbed shows WBest

performs better in terms of accuracy, intrusiveness and convergence time than three current

available bandwidth estimation tools: IGI/PTR [117], pathChirp [116] and pathload [113].

WBest fits the practical needs of many applications such as multimedia streaming that

require low cost and accurate bandwidth estimations.

5.2 Requirements of Wireless Streaming Applications

Bandwidth estimation techniques have been widely studied in recent years. However, there

are few studies that discuss applying such techniques in real applications. Different applica-

tions and network environments may have distinct requirements for bandwidth estimation.

For instance, network management systems require accurate bandwidth estimations and

usually can tolerant a long convergence time. Streaming or interactive applications, on

the other hand, prefer to have low convergence time and do not demand precisely accurate

bandwidth estimations. It is difficult to design a general purpose bandwidth estimation tool

for all application types. Therefore, to evaluate the applicability of a particular bandwidth

tool the application and the network context must be considered.

The previous bandwidth estimation tools usually target network management, thus the

emphasis is on accurate bandwidth results. The applied bandwidth metrics may be either

capacity or available bandwidth of the backbone networks. To describe the differences be-

tween the bandwidth estimation tool required by multimedia streaming applications and

general purpose bandwidth estimation tools, the following evaluation criteria are consid-

ered: measured metrics, accuracy, convergence time, intrusiveness, robustness and usability

in wireless networks.

The bandwidth metrics used in bandwidth estimation tools in wired networks need to

be redefined in wireless networks. For example, the capacity is not constant in wireless net-

works, instead, the effective capacity [163] that takes the dynamical capacity changes into

consideration is preferred. Similarly, as discussed in Section 5.3, the available bandwidth
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is not defined as the capacity excluding the amount of cross traffic. Instead, it should take

both capacity sharing and contending effects into consideration. However, most current

available bandwidth estimation tools do not include these issues. For example, IGI [117]

assumes a known, fixed capacity. For a multimedia streaming application using bandwidth

estimation to adapt the sending rate and optimize the client side buffer, the most useful

bandwidth metrics are the available bandwidth and the variance in available bandwidth.

Therefore, tools that only estimate capacity can not be used satisfactorily by streaming

applications. Moreover, tools only designed for wired networks need to be improved before

they can be applied to streaming applications in wireless networks.

For multimedia streaming applications, estimation accuracy is no longer a primary

concern any longer. The reason is that streaming media applications usually scale the

sending rate in steps instead of smoothly. Thus, any bandwidth estimation result with

a granularity less than the streaming media encoding levels is sufficient for controlling

the media scaling. For example, for a media stream encoded at multiple levels of 700

Kbps, 1.2 Mbps, 2.5 Mbps and 5 Mbps, an available bandwidth estimation of 3.54 Mbps

will trigger media scaling down to 2.5 Mbps. However, any estimation result between

2.5 Mbps and 5 Mbps will trigger the same media scaling. Thus, a maximum acceptable

estimation error for the 3.54 Mbps estimation result can be computed as min(3.54 −

2.5, 5−3.54) = 1.04 Mbps, which indicates an accuracy limit of 1.04 Mbps for this case. In

addition, a higher frequency of media scaling implies a lower perceived quality [164]. Since

both the effective capacity and the available bandwidth change dynamically in wireless

networks, to reduce unnecessary media scaling actions, a time-based average measurement

or a distribution in bandwidth are preferred over an accurate instantaneous bandwidth

measurement. Therefore, an accurate instantaneous estimate is not a critical requirement

for streaming media applications.

The convergence time for a bandwidth estimation is a major concern for streaming

media applications over wireless networks. Multimedia streaming applications need an

available bandwidth estimate within a few seconds to avoid client-side buffer underflows
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and to satisfy users waiting to use the application. This implies a much faster convergence

time requirement than most current bandwidth estimation tools provide. Even though the

media scaling does not need to execute at the same frequency as the bandwidth estimation,

a short convergence time may provide more estimations in the same time period, thus may

provide a better chance for a filtering or smoothing algorithm to find a reasonably accurate

average estimation of bandwidth. A shorter convergence time improves the capability to

capture the variation in the effective capacity or available bandwidth. As shown in recent

research [10], the variation in the wireless available bandwidth may degrade the video

performance even if the average bandwidth is sufficient for the streaming rate.

Intrusiveness is another major concern for evaluating the bandwidth estimation tech-

niques over wireless networks. Streaming applications tend to perform bandwidth estima-

tion frequently during the whole streaming session. Therefore, low intrusiveness is critical

for reducing the impact caused by the probing traffic itself. Available bandwidth may

be reduced due to the probing traffic that saturates the wireless network. As a result of

bandwidth reduction, the performance of streaming multimedia applications can also be

impacted by the heavy probing traffic.

Another important issue related to accuracy, convergence time and intrusiveness are

the competing effects caused by the probing traffic. With self-loading or packet dispersion

techniques, the probing traffic will temporarily increase the queuing delay of the crossing

traffic. Responsive crossing traffic, such as TCP flows, will respond to the increases in

RTT and reduce the sending rate. Therefore, the available bandwidth estimation will be

an overestimate if the convergence time is long enough for the TCP flows to reduce their

sending rates. As discussed in [165], TCP throughput B can be approximated as the

equation: B = 1/RTT
√

3/2bp, where p is the probability that a packet is lost and b is

the number of packets that are acknowledged by a received ACK. If we assume that the

probing traffic will not overflow the AP queue, the TCP congestion control response to the

RTT changes will reduce the TCP throughput in a few RTTs. For example, the time for a

packet train with 30 packets to pass an AP with an effective capacity of 6 Mbps is about
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58 ms. If we assume the TCP RTT is in the same range, the throughput of the TCP traffic

will decreased to almost half according to the equation. Therefore, we attempt to complete

the bandwidth estimation in a few RTTs so that the TCP crossing traffic is not unduly

impacted by the congestion caused by probing traffic. In fact, this competing effect is not

specific to streaming applications or wireless networks, but is an issue for all bandwidth

estimation tools. Possible solutions include reducing the intrusiveness and convergence

time, or approximating the amount of overestimation and compensate for it in the final

estimation of available bandwidth.

Robustness and usability are mandatory for all bandwidth estimation techniques. Since

streaming servers and clients are designed to work in client/server mode, the usability of

working in uncooperative environments is not an issue any longer. However, to assure

the applicability to streaming applications, the bandwidth estimation tool should have a

relative consistent convergence time and intrusiveness under various channel conditions.

That is, the applications expect the convergence time and intrusiveness to be bounded by

upper limits, so that the application can predict the cost in term of time and intrusiveness

on performing bandwidth estimation.

In summary, multimedia streaming in wireless networks requires a bandwidth tool

with fast convergence time, low intrusiveness and reasonable accuracy. For the initializing

bandwidth estimation of multimedia applications, we expect the bandwidth estimation to

be completed in a few RTTs so that it will not add extra delay to the starting delay of the

streaming playout. For estimations during streaming, we expect convergence times smaller

than the buffer time of the streaming application, which means an in-time adaptation

before the buffer underflow. Given the expected convergence times of a few RTTs, most

general purpose bandwidth estimation tools are not satisfactory for wireless multimedia

applications.
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5.3 WBest algorithm

This section introduces WBest, an algorithm to estimate both effective capacity and avail-

able bandwidth on a network path where the last hop is over IEEE 802.11b/g Distributed

Coordination Function (DCF) wireless networks. Applying WBest to Point Coordination

Function (PCF) wireless network is left as future work.

Figure 5.1 depicts a typical network environment where an application server with a

wired Internet connection sends traffic along the network path to a client with a ‘last mile’

wireless connection. To provide better performance, such as to perform media scaling and

buffer optimization for a multimedia stream, the application server needs to know the ca-

pacity and available bandwidth on the flow path to client A. As discussed in Chapter 4,

to characterize the wireless network impact for study, the network traffic is categorized as

probing, crossing and contending, as depicted in Figure 5.1. Even though the contending

and crossing traffic have different impacts on the probing traffic, the bandwidth estima-

tion tool should be able to handle both of them correctly. In general, capacity estimation

should avoid estimation errors caused by crossing and contending traffic. However, avail-

able bandwidth estimation should capture the available bandwidth reduction due to both

crossing and contending traffic.

5.3.1 Assumptions

To simplify the bandwidth estimation algorithm, the following assumptions are made.

These assumptions and possible resultant errors are discussed in more detail later in this

section.

1. Assume the last hop wireless network is the super bottleneck link1 on the end-to-end

network path. Here the super bottleneck link means the last hop wireless network has

the smallest available bandwidth (tight link) and the effective capacity of last hop is

less than the available bandwidth of all the prior hops along the network path. That

1
The Bottleneck link usually indicates both the smallest available bandwidth (tight link) and the smallest

capacity (narrow link).
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Access Point (IEEE 802.11 b/g)
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Figure 5.1: Network Path with Last Mile Wireless Network.

is, the following relationships hold:

A ≤ Ce ≤ min
i=1,..,H−1

(Ai) (5.1)

where A and Ce are the available bandwidth and effective capacity of the last hop,

respectively, H is the number of hops, and Ai is the available bandwidth and capacity

of the ith hop. As discussed by Lao, Dovrolis and Sanadidi [166], even with a single

bottleneck assumption, PGM technique may underestimate the available bandwidth

in a multihop network path. This underestimation occurs because the probing traffic

may be dispersed at non-bottleneck hops where the available bandwidth is less than

the probing rate. For WBest, by assuming that there are no hops along the network

path that have an available bandwidth less than the maximum probing rate Ce, a

packet train sent at rate Ce is likely to arrive at the last hop at the rate of Ce [110].

Therefore, the available bandwidth of the super bottleneck wireless network is not

underestimated because the probing packets are not dispersed at non-bottleneck hops.

Effectively, the super bottleneck assumption reduces available bandwidth estimation

for a multihop case into estimating available bandwidth for a single hop case, that

of the last wireless hop. As shown in [166], PGM techniques are accurate in this

scenario.
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The super bottleneck assumption usually holds for most company-wide, campus-wide

or hot-spot wireless networks. In practice, the over-provisioning in the backbone

network capacity and the usage of Content Distribution Networks (CDNs) increase

the available bandwidth in core Internet routers. While on the other hand, because

of the nature of shared wireless media, it is difficult to over-provision the wireless

network capacity by deploying more wireless APs. This limits the increase in wireless

capacity compared with the increase in core Internet routers. Additionally, for these

large scale wireless networks, the effective capacity may often be further reduced

because of the impact of rate adaptation and bit errors. These facts make last hop

wireless networks the super bottleneck for many network paths in practice. If this

assumption does not hold, as for some home wireless networks with a broadband

Internet connection, the packet train with sending rate Ce will get dispersed before

the last hop and arrive at the last hop with a lower rate than Ce. This, in turn,

will cause a conservative under-estimate of the bandwidth which is typically a better

outcome for multimedia streaming applications than an aggressive, over-estimate.

2. Assume First-Come First-Server (FCFS) queues at all routers along the end-to-end

path. In addition, we assume that the wireless AP at the super bottleneck has a

single FCFS queue. This assumption holds for most network routers and for IEEE

802.11b/g networks currently being deployed. However, for the developing IEEE

802.11e standard, the multiple priority-based queuing mechanism disturbs the FCFS

packet dispersion model. For example, high priority traffic may depart before the

lower priority probing traffic, thus may produce errors in packet dispersion measure-

ments.

3. Assume no significant changes in network conditions between the two steps (estima-

tion of the effective capacity and estimation of the available bandwidth) of the WBest

algorithm. The changes in network conditions due to rate adaptation or mobility may

impact the estimation results. For instance, as discussed in Section 5.3.4, the avail-

able bandwidth estimation may include errors if the Ce estimated in the first step
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is not applicable for the available bandwidth estimations in the second step. More-

over, the roaming between wireless APs due to mobility could cause route changes,

thus impacting the packet dispersion behavior and causing errors in the estimation.

However, given WBest algorithm convergence times of milliseconds, the magnitude

of these changes is assumed to be minimal over the timescales measured by WBest.

4. Assume packet pairs or trains do not overflow any of the router queues along the flow

path. A queue overflow at the last hop wireless AP will impact the accuracy of the

estimation results. The possibility of queuing loss is reduced by limiting the number

of probing packets sent into the network to be under the queue size of typical wireless

APs [167].

5.3.2 Algorithm

Similar to the hybrid approach used in research [168], WBest applies a two-step algorithm

as shown in Algorithm 5.1 to estimate both effective capacity and available bandwidth.

In the first step (lines 1-2), n packet pairs are sent to estimate the effective capacity Ce.

Effective capacity [158], the maximum capability of the wireless network to deliver network

layer traffic, is a function of time and the packet size:

Ce =

∫ t1
t0

L
T (t)dt

t1 − t0
(5.2)

where L is the packet size, and T (t) is the packet dispersion at time t. To use packet

dispersion in a discrete environment, Ti, the ith packet dispersion at time t, is used to

represent T (t).

To minimize the impact of crossing and contending traffic and capture the impact of

rate adaptation on measurements of effective capacity, the median of the n packet pair

capacity estimates is used to approximate Ce in the estimation time period:

Ce = median(Ci), i = 1, .., n (5.3)
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Algorithm 5.1 WBest Algorithm.

Require: n > 0 {Measure effective capacity (Ce)}
1: Send n packet pairs to client
2: Ce ⇐ median(Ci, i = 1, .., n)

Require: m > 0, Ce > 0 {Measure available bandwidth (A)}
3: Send packet train with length m at rate Ce to client
4: R ⇐ L

mean(Ti, i=1,..,m−1)

5: if R ≥ Ce

2 then

6: A ⇐ Ce

[

2 − Ce

R

]

7: else
8: A ⇐ 0
9: end if

10: p ⇐ packet loss rate in train {Error correction}
11: if p > 0 then
12: A ⇐ A × (1 − p)
13: end if

where Ci is the estimation result of packet pair i and Ci = L
Ti

.

For the second phase of the WBest algorithm (lines 3-13), a packet train of length m

is sent at rate Ce to estimate available bandwidth. Similar to PGM, a fluid flow model is

used to estimate the relationship between available bandwidth and dispersion rate. In a

wired network with constant capacity C, the available bandwidth A(t) at time t can be

derived by the relationship of A(t) = C −S(t), where S(t) is the amount of cross traffic at

time t. In a wireless network, this relationship holds for the instantaneous capacity C(t)

at time t:

A(t) = C(t) − S(t) (5.4)

In practice, the available bandwidth averaged over a short time scale is preferred for most

applications. Therefore, for the network with dynamic capacity, such as in wireless net-

works, we derive the time-based average relationship using the linearity of the expectation

from Equation 5.4:

E[A(t)] = E[C(t) − S(t)] = E[C(t)] − E[S(t)] (5.5)
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where E[A(t)], E[C(t)] and E[S(t)] are the expected available bandwidth, capacity and

bandwidth reduction caused by crossing/contending traffic over the estimation period,

respectively. Giving the assumption that the wireless network is stationary during the

estimation, we have E[C(t)] = Ce by the definition of effective capacity. Therefore, if we

use A and S to represent the expectations of available bandwidth and bandwidth reduction

caused by crossing/contending traffic during the estimation period, we have:

A = Ce − S (5.6)

Furthermore, assumption 1 means the arriving rate of probing traffic before the last

hop is Ce. Based on the fair sharing of the FCFS queue, the probing traffic shares the

same ratio of the total amount of traffic before and after the AP queue:

Ce

Ce + S
=

R

R + S′
=

R

Ce
(5.7)

where as shown in Figure 5.2, R is the average dispersion rate of the probing traffic at the

receiver, S′ is the bandwidth shared by the crossing and contending traffic after competing

with the probing traffic and we have R + S′ = Ce. Therefore, we can estimate S, the

expected bandwidth reduction caused by crossing/contending traffic from the dispersion
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rate R using Equation 5.7. Combining Equations 5.6 and 5.7, the available bandwidth is:

A = Ce(2 −
Ce

R
) = 2Ce −

C2
e

R
(5.8)

For a wireless network, achievable throughput [158] is the average dispersion rate at the

receiver for a probing rate of Ce. Using Equation 5.8, Figure 5.3 shows the relationship

between available bandwidth and achievable throughput. Any achievable throughput less

than half of Ce implies zero available bandwidth, and an achievable throughput of Ce

implies an idle wireless network.

In addition to the available bandwidth estimation, WBest also reports the approximate

variance of the available bandwidth. Given the available bandwidth Equation 5.8 is twice

differentiable and the mean and variance of R are finite, the variance of available bandwidth

can be approximated by the Delta method using second-order Taylor expansions2:

V [A] ≈ V [R]

[(

2Ce −
C2

e

R

)′]2

E[R]

= V [R]

(

Ce

R

)4

(5.9)

Therefore, based on the effective capacity, average and variance dispersion rates, we can

estimate the variance and standard deviation of the available bandwidth.

Packet losses on the wireless network and along the network path impact WBest accu-

racy. Some tools, e.g. pathload, discard estimates when packets losses occur to avoid errors

in the estimation computation. However, this implies longer measurement times or at least

more variance in measurement times. Instead of discarding estimates when packet losses

occur, WBest detects packet loss in both packet pairs and packet trains and removes the

appropriate pair from the computation. For a packet train, loss rate p is recorded and the

available bandwidth estimate reduced (lines 10- 13 of Algorithm 5.1).

WBest’s major advantages stem from statistically detecting the relative available frac-

tion of the effective capacity in the wireless network instead of using search algorithms to

measure the absolute available bandwidth. Most current available bandwidth mechanisms

2http://en.wikipedia.org/wiki/Variance
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detect absolute available bandwidth by measuring the delay changes in the probing traffic.

However, random changes in packet delay due to wireless network conditions make it dif-

ficult to determine clear packet delay trends. This reduces the accuracy and increases the

convergence time, intrusiveness and instability of the estimation mechanism. By avoiding

a search algorithm to determine the probing rate, WBest is designed to converge faster

and yield less estimation error. Instead of probing for the absolute rate, WBest estimates

available bandwidth using the effective capacity. (2− Ce

R ) in Equation 5.8 is treated as the

available fraction of Ce available to all wireless flows. Derived from the ratio of the effective

capacity to the average dispersion rate, the available fraction statistically removes random

errors while still capturing the impact of crossing/contending traffic, rate adaptations, and

power saving strategies inherent in wireless networks.

5.3.3 Number of Packet Pairs and Length of Packet Train

The number of packet pairs in the first step of WBest and the number of packets in the

packet train in the second step play important roles in the accuracy, convergence time

and intrusiveness of the algorithm. Generally, more packet pairs and longer packet trains

improve accuracy at the cost of higher convergence time and more intrusiveness.

WBest seeks to minimize convergence time and intrusiveness at a given accuracy level.

The confidence interval (I) and the modeled variance σ [158] can be used to estimate the

minimum required number of packet pairs using:

n =
Z2σ2

I2
(5.10)

where Z is a constant determined by the confidence level. For example, assume a streaming

session wants to bound the effective capacity estimate within 500 Kbps to match the

granularity of encoded scaling levels for the multimedia stream. To bound the effective

capacity estimate within 500 Kbps with 95% confidence, Equation 5.10 indicates at least

6 (⌈5.34⌉) samples are needed. This is based on σ = 0.59 Mbps for an 11 Mbps wireless

channel rate and a packet size of 1500 bytes with Z = 1.96 and I = 500 Kbps [158].
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Similarly, the number of packets m in the packet train can also be computed. With the same

available bandwidth estimation bounds and given a modeled maximum σ = 1.38 Mbps [158]

for an 11 Mbps channel link rate and packet size of 1500 bytes with contending traffic,

Z = 1.96 and I = 500 Kbps, the minimum train size m is 30 (⌈29.26⌉). As real network

conditions may change unexpectedly, Equation 5.10 only provides an approximation on the

sample sizes needed.

The number of packets in a train also impacts the time scale and sensitivity of available

bandwidth estimations. In general, the estimation of available bandwidth represents the

average estimation during the measurement period [92]. As a major part of the convergence

time, the time Tm spent to estimate available bandwidth depends on the number of packets

m in the train. Tm can be approximated using m and packet size L as Tm = m ∗ L/Ce.

Furthermore, the probability crossing traffic gets included in the bandwidth estimation is

related to the length of the train. Assume CBR crossing traffic is sent at rate S with at

least one packet caught by the packet train:

S ∗ Tm/L ≥ 1

S ≥ L/Tm = Ce/m (5.11)

The sensitivity of the available bandwidth estimation can be defined based on the number of

packets in the train, which has a negative relationship with the train length. For instance,

to catch crossing traffic sent at rate Ce/10, a packet train with at least 10 packets is needed.

