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Abstract

IEEE 802.11 wireless access points (APs) act as the central communication hub inside homes,

connecting all networked devices to the Internet. Home users run a variety of network applications

with diverse Quality-of-Service requirements (QoS) through their APs. However, wireless APs

are often the bottleneck in residential networks as broadband connection speeds keep increasing.

Because of the lack of QoS support and complicated configuration procedures in most off-the-shelf

APs, users can experience QoS degradation with their wireless networks, especially when multiple

applications are running concurrently.

This dissertation presents CATNAP, Classification And Treatment iN an AP, to provide better

QoS support for various applications over residential wireless networks, especially timely delivery for

real-time applications and high throughput for download-based applications. CATNAP consists of

three major components: supporting functions, classifiers, and treatment modules. The supporting

functions collect necessary flow level statistics and feed it into the CATNAP classifiers. Then, the

CATNAP classifiers categorize flows along three-dimensions: response-based/non-response-based,

interactive/non-interactive, and greedy/non-greedy. Each CATNAP traffic category can be directly

mapped to one of the following treatments: push/delay, limited advertised window size/drop, and

reserve bandwidth. Based on the classification results, the CATNAP treatment module automati-

cally applies the treatment policy to provide better QoS support.

CATNAP is implemented with the NS network simulator, and evaluated against DropTail and

Strict Priority Queue (SPQ) under various network and traffic conditions. In most simulation cases,

CATNAP provides better QoS supports than DropTail: it lowers queuing delay for multimedia

applications such as VoIP, games and video, fairly treats FTP flows with various round trip times,

and is even functional when misbehaving UDP traffic is present. Unlike current QoS methods,

CATNAP is a plug-and-play solution, automatically classifying and treating flows without any user

configuration, or any modification to end hosts or applications.
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Chapter 1

Introduction

1.1 Motivation

The decrease in price of IEEE 802.11 wireless network devices and the increase in wireless link ca-

pacities have significantly propelled the deployment of IEEE 802.11 wireless networks in residential

places. The promise of up to 72 Mbps capacity1 from a wireless AP means that users now expect

to see applications such as streaming video and on-line games that have tight Quality of Service

(QoS) requirements running seamlessly over residential wireless networks. However, since most

QoS traffic shaping technologies are primarily designed for wired networks, even applications pro-

vided with QoS support may perform poorly when running in a residence with a last mile wireless

network. Meanwhile, with the growth in adoption of broadband access technologies such as Asym-

metric Digital Subscriber Loop (ADSL) and Cable Internet, multiple network applications are able

to run concurrently over residential networks. Thus, multiple computers in the same residence are

competing for network resources such as wireless medium access and up-link or down-link Internet

bandwidth.

As Figure 1.1 shows, the wireless access point (AP) serves as a central communication point for

all computation and entertainment devices acting as a gateway between client devices inside the

house and the outside world (Internet). Residential class wireless APs are integrated with a fast

Ethernet switch to provide wired access as well. Thus, most residential-based wireless APs perform

the function of a router enhanced with additional features such as firewalls and name services.

1IEEE 802.11n can achieve 72 Mbps on a single 20 MHz channel with one antenna [15,16].
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Figure 1.1: Typical Residential Wireless Network

Because of the rapid increase of the broadband connection capacity to homes, the bottleneck is

often the wireless link.

Unfortunately, implementations of wireless APs do not differentiate among the various traffic

types over residential networks, treating applications with different quality of service (QoS) require-

ments the same. Contention for wireless resources can degrade the performance for one or more

wireless applications. Residential wireless users often experience degraded QoS for on-line games,

real-time videos, or Voice over IP (VoIP) when another application is simultaneously downloading

a file through the same AP [17–19].

Although various mechanisms are proposed to provide better QoS support, such as IEEE

802.11e, Integrated Services (IntServ), or Differentiated Services (DiffServ), QoS is yet to be widely

deployed. One of the key factors holding back broad deployment of QoS is the lack of suitable

classification methodologies to map different application flow types into different QoS classes. Be-

cause network devices have limited ability to detect what kinds of applications are running over the

networks, they seldom have a chance to shape traffic to provide better QoS support. In the past
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decade, port-based traffic identification approaches, which identify an application by inspecting

transport layer port numbers, have been effective and widely used. However, recent studies show

that this kind of classification approach is error-prone [7,20–22] because the applications and users

often intentionally avoid using well-known or consistent ports. To achieve higher accuracy, packet

payloads can be inspected [7]. However, this approach is not practical for real-time classification

because of its high computational complexity and ineffectiveness for encrypted packet payloads.