Selecting the number of packet pairs and train length is complicated in practice because

the bottleneck queue size also limits the number of packet pairs and the length of the

packet train. The pathrate queue size probing method [110] can be used to detect buffer

limitations along the flow path. However, this probing method increases the intrusiveness

and measurement time and is not appropriate for many applications. Since the WBest

packet train sending rate is set to the effective capacity of the wireless Access Point (AP),

108



5.3. WBEST ALGORITHM

the probability of queue overflow in the network is determined by the queue size at the

last hop wireless AP. Previous research [167] indicates that current wireless AP queue

lengths range from 40 to 300 packets. Thus, WBest simply limits the packet train to less

than 40 packets. To further avoid queue overflow due to packet pairs, WBest inserts a

10 millisecond gap between pairs to reduce the packet pair probing rate during capacity

estimation.

5.3.4 Impact of Errors in Effective Capacity Estimation

The effective capacity estimate in the first step of WBest impacts the available bandwidth

estimate in the second step. If C ′
e denotes the estimated effective capacity from the first

step and Ce is the actual effective capacity, the fluid flow model from Equation 5.7 yields:

C ′
e

C ′
e + Ce − A

=
R

Ce
(5.12)

By defining the error ratio Y as C ′
e = Ce(1 + Y ), the dispersion rate is:

R =
C ′

eCe

C ′
e + Ce − A

=
(1 + Y )C2

e

(2 + Y )Ce − A
(5.13)

Mimicking the derivation from Equation 5.8, the estimated available bandwidth, A′, is

A′ = 2C ′
e − C′2

e

R . The relationship between estimated available bandwidth A′ and real

available bandwidth, A, then becomes:

A′ = A(1 + Y ) − CeY (1 + Y ) (5.14)

To study available bandwidth estimation errors due to error in effective capacity esti-

mation, relative error, E, is defined as:

E =
A′ − A

A
(5.15)

Positive and negative values for relative error E denote over-estimation and under-estimation
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of the available bandwidth, respectively. From Equation 5.15, the relative error in avail-

able bandwidth estimation is E = Y − Y (1 + Y )Ce/A. Figure 5.4 shows in fractional

form the relative error of estimated available bandwidth and the relative error in capacity

estimation for three distinct cases. Effective capacity estimations that are too high always

under-estimate the available bandwidth. Effective capacity estimations that are too low

can result in either an over-estimate or under-estimate of the available bandwidth, depend-

ing upon on the actual available bandwidth in the network. Errors in effective capacity

estimation can be bounded by modeling [158] or by measurement, e.g., using the range of

the results from the capacity estimation step to approximate the relative error on the es-

timation of available bandwidth. Moreover, for applications where a conservative estimate

of the available bandwidth is desireable, such as in multimedia streaming, a higher effective

capacity estimator can be used (e.g., using the top 10% in Equation 5.3 for Ce instead of

the median) to minimize the potential performance degradation caused by over-estimating

the available bandwidth of the underlying network.
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Figure 5.4: Relative Error Caused by Effective Capacity Estimation Errors.

110



5.3. WBEST ALGORITHM

5.3.5 Pre-dispersion and Pre-compression

Although it is assumed that the last mile is the bottleneck of the network path defined

in Equation 5.1, the packet train may still arrive at the AP with a lower rate or higher

rate than Ce. We call this rate Rp the pre-dispersion or pre-compression rate because it

happens before the packet train arrives at the last hop wireless network.

The possible sources of a pre-dispersion could be a link with an available bandwidth Ai

less than the packet train rate Ce, which is also the effective capacity of the last hop

wireless network. Therefore, to analyze the impact caused by the pre-dispersion and

pre-compression behaviors, we can use the same fluid model as Equation 5.7 if the pre-

dispersion/pre-compression rate Rp is greater than or equal to the available bandwidth

A:

Rp

Rp + Ce − A
=

R

Ce
(Rp ≥ A) (5.16)

In the case of pre-dispersion rate, Rp is less than the available bandwidth, the probing traffic

will not be further dispersed at the wireless hop. Therefore, Equation 5.7 is not applicable

and we have R = Rp. We define X as the ratio of pre-dispersion/pre-compression on the

probing traffic, such that we have Rp = Ce(1 + X), where a positive X denotes a pre-

compression and a negative X denotes a pre-dispersion. Following the same derivation we

can get the dispersion rate after passing the last hop as:

R =











CeRp

Rp+Ce−A = C2
e (1+X)

(2+X)Ce−A (Rp ≥ A)

Ce(1 + X) (Rp < A)
(5.17)

As described in Equation 5.8, the estimated available bandwidth with pre-dispersion or

pre-compression is defined as A′ = 2Ce −
C2

e

R . Thus, by representing R using Ce, A and

X, we can derive the relation between estimated available bandwidth A′ and real available

bandwidth A from Equation 5.18 as:
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A′ =











A
1+X − XCe

1+X (Rp ≥ A)

2Ce −
Ce

1+X (Rp < A)
(5.18)

To study the errors caused by pre-dispersion and pre-compression, we compute the rela-

tive error E between the estimated available bandwidth and the real available bandwidth

using Equation 5.15. Therefore, a positive and negative relative error E denote a over-

estimation and under-estimation of the available bandwidth, respectively. The relative

error in available bandwidth caused by pre-dispersion and pre-compression can be derived

as Equation 5.19:

E =











X(Ce/A−1)
1+X (Rp ≥ A)

(1+2X)Ce/A
1+X − 1 (Rp < A)

(5.19)

Figure 5.5 shows the theoretical relationship between the pre-dispersion and pre-compression

ratio X and the relative error in available bandwidth E for the network with different

amount of available bandwidth.

It clearly shows that pre-dispersion results in a lower estimated available bandwidth

than the real available bandwidth. On the contrary, pre-compression results in a higher es-

timated available bandwidth. Moreover, as the available bandwidth decreases, the impact

caused by pre-dispersion and pre-compression increases. In addition to the theoretical rela-

tionship, if the pre-dispersion reduces the packet train probing rate lower than the available

bandwidth, there will be no further dispersion at the last hop. Therefore, Equation 5.16

cannot be used to compute the dispersion rate R. Instead, we have R = Rp and the relative

error of available bandwidth can be computed based on Equation 5.8 and 5.15. The “No

dispersion” curve depicts the converting point of the relative errors when the pre-dispersion

rate is lower than the available bandwidth.

For streaming applications, the underestimation of the available bandwidth caused by

pre-dispersion makes the streaming rate selection more conservative, which is helpful for

avoiding performance problems such as bursty lost and rebuffer events. The overestimation
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Figure 5.5: Relative Error Caused by Pre-dispersion/compression

caused by pre-compression impacts the streaming performance. A possible solution is to

increase the estimation samples, thus reducing the errors caused by pre-compression. Be

aware that the errors shown in Figure 5.5 represent the worst case such that all samples

in the estimation are pre-dispersed/pre-compressed for the given ratio. We expect a lower

relative error in practice because the WBest algorithm is based on an average of multiple

samples.

5.3.6 Error Detection

Packet loss observed at the WBest receiver may be attributed to either wireless losses or

congestion losses (queue overflow). The WBest error correction adjusts for wireless losses.

However, while WBest controls the probing traffic sending rate to avoid queue overflow,

large amounts of crossing traffic and contending traffic may still produce queue losses that

can cause an over-estimate of available bandwidth. In most cases, one can assume that

any queuing loss is due to a saturated wireless link with no available bandwidth. However,

to guard against queue overflow at an upstream router, Loss Discrimination Algorithms

(LDA), such as [169, 170] could be added to WBest to distinguish congestion loss or wireless

loss.
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Another potential source of estimation error comes from last hop probe packet com-

pression. System factors, such as high CPU load at the wireless clients and user-level

timestamps [110] may cause two or more packets to have very close arrival timestamps.

This last hop compression can result in recorded arrival rates that are higher than the

effective capacity. For example, our measurements show the minimum timestamp from the

user level timer is about 2.3 µs. This results in a dispersion rate over 5000 Mbps for a

probe packet size of 1500 bytes. Thus, to reduce the error due to last hop compression, if

the received timestamp yields a higher rate than the actual sending rate, WBest uses the

actual sending rate instead of the dispersion rate to compute available bandwidth.

5.4 Experiments

5.4.1 Experiment Design

WBest is implemented3 in Linux and evaluated by varying network conditions in an IEEE

802.11 wireless testbed. As shown in Figure 5.1, the wireless testbed consists of an ap-

plication server that performs the estimation (wbestserver), a traffic server (tgenserver),

a wireless AP and three clients (Client A, B and C). The AP in the testbed is a Cisco

Air-AP1121G4 with IEEE 802.11b/g mode. Both servers are PCs with P4 3.0 GHz CPUs

and 512 MBytes RAM and the three clients are PCs with P4 2.8 GHz CPUs with 512

MBytes RAM. All the testbed PCs run SUSE5 9.3 Linux with kernel version 2.6.11. The

servers connect to the AP with a wired 100 Mbps LAN, and the clients connect to the AP

with IEEE 802.11b/g WLAN using Allnet6 ALL0271 54 Mbps wireless PCI card with a

prism GT chipset.7

Even though there are some recent wireless bandwidth estimation tools being proposed

including [90, 127, 159, 160, 162], most of them cannot be included in a direct comparison

3WBest source code can be download from http://perform.wpi.edu/tools
4http://www.cisco.com/en/US/products/hw/wireless/ps4570/index.html
5http://www.novell.com/linux/
6http://www.allnet-usa.com/
7http://www.conexant.com/products/entry.jsp?id=885
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with WBest. For example, some tools estimate only capacity [159, 160] or require third

party capacity estimation [90]. Thus these tools are not directly comparable to WBest.

Additionally, many tools are provided only via simulation [127, 162] or do not have source

code available [161]8. Hence, these tools are not able to be evaluated through experiments.

Therefore, for performance comparison, three popular and published independent tools that

can estimate available bandwidth were selected: IGI/PTR v2.0 [117], pathChirp v2.4.1 [116]

and pathload v1.3.2 [113].

For the experimental runs, the four tools are run sequentially to estimate the down-

stream available bandwidth from wbestserver to client A. While all the tools were setup

using their default configuration, to provide a fair performance comparison, the following

methodology was used to run and summarize the estimation results. Although IGI/PTR

converges with two results, the PTR results are used as the author suggests. Since pathload

converges with a range of available bandwidths, the median of the range is used for compar-

ison. During the evaluation, some pathload runs never converge under particular wireless

channel conditions. These runs were halted if they fail to converge in 100 seconds which

is the upper limit of normal convergence time for pathload. Since pathChirp is designed as

a continuous monitoring tool without an explicit convergence policy, convergence follows

the author’s method described in [116]. In this method, the difference between the 90th

and 10th percentiles of the estimations are computed and convergence is defined when

the difference is less than 1/5 of the available bandwidth9 (approximately 6 Mbps in our

testbed).

As shown in Figure 5.6, each evaluation consists of back-to-back runs employing four

bandwidth estimation tools and one downstream CBR flow, which is used to approximate

the actual available bandwidth of the wireless network as discussed in Section 5.4.2. For

all cases with crossing or contending traffic, the estimations start five seconds after the

background traffic starts to let the system stabilize. Similarly, there is a five second delay

between the end of one tool and the start of the next to allow background traffic to stabilize.

8Lately, DietTOPP source code is released after the evaluation of WBest.
9This ratio is computed from the evaluation setup in [116].
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Figure 5.6: An Example of a Sequential Run of Bandwidth Estimation Tools.

Table 5.1 itemizes the fifteen experimental cases. The base configuration, case 0, has no

contending or crossing traffic and no induced changes in the wireless network conditions.

Cases 1-12 include a variety of crossing and/or contending traffic situations provided by

UDP and TCP traffic generators residing on client B, client C and tgenserver. The Multi-

Generator Toolset (mgen) v4.2b610 and iperf v2.0.211 are used to generate UDP and TCP

traffic, respectively. For case 13, wireless rate adaptation is induced by removing the

antenna of a wireless client and reducing the wireless AP’s sending power and receiving

antenna gain. With a client received signal strength indicator (RSSI) between -70 dbm

and -74 dbm, the rate adaptation ranged from 1 to 48 Mbps. Figure 5.7 shows the actual

rate adaptation measured with a wireless sniffer12. This rate adaptation case results in

8% of wireless layer retries for both the AP and the client. By enabling the client wireless

network card power save mode (PSM) option, Case 14 provides an experiment to evaluate

bandwidth estimatiom when PSM is used. The AP’s Data Beacon Rate (DTIM) is set to

the default value of 2 such that a delivery traffic indication message is included in every

other beacon to notify the PSM clients of waiting packets at the AP. The PSM option on

10http://pf.itd.nrl.navy.mil/mgen/
11http://dast.nlanr.net/Projects/Iperf/
12http://perform.wpi.edu/tools/
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the cards is disabled for all the other experimental cases.
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Figure 5.7: Rate Adaptation Behavior

Each of the fifteen cases were repeated 30 times with the median and quartiles reported

for all runs. To ensure comparability across different runs, the RSSI range for all wireless

clients is between -38 dbm and -42 dbm, and all clients were shown to have the same

maximum throughput of about 29 Mbps. To mitigate interference from co-existing campus

wireless networks, all experiments are run in our wireless streaming multimedia lab13 which

was painted with an additive14 to reduce the radio transmissions going through the walls.

Furthermore, all the experiments were conducted after midnight during the WPI summer

break such that most of the campus wireless network was in an idle state.

The relationship between relative error and the number of pairs in step 1 of the WBest

algorithm (estimate effective capacity) was explored by using Equation 5.15 to compute

the error of the estimated effective capacity using different numbers of packet pairs and

defining real effective capacity as the median of the 90 packet pair run. Figure 5.8 shows

the relationship between the effective capacity error and the number of packet pairs sent

for four typical wireless cases: idle, crossing traffic, contending traffic, and rate adaptation.

As the number of packet pairs sent increases, the error decreases. Rate adaptation requires

13http://perform.wpi.edu/wsml/
14http://www.forcefieldwireless.com/defendairadditive.html
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Table 5.1: Evaluation Cases for Experiments.

Case Crossing Traffic Contending Traffic

0 None None

1 Client B: UDP 4.6 Mbps None

2 None Client B: UDP 4.6 Mbps

3 Client B: TCP None

4 None Client B: TCP

5 Client B: UDP 2.3 Mbps None
Client C: UDP 2.3 Mbps

6 None Client B: UDP 2.3 Mbps
Client C: UDP 2.3 Mbps

7 Client B: TCP None
Client C: TCP

8 None Client B: TCP
Client C: TCP

9 Client B: UDP 2.3 Mbps Client C: UDP 2.3 Mbps

10 Client B: TCP Client C: TCP

11 Client B: UDP 2.3 Mbps Client C: TCP

12 Client B: TCP Client C: UDP 2.3 Mbps

13 Case 0 with rate adaptation

14 Case 0 with PSM enabled
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Figure 5.8: Analysis of Number of Packet Pairs
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Figure 5.9: Analysis of Length of Packet Train

the highest number of packet pairs to produce reasonably accurate measurements. To

provide accuracy for all these cases while reducing the impact on the available bandwidth

estimations, 30 packet pairs were used in all the WBest evaluations. Similarly, based on

Figure 5.9, 30 was chosen as the length of the packet train for step 2 of the WBest algorithm

(estimate available bandwidth) for all the WBest experiments.

In addition to these fifteen evaluation cases described earlier, we also design evaluations

to discover the impact of packet sizes of both WBest probing traffic and crossing/contending

traffic. The packet size tests include two parts. First, a series of WBest sessions with

different probing packet sizes under the idle channel (case 0) are executed to discover the

relationship between WBest estimation and the CBR throughput with the same packet

sizes. Next, a series of WBest sessions with the default packet size (1460 bytes) and

different packet size crossing/contending traffic (case 0 and 1) are executed to discover the

impact of packet sizes of crossing/contending traffic. For these packet size evaluations, we

vary the packet sizes of crossing/contending traffic from 300 bytes to 1460 bytes in a step

of 300 bytes. To ensure comparability across different packet sizes, we changes the packet

rate for each packet size to keep a equal amount of contending/crossing traffic of 4.6 Mbps.

That is, for small packet sizes, the packet sending rate is increased to achieve the same
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amount of traffic in term of bits per second. CBR throughput with the same packet size

as the probing traffic is measured to compare with the estimation results. Similar to these

fifteen cases, the test for each packet size are repeat 30 times and the median and quartiles

reported for all runs.

5.4.2 Metrics for Performance Evaluation

We use three performance metrics, accuracy, convergence time and intrusiveness to evaluate

the bandwidth estimation tools in wireless networks.

To evaluate estimation accuracy, the true available bandwidth of the wireless network

under different configurations is needed – referred to here as the ground truth. In wired

networks, the ground truth can be obtained from the network setup or measurement on

the router. However, in wireless networks, it is difficult to get the actual ground truth

due to the dynamic wireless network conditions. First, wireless network capacity is not

constant due to the impact of rate adaptation, thus the available bandwidth cannot be

simply computed as in wired networks by subtracting the cross traffic from the capacity.

Moreover, the high and volatile overhead in wireless networks makes it difficult to infer the

available bandwidth from the amount of crossing and contending traffic. This is because the

overhead varies due to both the amount of contending traffic and the wireless conditions.

For example, the same amount of contending traffic could result in a higher bandwidth

reduction in a fading channel than in an ideal channel. Finally, even though the wireless

AP could report its own channel utilization, this utilization information is insufficient to

infer the available bandwidth of the wireless network. For instance, the available bandwidth

in a wireless network is also impacted by the clients’ environment, such as the co-channel

interference from other wireless nodes that are out of the interference range of the wireless

AP or by bit errors in frame transmissions. Therefore, it is difficult to obtain the true

available bandwidth directly from network setup or by measuring utilization on the AP in

wireless networks.

In our evaluation, the ground truth of the available bandwidth is approximated by the
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downstream throughput of a single saturated CBR UDP flow with a packet size of the

Maximum Transmission Unit (MTU) for each case tested. However, using CBR to approx-

imate ground truth may include errors for some cases. For the ideal case and the cases

with inelastic UDP crossing traffic, the CBR throughput provides a close approximation to

the ground truth of the available bandwidth because there is no contending overhead. For

the cases with UDP crossing and contending traffic in a non-saturated wireless network,

the approximated ground truth could be slightly higher than the true available band-

width because the CBR traffic may actively take bandwidth away from the contending

traffic. However, the CBR throughput can still be considered as a close approximation of

the ground truth for these cases because these errors caused by contending are relatively

small. When there are multiple UDP contending sources that saturate the wireless net-

work, the heavy contending effect could trigger rate adaptation and the CBR throughput

could be lower than the true available bandwidth. Therefore the CBR throughput does

not accurately represent the ground truth, and we mark the ground truth of these cases as

unknown, such as case 6 where the CBR traffic is contending with two other UDP traffic

sources. The setup of case 6 is analyzed in Section 5.4.3 in detail. Finally, for cases with

TCP crossing and contending traffic, the CBR throughput does not represent the ground

truth because TCP traffic reduces its sending rate in response to packet losses and delay

due to the queuing and contending in wireless networks. Since the nature of TCP bulk

transfer is to expand to use all available bandwidth in the network, we approximate the

ground truth for these cases with TCP crossing/contending traffic as zero. In summary, the

accuracy is evaluated by comparing the estimated available bandwidth to the ground truth,

which is approximated by CBR throughput (except case 6, which is marked as unknown),

or zero for the cases with TCP crossing/contending traffic.

Convergence time is the total time used by the tool to complete an estimation. IGI/PTR,

pathload and WBest report their convergence times upon completion. The convergence

time of pathChirp is measured based on the definition of convergence as discussed in Sec-

tion 5.4.1. Even though WBest is not a converging-based tool, we use convergence time to
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denote the total estimation time used to complete one WBest estimation.

Intrusiveness can be measured by the number of bytes or by the data rate relative to the

available bandwidth. The measurement of number of bytes provides the total intrusiveness

during the estimation sessions, while the measurement of data rate provides the relative

bursty intrusiveness of the tools. Streaming applications are more sensitive to the total

intrusiveness than the bursty intrusiveness because of the usage of a playout buffer, which

can smooth bursty intrusiveness. Therefore, to gauge the applicability of the bandwidth

estimation tools for streaming applications in wireless networks, we use the total number

of bytes sent into the network as the measure of intrusiveness.

5.4.3 Discussion on Experiment Setup

This section provides additional information about evaluation case 6, 13 and 14. As dis-

cussed in Section 5.5, case 6 with 2 UDP contending traffic sources experiences the impact

of rate adaptation. While it depends upon the implementation of the rate adaptation algo-

rithm, it is a normal behavior that wireless connections reduce the data rate upon multiple

transmission failures, which could be caused by either low signal strength, high BER or

contention. The rate adaptation triggered by contending effects may reduce the wireless

network performance, which is also demonstrated in research [156]. To describe the rate

adaptation behaviors of the clients and AP, we collect and analyze data from the wireless

AP log and the packets captured on the clients. Figure 5.10 and Figure 5.11 show that

both the clients and AP are involved in rate adaptation in a typical run of case 6. The AP

log also denotes that the AP has a high MAC layer retry rate of more than 20%. The data

rate of the retried frames are shown in Figure 5.12, which denotes that the MAC layer re-

tries involved in rate adaptation. Typical throughput measured at the clients also confirm

the impact due to rate adaptation as shown in Figure 5.13. As shown in Figure 5.13, the

throughput of the UDP crossing traffic decreases because of the rate adaptation and MAC

layer retries caused by contending effects from the two UDP contending traffic, starting at

80 seconds for this session.
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Figure 5.10: Typical Clients’ Data Rate for Case 6 (Two Contending UDP Traffic)
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Figure 5.11: Typical AP’s Data Rate for Case 6 (Two Contending UDP Traffic)
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Evaluation case 13 is designed to test WBest under rate adaptation conditions. As

discussed in Section 5.4, the rate adaptation is observed by a wireless sniffer. However,

to show the impact of rate adaptation on packet delay, which could impact accuracy of

delay-based bandwidth estimation, we show the RTT measured by ping with 64 byte and

1460 byte packets in Figure 5.14. Fewer than 10% of 64 byte packets and 20% for 1460

byte packets have a large RTT in good wireless conditions. While for the bad conditions, in

which the data rate is adapted to the channel condition, more than 30% of 64 byte packets

and 40% of the 1460 byte packets have a large RTT. The delay changes under the rate

adaptation condition could potentially reduce the accuracy of all bandwidth estimation

tools. For example, the packet delay or dispersion may unexpectedly increase due to the

rate adaptation, thus impacting the convergence decision of the delay or dispersion based

tools. Moreover, as discussed in Sections 2.2 and 4.2, the rate adaptation behavior varies

due to not only the vendor-specific adaptation algorithms, but also due to the environmen-

tal conditions, such as the room composition or indoor/outdoor setups. This could further

increase the uncertainties for these convergence algorithms using delay or rate measure-

ments. More estimation samples can reduce the impact of rate adaptation and results in a

long term average of the available bandwidth, such as the large number of probing packets

being used in pathload. WBest does not use the increases in delay to converge to available

bandwidth. Instead, it statistically captures the average dispersion changes between the

effective capacity and achievable throughput during the estimation. Therefore WBest re-

flects the available bandwidth during the measured period and suffers less from the impact

of rate adaptations in wireless networks than do other bandwidth estimation techniques

that converge. However, WBest may result in large variances between estimations due to

the relative short sampling period and small number of samples.

Evaluation case 14 is designed to test WBest under power saving mode (PSM). The

delay in PSM is impacted by both the AP queuing delay and the sleeping delay, which is

the time that the packet is being buffered at the AP while the client is in sleeping mode.

Figure 5.15 shows the RTT and loss rate changes as the amount traffic load increases. As
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Figure 5.14: Ping Result for Case 13 (Wireless Rate Adaptation)

the amount of crossing traffic increases, the RTT is reduced because the more traffic in

the network, the longer the client stays awake. This results in a reduced delay caused by

the sleep mode. However, as the crossing traffic load increases to close to the effective

capacity, the AP queue fills up, which yields a higher packet loss rate and an increased

queuing delay. This shows that for PSM mode, a higher crossing traffic is not necessary

to result in a higher delay. Therefore, PSM mode may potentially impact the bandwidth

estimation tools based on the characterization of an increase in delay, such as pathload

and PathChirp. WBest does not relied on the increase in delay to converge, and it always

probes at the effective capacity to keep the client in awake mode. Therefore, WBest is not

impacted by the PSM mode.

5.4.4 Accurate Sending Rate Control in WBest

We implemented WBest in Linux and evaluated it in our IEEE 802.11 wireless testbed.

The Linux system provides timers with millisecond (sleep) and microsecond (usleep and

select) resolution timers. However, these timers may not satisfy the required resolution to

control accurate sending rates. Therefore, we implement a busy-waiting timer using get-

timeofday to provide a microsecond resolution timer for cases requiring a high sending rate.
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Figure 5.15: Ping Result for Case 14 (PSM Case)

Even though the busy-waiting method may increase the CPU usage of the server during

measurement, the impact caused by this short measurement duration is not significant,

especially when the sending hosts of WBest are usually on high performance, multiproces-

sor servers. The microsecond resolution timer together with the select functions provide a

reasonable sending rate control for WBest. Figure 5.16 shows an evaluation of the sending

rate control mechanism of WBest. Each data point depicts the average rate of 100 packets

with packet sizes of 1460 bytes sending from wbestserver, which is a Pentinum 4 3.0 GHz

computer with 512 Mbytes RAM. The mean sending rate and the confidence interval show

that the rate control mechanism works as expected in that the real sending rate equals

the requested sending rate with a small confidence interval. Also, the CPU usage does not

have a noticeable increase when WBest is sending at the rate of 35 Mbps on wbestserver,

where 35 Mbps is about the maximum effective throughput of IEEE 802.11g working at

54 Mbps link data rate with a packet size of 1460 Bytes.
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Figure 5.16: Evaluation of Sending Rate Control Mechanism in WBest

5.5 Analysis

5.5.1 Data Collected

For each of the fifteen test cases, Table 5.2 gives the median estimated available bandwidth

for 30 evaluations runs of each of the four bandwidth estimation tools. The ‘ground truth’

column provides the true available bandwidth, approximated from the measured CBR UDP

throughput with a packet size of 1500 bytes or set to zero if the specific test case includes

a TCP bulk transfer as described in Section 5.4.

For Case 6, as discussed in Section 5.4.3, the UDP traffic from the two contending

clients causes the AP and the clients to use rate adaptation even with good RSSI values.

While it is normal for rate adaptation to be triggered by high contention for the wireless

channel, the saturated CBR throughput of 9.29 MBps for case 6 does not represent ground

truth because higher throughput can be obtained with a lower offered CBR rate, as could

be the case with the bandwidth estimation tools. Thus, for case 6 the ground truth is

marked as unknown. In general, for all other cases in Table 5.2, WBest provides the most

accurate estimation of the available bandwidth compared to the other three bandwidth
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estimation techniques.

In addition to the accuracy, the intrusiveness and convergence time is recorded for each

test case. The intrusiveness is defined as the total bytes sent by each tool during estimation

and the convergence time is the time spent by each tool to arrive at a final bandwidth

estimation result in each estimation. Table 5.3 and Table 5.4 provide the median values

for intrusiveness and convergence times over 30 runs for all fifteen test cases, respectively.

WBest yields the lowest intrusiveness and convergence time in every case.

Table 5.2: Estimated Available Bandwidth (Median, in Mbps).

Case: Remark IGI/PTR PathChirp Pathload WBest Ground truth

0: Idle channel 8.11 30.15 6.78 28.47 28.94

1: UDP crossing 8.74 28.89 6.81 23.24 24.39

2: UDP contending 10.06 27.59 6.91 15.76 20.52

3: TCP traffic 1.92 5.00 1.95 1.01 0.00

4: TCP traffic 1.12 14.50 1.69 0.00 0.00

5: UDP crossing 9.99 26.91 7.07 22.87 24.50

6: UDP contending 9.62 26.98 6.78 14.56 -

7: TCP traffic 1.48 5.00 1.10 0.00 0.00

8: TCP traffic 0.66 11.97 0.92 0.00 0.00

9: Multiple TCP/UDP 6.89 25.60 6.47 13.26 16.26

10: Multiple TCP/UDP 0.67 5.72 0.99 0.00 0.00

11: Multiple TCP/UDP 0.59 9.95 0.48 0.00 0.00

12: Multiple TCP/UDP 0.77 12.73 1.06 0.00 0.00

13: Rate Adaptation 5.18 16.79 5.99 13.99 15.26

14: PSM 3.62 10.82 0.87 8.36 8.19

The detailed results of each experiment cases are presented as box-and-whisker plots15

as shown in Figure 5.17 to Figure 5.31. However, detailed analyses are based on the most

representative categorization of these cases, namely: idle channel (case 0), UDP crossing

traffic (cases 1 and 5), UDP contending traffic (cases 2 and 6), TCP crossing/contending

traffic (cases 3, 4, 7, and 8), multiple crossing/contending sources and mixed protocols

(cases 9 to 12), rate adaptation (case 13), and power saving mode (case 14). In addition

15In a box-and-whisker plot, the ends of the box are the upper and lower quartiles, the horizontal line
inside the box is the median and the two lines (whiskers) outside the box extend to the 10 and 90%-tile of
the observations.
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Table 5.3: Intrusiveness (Median, in MBytes)

Case: Remark IGI/PTR PathChirp Pathload WBest

0: Idle channel 0.56 0.45 1.18 0.13

1: UDP crossing 0.56 0.45 1.55 0.13

2: UDP contending 0.47 0.45 1.53 0.13

3: TCP traffic 2.54 0.46 1.22 0.13

4: TCP traffic 1.51 0.45 0.86 0.13

5: UDP crossing 0.56 0.45 1.67 0.13

6: UDP contending 0.47 0.45 1.66 0.13

7: TCP traffic 3.11 0.46 0.95 0.13

8: TCP traffic 1.98 0.46 0.98 0.13

9: Multiple TCP/UDP 0.66 0.45 1.57 0.13

10: Multiple TCP/UDP 2.17 0.46 1.24 0.13

11: Multiple TCP/UDP 1.79 0.49 0.53 0.13

12: Multiple TCP/UDP 2.17 0.46 1.46 0.13

13: Rate Adaptation 0.66 0.45 1.66 0.13

14: PSM 0.38 0.53 1.02 0.13

Table 5.4: Convergence Time (Median, in seconds)

Case: Remark IGI/PTR PathChirp Pathload WBest

0: Idle channel 1.55 17.43 14.88 0.41

1: UDP crossing 1.42 17.58 20.22 0.42

2: UDP contending 1.29 17.62 17.04 0.42

3: TCP traffic 17.21 17.24 42.06 0.67

4: TCP traffic 7.86 17.22 32.16 0.44

5: UDP crossing 1.35 17.68 19.24 0.42

6: UDP contending 1.30 17.79 17.33 0.42

7: TCP traffic 26.69 18.41 53.90 0.70

8: TCP traffic 19.57 17.89 55.02 0.51

9: Multiple TCP/UDP 1.60 18.10 18.42 0.42

10: Multiple TCP/UDP 23.30 17.15 80.86 0.98

11: Multiple TCP/UDP 28.37 18.27 30.24 0.59

12: Multiple TCP/UDP 15.59 17.45 74.94 0.44

13: Rate Adaptation 1.86 17.48 23.73 0.42

14: PSM 5.43 17.64 84.94 1.03
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to these case analysis, the impact of packet sizes, the estimated standard deviations in

available bandwidth and the consistency are also analyzed in this section.

5.5.2 Case Analysis

Idle Channel (Case 0)

Figure 5.17 depicts the estimations, intrusiveness and convergence times for the idle chan-

nel (case 0). When the wireless channel is idle, the available bandwidth and the effective

capacity are the same. The measured ground truth throughput shows the available band-

width/effective capacity of 28.94 Mbps, close to the maximum throughput of 31.4 Mbps

mentioned in the Cisco documentation on AP16. Figure 5.17 shows that IGI/PTR and

pathload significantly under-estimate the available bandwidth. A possible reason is that the

packet sizes used during probing these two tools are small. IGI/PTR uses a 500 byte packet

and pathload uses a 200 byte packet. The overhead caused by the sizes of probing packets

has been shown to be larger in wireless networks than in wired networks [90, 158, 161], so the

maximum throughput will be lower for these smaller packet sizes. Since with a 500 byte or

200 byte packet, the maximum throughput of the wireless network is around 19.2 Mbps or

11.4 Mbps, respectively, even with the consideration of smaller packet sizes, IGI/PTR and

pathload still significantly underestimate the available bandwidth. PathChirp and WBest

get an available bandwidth estimate close to the ground truth. However, pathChirp tends

to overestimate the available bandwidth with a large variance in the estimation. Pathload

and pathChirp both have long convergence times, because both apply a search algorithm

to adapt the probing rate during the estimations.

UDP Crossing Traffic (Cases 1 and 5)

Figure 5.18 depicts the estimations, intrusiveness and convergence times when there is one

UDP crossing traffic source (case 1). WBest performs better than the other tools with low

intrusiveness and convergence times and accurate estimated results. The under-estimation

16Cisco AVVID Wireless LAN Design. http://www.cisco.com/en/US/netsol/

131



CHAPTER 5. WBEST: WIRELESS BANDWIDTH ESTIMATION TOOL

0

5

10

15

20

25

30

35

40

Ground truthWBestPathloadPathChirpIGI/PTR

A
va

ila
bl

e 
ba

nd
w

id
th

 (
M

bp
s)

(a) Estimated available bandwidth
(Mbps)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

WBestPathloadPathChirpIGI/PTR

T
ot

al
 in

tr
us

io
n 

(M
B

yt
es

)

(b) Intrusiveness (MBytes)

0

5

10

15

20

25

WBestPathloadPathChirpIGI/PTR

C
on

ve
rg

en
ce

 ti
m

e 
(s

ec
)

(c) Convergence Time (Seconds)

Figure 5.17: Summary Results for Evaluation Case 0 (Idle Channel).
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Figure 5.18: Summary Results for Evaluation Case 1 (One UDP Crossing Traffic of 4.6
Mbps).
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Figure 5.19: Summary Results for Evaluation Case 2 (One UDP Contending Traffic of 4.6
Mbps).
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Figure 5.20: Summary Results for Evaluation Case 3 (One TCP Crossing Traffic)

caused by the smaller packet sizes used in IGI/PTR and pathload shows that they are

insensitive to crossing traffic, as well. Pathload, in particular, has large intrusiveness and

convergence times.

Figure 5.22 depicts the estimations, intrusiveness and convergence times when there

are two UDP crossing traffic sources (case 5). These results are similar to the single UDP

crossing traffic source. WBest performs better than other tools with multiple sources of

UDP crossing traffic.

UDP Contending Traffic (Cases 2 and 6)

Figure 5.19 shows results when there is one UDP contending traffic source (case 2). WBest

still performs well in the presence of contending traffic, however the variance is larger than

in the case of crossing traffic (case 1), because contending traffic increases the variance in
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Figure 5.21: Summary Results for Evaluation Case 4 (One TCP Contending Traffic)
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Figure 5.22: Summary Results for Evaluation Case 5 (Two UDP Crossing Traffic of 2.3
Mbps each)
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Figure 5.23: Summary Results for Evaluation Case 6 (Two UDP Contending Traffic of 2.3
Mbps each)
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Figure 5.24: Summary Results for Evaluation Case 7 (Two TCP Crossing Traffic)
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Figure 5.25: Summary Results for Evaluation Case 8 (Two TCP Contending Traffic)
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Figure 5.26: Summary Results for Evaluation Case 9 (One UDP Crossing and One UDP
Contending Traffic of 2.3 Mbps Each)
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Figure 5.27: Summary Results for Evaluation Case 10 (One TCP Crossing and One TCP
Contending Traffic)
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Figure 5.28: Summary Results for Evaluation Case 11 (One UDP Crossing of 2.3 Mbps
and One TCP Contending Traffic)
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Figure 5.29: Summary Results for Evaluation Case 12 (One TCP Crossing and One UDP
Contending Traffic of 2.3 Mbps)
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Figure 5.30: Summary Results for Evaluation Case 13 (Wireless Rate Adaptation, Range
1-48 Mbps).
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Figure 5.31: Summary Results for Evaluation Case 14 (Power Saving Mode).

delay in accessing the wireless channel. Since the sampling period is smaller in WBest than

in other tools, the variance is amortized by other tools, such as pathload. Again, comparing

case 2 with with case 0 and 1, IGI/PTR and pathload are not sensitive to contending traffic.

Figure 5.23 depicts the experiment results of two UDP contending traffic sources. Sim-

ilar to the single UDP contending traffic case (case 2), WBest has a better performance

than other tools. However, as discussed in Section 5.4.3 and 5.5.1, multiple UDP con-

tending sources saturate the wireless networks. This causes unexpected rate adaptations

and reduces the ground truth measurements. The results from Figure 5.19 and 5.23 show

that WBest is sensitive to contending traffic and the number of contending sources, which

confirms with the packet dispersion model discussed in Chapter 4.
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TCP Crossing/Contending Traffic (Cases 3, 4, 7, and 8)

Figures 5.20, 5.21, 5.24, 5.25 show the results of experiment cases with single or multiple

sources of TCP crossing/contending traffic. With TCP crossing/contending traffic sources,

the available bandwidth is close to zero in theory because the TCP protocol is designed

to use the maximum available bandwidth. IGI/PTR, pathload and WBest can successfully

estimate the low available bandwidth that is close to zero, while PathChirp tends to strongly

overestimate the available bandwidth. Moreover, compared to the simple cases, such as

case 0, 1 and 2, IGI/PTR shows a 3 to 10 times increase in intrusiveness and convergence

times. Similarly, pathload also shows a significant increase in convergence time. For all

cases with TCP traffic, WBest performs the most accurate estimation with consistent

intrusiveness and convergence times in all cases with TCP crossing/contending traffic.

Complex TCP/UDP crossing/contending Traffic (Cases 9 to 12)

Figures 5.26, 5.27, 5.28, 5.29 show the experiments with multiple crossing and contending

traffics of both TCP and UDP protocols. Similar to the simple crossing/contending cases,

WBest performs better than the other tools with low intrusiveness and convergence times

and accurate estimated results. For these complex cases, both IGI/PTR and pathload

show noticeably long convergence times that are as high as 28 seconds and 80 seconds,

respectively.

Wireless Rate Adaptation (Case 13)

Figure 5.30 shows results for wireless rate adaptation (case 13), where the the packet

transmision rate and channel access delay vary as in Figure 5.7. With wireless rate adap-

tation, all the bandwidth estimation tools produce a larger variance than when there is

no rate adaptation. However, pathload has a lower variance than all other tools because

of its large number of probing packets and searching algorithm. Since WBest does not

use the increases in delay to converge to available bandwidth, it mitigates the impacts of

rate adaptation on packet delay. Therefore, WBest reflects the accurate available band-
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width during the measured period. Due to the short sampling period, WBest results in

a relative large variance because it captures the oscillation in available bandwidth. The

median of WBest estimation shows that WBest performs the most accurate estimations

with consistent intrusiveness and convergence times in the rate adaptation conditions.

Power saving mode (Case 14)

Figure 5.31 depicts the estimations, intrusiveness and convergence times of the power saving

channel. Power saving mode buffers the probing packets at the AP during the client sleep

period and sends them as a burst when the client wakes up, greatly impacting all the tools

that rely on the delay for estimating bandwidth. For example, as shown in Figure 5.31(c),

pathload results in much longer convergence times of up to 85 seconds due to variance

caused by power saving mode. However, higher probing rates, such as the rates equal to

the effective capacity used in WBest, prevent the client from going into power saving mode,

thus result in a more accurate estimation. The available bandwidth in power saving mode

is much lower than that in the idle case because of the overhead of power saving polling

packets exchanged in the power management algorithms.

Summary of Case Analysis

To provide summary analysis, the estimation error of each case is computed and the distri-

butions of the error versus the convergence time and error versus intrusiveness are drawn

in Figure 5.32 and 5.33, respectively. For these figures, on the x-axis, a negative error

represents an under-estimation and a positive error represents an over-estimation; and on

the y-axis, lower numbers are better. Therefore, good, fast estimates lie in the bottom

center of these two figures.

IGI/PTR tends to greatly under-estimate the available bandwidth with UDP crossing or

contending traffic and even with an idle channel. IGI/PTR has widely variable convergence

times and intrusiveness, varying by a factor of 20 times for the different cases. PathChirp

tends to over-estimate the available bandwidth in all cases. PathChirp has a consistent
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Figure 5.32: Summary of All Experiments – Convergence Time versus Error.
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Figure 5.33: Summary of All Experiments – Intrusiveness versus Error.
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convergence time of around 17 seconds and a consistent intrusiveness of about 400 KBytes.

Pathload tends to greatly under-estimate the available bandwidth in most wireless traffic

cases including: idle channel, UDP crossing or contending traffic, and rate adaptation.