Recently, researchers have proposed several statistics-based traffic classification methods using

machine learning techniques [23–28]. These approaches assume that applications typically transfer

data in a repeatable manner, and that this pattern can be used as a means of identification [28]. To

find these patterns, flow statistics (such as mean packet length, flow length and packet inter-arrival

time) are needed. These flow features can be collected from TCP/IP headers, thus avoiding the use

of packet payload information. However, these approaches are designed for wired environments,

and most do not consider wireless medium characteristics such as retransmission or rate adapta-

tion which can impact flow patterns such as packet inter-arrival timing. Also, typically the main

objective of these statistical approaches is to identify the application type without improving QoS

support over networks.

Last but not least, another challenge is from the wireless APs themselves. Wireless APs in

residential networks are low end devices with limited CPU and memory, making it difficult to

deploy classification methods and traffic shaping schemes with high computational complexity. For

example, the 5th generation Airport Extreme IEEE 802.11n wireless router from Apple Inc, which

debuted in 2013, does not provide QoS support because Apple believes it is difficult for home

users to correctly configure QoS settings [29]. Even the Cisco Wireless LAN controller 5500 series,

a dominant product for the U.S. enterprise class wireless device market, does not support QoS

in a convenient way: it needs 14 steps to add per-user capacity limitations. Therefore, most of

residential wiress APs do not provide QoS support, or only support QoS with complicated manual

configuration.

In summary, although neither traffic classification nor traffic treatment is a novel technique,

no effort has been made to combine these two techniques together onto residential wireless APs

to automatically improve QoS support for applications over residential wireless networks. This

dissertation presents a traffic classification technique which identifies and classifies applications

based on their wireless network traffic characteristics, and enhances the wireless AP with new
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traffic treatment techniques to shape the traffic by mitigating the effects of wireless media [30].

1.2 Bottleneck on Residential Wireless Networks

There exists a long debate which device is the bottleneck on residential wireless networks: “last-

mile” connection or wireless AP. In the last decade, the IEEE 802.11 (a/b/g/n) wireless protocol

provides up to 260 Mbps link speeds. However, in a well controlled environment, IEEE 802.11

protocols never reach their claimed link speed. For example, IEEE 802.11g only provides 19 Mbps

throughput, much smaller than the maximum link speed of 54 Mbps [15].

Under real wireless environments, wireless devices seldom reach their claimed link speed because

of the shared medium nature of wireless. Specifically, the following could degrade the performance

of IEEE 802.11 devices over residential places:

1. Neighbors’ APs can act as hidden terminals, especially in a thickly settled urban area. Both

the home wireless measurement study conducted by a group of researchers from University

of Wisconsin [31] and our home wireless measurement study (Chapter 4) observed more than

10 neighbor APs in an urban area. The high density of neighbor APs can degrade the

performance of wireless APs.

2. IEEE 802.11 b/g can degrade the performance of IEEE 802.11n wireless devices. IEEE

802.11 provides non-HT (High Throughput) mode and HT mixed mode to provide backward

compatibility to IEEE 802.11 b/g devices. Non-HT mode makes IEEE 802.11n devices act as

IEEE 802.11 b/g devices, and there are no performance gains from IEEE 802.11n technology.

The HT mixed mode requires a device to transmit legacy formats of CTS-to-self or RTS/CTS

frames. Although these CTS/RTS frames are short, these small frames still degrade the

performance of IEEE 802.11n devices. However, due to cost concerns, IEEE 802.11 b/g

devices are still produced, for example, for disposable wireless sensors since the lower data

rate can reach a greater distance.

3. Non IEEE 802.11 devices, e.g., microwave ovens and bluetooth devices, can interference with

IEEE 802.11 b/g/n devices especially on the 2.4 GHz band.

4. The 5 GHz band does not work well for residential networks. Although the 5 GHz band

provides more available channels, it has more trouble penetrating solid objects because of its
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relatively small wave length. Thus, the emerging IEEE 802.11ac standard may not work well

in an indoor environment since it is on the 5 GHz band.