Pathload has the longest overall convergence time, taking up to 85 seconds in some cases

and even fails to converge in 100 seconds for some crossing and contending cases. WBest

generally provides the most accurate estimations compared with the other tools. In most

cases, WBest converges in less than half a second, and has a nearly constant intrusiveness

of 130 KBytes.

Table 5.5 summarizes the average and standard deviation of relative errors in available

bandwidth estimation, intrusiveness, and convergence time for all cases evaluated for each

tool. The errors are computed using Equation 5.15. For those cases with no available

bandwidth, the errors are computed for the estimated crossing/contending effects, which is

defined as Ce−A. The summary shows that compared with other tools, WBest reduce the

average relative error by 82% to 86%, the intrusiveness by 70% to 90%, and the convergence

time by 95% to 99%.

Table 5.5: Mean and Standard Deviation of Relative Error (ratio), Intrusiveness (MBytes)
and Convergence Time (seconds) of All Evaluated Cases

IGI/PTR PathChirp Pathload WBest

Metrics mean stdev mean stdev mean stdev mean stdev

Relative Error 0.32 0.30 0.28 0.16 0.37 0.35 0.05 0.07

Intrusiveness 1.31 0.92 0.46 0.02 1.27 0.35 0.13 0.00

Convergence Time 10.29 10.35 17.66 0.37 39.00 24.93 0.55 0.21

For wireless networks, the accuracy of IGI/PTR, pathChirp and pathload is poor because

each approach relies on delay changes to measure available bandwidth. In wireless networks

queuing delay is not the only source of changes in delay. Wireless contention, MAC layer

retries and rate adaptation can all result in delay changes to different extents. These delay

changes disturb the searching algorithm for these tools and yield inaccurate results and

often increase the convergence times and intrusiveness. Moreover, with higher packet loss
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rates in wireless networks, some estimation techniques discard probes impacted by loss to

improve accuracy, but this also increases convergence time and intrusiveness.

WBest estimates the available bandwidth without using searching algorithms which

means a low, consistent convergence times and intrusiveness. Furthermore, WBest does

not depend on delay measurements to measure the available bandwidth. Instead, WBest

measures the available bandwidth in terms of fraction of the effective capacity by measuring

the relative changes in packet dispersion between two steps. This makes WBest robust even

when packet dispersion is impacted by the wireless conditions. In addition, WBest provides

a broader range of information on the network than other tools, providing effective capacity,

achievable throughput and variance of available bandwidth.

5.5.3 Impacts of Packet Sizes

As discussed in the analysis of the idle channel (Case 0), packet size has a significant

impact on the bandwidth measurements. We evaluate the impact of packet size for both

the WBest probing traffic and the crossing/contending traffic. Figure 5.34 summarizes the

results of case 0 with different probing packet sizes. With the configurable probing packet

sizes, WBest can perform accurate available bandwidth estimation that is close to the

ground truth with the same packet size. This suggests that WBest should be configured

to use the same packet size as the application traffic to perform accurate estimations.

Figure 5.35 summarize the WBest estimations of case 1 and 2 with different packet sizes

for the crossing/contending traffic. When estimating the wireless networks using WBest

with default packet size (1460 bytes), the packet size of crossing/contending traffic can

impact the estimations of available bandwidth. Even though the crossing/contending traf-

fic has the same bit rate, the different packet sizes, thus the different packet rates, will

impact the estimation result. With high packet rates, the packet based channel access

increases the packet dispersion time, thus resulting in lower available bandwidth estima-

tions. The ground truths measured by CBR throughput with the same packet size as the

WBest probing traffic are also shown in Figure 5.35. However, the ground truths are less
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Figure 5.34: WBest Bandwidth Estimation versus Probing Packet Sizes

sensitive to the packet sizes of crossing/contending traffic than is WBest. This is because

the probability-based fairness in IEEE 802.11 wireless networks benefits traffic with large

packet sizes in terms of throughput. As the packet rate increases, the CBR traffic can keep

a higher throughput by unfairly competing with the crossing/contending traffic with small

packet sizes. Therefore, the CBR throughput does not represent the ground truth of avail-

able bandwidth, but instead represents the achievable throughput. In these experiments,

WBest provides a more close-to-real estimation of the available bandwidth than the CBR

throughput. As defined in Section 3.2, the available bandwidth estimated by WBest does

not include the bandwidth that is actively taken from crossing/contending traffic. Since

WBest takes the competing issues into consideration, WBest can be used to estimate the

available bandwidth with crossing/contending traffics of different packet sizes, thus pro-

viding the available bandwidth that can be used by applications without hurting existing

traffic.

5.5.4 Consistency Analysis

The analysis for each case shows that WBest can consistently provide accurate, low in-

trusiveness and fast convergence time estimations for different wireless network conditions.
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Figure 5.35: WBest Bandwidth Estimation versus Crossing/Contending Packet Sizes

However, to further evaluate the robustness of WBest, we analyze the consistency of WBest

estimations within each case. That is, we compute the error of each run relative to the

median of all runs in that case, which is computed based on Equation 5.15. Figure 5.36

and 5.37 depict the cumulative distribution of the relative error in effective capacity and

available bandwidth estimation for all cases evaluated. For the cases with no available

bandwidth, the error is computed for estimated crossing/contending effects. Both the ef-

fective capacity and available bandwidth have consistent estimations according to the CDF

shown in the figures.

5.5.5 Estimating the Standard Deviation in Available Bandwidth

The box-and-whisker plot of estimated standard deviations from all cases is shown in

Figure 5.38. In addition, we plot the median of the measured standard deviations in

available bandwidth in the same figure. The measured standard deviations are based on

the available bandwidth calculated from all packet dispersion samples using Equation 5.8

for each case. As shown in Figure 5.38, WBest estimates the standard deviation in available

bandwidth close to the measured standard deviations. However, in the environments with

high contention, such as case 11 with contending UDP traffic and crossing TCP traffic,
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WBest may overestimate the standard deviations of available bandwidth.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 A

va
ila

bl
e 

B
an

dw
id

th
 (

M
bp

s)

Case Number

WBest Estimated
Measured
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5.6 Summary

This chapter presents WBest, a new bandwidth estimation tool for wireless networks,

designed to provide accurate bandwidth estimation in a short amount of time and without

excessively intruding on existing traffic. One advantage of WBest over existing tools is

that WBest does not depend upon search algorithms to measure available bandwidth.

Instead, WBest statistically measures the relative available fraction of the effective capacity,

mitigating estimation delay and the impact of wireless channel errors. WBest is compared

with other popular available bandwidth estimation tools in a wireless testbed under a

variety of wireless and network conditions. The evaluations show that on average, WBest

can effectively reduce the average relative error by 82% to 86%, the intrusiveness by 70%

to 90%, and the convergence time by 95% to 99%. The following conclusions can be drawn:

1. Current bandwidth estimation tools are signficantly impacted by wireless network

conditions, such as contention from other traffic and rate adaptation. This results in

inaccurate estimates and high and varying convergence times and intrusiveness. This
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makes current tools generally impractical for applications running over a wireless

link, such as streaming media, that require fast, accurate, non-intrusive bandwidth

estimates.

2. WBest consistently provides fast available bandwidth estimation, with overall more

accurate estimations and lower intrusiveness compared with other tools over all con-

ditions evaluated.

3. WBest satisfies the requirement of a bandwidth estimation tool for wireless mul-

timedia streaming applications, providing low convergence time, low intrusiveness

and robustness. For example, a bandwidth estimation tool must provide a conver-

gence time less than the initial buffer time, e.g. 5 seconds for Windows Media Player.

WBest has consistent convergence times regardless of the network conditions because

it estimate available bandwidth with a constant intrusiveness without changing the

probing rate or discarding estimation during packet losses.

Chapter 6 applies WBest to multimedia streaming applications to improve the perfor-

mance of streaming rate selection and buffer optimization in wireless networks.
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Chapter 6

BROS: Buffer and Rate

Optimization for Streaming

This chapter presents the Buffer and Rate Optimization for Streaming (BROS) algorithm to

improve streaming performance. BROS uses Wireless Bandwidth Estimation Tool (WBest)

as discussed in Chapter 5 and models the relationship between buffer size, streaming data

rate and available bandwidth distribution. BROS optimizes the streaming data rate and

initial buffer size, resulting in reduced frame losses and buffer underflow events, while

keeping a small initial buffer delay. Section 6.1 gives a brief overview of the streaming

rate selection and buffer optimization in wireless networks. Section 6.2 presents the buffer

model based on the available bandwidth distribution. Section 6.3 discusses the BROS

algorithm and related issues. Section 6.4 describes the experimental setup. Section 6.5

analyzes the experimental results. Finally, Section 6.6 provides conclusions and possible

future work.

6.1 Overview

In best effort networks, streaming media applications use streaming rate selection and

playout buffers to reduce degradations in performance caused by changes in the available
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bandwidth along the path of the streaming flow. However, most streaming rate selection

and buffer optimization algorithms are developed for wired networks and can perform

poorly over wireless networks. As discussed in Chapter 3, wireless networks often provide

rate adaptation, retransmissions, Forward Error Correction (FEC), and channel access

control, and other behaviors that are unexpected in wired networks, leading to significant

degradation in the effectiveness of streaming rate selection and playout buffer techniques.

Based on a Markov Chain model of the buffer size, streaming data rate and avail-

able bandwidth distribution, we develop the Buffer and Rate Optimization for Streaming

(BROS) algorithm to concurrently optimize the streaming rate selection and the playout

buffer size. BROS applies a low-cost bandwidth estimation approach, the Wireless Band-

width Estimation Tool (WBest) presented in Chapter 5, at the application layer to provide

bandwidth information for the bottleneck wireless network. BROS is incorporated into

the Emulated Streaming (EmuS) client-server system in Linux and evaluated on an IEEE

802.11 wireless testbed over a variety of wireless conditions that include an idle channel,

channels with contending and crossing traffic, and rate adaptation during poor connection

conditions. The evaluation shows that BROS can effectively optimize the streaming rate

and initial buffer size based on wireless network bandwidth conditions, and achieve better

performance than static rate selection and static or jitter removal buffers. Analysis indi-

cates that BROS can reduce buffer underflow probability by nearly 100%, frame lost rate

by about 97% and the total buffer delay from 78% to 87%, compared with static and jitter

removal approaches.

6.2 Model

6.2.1 Model Definitions and Assumptions

Figure 6.1 depicts a typical client-side playout buffer system with a buffer size of N frames,

arrival rate λ, and playout rate µ. Based on the buffer occupation, we create the Markov

Model of N + 1 states as shown in Figure 6.2. State N is defined as having a buffer with
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N frames, where state 0 is a buffer underflow. The matrix P in Equation 6.1 presents the

transition probability of states i and j, where 0 ≤ i, j ≤ N .

N (Video frames)

Playout buffer

O P

Figure 6.1: Buffer Model
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. (6.1)

Most of the previously developed playout buffer models use a Poisson arrival process [60,

61, 73]. Poisson arrivals can be used as a lower bound on system performance when

analyzing the buffer behavior [62]. However, for real streaming applications in wireless

networks, the buffer space used to smooth interarrival time variance is small relative to

the buffer space needed to smooth the variance in available bandwidth. In networks with

a large available bandwidth variance, the expected arrival rate of the streaming packets is

impacted by the available bandwidth. For example, if the available bandwidth is less than

the streaming rate, the expected arrival rate at the playout buffer will also be less than the

streaming rate. Therefore, the transition probability model is based on both the available

bandwidth and the streaming rate.

To define the probability matrix, the following assumptions are made. First, as dis-

cussed in [64, 171], packet loss is modeled as a reduction in available bandwidth. Given

a playout buffer of a few seconds, a lost packet will have multiple retransmission oppor-

tunities. For typical inter-packet loss rates of less than 20% [172], the probability that a

packet is received after a few retransmission attempts is nearly one [64]. Thus, as shown
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in Figure 6.3, lost packets are treated as delayed due to insufficient bandwidth. When

bandwidth does become available, delayed packets are sent in bursts at a rate equal to

the available bandwidth until the buffer is filled again. Second, once a streaming rate is

selected, one can model the multimedia content as a constant data rate R and a constant

frame rate µ for both streaming and decoding. While frame sizes do depend upon the

encoding and type of encoded frame, such as I, B, and P frames in MPEG encoding, a

constant frame size S = R/µ is used to simplify our model. For a real streaming system,

the constant frame size assumption can be accommodated by applying an additional buffer

to smooth out the variable frame sizes.

Therefore, considering the constraint of the available bandwidth on the streaming traf-

fic, the frame arrival rate λi in frame per seconds is:

λi =



























Ai/S , Ai ≤ R;

Ai/S , Ai > R, i < N ;

µ , Ai > R, i = N.

(6.2)

where Ai is the available bandwidth in bits per seconds at state i. Assuming a constant

arrival rate λi within each frame time t = 1/µ, the expected number of frames ni that

arrive in each frame slot can be approximated by ni = λi/µ. This facilitates a model of the

transition probability between states based on the distribution of the available bandwidth

A. For example, given the Cumulative Distribution Function (CDF) FA(·) of the available

bandwidth, the probability of 1 < ni ≤ 2 can be determined by FA(Ai = 2R)−FA(Ai = R),

which is the transition probability from state i to i + 1, where Ai > R, i < N . Similarly,

the transition probability matrix can be defined for the buffer model, henceforth referred

to as the as the full model:
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pi,j =



































































































FA[(j − i + 1)R] − FA[(j − i)R] , 0 ≤ i < j < N,

j − i ≤ Ai/R;

1 − FA[(j − i)R] , 0 ≤ i < j, j = N,

j − i ≤ Ai/R;

1 −
∑N

j=0,j 6=i pi,j , 0 ≤ i ≤ N, j = i;

FA(R) , 0 < i ≤ N,

j = i − 1;

0 , elsewhere.

(6.3)

The steady state probability distribution of the buffer occupancies, Π = [π0, π1, . . . , πN ]

can be directly computed by solving the stationary equation Π = ΠP and
∑N

k=0 πk =

1. The probability of 0 buffer occupancy is the expected buffer underflow probability.

However, the full model characterization does not lend itself to a closed form solution, thus

it is cumbersome to use this model for real systems due to the required massive matrix

computations.

As shown in the right side of Figure 6.3, lowering the streaming rate below the average

available bandwidth reduces the buffer requirement to avoid buffer underflow. Therefore,

by focusing on situations where the multimedia streaming rate is close to the average

available bandwidth, the full model can be simplified to yield a closed form solution for the

buffer underflow probability. When Ai/R ≈ 1, then pi,i+1 ≫ pi,i+2, . . . , pi,N , the transition

matrix P can be further reduced to a simplified buffer model:

pi,j =























































1 − FA(R) , 0 ≤ i < N, j = i + 1

j − i ≤ Ai/R;

1 −
∑N

j=0,j 6=i pi,j , 0 ≤ i ≤ N, j = i;

FA(R) , 0 < i ≤ N, j = i − 1;

0 , elsewhere.

(6.4)

Therefore, the closed form solution for the simplified buffer model becomes:
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πi = γiπ0 (6.5)

where γ = (1−FA(R))/FA(R). The buffer underflow probability π0 for a given buffer size

of N frames is:

π0 =
1 − γ

1 − γ1+N
, γ 6= 1. (6.6)

A streaming system with γ ≤ 1 means streaming at a rate greater than the average avail-

able bandwidth and usually results in a high buffer underflow probability. Therefore, the

streaming rate selection algorithm selects the initial streaming rate such that γ > 1. More-

over, if a streaming application demands a upper bound on the buffer underflow in terms

of π0, γ can be computed from π0 using Equation 6.6, and the streaming data rate can be

looked up from the inverse CDF of the available bandwidth F−1
A (·) by:

R = F−1
A

(

1

γ + 1

)

. (6.7)

As discussed in [64], the mean time between buffer underflows (MTBBU) can be used

as a measure of performance for the buffer underflow event. Each discrete frame slot can

be treated as an independent Bernoulli trial with the outcome being either underflow, or

no underflow with the probability π0. Thus, the MTBBU, MU , is distributed geometrically

over the succession of frame slots as:

MU =

(

1

π0

)

·

(

1

µ · 60

)

(6.8)

where µ is the playout rate in frames per second and 60 is the number of seconds in a

minute. Given MU and the CDF of the available bandwidth, Equation 6.9 is the required

buffer size N in frames:

N =

⌈

log (1 + (γ − 1)(MU · µ · 60))

log γ
− 1

⌉

(6.9)
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In practice, the minimum client side buffer, N ′, may also include an extra buffer space

required for video decoding or playback. For example, an extra buffer Bmin may be needed

for handling VBR video or encoding dependencies. This research assumes Bmin = 1, which

means only the frame that is currently being played out is considered. Equation 6.10 shows

the expression that can be used to predict the minimum buffer size in practice:

N ′ = N + Bmin = N + 1 (6.10)

6.2.2 Model Validations

To study the impact of the simplifications to the full buffer model, outputs from both the

full model and simplified model are compared. Figure 6.4 depicts the MTBBU of the full

model, which is computed using numerical matrix computations based on Equation 6.3,

and the MTBBU of the simplified model based on Equation 6.4. The CDF of the available

bandwidth is based on the trace of 900 samples of bandwidth estimations using WBest

in a wireless testbed with dynamic rate adaptation. In all cases, the simplified model is

close to the full model, especially when the buffer size is small or the streaming rate is

close to the median available bandwidth. Moreover, for the FA(R) = 0.475 cases, the

simplified model has a lower MTBBU than does the full model due the approximation of

pi,i+1 ≫ pi,i+2, . . . , pi,N . However, this small error encourages a conservative estimate for

selecting a playout buffer size (e.g., to get the same amount of MTBBU, the simplified

model demands a slightly larger buffer size). The simplified model greatly reduces the

amount of matrix computation required over the full model.1

Our model is further validated with the EmuS system in an IEEE 802.11 wireless testbed

using the setup as discussed in Section 6.4. A 10-minute multilayer video is streamed with

a one second fixed buffer size at different streaming rates, and the MTBBUs (in minutes)

are recorded. The wireless testbed is configured with 802.11b and a poor reception sig-

1Our numerical solution computation takes about 1.5 seconds to solve the full buffer model for 300
frames.
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Figure 6.4: Comparison of Full and Simplified Buffer Models

nal strength of -89 dBm that causes MAC layer retransmissions and rate adaptation. The

available bandwidth is monitored by WBest before each run and the available bandwidth is

around 1.12 Mbps. A wireless sniffer is used to capture the rate adaptation of the wireless

network, as shown in Figure 6.5. The streaming rate, R, as a CDF of available bandwidth,

FA(R), is computed and the relationship between FA(R) and MTBBU is depicted in Fig-

ure 6.6. The MTBBU for the one second buffer is also computed based on the simplified

buffer model.

As seen in Figure 6.6, the measured results fit well with our buffer model, with the

measured and modeled curves having the same shape at nearly the same places. The

measured curve is slightly shifted to the left, which shows that for the same streaming

rate, the wireless uncertainties, such as bursty loss, result in a small MTBBU, and thus a

higher buffer underflow probability than in the model. Moreover, the measured MTBBU

for high streaming rates, such as for rates with FA(R) > 0.5, is slightly larger than the

modeled MTBBU. This is because in the streaming client-server system implemented, when

the buffer underflows, the rebuffer mechanism stops playback of the video until the buffer

is filled again, which effectively increases the buffer size for each buffer underflow and

intentionally raises the MTBBU for periods after the underflow.
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6.2.3 Model Results

The streaming buffer model can be used to estimate the minimum buffer required to achieve

a MTBBU with a given rate and known network conditions, such as the CDF of the

available bandwidth FA(·). Figure 6.7 shows the minimum buffer size required for various

selections of the streaming rate as a fraction of the available bandwidth. The higher the

streaming rate, the larger the buffer needed to achieve a desired MTBBU. Moreover, as

the streaming rate gets closer to the median of the available bandwidth, the benefits to

MTBBU for an increasing buffer size gets smaller.
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Figure 6.7: Required Buffer Size versus MTBBU

The buffer model can also be used to explore the relationship between MTBBU, buffer

size and streaming rate from a different aspect. Figure 6.8 depicts the relationship of

MTBBU and streaming rate for 4 different fixed sized buffers: 1, 3, 5 and 7 seconds. For a

giving buffer size, reducing the streaming rate decreases the MTBBU, thus providing fewer

buffer underflow events. For a modest buffer buffer size (i.e. 5 seconds), a small decrease

in the streaming rate selected results in a greatly increased MTBBU. Similarly, for a small

buffer size (i.e. 1 second), a small decrease in the streaming rate has much less effect on

the MTBBU.