For the above reasons, IEEE 802.11 a/b/g/n devices never reach their claimed link speeds for indoor

environments.

Table 1.1 lists the top 10 countries with the highest ISP connection speeds [1]. It shows that

the top 4 countries have more than 50 Mbps peak connections to the home, which is much faster

than the achievable throughput of IEEE 802.11g. IEEE 802.11 b/g and IEEE 802.11n in HT mixed

mode would be the bottleneck devices for these homes. Three states: Massachusetts, New Jersey

and Maryland provide 50 Mbps peak connections to residences [1], and IEEE 802.11 b/g would be

the bottleneck in these three states.

Table 1.1: Top 10 countries with Peak Connection Speeds [1]

Country/Region Mbps

1 Hongkong 65.4
2 South Korea 63.6
3 Japan 52.0
4 Singapore 50.1
5 Israel 47.7
6 Romania 45.5
7 Latvia 43.1
8 Taiwan 42.7
9 Netherlands 39.6
10 Belgium 38.5
........ ....
16 United States 36.3

Because IEEE 802.11 a/b/g/n APs could not reach their theoretical throughput as noted pre-

viously, IEEE 802.11 is the bottleneck for many residential networks in the United States.

1.3 The Dissertation

The goal of the dissertation is to improve QoS support for various applications over residential

wireless networks by implementing treatment-based classification methods and corresponding treat-

ments on a home AP.

Figure 1.2 shows the architecture of the Classification And Treatment On an Access Point

(CATNAP), which automatically differentiates the traffic of flows into eight categories, and treats
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Figure 1.2: Architecture of CATNAP

the traffic to improve their QoS over residential wireless links. This study assumes the last mile

wireless link is the bottleneck connection and that the AP serves as an edge router.

Due to the closed nature of off-the-shelf residential wireless APs, the study builds CATNAP with

the NS-2 network simulator and validates it with various traffic loads and network configurations.

CATNAP consists of two major components: the classifier and the treater. Because wireless APs

are devices with limited-powered processor and memory, the CATNAP flow treater uses four non

CPU-intensive operations: push, delay, drop and limit to help flows meet their QoS requirements.

For instance, CATNAP attempts to help interactive and real-time applications by pushing them in

front of the AP queue without significantly deceasing the throughput of bulk-download applications

by explicitly reducing their TCP advertised window instead of dropping packets.

The CATNAP classifier first places the flows into different categories in real-time. Unlike other

statistics-based classification techniques, the CATNAP classifier does not associate a flow with a

particular application but instead places it into one of the treatment categories according to the

nature of the traffic. Therefore, it is not necessary to train the traffic classifier with historical

data. Meanwhile, current widely used classification techniques such as port-based or payload-based

classifiers exhibit a number of shortfalls such as unable to detect flows running on Web ports. The

CATNAP classifier attempts to identify traffic based on payload-independent features, including
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reverse traffic and packet length.

In addition to the classification module, the CATNAP treater applies one or more treatments

to the classified flows. The goals of the flow treater are to provide better QoS for real-time and

interactive applications (lower delay) when the wireless link is stressed by greedy bulk-downloading

applications. The flow treater takes advantage of the CATNAP classification results, and treats the

flow according to their nature.

To evaluate CATNAP, we analyze application behaviors from real network traces as well as

through a wireless simulator, and generalize flow behavior patterns for several representative appli-

cations such as online gaming and video streaming running over residential wireless networks. Our

treatment-based classification criteria categorizes flows with similar features and QoS requirements

into the same treatment categories. We evaluate our classifier with simulated application flows

under various wireless network conditions.

Moreover, we conduct a series of measurement studies to investigate the current status of home

wireless environment, especially to get the performance of video, game and VoIP applications under

normal network activities. In addition, through the home wireless measurement study, we are able

to validate our simulation setup with real home wireless environments and provide a set of realistic

simulation settings for future home wireless network simulations.

1.4 Contributions

The main contributions of this dissertation are to design a set of novel treatment-based classification

methods and corresponding treatments to automatically improve the Quality of Service (QoS) of

various applications running over residential networks, and verify it through carefully designed

simulations. The specific contributions of this dissertation include:

• Design CATNAP which automatically improves QoS support for various applications running

on home wireless networks. without any modifications on applications or network protocols.

Different from IEEE 802.11e based approaches, which requires applications set the Type of

Service (TOS) bits, CATNAP provides automatically flow level classifications and maps the

classified flows with corresponding treatment methods. Different from other statistics based

flow classification methods, the CATNAP classifiers do not need the training data set. Thus,

CATNAP has the potential to detect and treat any unknown type flows in future, if the new
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flows have similar characteristics or QoS requirement with the current applications.

• Verify the CATNAP by thorough simulation studies. CATNAP has been evaluated under

various network and wireless conditions with a carefully designed simulation setup for home

wireless environment. Moreover, we carefully study the behaviors of representative applica-

tions found in public available traces, and enhance the NS-2 simulator with realistic traffic

generator to provide “close to real” applications. The simulation results are a good starting

point for future researchers who want to build a more accurate application behavior model

over residential wireless networks.

• Improvement of wireless AP QoS by making a “smarter” AP. QoS packet scheduling algo-

rithms are usually designed for core router devices, and most of them assumes that appli-

cations correctly set the Type of Service (TOS) bits. The CATNAP approach attempts to

improve the QoS of various applications running over residential wireless networks without

any changes in end hosts, applications, or network protocols. Thus, by enhancing the wireless

AP, CATNAP is a promising approach to improve QoS without any user interventions or

configurations.

• Design and conducted a home wireless measurement study in New England area. The home

wireless study was the first attempt to study provides a complete snapshot of home wireless

network usage from physical to application layer. Through this wireless measurement study,

we have better understanding of the usage of home wireless networks, and developed a set

of wireless measurement tools which can be used for future wireless measurement study.

Moreover, the knowledge and pitfalls gained in this study could help future researchers to

design home wireless measurement study.

1.5 Roadmap

The remainder of this dissertation is organized as follows: Chapter 2 provides background knowledge

to the work in this dissertation; Chapter 3 discusses related research in the areas of classification

and QoS support over wireless links; Chapter 4 presents results of the residential wireless network

measurement case study to understand the current usage of home wireless networks as well as

validate the physical layer and MAC layer settings for our NS-2 simulation; Chapter 6 compares
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the simulation results between CATNAP and its competitors: DropTail and Strict Priority Queue

(SPQ); and Chapter 7 and Chapter 8 summarize the future work and conclusion respectively.
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Chapter 2

Background

This chapter reviews the fundamental techniques and terminologies that are referred to in the dis-

sertation. Section 2.1 overviews QoS requirements for various applications running over residential

networks. Section 2.2 reviews wireless network techniques, such as wireless medium characteristics,

IEEE 802.11, and wireless access points (APs). Section 2.3 surveys several potential technologies

which could provide QoS of various applications over residential wireless networks, including IEEE

802.11e, IP QoS and others.

2.1 QoS Requirements of Applications

The growth in the popularity and capacity of the Internet has led to an increasing diverse set of

application with varying network behaviors and requirements running over residential networks. In

order to design a smart AP to provide better concurrent QoS supports for residential applications,

application Quality of Service (QoS) requirements must be ascertained, particularly along the key

network metrics of delay, loss and throughput.

2.1.1 Network Layer Quality Metrics

Although the ultimate QoS consideration is “user-perceived quality”, for applications running over

networks, it is necessary to study the network-based application quality metrics. Knowing the net-

work service required for a particular application can help to avoid both over- and under-allocation

of network resources. For applications running over networks, three IP layer quality metrics, delay,
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loss and throughput are widely used:

• Delay is the time it takes for a packet of data to get from one designated point to another.

For delay sensitive applications like VoIP, the delay should be low (less than 150 ms). Large

delay values decrease the quality of such applications [32,33]. The dominant factor that affects

delay on the Internet is buffering inside the network nodes along the flow path, such as at

routers and switches. For IEEE 802.11 infrastructure networks, the dominant contributor to

delay is the buffering inside the wireless AP. In our previous study [34], while the one-way

delay observed between a wireless station and an AP is less than 10 ms, we have observed

more than 200 ms delay for a queue capacity of 50 packets to 300 packets [35]. Related to

delay, jitter, the variation in the inter-arrival time of adjacent packets [13], also can be used

to measure application performance.