Figure 6.9 shows the relationship between buffer size and streaming rate for a given
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MTBBU, a value that could be provided by the content service provider. The higher

MTBBU values are more sensitive to the buffer size as the streaming rate selected is

increased, with dramatic increases in required buffer size as the streaming rate approaches

the median (0.5, on the far right) of the available bandwidth. The ‘knee’ for the curves occur

when the streaming rate selected is around 0.485 of the available bandwidth. Streaming

rates higher than this show a marked increase in the buffer size requirements. However,

also note at the far left of the graph that streaming rates only slightly lower, around 0.4

of the available bandwidth, can have a marked decrease in the MTBBU for only a slight

(around 1 second) increase in the buffer size.

6.3 Buffer and Rate Optimization for Streaming (BROS)

6.3.1 Algorithm

With the buffer model discussed in Section 6.2, the maximum FA(R) can be estimated

given a maximum tolerable buffer size to ensure a target MTBBU, thus allowing selec-

tion of an appropriate maximum streaming rate by lookup from the inverse CDF of the

available bandwidth, R = F−1
A (·). The minimum buffer required with given streaming rate

and CDF of available bandwidth can also be estimated to ensure a target MTBBU. As

discussed in Chapter 5, WBest can be used to estimate available bandwidth distribution

FÂ(·) in wireless networks. Combining WBest and the buffer model provides Algorithm 6.1

with streaming rate selection and buffer optimization using the bandwidth estimation in-

formation.

The BROS algorithm has three stages. At line 1, the first stage uses WBest to estimate

the average and variance of the available bandwidth, which can be used to infer the distri-

bution of available bandwidth of the wireless network. Starting at line 2, the second stage

first selects the maximum affordable streaming rate, ThR, given the available bandwidth,

target MTBBU and tolerable client buffer size. The selection of ThR uses Equations 6.6-

6.10 and looks up the streaming rate from the inverse CDF of the available bandwidth. The
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Algorithm 6.1 Buffer and Rate Optimization for Streaming (BROS).

Require: Client tolerable delay: Nmax > 0
Require: Target MTBBU: MU > 0

// Perform WBest Bandwidth Estimation
1: CDF of Available Bandwidth: FÂ(·) ⇐ WBest

// Select streaming rate (R)
2: Rate Threshold: ThR ⇐ (Nmax, FÂ(·),MU )
3: for i = 0, MAX do
4: if Ri < ThR ≤ Ri+1 then
5: R ⇐ Ri

6: end if
7: end for
8: if ThR ≤ R0 then
9: Stop {Not enough bandwidth for streaming}

10: else
11: // Optimize buffer (N ′)
12: N ′ ⇐ N(MU , FÂ(Ri)) + 1
13: end if

second stage proceeds by selecting the highest encoded streaming rate Ri less than ThR, as

shown in line 5. Where i denotes the encoded level between 0 and the maximum available

encoding level. If there is no encoded streaming rate less than ThR, the algorithm exits.2

From line 10 to line 13, the third stage optimizes the buffer size based on the selected rate

R, the MTBBU, and the distribution of the available bandwidth using Equations 6.6-6.10,

which are summarized as N ′ = N(MU , FÂ(Ri)) + 1 as shown in line 12.

BROS is run at the streaming server. The streaming client typically provides the

maximum tolerable buffer size and target MTBBU when the initial connection to the

server is made. WBest is run between server and client, with the client returning the

results to the server. When the server selects the streaming rate and buffer size, this

information is conveyed back to the client and then streaming commences. The client

buffers the streaming data until the playout buffer is full and then starts playout.

2Note, this case also occurs when there is no available bandwidth.
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6.3.2 Approximate CDF of Available Bandwidth

Even though WBest can provide the mean and standard deviation of the available band-

width estimates, it is difficult to get a closed form equation for the CDF of the available

bandwidth. To simplify the algorithm and reduce the time of recording (and transmitting)

multiple bandwidth estimate samples that make up the CDF, the estimated mean µA and

standard deviation σA of the available bandwidth are used to approximate the CDF of

the available bandwidth using a normal distribution. Therefore, the approximated CDF

of the available bandwidth is FÂ(·) = Normal(µA, σ2
A). To validate this approximation

with measurements, four different setups in our IEEE 802.11 wireless testbed are used:

an idle channel, a channel with 5 Mbps downstream crossing traffic, a channel with 5

Mbps upstream contending traffic, and channel with link rate adaptations. For each setup,

WBest is repeated 30 times and the CDF for the available bandwidth is recorded. The

normal CDFs are then generated based on the median of the mean and standard deviation

of the estimated available bandwidth from the 30 WBest runs. The CDF of the available

bandwidth and the approximated available bandwidth CDF using the normal distribution

are compared by the relative error of the 25th and 75th percentile values. The relative

error is computed as (F−1
A (x) − F−1

Â
(x))/F−1

A (x), where F−1
A (x) and F−1

Â
(x) are the in-

verse CDFs of the available bandwidth and approximated available bandwidth, and x is

the CDF value, such as 0.25 and 0.75. Thus, a positive relative error denotes an under

approximation, while a negative one denotes an over approximation.

As shown in Table 6.1, the results confirm that using a normal distribution can closely

approximate the available bandwidth. Moreover, the normal distribution tends to have a

lower value than the available bandwidth distribution for the same CDF value in the region

from zero to the median. Since BROS sensibly only selects a streaming rate lower than the

median available bandwidth, this implies that using a normal distribution instead of the

sampled available bandwidth distribution results in a conservative estimation of the rate

selected, which is helpful to avoid buffer underflow.

Figure 6.10 shows a closer look at the effectiveness of using a normal distribution to
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Table 6.1: Relative Error of Approximating Available Bandwidth using Normal Distribu-
tion

Setup 25th percentile 75th percentile

Idle channel < 0.01 -0.07

Contending traffic 0.16 -0.23

Crossing traffic 0.14 -0.17

Rate adaptation 0.05 -0.01

approximate the available bandwidth for the case of rate adaptation. Even though rate

adaptation has link capacity changes in fixed intervals, the interactions with the MAC layer

retries makes the available bandwidth closely follow a normal distribution. In other words,

under conditions of bad signal strength, it may take multiple retries to transmit at a higher

data rate, while taking fewer retries to transmit at a lower data rate, thus “smoothing”

the fixed capacity steps to follow a normal distribution.
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Figure 6.10: Approximating Available Bandwidth using Normal Distribution
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6.4 Evaluation

6.4.1 Wireless Testbed

The Buffer and Rate Optimization for Streaming (BROS) algorithm is implemented and

evaluated using an IEEE 802.11 wireless testbed. As shown in Figure 6.11, the wireless

testbed consists of a streaming server (wbestserver) that performs bandwidth estimation

and streams video to a client, a traffic server (tgenserver) that generates crossing and

contending traffic, a wireless AP and three clients (Client A, B and C). The AP in the

testbed is a Cisco Air-AP1121G3 supporting IEEE 802.11b/g. Both servers are PCs with

P4 3.0 GHz CPUs and 512 MBytes RAM and the three clients are PCs with P4 2.8 GHz

CPUs and 512 MBytes RAM. All the testbed PCs run SUSE4 9.3 Linux with kernel version

2.6.11. The servers connect to the AP with a wired 100 Mbps LAN, and the clients connect

to the AP with a IEEE 802.11b/g WLAN using Allnet5 ALL0271 54 Mbps wireless PCI

card with a prism GT chipset.6

As labeled in Figure 6.11, Client A is configured as the streaming client to receive

streaming traffic (1) from the streaming server. Client B, Client C and the traffic server

generate crossing traffic (2) or contending traffic (3) using the Multi-Generator Toolset

(mgen) v4.2b67 over UDP. Client B or C is also configured as a wireless sniffer8 to monitor

the traffic in the testbed when not being used as a traffic generator.

6.4.2 Emulated Streaming (EmuS) Client/Server System

To evaluate BROS, we develop an emulated streaming client-server system, called Emu-

lated Streaming (EmuS), with initial buffer and rate selection features. EmuS has features

common of many commercial streaming systems, including multiple encoded video layers,

configurable initial buffer size, and an RTSP-like communication mechanism. EmuS uses

3http://www.cisco.com/en/US/products/hw/wireless/ps4570/index.html
4http://www.novell.com/linux/
5http://www.allnet-usa.com/
6http://www.conexant.com/products/entry.jsp?id=885
7http://pf.itd.nrl.navy.mil/mgen/
8http://perform.wpi.edu/wsniffer/
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Access Point (IEEE 802.11 b/g)

`

`

Figure 6.11: Network Path with Last Mile Wireless Network.

two channels, a control channel running over TCP and a data channel running over UDP.

Even without a real media codec, EmuS provides framing and packetization functionalities

to emulate a real streaming system. EmuS uses CBR encoding with equal sized frames

and a fixed size smoothing buffer. While actual video is typically VBR, smoothing buffers

are often used to enable decoding and avoid packet bursts. The client detects frame losses

based on out-of-order sequence numbered frames and sends NACK messages back to the

server asking for retransmission until the frame is too late to be played out. The client also

applies frame repair, which repeats the last good frame for each lost frame, to mitigate the

impact of frames loss. When buffer underflow occurs, the client stops playback and starts

re-buffering until the buffer has filled, then resumes playback. The client records statistical

information, such as buffer underflow, frame rate, frame loss, retransmission, etc.

Figure 6.12 and Figure 6.13 depict the actual buffer occupancy, and arrival/playout

framerate, respectively, recorded for a typical EmuS streaming session, shown for a 50

second time slice starting about 2.5 minutes after the session starts. Note that the buffer

occupancy fluctuates in Figure 6.12 in response to fluctuations in the available bandwidth,

evidenced by the fluctuations in the arrival frame rate in Figure 6.13. As long as the buffer

remains above 0, the frame playout rate in Figure 6.13 remains at 30 frames per second.

However, at time 220 seconds, the buffer drops to zero (a buffer underflow event) and frame
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playout stops until the buffer is filled at about time 227. At time 232, the buffer again

drops to zero and frame playout stops until the buffer fills at about time 239.
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Figure 6.12: Typical Buffer Size Fluctuation
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Figure 6.13: Frame Arrival and Playout

As discussed in Section 6.3, a proper MTBBU value needs to be indicated in order to

compute the buffer size based on streaming rate and vice versa. As discussed for Figure 6.9,

as long as the streaming rate is kept under 0.485 of the available bandwidth, a modest

increase in buffer size can result in a significantly increased MTBBU. In light of this, for
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all experiments, an extremely low target MTBBU of π0 = 1 × 10−16 is used based on the

underflow probability in Equation 6.8. In practice, for future experiments, both BROS (and

EmuS) allow configuration of the targeted MTBBU to fit the application requirements.

6.4.3 Experiment Design

Four test cases are designed to evaluate BROS running on EmuS in different wireless

network setups. BROS is compared with a fixed buffer size, fixed streaming rate, and

jitter-removal buffer algorithms.

The encoded layers of the streaming media used in our experiments follows the default

multilayer encoding profile for Windows Media Encoder,9 which has 10 encoding layer

rates from 28 Kbps to 1.1 Mbps, and 4 encoding rates for higher layers at 2.1, 3.6, 5.1 and

6.8 Mbps. The video media length is 2 minutes, which is the median length of streaming

video available on the Web [173]. The wireless testbed is set to 802.11b with an average

available bandwidth of 6.4 Mbps as measured by WBest. Four different test cases are

setup: an idle channel (with good reception quality), a channel with crossing traffic, a

channel with contending traffic and a channel with rate adaptations (with poor reception

quality). The setup details are listed in Table 6.2. For each test case, the streaming traffic

is sent downstream from the wbestserver to Client A. The rate adaptation case is setup

by manually reducing both the transmission power of AP and Client A to generate rate

adaptation, as in Figure 6.5, along with the accompanying MAC layer retries. Table 6.2

provides a summary view of the network conditions in that case, with the medians of the

mean and standard deviation of the available bandwidth of all test runs for each case.

For each test case, the streaming sessions listed in Table 6.3 are run for 30 times in

sequence. First, the sessions with BROS are run with a maximum tolerable buffer size

of 5 seconds. Second, the sessions with a 5 second fixed buffer size are run, first with a

streaming rate higher than the mean available bandwidth (H), then with a streaming rate

close to the mean available bandwidth (M), and lastly with a streaming rate less than the

9http://www.microsoft.com/windows/windowsmedia/default.mspx
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Table 6.2: Evaluation Setups

Case Configuration

No other traffic
1. Idle channel RSSI > −38dBm

Available Bandwidth: mean = 6.4Mbps, stdev = 0.4Mbps
1.2 Mbps UDP: Client C to tgenserver

2. Contending traffic RSSI > −38dBm
Available Bandwidth: mean = 4.7Mbps, stdev = 2.3Mbps
1.2 Mbps UDP: tgenserver to Client B

3. Crossing traffic RSSI > −38dBm
Available Bandwidth: mean = 5.2Mbps, stdev = 1.9Mbps
No other traffic,

4. Rate adaptation −89dBm ≤ RSSI ≤ −85dBm
Available Bandwidth: mean = 3.5Mbps, stdev = 1.6Mbps

mean available bandwidth (L). Third, traces for the fixed buffer tests (H, M, L) are used

to determine the performance of the jitter removal buffer algorithm.

Table 6.3: Sessions for Each Case

Case 1,2,3 Case 4
Sessions Rate(Mbps) Buf(sec) Rate(Mbps) Buf(sec)

BROS Auto Auto Auto Auto
H 6.8 5 5.1 5

Fixed buffer M 5.1 5 3.6 5
L 3.6 5 2.1 5
H 6.8 Bjit 5.1 Bjit

Jitter buffer M 5.1 Bjit 3.6 Bjit

L 3.6 Bjit 2.1 Bjit

The jitter removal buffer Bjit is computed using an approach similar to that discussed

in [69]. Most jitter removal buffer algorithms propose variable sampling and averaging

algorithms to estimate the network jitter. However, since the frame arrival traces for the

entire session are used, no jitter prediction is actually needed. Instead, jitter is measured

as the difference between the 95th percentile and 5th percentile of frame inter-arrival times,

denoted by D.95 − D.05. Therefore, the buffer size for jitter removal Bjit is computed as:

Bjit =
1

µ

[

D.95 − D.05

1/µ
+ 1

]

(6.11)
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where µ is the frame rate. With the traces of frame arrival data gathered from the fixed

buffer sessions, the jitter removal buffer algorithm is applied to decide the buffer size needed

to remove the jitter for each session. Then the session is trace driven using the frame arrival

data with Bjit, recording the same set of statistics as for the measured experiments, buffer

underflow events, frame losses, and playout delay.

6.5 Results

BROS is evaluated with four different network setup cases, each having 120 two-minute

video sessions and 90 trace-based sessions. The total data collected includes more than 16

hours of streaming, recording buffer underflow events, frame arrival and playout, frame loss

and buffer delay. BROS is evaluated by comparing the rate selection, buffer optimization

results, and the related streaming quality metrics [174]: buffer underflow events, frame

losses and buffer delay.

Figure 6.14 depicts the rate selection results for the four test cases. The average

streaming rate selected for the 120 sessions for each case is shown along with the stan-

dard deviation. With the input of bandwidth estimation information from WBest (shown

in Table 6.2), the BROS algorithm correctly selects the maximum available encoding rate

that was lower than the available bandwidth. Moreover, BROS also takes into consider-

ation the variance of the available bandwidth. For example, for the crossing traffic case,

even though the median available bandwidth is higher than the encoding rate of 5.1 Mbps,

on average, BROS selects the next lower encoding rate, 3.6 Mbps because the variance

in the available bandwidth causes the rate of 5.1 Mbps to have a higher buffer underflow

probability.

Figure 6.15 depicts the buffer optimization results, in comparison with the size of the

jitter removal buffer (the fixed sized buffer can also be compared as always having a 5

second buffer size on the y-axis). With BROS, the initial buffer size is greatly reduced from

fixed size, five second buffer to about one or two seconds. The jitter removal buffers are

substantially smaller, consistently less than 0.5 seconds even for the largest jitter removal
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Figure 6.14: BROS Streaming Rate

buffer. While a small buffer is attractive for reducing the startup delay for playout, the

quality is also impacted by the resulting impact on frame loss rate (see below). In addition,

BROS adjusts the buffer based on the variance in the available bandwidth (see Table 6.2).

Comparing the contending and crossing cases, even though the available bandwidth and

the selected streaming are close to each other, the buffer sizes BROS chooses are different.

The contending traffic case has a higher average buffer size than the crossing traffic case

because of the higher variance in available bandwidth.

Figure 6.16-6.19 depict the results for the streaming quality metrics for each case,

showing the averages over all sessions of the fraction of buffer underflows, frame loss rate,

and buffer delay. By combining the optimization of the streaming rate selection and the

initial buffer size, BROS performs better than the manual rate selection and jitter buffer

approaches in terms of buffer underflow, frame loss, and buffer delay. As a quick visual

summary, lower is better for all metrics depicted and BROS is the lowest or nearly the

lowest for all graphs depicted.

The jitter buffer sessions always have a high fraction of buffer underflow events because

of the small buffer sizes chosen. The fixed buffer size sessions with high (H) and medium

(M) streaming rates also have high buffer underflow fractions since the streaming rates are
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Figure 6.15: BROS Buffer Size

generally too high to be consistently sustained for the duration of the video session. The

fixed buffer size sessions with high (H) streaming rates may have a lower buffer underflow

fraction than these with medium (M) streaming rates. This is because the sessions with

high (H) streaming rates take an extreme long time to fill up the playout buffer due to the

high frame loss rate, thus resulting a short actual playout time and low buffer underflow

fraction. While the buffer underflow fractions for the low streaming rate sessions (L) with

fixed buffer size have a buffer underflow fraction close to that of BROS, BROS has a buffer

delay reduced by more than 50%.

Moreover, BROS has much lower frame losses than all the sessions with high (H)

and medium (M) streaming rate with both fixed size or jitter buffers. While the low

(L) streaming rate sessions with fixed or jitter buffer have frame loss rates similar to

BROS, BROS has a lower initial delay than the fixed buffer size sessions and a lower buffer

underflow than the jitter buffer sessions.

In general, BROS significantly reduces the average buffer delay for the fixed buffer

size and jitter buffers, for both the initial buffer delay and total buffer delay (the total

buffer delay includes the initial buffer delay and the delay caused by rebuffer events). For

instance, even though the jitter buffer sessions with high (H) and medium (M) streaming
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rates usually have a small initial delay due to the small buffer size, the total buffer delays

are high because of the large number of buffer underflow events in each session. The jitter

buffer sessions with low (L) streaming rate has the lowest buffer delay. However, the buffer

underflow fraction is unacceptable for most streaming media applications.
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Figure 6.16: Summary Results for Evaluation Case 1 (Idle Channel)
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Figure 6.17: Summary Results for Evaluation Case 2 (Contending Traffic)
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Figure 6.18: Summary Results for Evaluation Case 3 (Crossing Traffic)

Tables 6.4, 6.5 and 6.6 summarize the streaming quality results by comparing the

averages for all the sessions in each case in terms of the buffer underflow fraction, frame
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Figure 6.19: Summary Results for Evaluation Case 4 (Rate Adaptation)

loss percent, and total buffer delay. BROS shows the best overall performance for the

quality metrics.

Table 6.4: Buffer Underflow (fraction)

Case 1 Case 2 Case 3 Case 4

BROS 0.07 0 0.03 0.03
H 0.83 0.47 0.67 0.80

Fixed buffer M 0.07 1.00 1.00 0.10
L 0.03 0 0 0
H 1.00 1.00 1.00 0.87

Jitter buffer M 0.73 1.00 1.00 0.90
L 0.60 0.63 0.26 0.56

Table 6.5: Frame Loss Rate (percent)

Case 1 Case 2 Case 3 Case 4

BROS 0.39% 0.16% 1.06% 0.05%
H 53.9% 61.5% 56.0% 47.2%

Fixed buffer M 3.00% 36.8% 16.2% 3.57%
L 0.04% 0.32% 0.03% 0.01%
H 68.7% 81.0% 69.7% 75.7%

Jitter buffer M 4.66% 45.7% 19.1% 5.20%
L 0.14% 0.37% 0.14% 0.09%

BROS significantly reduces the buffer underflow event, frame loss, and buffer delay

by selecting the proper initial streaming rate and buffer size that corresponds with the

available bandwidth information. For example, comparing the BROS algorithm with the

medium (M) streaming rate for fixed and jitter removal buffer, BROS effectively reduces
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Table 6.6: Buffer Delay (seconds)

Case 1 Case 2 Case 3 Case 4
Init Sum Init Sum Init Sum Init Sum

BROS 0.82 1.06 2.06 2.06 1.13 1.50 1.95 2.12
H 10.6 27.8 24.9 38.9 11.5 24.6 11.9 31.6

Fixed buffer M 5.33 6.34 7.97 27.7 4.97 13.4 4.97 5.47
L 4.85 5.02 4.85 4.85 4.84 4.84 4.79 4.79
H 0.31 26.4 1.99 26.7 0.26 24.9 0.32 25.7

Jitter buffer M 0.05 2.89 0.31 18.6 0.07 7.31 0.05 1.81
L 0.05 0.06 0.03 0.08 0.03 0.04 0.03 0.03

the buffer underflow fraction by 99% and 100%, the frame lost rates by 97% and 98%, and

the total buffer delay by 87% and 78%, respectively.

6.6 Summary

This chapter proposes BROS, an algorithm designed to select the proper streaming rate

and initial buffer size based on the available bandwidth estimations using WBest to reduce

the buffer underflow events, buffer delay, and improve the frame loss rate for multimedia

streaming application over wireless networks. A core contribution is a model of the client

side initial buffer size for streaming multimedia applications, as the function of streaming

rate and the distribution of available bandwidth in the wireless networks. One advantage of

the buffer model over existing jitter or Poisson arrival models is that it considers changes

in available bandwidth, which typically have a larger impact on streaming performance

than does inter-arrival jitter. For evaluation, BROS is implemented in a streaming system

(EmuS), and compared with approaches with a fixed streaming rate and buffer sizes, and

jitter removal buffers, in a wireless testbed with a variety of network setups. The following

conclusions can be drawn:

1. Existing buffer models that consider only the impact of jitter are not adequate to

remove the affects of changes in available bandwidth in IEEE 802.11 networks. More-

over, the assumption of constant average arrival rate in previous research is not appli-
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cable in an environment with considerable changes in available bandwidth, such as for

IEEE 802.11 wireless networks. This make the current buffer models under-predict

the buffer size needed to avoid buffer underflow in wireless networks.

2. Performance of multimedia streaming applications is significantly impacted by the

initial streaming rate and buffer size. With BROS, the streaming rate and buffer

size can be optimized according to the current available bandwidth conditions, thus

resulting in better performance.

3. BROS uses WBest algorithm to estimate the mean and standard deviations of avail-

able bandwidth to infer the available bandwidth distribution. However, BROS is

flexible enough to be used with other bandwidth estimation tools that provide simi-

lar bandwidth information. This makes it easy to improve the bandwidth estimation

techniques independently of the BROS algorithm.

Overall BROS can significantly reduce buffer underflows, frame losses and buffer delays

by optimizing the initial streaming rate and buffer size.
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Chapter 7

Future Work

This chapter presents some possible future work that can be extended from this dissertation.

• Even though WBest is developed specially for IEEE 802.11b/g infrastructure net-

works, WBest can be extended to other types of wireless networks such as WWANs

using CDMA or GPRS techniques. For instance, the ARQ and FEC approaches in

the GPRS Radio Link Control (RLC) layer adapt the channel capacity and avail-

able bandwidth and may cause streaming applications to suffer from performance

degradation. WBest would need to be adapted, such as modifying the number of

packet pairs or the length of the packet train, based on further analytical research

and empirical study before it can be applied to these types of wireless networks.

• WBest is designed for IEEE 802.11b/g Distributed Coordination Function (DCF)

wireless networks. WBest can be further extended to either the optional Point Co-

ordination Function (PCF), which is a centralized MAC protocol that uses a point

coordinator to determine which node has the right to transmit, or to the develop-

ing IEEE 802.11e wireless network standard. In the PCF model or IEEE 802.11e

standard, the AP queue does not follow a strict FCFS policy. Therefore the packet

dispersion behavior may be different from that of DCF in IEEE 802.11b/g wireless

networks. WBest would need to be adapted based on related modeling and study of

non-FCFS behavior in these types of wireless networks.
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• The number of packet pairs and the length of packet train is empirically decided by

AP queue sizes and measurements. One possible future work may include designing

the algorithm to optimize the number of packet pairs and length of the packet train

based on the network conditions. For example, the packet train length in the sec-

ond step of WBest can be decided by the effective capacity measured from the first

step, or the expected accuracy, convergence time or intrusiveness requested by the

application.

• WBest and BROS are designed for pre-recorded streaming multimedia applications,

which usually tolerant a long playout delay. However, WBest and BROS can be

further tuned to reduce the cost in terms of convergence time and intrusiveness, thus

make it applicable to interactive streaming applications, such as for video conference

or Internet TV service, where users may switch streams frequently. The tuning would

include the number of packet pairs and the length of the packet train of WBest, and

startup parameters of BROS, such as the client tolerable buffer delay and the target

Mean Time Between Buffer Underflow (MTBBU).

• Currently, WBest does not explictly report loss rate and delay information. WBest

can be improved to report detailed information about the loss and delay measured by

WBest. For example, with a Loss Discrimination Algorithm (LDA), WBest can have

the capability of reporting wired and wireless loss rate to the application, allowing

the application to employ more effective repair techniques.

• In addition to the improvement of WBest with loss and delay measurements, BROS

can be further improved to optimize application layer media repair approaches, such

as Forward Error Correction (FEC) and streaming packet retransmissions. For ex-

ample, the available bandwidth information can be used to decide the level of FEC or

number of streaming packet retries. For the streaming sessions that are constrained

by available bandwidth, limiting the amount of FEC and retransmission traffic can

reduce the packet delay or loss caused by media repair procedures.
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• Currently, BROS suggests not to stream when WBest reports no available bandwidth

in the wireless network. However, since the wireless network is a contention domain,

streaming applications can still get the throughput of a fair share of the effective

capacity. Therefore, instead of suggesting not to stream, BROS could be further

improved to decide the streaming rate inferred as a function of achievable throughput,

or the fair share of the effective capacity, perhaps informed by cross-layer knowledge

of the number of contending nodes in the wireless network.

• Strong interference or mobility may still impact the available bandwidth during

streaming sessions, thus resulting in unexpected buffer underflow events. Therefore,

to further improve streaming rate selection and buffer optimization for the entire

streaming sessions in an unsteady environment, BROS can be applied periodically

during playback or at each rebuffer event. One possible area of future work would

be to use the streaming multimedia data to estimate available bandwidth during the

session. This can reduce the traffic overhead caused by WBest probing.
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Chapter 8

Conclusions

This dissertation presents an application layer solution for improving streaming multimedia

application performance in IEEE 802.11 wireless networks by using enhanced bandwidth

estimation techniques. The solution includes two parts: 1) a new Wireless Bandwidth

estimation tool (WBest) designed for fast, non-intrusive, accurate estimation of available

bandwidth in IEEE 802.11 networks, which can be used by streaming multimedia applica-

tions to improve the performance in wireless networks; 2) a Buffer and Rate Optimization

for Streaming (BROS) algorithm using WBest to guide the streaming rate selection and

initial buffer optimization. With WBest and BROS, the performance of streaming mul-

timedia applications in wireless networks can be significantly improved in terms of frame

loss, rebuffer events and buffer delay. This chapter summarizes the major contributions

and draws conclusions from the dissertation research.

Packet dispersion techniques have been commonly used to estimate bandwidth in wired

networks. However, current packet dispersion techniques were developed for wired network

environments and can provide inaccurate results in wireless networks due to the variabil-

ity in wireless capacity over short time scales. To enhance wired bandwidth estimation

techniques, Chapter 4 presents the in-depth study of the packet dispersion techniques in

IEEE 802.11 wireless networks. We develop an analytical model to investigate packet

dispersion behavior in wireless networks. The packet dispersion model is validated using
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both an extended NS-2 simulator that includes 802.11 MAC layer rate adaptation and

wireless 802.11b testbed measurements. Additionally, mean and variance of packet disper-

sion in IEEE 802.11 wireless networks is analyzed while considering the impact of channel

conditions such as packet size, link rate, bit error rate and RTS/CTS.

Based on the packet dispersion model and analysis, Chapter 5 presents a new Wireless

Bandwidth estimation tool (WBest) designed for fast, non-intrusive, accurate estimation

of available bandwidth in IEEE 802.11 networks. WBest applies a two-step algorithm:

1) a packet pair technique to estimate the effective capacity of the wireless networks; 2)

a packet train technique to estimate the achievable throughput and report the inferred

available bandwidth. Using an analytic model, the possible error sources are explored and

WBest parameters are optimized given the tradeoffs of accuracy, intrusiveness and conver-

gence time. The advantage of WBest is that it does not depend upon search algorithms

to detect the available bandwidth but instead, statistically detects the available fraction

of the effective capacity, mitigating estimation delay and the impact of random wireless

channel errors. WBest is compared with other popular available bandwidth estimation

tools in a wireless testbed under a variety of wireless and network conditions. The evalua-

tion shows that current bandwidth estimation tools are significantly impacted by wireless

network conditions, such as contention from other traffic and rate adaptation. On the

other hand, WBest consistently provides fast available bandwidth estimation, with overall

more accurate estimations and lower intrusiveness over all conditions evaluated. More-

over, WBest provides a broad range of bandwidth information for the wireless networks,

such as the effective capacity, available bandwidth, achievable throughput and variance of

available bandwidth and achievable throughput. Thus, WBest demonstrates the potential

for improving the performance of applications that need bandwidth estimation, such as

multimedia streaming, on wireless networks.

To use the bandwidth related information provided by WBest, Chapter 6 develops a

new buffer model to investigate the relationship of buffer size, streaming data rate and

available bandwidth distribution. One advantage of our buffer model over existing jitter
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or Poisson arrival models is that it takes available bandwidth changes into consideration,

which usually have greater impact on streaming performance than fluctuation of inter-

arrival times. Based on this new buffer model, Chapter 6 presents the Buffer and Rate

Optimization for Streaming (BROS) algorithm to improve streaming multimedia appli-

cation performance, such as the frame loss, buffer underflow events, and initial delay in

wireless networks. BROS optimizes the streaming data rate and initial buffer size to re-

duce frame losses, buffer underflow events, with minimized initial buffer delay. BROS is

implemented in an emulated streaming system, called Emulated Streaming (EmuS), and

evaluated in an IEEE 802.11 wireless testbed with various wireless conditions. The evalua-

tion shows that BROS can effectively select the best streaming rate and optimize the initial

buffer size based on wireless network bandwidth conditions, thus achieving lower frame loss

rate, fewer buffer underflow events and lower initial delay than static rate selection, static

buffer sizing, and jitter removal buffers.

Based on the summary of this dissertation, the following conclusion can be drawn:

• Packet dispersion measures the effective capacity and the achievable throughput of a

wireless network instead of the capacity as in a wired network. Effective capacity,

defined as a function of packet size and time, represents the ability of a wireless

network to forward data over a given time period. Achievable throughput is the

maximum throughput that a node can achieve when contending with other existing

traffic on a wireless network.

• Wireless channel conditions, such as packet sizes, link rate, Bit Error Rate (BER) and

RTS/CTS impact the bandwidth estimation results and the variance of the results.

The packet size and link rate have positive correlations with both the bandwidth

estimations and variances of the estimations. The BER of the channel has a negative

correlation with the bandwidth estimations and a positive correlation with variance

of the estimations. RTS/CTS reduces estimated bandwidth and the variance of the

estimations.
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• Current bandwidth estimation tools are significantly impacted by wireless network

conditions, such as contention from other traffic and rate adaptation. This results in

inaccurate estimates and high and varying convergence times and intrusiveness. This

makes current tools generally impractical for applications running over a wireless

link, such as streaming media, that require fast, accurate, non-instrusive bandwidth

estimates.

• WBest consistently provides fast available bandwidth estimation, with overall more

accurate estimations and lower intrusiveness over all conditions evaluated. To provide

effective bandwidth related information, WBest should be configured to use the same

packet size as the application.

• Existing streaming buffer models that consider only the impact of jitter are not

adequate to remove the effects of changes in available bandwidth in IEEE 802.11

networks. Moreover, the assumption of constant average arrival rate in previous

research is not applicable in environments with considerable changes in available

bandwidth, such as for IEEE 802.11 wireless networks. This makes the current buffer

models under-predict the buffer needed to avoid buffer underflow events in wireless

networks.

• By taking the available bandwidth fluctuation of wireless networks into consideration,

our streaming buffer model can effectively predict the minimum buffer required for

a given streaming rate, or decide the optimal streaming rate with a given streaming

buffer size to mitigate buffer underflow events under a variety of wireless network con-

ditions. Performance of multimedia streaming applications is significantly impacted

by the initial streaming rate and buffer size. With BROS, the streaming rate and

buffer size can be optimized according to the current available bandwidth conditions,

thus resulting in improved frame loss rate, buffer underflow events, and buffer delay.

In conclusion, this dissertation presents an application layer solution for improving

streaming multimedia application performance in IEEE 802.11 wireless networks by using
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enhanced bandwidth estimation techniques. Using analytical models, simulations and net-

work measurements, this dissertation shows that our application layer solution, consisting

of WBest and BROS, can effectively improve the streaming multimedia performance in

terms of frame losses, rebuffer events and buffer delay under a variety of wireless network

conditions.

185





Bibliography

[1] Bill Birney, “Reducing Start-up Latency with Windows Media 9 Series,” Feb. 2004,
Microsoft Document. Online at:
http://www.microsoft.com/windows/windowsmedia/howto/articles/reducingstartup
latency.aspx. 2, 15, 32, 39

[2] James Nichols, Mark Claypool, Robert Kinicki, and Mingzhe Li, “Measurements of
the Congestion Responsiveness of Windows Streaming Media,” in Proceedings of the
14th ACM International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), Kinsale, County Cork, Ireland, June 2004. 2,
14, 15, 19

[3] Paul Bocheck, Andrew Campbell, Shih-Fu Chang, and Raymond Lio, “Utility-based
Network Adaptation for MPEG-4 Systems,” in Proceedings of International Work-
shop on Network and Operating System Support for Digital Audio and Video (NOSS-
DAV), Basking Ridge, NJ, USA, June 1999. 2

[4] Avanish Tripathi and Mark Claypool, “Improving Multimedia Streaming with
Content-Aware Video Scaling,” in Workshop on Intelligent Multimedia Computing
and Networking (IMMCN), Durham, North Carolina, USA, Mar. 2002. 2

[5] Kang Li, Charles Krasic, Jonathan Walpole, Molly H. Shor, and Calton Pu, “The
Minimal Buffering Requirements of Congestion Controlled Interactive Multimedia
Applications,” in IDMS ’01: Proceedings of the 8th International Workshop on
Interactive Distributed Multimedia Systems. 2001, pp. 181–192, Springer-Verlag. 2,
32, 33

[6] Tianbo Kuang and Carey Williamson, “RealMedia Streaming Performance on an
IEEE 802.11b Wireless LAN,” in Proceedings of IASTED Wireless and Optical Com-
munications (WOC), July 2002, pp. 306–311. 2, 35, 63

[7] Tianbo Kuang and Carey L. Williamson, “Hierarchical Analysis of RealMedia
Streaming Traffic on an IEEE 802.11b Wireless LAN,” Computer Communications,
vol. 27, no. 6, pp. 538–548, Aug. 2004. 2, 35, 37

[8] Feng Li, Jae Chung, Mingzhe Li, Huahui Wu, Mark Claypool, and Robert Kinicki,
“Application, Network and Link Layer Measurements of Streaming Video over a
Wireless Campus Network,” in Proceedings of the 6th Passive and Active Measure-
ment Workshop (PAM), Boston, Massachusetts, USA, Apr. 2005. 2, 3, 36, 37, 62

187



BIBLIOGRAPHY

[9] Guangwei Bai and Carey Williamson, “The Effects of Mobility on Wireless Media
Streaming Performance,” in Proceedings of Wireless Networks and Emerging Tech-
nologies (WNET), July 2004, pp. 596–601. 2, 36, 37, 63

[10] Mingzhe Li, Feng Li, Mark Claypool, and Robert Kinicki, “Weather Forecasting -
Predicting Performance for Streaming Video over Wireless LANs,” in International
Workshop on Network and Operating System Support for Digital Audio and Video
(NOSSDAV), Skamania, Washington, USA, June 2005. 2, 37, 98

[11] IEEE Computer Society LAN MAN Standard Committee, “IEEE 802.11, Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions,” Standard, Aug. 1999. 2, 25, 67, 74, 78

[12] Manthos Kazantzidis and Mario Gerla, “The Impact of Link Layer Assisted Multi-
media Adaptation in Wireless Network,” in ITRE2003, Aug. 2003, pp. 326–330. 3,
38

[13] Mingzhe Li, Emmanuel Agu, Mark Claypool, and Robert Kinicki, “Performance En-
hancement of TFRC in Wireless Networks,” in Proceedings of the 10th International
Conference on Distributed Multimedia Systems (DMS), San Francisco, California,
USA, Sept. 2004. 3, 20, 38

[14] Amoolya Singh, Almudena Konrad, and Anthony D. Joseph, “Performance Eval-
uation of UDP Lite for Cellular Video,” in Proceedings of the 11th International
Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), Port Jefferson, New York, USA, 2001, pp. 117–124, ACM Press. 3

[15] M. Chen and A. Zakhor, “Rate Control for Streaming Video over Wireless,”
in Proceedings of IEEE Conference on Computer Communications (INFOCOM),
Hongkong, China, Mar. 2004. 3, 38

[16] Santhana Krishnamachari, Mihaela VanderSchaar, Sunghyun Choi, and X. Xu,
“Video Streaming over Wireless LANs: A Cross-layer Approach,” in Proceedings
of International Packet Video Workshop (PV), Nantes, France, Apr. 2003. 3, 39

[17] R. Kapoor, M. Cesana, and M. Gerla, “Link Layer Support for Streaming MPEG
Video over Wireless Links,” in Proceedings of the 12th International Conference on
Computer Communications and Networks, Computer Communications and Networks
(ICCCN), Dallas, TX, USA, Oct. 2003, pp. 477–482. 3, 39

[18] J. Chesterfield, R. Chakravorty, J. Crowcroft, P. Rodriguez, and S. Banerjee, “Ex-
periences With Multimedia Streaming over 2.5G and 3G Networks,” in Proceedings
of BROADNETS, San Jose, California, USA, Oct. 2004. 3

[19] Julian Chesterfield, Rajiv Chakravorty, Suman Banerjee, Pablo Rodriguez, Ian Pratt,
and Jon Crowcroft, “Transport Level Optimisations for Streaming Media over Wide-
area Wireless Neworks,” ACM MONET Journal, June 2004. 3

188



BIBLIOGRAPHY

[20] Gavin Holland, Nitin H. Vaidya, and Paramvir Bahl, “A Rate-adaptive MAC Proto-
col for Multi-Hop Wireless Networks,” in MobiCom ’01: Proceedings of the 7th An-
nual International Conference on Mobile Computing and Networking, Rome, Italy,
July 2001, pp. 236–251. vi, 8, 28, 29, 60, 67

[21] Mingzhe Li, Mark Claypool, Robert Kinicki, and James Nichols, “Characteristics of
Streaming Media Stored on the Web,” Tech. Rep. WPI-CS-TR-03-18, CS Depart-
ment, Worcester Polytechnic Institute, May 2003. 12

[22] Microsoft Corporation, “Windiws Media Services 9 Series, How Protocol Rollover
Works,” 2003, Microsoft Document. Online at:
http://www.microsoft.com/resources/documentation/WindowsServ/2003/standard/
proddocs/en-us/wmserver/howprotocolrolloverworks.asp. 12

[23] Bill Birney, “Microsoft Corporation - Reducing Broadcast Delay,” Apr. 2003,
Microsoft Document. Online at:
http://www.microsoft.com/windows/windowsmedia/howto/articles/BroadcastDelay
.aspx. 13, 14

[24] Mingzhe Li, Mark Claypool, and Robert Kinicki, “MediaPlayer versus RealPlayer
– A Comparison of Network Turbulence,” in Proceedings of the ACM SIGCOMM
Internet Measurement Workshop (IMW), Marseille, France, Nov. 2002, pp. 131 –
136. 14

[25] Inc. Apple Computer, “QuickTime Streaming End-to-end Solutions for Live
Broadcasting and On-demand Streaming of Digital Media.,” 2003, Online at:
http://images.apple.com/server/pdfs/L31754A QTStreaming TB final.pdf. 14

[26] Bill Birney, “Microsoft Corporation - Intelligent Streaming,” Oct. 2000, Microsoft
Document. Online at:
http://msdn.microsoft.com/library/en-us/dnwmt/html/intstreaming.asp. 14, 15

[27] Jae Chung, Mark Claypool, and Yali Zhu, “Measurement of the Congestion Respon-
siveness of RealPlayer Streaming Video Over UDP,” in Proceedings of the Packet
Video Workshop (PV), Nantes, France, Apr. 2003. 15, 19