• Loss is the ratio of lost IP packets to those generated on the source node. Packets can be

lost for several reasons in a wireless network in addition to congestion in a node along the

communication path. For instance, collisions, interference, noise, fading, or location-based

errors in a communication link [13] can also cause packet loss. However, link losses in IEEE

802.11 are often hidden by the MAC layer’s automatic retransmission mechanism. Thus, the

final IP layer packet loss fraction might be low, despite high wireless frame error rates.

• Throughput is the amount of digital data per time unit that is delivered over a physical or

logical link. However, throughput is a metric limited by every component along the path from

the source node to the destination node, including all hardware and software. Thus, maximum

throughput and achievable throughput describe two different characteristics of throughput:

– Maximum Throughput (Tmax) is the highest transfer rate than can be successfully per-

formed between two end hosts if they are connected with each other directly [36]. This

characteristic is software independent and describes the ceiling of throughput for a given

network configuration.

– Achievable Throughput (At) is the throughput between two end points under a complete

given set of conditions, such as transport protocol used, end host hardware, round-trip

time, operating system, tuning method and parameters, etc. [36,37]. This characteristic

represents the performance that an application in this specific setting might achieve.
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Throughput Sensitivity

For bulk download applications like FTP, achievable throughput tries to be as close as possible

to the maximum throughput, because of the “best-effort” nature of TCP/IP protocols. For the

other applications such as IP phone applications (VoIP applications), their achievable throughput

(64 Kbps) is typically limited by the application itself. Moreover, for streaming video applications,

their achievable throughput is limited by the maximum throughput or the video encoded bit rate,

whatever is less.

Thus, we define the ratio of achievable throughput and maximum throughput as the greedy

indicator G to describe the bandwidth requirement nature for applications. For a given application

A, its greedy indicator G is defined as:

G(A) =
At
Tmax

= c, 0 ≤ c ≤ 1.

where Tmax is maximum throughput over a link. The greedy indicator of a given application is a

constant c between 0 and 1.

If the bandwidth increases to infinity, the achievable throughput (At) of some applications such

as FTP also increases to infinity. But for other applications such as video streaming, their achievable

throughput is limited by the application’s parameters such as video encoding bit rates. Thus, when

the maximum throughput is increased to infinity, the greedy indicator would be:

lim
Tmax→∞

G(A) = lim
Tmax→∞

At
Tmax

=

 1 : A is a bulk download application.

0 : A’s transmission rate is limited by itself.

where Tmax is maximum throughput over a link. As the above equation shows, when Tmax → ∞,

the greedy indicator of bulk download applications like FTP equals to 1, and for applications like

streaming or gaming, their greedy indicator is 0.

Here, based on the greedy indicator G, we define the throughput sensitivity for applications.

It describes the application behavior as the maximum throughput changes. Throughput tolerant

applications have a greedy indicator typically a constant c where 0 ≤ c < 1 for a given Tmax. It

means that its achievable throughput is limited by the application itself even when the maximum

throughput is infinity. For example, typical videos from youtube.com only consume a modest

amount of bandwidth typically (less than 792 Kbps). Compared to the maximum throughput
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on IEEE 802.11g network (22 Mbps), the greedy indicator (G) for a streaming application from

youtube.com is a small fraction. On the other hand, for throughput sensitive applications, the

achievable throughput grows as the maximum throughput increases, and its greedy indicator (G)

would be 1 even when maximum throughput Tmax increases.

2.1.2 Application QoS Requirements

Based on the three major performance metrics: delay, loss and throughput, applications can be

grouped into eight different groups with distinct QoS requirements. As Figure 2.1 shows, applica-

tions can be divided as delay sensitive or tolerant, loss sensitive or tolerant, throughput sensitive

or tolerant. Since each metric is independent of the others, it results in eight different categories

for applications.

• Throughput tolerant, packet loss sensitive, and delay tolerant. Emails traveling over the Inter-

net can be put into this category. The response-time requirement for an Email can be on the

order of tens of minutes. Traditional Email applications can tolerate the end-to-end delay and

only consume a small fraction of bandwidth unless containing a large attachment. Similarly,

reading USENET News can be also placed into this category.

• Throughput tolerant, packet loss sensitive, and delay sensitive. Traditional Web traffic can

be classified into this category. Compared to File transfer (FTP) and Email, Web browsing is

sensitive to HTTP server response time, which is affected by both the end-to-end delay and

packet loss rate on the network [14]. Moreover, telnet (ssh and remote login), DNS query,

on-line gaming and on-line chatting applications can also be placed into this category.

• Throughput sensitive, packet loss tolerant, and delay tolerant. Only some special purpose

applications can be put into this category, for example, a Video Crawler [38], a robotic

program retrieving video information from the Web, consuming a large fraction of bandwidth,

but tolerates packet loss and delay. Also, some malicious applications1 including viruses can be

categorized into this category. However, most applications running over residential networks

would not be in this category.

• Throughput sensitive, packet loss tolerant, and delay sensitive. High-definition (HD) video

streaming can be put into this category. Unlike most video clips stored on line, studio quality

1Some programs like SYN Flooding attack virus.
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Figure 2.1: The QoS Spectrum of Applications

videos are encoded at about 36 Mbps, and HDTV quality videos stream at about 25-34

Mbps. Therefore, HD video streaming requires high throughput, and low delay (jitter) but

can tolerate some packet loss.

• Throughput sensitive, packet loss sensitive, and delay tolerant. File transfer (FTP) and Peer-

to-Peer (P2P) file sharing programs are placed in this category. FTP can consume a large

portion of bandwidth, but the response time requirement of FTP is on the order of minutes

while P2P file downloading programs often run in background over several nights.

• Throughput sensitive, packet loss sensitive, and delay sensitive. Some interactive video games

(First Person Shooter) and interactive streaming programs are placed in this category. This

kind of application can consume a large fraction of bandwidth and is less tolerant of packet

loss and delay since the data flow contains loss sensitive control information along with video

data.

• Throughput tolerant, packet loss tolerant, and delay sensitive. Typical online streaming traffic

can be put in this category. Nearly 70% of videos are targeted for broadband with encoded

bit rates between 56 Kbps and 768 Kbps [38]. Thus, these streaming video clips do not

require high bandwidth. Meanwhile, these applications can tolerate some kind of data loss,

since a little data loss can be repaired without noticeably degrading the user perceived qual-

ity [39]. However, their performance is sensitive to delay changes (jitter) 2 which can trigger

2Playout buffers can significantly reduce effects of jitters.
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re-buffering events [37].

• Throughput tolerant, packet tolerant, and delay tolerant. This kind of applications can tolerate

loss, delay and insufficient bandwidth. It is difficult to find such application instances running

over residential networks.

The method to categorize applications by the three QoS metrics is a complete classification in

that any flow over the Internet can be classified into one of the eight categories. However, a single

kind of application might have different QoS requirements depending upon its usage and be mapped

into different categories. For example, the non-interactive streaming application can be mapped into

two different categories: “throughput tolerant, packet loss tolerant, and delay sensitive” for most

Web based streaming applications; “throughput sensitive, packet loss tolerant, and delay sensitive”

for HD video streaming applications. They might even use the same streaming software, but the

flows carrying video content have different QoS requirements.

Table 2.1 [14] summaries QoS characteristics for common applications running over residential

networks. We also list duration and volume as an application characteristic in addition to the three

QoS metric we discussed above. Duration is not a QoS related-metric in the general sense, but

indicates the time window for treating an application. Short-lived flows have less possibility to be

treated than long-lived flows. Meanwhile, the volume of a flow could also be used to characterize

applications. Interactive Web traffic and FTP are both “best effort” applications, but the volume of

their flows is different. Web traffic is small, whereas the FTP flows have large volume of data [40].

From the view of treatment, during congestion, reducing the date volume of flows with large data

volume might be more effective. Table 2.1 also lists the “traffic ratio” for major kinds of applications

which is the data volume over the total captured volume. Because there is no publicly available

traffic analysis for residential wireless networks, we use traffic analysis results from [41], which is an

eleven-week trace collected over a campus wireless network in 2001. The authors in [41] identify the

traffic type based on protocol and port used. Therefore, some traffic like file sharing over HTTP

protocol is also classified as HTTP traffic. Moreover, in [41], there are 5.7 GB (2.8%) traffic from

IM software which has similar QoS requirements as Telnet applications. Yet, around 5.3 GB (2.4%)

traffic is classified as unknown since neither the source port nor the destination port matches on

the authors’ port list.
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Table 2.1: Internet Applications: QoS Requirements and Characteristics.

Internet Sensitivity to Characteristics Traffic Ratio
Applications Delay