[28] Luca Delgrossi, Christian Halstrick, Dietmar Hehmann, Ralf Guido Herrtwich, Oliver
Krone, Jochen Sandvoss, and Carsten Vogt, “Media Scaling for Audiovisual Com-
munication with the Heidelberg Transport System,” in MULTIMEDIA ’93: Proceed-
ings of the First ACM International Conference on Multimedia, Anaheim, California,
USA, 1993, pp. 99–104. 16, 18

[29] H. Katata, N. Ito, and H. Kusao, “Temporal-scalable Coding Based on Image Con-
tent,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, pp.
52–59, Feb. 1997. 16

[30] C. Podilchunk, N. Jayant, and N. Farvardin, “Three Dimensional Subband Coding
of Video,” IEEE Transactions on Image Processing, vol. 4, pp. 125–139, Feb. 1995.
16

189



BIBLIOGRAPHY

[31] D. Taubman and A. Zakhor, “Multirate 3-D Subband Coding of Video,” IEEE
Transactions on Image Processing, vol. 3, pp. 572–588, Sept. 1994. 16

[32] G. J. Conklin and S. S. Hemami, “A Comparison of Temporal Scalability Tech-
niques,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 9,
pp. 909–919, Sept. 1999. 16

[33] T. Naveen and J. W. Woods, “Motion Compensated Multiresolution Transmission
of High Definition Video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 4, pp. 29–41, Feb. 1994. 16

[34] U. Benzler, “Spatial Scalable Video Coding Using a Combined Subband-DCP Ap-
proach,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10,
pp. 1080–1087, Oct. 2000. 16

[35] N. Feamster, D. Bansal, and H. Balakrishnan, “On the Interactions between Layered
Quality Adaptation and Congestion Control for Streaming Video,” in Proceedings of
International Packet Video Workshop (PV), Kyongju, Korea, Apr. 2001. 16, 17

[36] Reza Rejaie, Mark Handley, and Deborah Estrin, “Quality Adaptation for Conges-
tion Controlled Video Playback over the Internet,” in SIGCOMM ’99: Proceedings
of ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Cambridge, MA, Aug. 1999, pp. 189–200. 16, 17

[37] M. Miyabayashi, N. Wakamiya, M. Murata, and H. Miyahara, “MPEG-TFRCP:
Video Transfer with TCP-Friendly Ratem Control Protocol,” in Proceedings of IEEE
International Conference on Communications (ICC), St. Petersburg, Russia, 2001,
pp. 137–141. 17

[38] M. Domanski, A. Luczak, and S. Mackowiak, “Spatial-temporal Scalability for
MPEG Video Coding,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 10, pp. 1088–1093, Oct. 2000. 17

[39] T. Talley and K. Jeffay, “Two-dimensional Scaling Techniques for Adaptive, Rate-
based Transmission Control of Live Audio and Video Streams,” in MULTIMEDIA
’94: Proceedings of the Second ACM International Conference on Multimedia, San
Francisco, California, USA, 1994, pp. 247–254. 17

[40] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer, “Equation-Based
Congestion Control for Unicast Applications,” in Proceedings of ACM SIGCOMM
Conference, Stockholm, Sweden, Aug. 2000, pp. 43 – 56. 17

[41] Nadeem Aboobaker, David Chanady, Mario Gerla, and M. Y. Sanadidi, “Streaming
Media Congestion Control Using Bandwidth Estimation,” in MMNS ’02: Proceedings
of the IFIP/IEEE International Conference on Management of Multimedia Networks
and Services. 2002, pp. 89–100, Springer-Verlag. 18

[42] Ren Wang, Massimo Valla, M. Y. Sanadidi, and Mario Gerla, “Adaptive Bandwidth
Share Estimation in TCP Westwood,” in Proceedings of IEEE Globecom, Taipei,
Taiwan, R.O.C., Nov. 2002. 18

190



BIBLIOGRAPHY

[43] Philippe de Cuetos and Keith W. Ross, “Adaptive Rate Control for Streaming Stored
Rine-grained Scalable Video,” in Proceedings of the 11th International Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV),
Miami, Florida, USA, 2002, pp. 3–12, ACM Press. 18

[44] Cheng Huang, Philip A. Chou, and Anders Klemets, “Optimal Coding Rate Con-
trol for Scalable Streaming Media,” in Proceedings of International Packet Video
Workshop (PV), Irvine, CA, Dec. 2004. 18

[45] Wu-chi Feng, “On the Efficacy of Quality, Frame Rate, and Buffer Management for
Video Streaming Across Best-effort Networks,” Journal of High Speed Networks, vol.
11, pp. 199–214, Nov. 2002. 18

[46] Silvia Hollfelder, Florian Schmidt, Matthias Hemmje, and Karl Aberer, “Transparent
Integration of Continuous Media Support into a Multimedia DBMS,” in Issues and
Applications of Database Technology, 1998, pp. 192–199. 19

[47] Zhenghua Fu, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang, and Mario Gerla,
“The Impact of Multihop Wireless Channel on TCP Throughput and Loss,” in
Proceedings of IEEE Conference on Computer Communications (INFOCOM), San
Francisco, CA, USA, Mar. 2003. 20

[48] Zhiheng Wang, Sujata Banerjee, and Sugih Jamin, “Studying Streaming Video qual-
ity: from an Application Point of View,” in Proceedings of the 11th ACM Inter-
national Conference on Multimedia, Berkeley, CA, USA, 2003, pp. 327–330, ACM
Press. 21

[49] T. Kim and M. Ammar, “Optimal Quality Adaptation for MPEG-4 Fine-Grained
Scalable Video,” in Proceedings of IEEE Conference on Computer Communications
(INFOCOM), San Francisco CA, USA, Apr. 2003. 21

[50] M. Masry and S. Hemami, “An Analysis of Subjective Quality in Low Bit Rate
Video,” in Proceedings of IEEE International Conference on Image Processing
(ICIP), Thesaloniki, Greece, 2001, pp. 465–468. 21

[51] Microsoft Corporation, “Windows Media Player 10 SDK,” 2004, Microsoft Docu-
ment. Online at:
http://www.msdn.microsoft.com/library/en-us/wmplay10/mmp sdk/windowsmedia
player10sdk.asp. 21

[52] Kaveh Pahlavan and Prashant Krishnamurthy, Principles of Wireless Networks - A
Unified Approach, chapter 2-4, Prentice Hall PTR, 2002. 22

[53] Intel Corporation, “White Paper: The New Era in Communications,” 2004, Online
at: http://www.intel.com/netcomms/bbw/302026.htm. 24

[54] Marcelo M. Carvalho and J. J. Garcia-Luna-Aceves, “Delay Analysis of IEEE 802.11
in Single-Hop Networks,” in ICNP ’03: Proceedings of the 11th IEEE International
Conference on Network Protocols, Washington, DC, USA, 2003, p. 146, IEEE Com-
puter Society. 26, 58, 60, 75

191



BIBLIOGRAPHY

[55] Ivaylo Haratcherev, Jacco Taal, Koen Langendoen, Reginald Lagendijk, and Henk
Sips, “Automatic IEEE 802.11 Rate Control for Streaming Applications: Research
Articles,” Wireless Communications and Mobile Computing, vol. 5, no. 4, pp. 421–
437, 2005. 29, 67

[56] A. Kamerman and L. Monteban, “WaveLAN II: A Highperformance Wireless LAN
for Unlicensed Band,” in Bell Labs Technical Journal, 1997. 29, 60, 67

[57] Stephen Jacobs and Alexandros Eleftheriadis, “Providing Video Services over Net-
works without Quality of Service Guarantees,” in Proceedings of WWW Consortium
Workshop on Real-Time Multimedia and the Web, Sophia Antipolis, France, Oct.
1996. 31

[58] Wai-tian Tan, Weidong Cui, and John Apostolopoulos, “Playback-Buffer Equaliza-
tion for Streaming Media using Stateless Transport Prioritization (Abstract),” in
Proceedings of International Packet Video Workshop (PV), Nantes, France, Apr.
2003. 32

[59] Nagasuresh Seelam, Pankaj Sethi, and Wu-chi Feng, “A Hysteresis Based Approach
for Quality, Frame Rate, and Buffer Management for Video Streaming Using TCP,”
in MMNS ’01: Proceedings of the IFIP/IEEE International Conference on Manage-
ment of Multimedia Networks and Services, 2001, pp. 1–15. 32

[60] M.C. Yuang, S.T. Liang, Yu.G. Chen, and C.L. Shen, “Dynamic Video Playout
Smoothing Method for Multimedia Applications,” in Proceedings of IEEE Interna-
tional Conference on Communications (ICC), Dallas, TX, USA, June 1996, vol. 3,
pp. 1365–1369. 32, 34, 151

[61] Bernd Girod, Niko Färber, and Eckehard G. Steinbach, “Adaptive Playout for Low
Latency Video Streaming,” in Proceedings of IEEE International Conference on
Image Processing (ICIP), Thessaloniki, Greece, 2001, pp. 962–965. 32, 34, 151

[62] Nikolaos Laoutaris and Ioannis Stavrakakis, “Adaptive Playout Strategies for Packet
Video Receivers with Finitebuffer Capacity,” in Proceedings of IEEE International
Conference on Communications (ICC), Helsinki, Finland, 2001. 32, 34, 151

[63] M. Kalman, S.T. Eckehard, and B. Girod, “Adaptive Playout for Real-time Media
Streaming,” in IEEE International Symposium on Circuits and Systems, 2002, vol. 1.
32

[64] Mark Kalman, Eckehard G. Steinbach, and Bernd Girod, “Adaptive Media Playout
for Low-delay Video Streaming over Error-prone Channels,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 14, no. 6, pp. 841–851, 2004. 32, 34,
151, 155

[65] E. Steinbach, N. Faerber, and B. Girod, “Adaptive Playout for Low-Latency Video
Streaming,” in Proceedings of IEEE International Conference on Image Processing
(ICIP), Thessaloniki, Greece, Oct. 2001, pp. 962–965. 32

192



BIBLIOGRAPHY

[66] Y. Li, A. Markopoulou, N.Bambos, and J.Apostolopoulos, “Joint Power/Playout
Control Schemes for Media Streaming over Wireless Links,” in Proceedings of Inter-
national Packet Video Workshop (PV), Irvine, CA, USA, Dec. 2004. 32, 39

[67] W. Feng and J. Rexford, “Performance Evaluation of Smoothing Algorithms for the
Transmission of Prerecorded Video,” IEEE Transactions on Multimedia, vol. 1, no.
3, Sept. 1999. 32

[68] Roger Zimmermann, Kun Fu, Cyrus Shahabi, Didi Shu-Yuen Yao, and Hong Zhu,
“Yima: Design and Evaluation of a Streaming Media System for Residential Broad-
band Services,” in DBTel ’01: Proceedings of the VLDB International Workshop
on Databases in Telecommunications II, Roma, Italy, 2001, pp. 116–125, Springer-
Verlag. 33

[69] P. Mundur, A. Sood, and R. Simon, “Network Delay Jitter and Client Buffer Re-
quirements in Distributed Video-on-Demand Systems,” Tech. Rep., Department of
Computer Science at George Mason University, Fairfax, VA 22030. 34, 169

[70] Ramachandran Ramjee, Jim Kurose, Don Towsley, and Henning Schulzrinne, “Adap-
tive Playout Mechanism for Packetized Audio Applications in Wide-area Networks,”
in Proceedings of IEEE Conference on Computer Communications (INFOCOM), Los
Alamitos, CA, USA, June 1994, pp. 680–688. 34

[71] Sue B. Moon, Jim Kurose, and Don Towsley, “Packet Audio Playout Delay Adjust-
ment: Performance Bounds and Algorithms,” Multimedia Syst., vol. 6, no. 1, pp.
17–28, 1998. 34

[72] Kouhei Fujimoto, Shingo Ata, and Masayuki Murata, “Adaptive Playout Buffer
Algorithm for Enhancing Perceived Quality of Streaming Applications,” in IEEE
GLOBECOM, Nov. 2002, vol. 3, pp. 2451–2457. 34

[73] Maria C. Yuang, Po L. Tien, and Shih T. Liang, “Intelligent Video Smoother for
Multimedia Communications,” IEEE Journal on Selected Areas in Communications,
vol. 15, no. 2, pp. 136–146, 1997. 34, 151

[74] Wu-chi Feng and Stuart Sechrest, “Smoothing and Buffering for Delivery of Prere-
corded Compressed Video,” in Proceedings of IST/SPIE Multimedia Networking and
Computing 1995, San Jose, CA, Feb. 1995, pp. 234–242. 34

[75] James D. Salehi, Zhi-Li Zhang, James F. Kurose, and Don Towsley, “Supporting
Stored Video: Reducing Rate Variability and End-to-end Resource Requirements
Through Optimal Smoothing,” in SIGMETRICS ’96: Proceedings of the 1996 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, Philadelphia, Pennsylvania, USA, 1996, pp. 222–231, ACM Press. 34

[76] Roger Zimmermann, Cyrus Shahabi, Kun Fu, and Mehrdad Jahangiri, “A Multi-
threshold Online Smoothing Technique for Variable Rate Multimedia Streams,” Mul-
timedia Tools and Applications, vol. 28, no. 1, pp. 23–49, 2006. 34

193



BIBLIOGRAPHY

[77] Hrvoje Jenkac, Thomas Stockhammer, and Gabriel Kuhn, “On Video Streaming over
Variable Bit-Rate and Wireless Channels,” in Proceedings of International Packet
Video Workshop (PV), Nantes, France, Apr. 2003. 35

[78] P. Ikkurthy and M. Labrador, “Characterization of MPEG-4 Traffic over IEEE
802.11b Wireless LANs,” in Proceedings of the 27th Annual IEEE Conference on
Local Computer Networks, Tampa, Florida, USA, Nov. 2002, pp. 421–430. 36

[79] Song Cen, Pamela C. Cosman, and Geoffrey M. Voelker, “End-to-end Differentiation
of Congestion and Wireless Losses,” IEEE/ACM Transactions on Networking, vol.
11, no. 5, pp. 703–717, 2003. 37

[80] Minghua Chen and Avideh Zakhor, “Rate Control for Streaming Video over Wire-
less,” Wireless Communications, IEEE, vol. 12, no. 4, pp. 32–41, aug 2005. 38

[81] Guang Yang, Mario Gerla, and M. Y. Sanadidi, “Adaptive Video Streaming in Pres-
ence of Wireless Errors,” in MMNS ’04: Proceedings of the IFIP/IEEE International
Conference on Management of Multimedia Networks and Services, San Diego, CA,
2004. 38

[82] Chi-Yuan Hsu, A. Ortega, and M. Khansari, “Rate Control for Robust Video Trans-
mission over Burst-error Wireless Channels,” Selected Areas in Communications,
IEEE Journal on, vol. 17, no. 5, pp. 756–773, may 1999. 38

[83] Qiong Li and Mihaela van der Schaar, “Providing Adaptive QoS to Layered Video
over Wireless Local Area Networks through Real-time Retry Limit Adaptation,”
Multimedia, IEEE Transactions on, vol. 6, no. 2, pp. 278–290, Apr. 2004. 38, 39

[84] Igor Kozintsev and Jeff Mc. Veigh, “Improving Last-Hop Multicast Streaming Video
over 802.11,” in Proceedings of BROADNETS, San Jose, California, USA, Oct. 2004.
38

[85] Fan Yang, Qian Zhang, Wenwu Zhu, and Ya-Qin Zhang, “End-to-end TCP-friendly
Streaming Protocol and Bit Allocation for Scalable Video over Wireless Internet,”
Selected Areas in Communications, IEEE Journal on, vol. 22, no. 4, pp. 777–790,
May 2004. 38

[86] Peter van Beek, Sachin Deshpande, Hao Pan, and Ibrahim Sezan, “Adaptive stream-
ing of high-quality video over wireless LANs,” in Visual Communications and Image
Processing 2004, San Jose, CA, USA, 2004, pp. 647–660. 39

[87] Mehmet U. Demircin and Peter van Beek, “Bandwidth Estimation and Robust Video
Streaming over 802.11E Wireless LANs ,” in Proceedings of IEEE International
Conference on Multimedia and Expo (ICME), July 2005. 39

[88] Peter van Beek and Mehmet U. Demircin, “Delay-constrained Rate Adaptation for
Robust Video Transmission over Home Networks,” in Proceedings of IEEE Interna-
tional Conference on Image Processing (ICIP), Genoa, Italy, Sept. 2005. 39

194



BIBLIOGRAPHY

[89] Mingzhe Li, Mark Claypool, and Robert Kinicki, “Wbest: a bandwidth estimation
tool for ieee 802.11 wireless networks,” Tech. Rep. WPI-CS-TR-06-14, Computer
Science Department at Worcester Polytechnic Institute, July 2006. 39

[90] Karthik Lakshminarayanan, Venkata N. Padmanabhan, and Jitendra Padhye,
“Bandwidth Estimation in Broadband Access networks,” in IMC ’04: Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement, Taormina, Sicily,
Italy, Oct. 2004, pp. 314–321. 39, 66, 94, 95, 114, 115, 131

[91] L. Angrisani, A. Botta, A. Pescape, and M. Vadursi, “Measuring Wireless Links
Capacity,” Wireless Pervasive Computing, 2006 1st International Symposium on,
pp. 1–5, Jan. 2006. 39, 94

[92] R.S. Prasad, M. Murray, C. Dovrolis, and K.C. Claffy, “Bandwidth Estimation:
Metrics, Measurement Techniques, and Tools,” IEEE Network, November-December
2003. 40, 41, 42, 43, 45, 46, 47, 48, 52, 108

[93] M. Mathis and M. Allman, “A Framework for Defining Empirical Bulk Transfer
Capacity Metrics,” July 2001, IETF RFC 3148. 43

[94] M. Allman, V.Paxson, and W.Stevens, “TCP Congestion Control,” Apr. 1999, IETF
RFC 2581. 43

[95] G. Jin and B. Tierney, “Netest: A Tool to Measure Maximum Burst Size, Available
Bandwidth and Achievable Throughput,” in Proceedings of the 2003 International
Conference on Information Technology, Newark, New Jersey, Aug. 2003. 43, 44

[96] Steven M. Bellovin, “A Best-Case Network Performance Model,” Tech. Rep., ATT
Research, Feb. 1992. 45

[97] Van Jacobson, “pathchar: A Tool to Infer Characteristics of Internet Paths,” Apr.
1997, Online at: ftp://ftp.ee.lbl.gov/pathchar/. 45, 53, 55

[98] Allen B. Downey, “Using Pathchar to Estimate Internet Link Characteristics,” in
SIGCOMM ’99: Proceedings of ACM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, Cambridge, MA, USA,
Sept. 1999, pp. 222–223. 45, 53, 55

[99] Bruce Mah, “pchar: a Tool for Measuring Internet Path Characteristics,” Feb. 1999,
Online at: http://www.kitchenlab.org/www/bmah/Software/pchar/. 45, 53, 55

[100] A. Pasztor and D. Veitch, “Active Probing using Packet Quartets,” in IMW ’02: Pro-
ceedings of the ACM SIGCOMM Internet Measurement Workshop, Marseille, France,
Nov. 2002. 45

[101] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble, “SProbe: A Fast
Technique for Measuring Bottleneck Bandwidth in Uncooperative Environments,”
Aug. 2001, Online at: http://sprobe.cs.washington.edu. 47, 53, 55

195



BIBLIOGRAPHY

[102] Ravi Prasad, Constantinos Dovrolis, and Bruce Mah, “The Effect of Layer-2 Store-
and-Forward Devices on Per-Hop Capacity Estimation,” in Proceedings of IEEE
Conference on Computer Communications (INFOCOM), San Francisco, CA, USA,
Mar. 2003. 47

[103] V. Jacobson, “Congestion Avoidance and Control,” in SIGCOMM ’88: Proceedings
of ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Stanford, CA, USA, Aug. 1988. 47

[104] Srinivasan Keshav, “A Control-Theoretic Approach to Flow Control,” in SIGCOMM
’91: Proceedings of ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Sept. 1991. 47

[105] Jean-Chrysotome Bolot, “End-to-end Packet Delay and Loss Behavior in the In-
ternet,” in SIGCOMM ’93: Proceedings of ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, San Francisco,
CA, USA, Sept. 1993, pp. 289–298. 47

[106] Robert L. Carter and Mark E. Crovella, “Measuring Bottleneck Link Speed in Packet-
Switched Networks,” Performance Evaluation, vol. 27, no. 8, pp. 297–318, Oct. 1996.
47, 48, 53, 55, 70

[107] Kevin Lai and Mary Baker, “Measuring Bandwidth,” in Proceedings of IEEE Confer-
ence on Computer Communications (INFOCOM), New York, NY, USA, Apr. 1999,
pp. 235–245. 47

[108] Kevin Lai and Mary Baker, “Measuring Link Bandwidths Using A Deterministic
Model of Packet Delay,” in SIGCOMM ’00: Proceedings of ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tions, Stockholm, Sweden, Aug. 2000, pp. 283–294. 47, 53, 55

[109] Constantinos Dovrolis, Parmesh Ramanathan, and David Moore, “What do Packet
Dispersion Techniques Measure?,” in Proceedings of IEEE Conference on Computer
Communications (INFOCOM), Anchorage, Alaska, USA, Apr. 2001, pp. 905–914.
47, 48, 95

[110] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore, “Packet-
Dispersion Techniques and a Capacity-Estimation Methodology,” IEEE/ACM Trans-
actions on Networking, vol. 12, no. 6, pp. 963–977, Dec. 2004. 47, 53, 55, 70, 101,
108, 114

[111] Vern. Paxson, “End-to-End Internet Packet Dynamics,” IEEE/ACM Transaction
on Networking, vol. 7, no. 3, pp. 277–292, June 1999. 48

[112] A. Pasztor and D. Veitch, “The Packet Size Dependence of Packet Pair Like Meth-
ods,” in Proceedings of IEEE/IFIP International Workshop on Quality of Service
(IWQoS) 2002, Miami Beach, FL, USA, May 2002. 48

196



BIBLIOGRAPHY

[113] Manish Jain and Constantinos Dovrolis, “End-to-End Available Bandwidth:
Measurement Methodology, Dynamics, and Relation with TCP Throughput,”
IEEE/ACM Transactions in Networking, , no. 295-308, Aug. 2003. 49, 50, 53, 55,
95, 96, 115

[114] Bob Melander, Mats Bjorkman, and Per Gunningberg, “A New End-to-End
Probing and Analysis Method for Estimating Bandwidth Bottlenecks,” in IEEE
GLOBECOM–Global Internet Symposium, San Francisco, CA, USA, Nov. 2000, pp.
415–420. 49

[115] Bob Melander, Mats Bjorkman, and Per Gunningberg, “Regression-Based Available
Bandwidth Measurements,” in International Symposium on Performance Evaluation
of Computer and Telecommunications Systems, 2002, July 2002. 49, 53, 55, 95

[116] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “pathChirp: Efficient
Available Bandwidth Estimation for Network Paths,” in Proceedings of Passive and
Active Measurements (PAM) Workshop, La Jolla, CA, USA, Apr. 2003. 49, 53, 55,
96, 115

[117] Ningning Hu and Peter Steenkiste, “Evaluation and Characterization of Available
Bandwidth Probing Techniques,” IEEE Journal on Selected Areas in Communica-
tions, vol. 21, no. 6, Aug. 2003. 49, 50, 53, 54, 55, 96, 97, 115

[118] Aditya Akella, Srinivasan Seshan, and Anees Shaikh, “An Empirical Evaluation of
Wide-Area Internet Bottlenecks,” in IMC ’03: Proceedings of the 3rd ACM SIG-
COMM Conference on Internet Measurement, Miami Beach, FL, USA, 2003. 49,
53

[119] K. Harfoush, A. Bestavros, and J. Byers, “Measuring Bottleneck Bandwidth of
Targeted Path Segments,” in Proceedings of IEEE Conference on Computer Com-
munications (INFOCOM), San Francisco, CA, USA, Apr. 2003. 49, 53

[120] Ningning Hu, Erran L. Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang,
“Locating Internet Bottlenecks: Algorithms, Measurements, and Implications.,” in
SIGCOMM ’04: Proceedings of ACM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, 2004, pp. 41–54. 49, 53

[121] Jacob Strauss, Dina Katabi, and Frans Kaashoek, “A Measurement Study of Avail-
able Bandwidth Estimation Tools,” in IMC ’03: Proceedings of the 3rd ACM SIG-
COMM Conference on Internet Measurement, Miami Beach, FL, USA, 2003, pp.
39–44. 49, 50, 53, 54, 55, 95

[122] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hendricks, and R. Baraniuk,
“Multifractal Cross-Traffic Estimation,” in ITC Conference on IP Traffic, Modeling
and Management, Monterey, CA, September 2000. 50, 53, 55

[123] Guanghui He and Jennifer C. Hou, “On Exploiting Long Range Dependence of
Network Traffic in Measuring Cross Traffic on an End-to-end Basis,” in Proceedings
of IEEE Conference on Computer Communications (INFOCOM), San Francisco,
CA, USA, Mar. 2003. 50

197



BIBLIOGRAPHY

[124] M. Mathis and J. Mahdavi, “Diagnosing Internet Congestion with a Transport Layer
Performance Tool,” in Proceedings of INET ’96, Montreal, Canada, June 1996. 51,
53, 55

[125] Mark Allman, “Measuring End-to-end Bulk Transfer Capacity,” in IMW ’01: Pro-
ceedings of the ACM SIGCOMM Internet Measurement Workshop, San Francisco,
CA, USA, Nov. 2001, pp. 139–143. 51, 53, 55

[126] Wu Xiuchao and A. L. Ananda, “Link Characteristics Estimation For IEEE 802.11
DCF Based WLAN,” in LCN ’04: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, 2004, pp. 302–309. 51, 55

[127] Samarth Shah, “Available Bandwidth Estimation in IEEE 802.11-based Wireless
Networks,” in Finale Report of Bandwidth Estimation ISMA Workshop, San Diego,
CA, USA, Dec. 2003. 51, 55, 84, 94, 95, 114, 115

[128] Yegyalakshmi Easwaran and Miguel A. Labrador, “Evaluation and Application of
Available Bandwidth Estimation Techniques to Improve TCP Performance,” in LCN
’04: Proceedings of the 29th Annual IEEE International Conference on Local Com-
puter Networks, 2004, pp. 268–275. 54

[129] Manish Jain and Constantinos Dovrolis, “Ten Fallacies and Pitfalls in End-to-End
Available Bandwidth Estimation ,” in IMC ’04: Proceedings of the 4th ACM SIG-
COMM Conference on Internet Measurement, Sicily Italy, Oct. 2004. 55

[130] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination
Function,” IEEE Journal on Selected Areas in Communications, Wireless series,
vol. 18, no. 3, pp. 535–547, Mar. 2000. 56, 58, 60, 72, 74

[131] Haitao Wu, Yong Peng, Keping Long, Shiduan Cheng, and Jian Ma, “Performance
of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and En-
hancement,” in Proceedings of IEEE Conference on Computer Communications (IN-
FOCOM), New York, USA, June 2002, pp. 599–607. 58, 59

[132] P. Chatzimisios, V. Vitsas, and A. C. Boucouvalas, “Throughput and Delay Anal-
ysis of IEEE 802.11 Protocol,” in Proceedings of IEEE International Workshop on
Network Appliances, (IWNA) 2002, Liverpool, UK, 2002, pp. 168–174. 58

[133] P. Chatzimisios, V. Vitsas, and A. C. Boucouvalas, “IEEE 802.11: Packet Delay - A
Finite Retry Limit Analysis ,” in Proceedings of IEEE Globecom 2003, San Francisco,
USA, 2003, pp. 950–954. 58, 59

[134] Periklis Chatzimisios, Anthony C. Boucouvalas, and Vasileios Vitsas, “Performance
Analysis of IEEE 802.11 DCF in Presence of Transmission Errors,” in Proceedings
of IEEE International Conference on Communications (ICC), Paris, France, June
2004, vol. 27, pp. 3854–3858. 58, 59, 60, 73, 74

[135] Federico Cal̀ı, Marco Conti, and Enrico Gregori, “IEEE 802.11 Wireless LAN: Ca-
pacity Analysis and Protocol Enahncement.,” in Proceedings of IEEE Conference on

198



BIBLIOGRAPHY

Computer Communications (INFOCOM), San Francisco, CA, USA, Mar. 1998, pp.
142–149. 59

[136] Frederico Cal̀ı;, Marco Conti, and Enrico Gregori, “Dynamic Tuning of the IEEE
802.11 Protocol to Achieve a Theoretical Throughput Limit,” IEEE/ACM Transac-
tions on Networking, vol. 8, no. 6, pp. 785–799, 2000. 59

[137] Frederico Cal̀ı, Marco Conti, and Enrico Gregori, “IEEE 802.11 Protocol: Design
and Performance Evaluation of an Adaptive Backoff Mechanism,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 9, pp. 1774–1786, Sept. 2000. 59

[138] Y. Xiao and J. Rosdahl, “Throughput and Delay Limits of IEEE 802.11,” IEEE
Communications Letters, vol. 6, no. 8, pp. 355–357, Aug. 2002. 60

[139] Y. Xiao and J. Rosdahl, “Performance Analysis and Enhancement for the Current
and Future IEEE 802.11 MAC Protocols,” ACM SIGMOBILE Mobile Computing
and Communications Review (MC2R), special issue on Wireless Home Networks, vol.
7, no. 2, pp. 6–19, Apr. 2003. 60

[140] Jangeun Jun, Pushkin Peddabachagari, and Mihail Sichitiu, “Theoretical Maximum
Throughput of IEEE 802.11 and its Applications,” in Proceedings of the 2nd IEEE
International Symposium on Network Computing and Applications (NCA’03), Cam-
bridge, MA, USA, Apr. 2003, pp. 249–256. 60

[141] Universiy of California Berkeley, “The Network Simulator - ns-2,” Online at:
http://www.isi.edu/nsnam/ns/. 60

[142] Javier del Prado and Sunghyun Choi, “Link Adaptation Strategy for IEEE 802.11
WLAN via Received Signal Strength Measurement,” in Proceedings of IEEE In-
ternational Conference on Communications (ICC), Achnorage, Alaska, May 2003.
61

[143] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic Media
Access for Multirate Ad Hoc Networks,” in MobiCom ’02: Proceedings of the 8th
Annual International Conference on Mobile Computing and Networking, Atlanta,
Georgia, Sept. 2002. 61, 67

[144] Mingzhe Li, “An Extension of Rate-Adaptive MAC Protocol for NS2 Simulator,”
2004, Online at: http://www.cs.wpi.edu/ lmz/web/docs/cs525m report.pdf. 61

[145] Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl, and P. Venkat Rangan,
“Characterizing User Behavior and Network Performance in a Public Wireless LAN,”
in SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, Marina Del Rey,
California, 2002, pp. 195–205. 62

[146] Diane Tang and Mary Baker, “Analysis of a Metropolitan-area Wireless Network,” in
MobiCom ’99: Proceedings of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, Seattle, Washington, USA, 1999, pp. 13–23.
62

199



BIBLIOGRAPHY

[147] Diane Tang and Mary Baker, “Analysis of a Local-area Wireless Network,” in
MobiCom ’00: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, Boston, Massachusetts, USA, 2000, pp. 1–10. 62

[148] David Kotz and Kobby Essien, “Analysis of a Campus-wide Wireless Network,” in
MobiCom ’02: Proceedings of the 8th Annual International Conference on Mobile
Computing and Networking, Atlanta, Georgia, USA, 2002, pp. 107–118. 62

[149] Camden C. Ho, Krishna N. Ramachandran, Kevin C. Almeroth, and Elizabeth M.
Belding-Royer, “A Scalable Framework for Wireless Network Monitoring,” in
WMASH ’04: Proceedings of the 2nd ACM International Workshop on Wireless
Mobile Applications and Services on WLAN Hotspots, Philadelphia, PA, USA, 2004,
pp. 93–101. 62

[150] A. Balachandran and G. Voelker, “WRAPI – Real-time Monitoring and Control of
an 802.11 Wireless LAN,” Tech. Rep., CS at UCSD, 2004. 62

[151] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris, “Link-
level Measurements from An 802.11b Mesh Network,” in SIGCOMM ’04: Proceedings
of ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Portland, Oregon, USA, 2004, pp. 121–132. 63

[152] Jihwang Yeo, Moustafa Youssef, and Ashok Agrawala, “A Framework for Wireless
LAN Monitoring and Its Applications,” in ACM Workshop on Wireless Security
(WiSe 2004) in conjunction with ACM MobiCom 2004, Philadelphia, PA, USA, Oct.
2004. 63

[153] G. Judd and P. Steenkiste, “Repeatable and Realistic Wireless Experimentation
through Physical Emulation,” in Proceedings of HotNets-II, Nov. 2003. 63

[154] Tony Sun, Guang Yang, Ling-Jyh Chen, M. Y. Sanadidi, and Mario Gerla, “A
Measurement Study of Path Capacity in 802.11b based Wireless Networks,” in The
Wireless Traffic Measurements and Modeling Workshop (WiTMeMo’05, in conjunc-
tion with MobiSys’05), Seattle, USA, 2005. 66, 94

[155] Sourav Pal, Sumantra Kundu, Kalyan Basu, and Sajal Das, “Performance Evaluation
of IEEE 802.11 Multi-Rate Control Algorithms using Heteregenous Traffic and Real
Hardware,” in Proceedings of Passive and Active Measurements (PAM) Workshop,
Adelaide, Australia, Mar. 2006. 67

[156] Amit P. Jardosh, Krishna N. Ramachandran, Kevin C. Almeroth, and Elizabeth M.
Belding-Royer, “Understanding Congestion in IEEE 802.11b Wireless Networks,” in
IMC ’05: Proceedings of the 5th ACM SIGCOMM Conference on Internet Measure-
ment, Berkeley, CA, 2005. 67, 122

[157] Ratish J. Punnoose, Pavel V. Nikitin, and Daniel D. Stancil., “Efficient Simulation
of Ricean Fading within a Packet Simulator,” in Proceedings Vehicular Technology
Conference, 2000. 69

200



BIBLIOGRAPHY

[158] Mingzhe Li, Mark Claypool, and Robert Kinicki, “Modeling and simulating packet
dispersion in wireless 802.11 networks,” Tech. Rep. WPI-CS-TR-06-03, Computer
Science Department at Worcester Polytechnic Institute, Mar. 2006. 81, 103, 106, 107,
108, 110, 131

[159] Tony Sun, Ling-Jyh Chen, Guang Yang, M. Y. Sanadidi, and Mario Gerla, “Sen-
Probe: Path Capacity Estimation in Wireless Sensor Networks,” in The Third Inter-
national Workshop on Measurement, Modelling, and Performance Analysis of reless
Sensor Networks(SenMetrics’05, in conjunction with MobiQuitous’05), San Diego,
USA, 2005. 94, 114, 115

[160] Ling-Jyh Chen, Tony Sun, Guang Yang, M. Y. Sanadidi, and Mario Gerla, “Ad
Hoc Probe: Path Capacity Probing in Wireless Ad Hoc Networks,” in WICON ’05:
Proceedings of the First International Conference on Wireless Internet, Washington,
DC, USA, 2005, pp. 156–163. 94, 114, 115

[161] Andreas Johnsson, Bob Melander, and Mats Björkman, “Bandwidth Measurement in
Wireless Networks,” in Mediterranean Ad Hoc Networking Workshop, Porquerolles,
France, June 2005. 95, 115, 131

[162] H. K. Lee, V. Hall, K. H. Yum, K. I. Kim, and E. J. Kim, “Bandwidth Estimation in
Wireless LANs for Multimedia Streaming Services,” in Proceedings of IEEE Inter-
national Conference on Multimedia and Expo (ICME), Canada, July 2006. 95, 114,
115

[163] Mingzhe Li, Mark Claypool, and Robert Kinicki, “Packet dispersion in IEEE 802.11
wireless networks,” in Proceedings Performance and Management of Wireless and
Mobile Networks (P2MNet), Tampa, FL, USA, Nov. 2006. 96

[164] M. Zink, O. Kunzel, J. Schmitt, and R. Steinmetz, “Subjective Impression of Varia-
tions in Layer Encoded Videos,” in Proceedings of the 11th International Workshop
on Quality of Service (IWQoS), Monterey, CA, USA, June 2003. 97

[165] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: A
Simple Model and Its Empirical Validation,” in Proceedings of ACM SIGCOMM,
Vancouver, Brisish Columbia, Candada, 1998. 98

[166] Li Lao, Constantine Dovrolis, and M. Y. Sanadidi, “The Probe Gap Model Can
Underestimate the Available Bandwidth of Multihop Paths,” SIGCOMM Comput.
Commun. Rev., vol. 36, no. 5, pp. 29–34, 2006. 101

[167] Mark Claypool, Robert Kinicki, Feng Li, Mingzhe Li, Rui Lu, and Huahui Wu,
“Measuring the Queue Sizes of IEEE 802.11 Wireless Access Points,” Tech. Rep.,
CS Department at Worcester Polytechnic Institute, May 2006. 103, 109

[168] Alessio Botta, Salvatore D’Antonio, Antonio Pescap&#233;, and Giorgio Ventre Ven-
tre, “BET: A Hybrid Bandwidth Estimation Tool,” in ICPADS ’05: Proceedings of
the 11th International Conference on Parallel and Distributed Systems - Workshops,
Washington, DC, USA, 2005, pp. 520–524. 103

201



BIBLIOGRAPHY

[169] Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, “Achieving Moderate
Fairness for UDP Flows by Path-status Classification,” in LCN ’00: Proceedings
of the 25th Annual IEEE International Conference on Local Computer Networks,
Washington, DC, USA, 2000, p. 252, IEEE Computer Society. 113

[170] Saad Biaz and Nitin H. Vaidya, “Distinguishing Congestion Losses from Wireless
Transmission Losses: A Negative Result,” icccn, vol. 00, pp. 722, 1998. 113

[171] S. Lin and D. J. Costello Jr., “Automatic-repeat-request Error-control Schemes,”
IEEE Commun. Mag., vol. 22, pp. 5–17, Dec. 1984. 151

[172] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman, and Y. A. Reznik,
“Video Coding for Streaming Media Delivery on the Internet,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 11, pp. 269–281, Mar. 2001. 151

[173] Mingzhe Li, Mark Claypool, Robert Kinicki, and James Nichols, “Characteristics of
Streaming Media Stored on the Web,” ACM Transactions on Internet Technology
(TOIT), vol. 5, no. 4, Nov. 2005. 168

[174] Z. Wang, S. Banerjee, and S. Jamin, “Studying Streaming Video Quality: From an
Application Point of View,” in Proceedings of ACM Multimedia, Berkeley, California,
USA, Nov. 2003, pp. 327–330. 170

202


	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	The Dissertation
	Contributions
	Roadmap

	Background
	Streaming Multimedia
	Streaming Multimedia Applications
	Media Scaling
	Performance Metrics of Streaming Multimedia

	Wireless Network
	Overview of Wireless Networks
	IEEE 802.11 Wireless Local Area Networks (WLANs)


	Related Work
	Streaming Multimedia
	Streaming Buffer
	Characterization of Streaming over Wireless Networks
	Streaming Performance Improvement over Wireless Networks

	Bandwidth Estimation
	Bandwidth Related Metrics
	Bandwidth Estimation Techniques
	Evaluation of Bandwidth Estimation Techniques

	Wireless Network Performance Study
	Analytical Modeling
	Network Simulations
	Performance Measurements


	Packet Dispersion in IEEE 802.11 Wireless Networks
	Overview
	Packet Dispersion Issues in Wireless Networks
	Rate Adaptation Simulation
	The Impact of Wireless Networks

	Wireless Network Packet Dispersion Model
	Packet Dispersion Model
	Model Validation

	Analysis
	Packet Dispersion in 802.11
	Analysis of the Estimation Results
	Analysis on the Variance of the Bandwidth Estimation

	Summary

	WBest: Wireless Bandwidth Estimation Tool
	Overview
	Requirements of Wireless Streaming Applications
	WBest algorithm
	Assumptions
	Algorithm
	Number of Packet Pairs and Length of Packet Train
	Impact of Errors in Effective Capacity Estimation
	Pre-dispersion and Pre-compression
	Error Detection

	Experiments
	Experiment Design
	Metrics for Performance Evaluation
	Discussion on Experiment Setup
	Accurate Sending Rate Control in WBest

	Analysis
	Data Collected
	Case Analysis
	Impacts of Packet Sizes
	Consistency Analysis
	Estimating the Standard Deviation in Available Bandwidth

	Summary

	BROS: Buffer and Rate Optimization for Streaming 
	Overview
	Model
	Model Definitions and Assumptions
	Model Validations
	Model Results

	Buffer and Rate Optimization for Streaming (BROS)
	Algorithm
	Approximate CDF of Available Bandwidth

	Evaluation
	Wireless Testbed
	Emulated Streaming (EmuS) Client/Server System
	Experiment Design

	Results
	Summary

	Future Work
	Conclusions
	Bibliography

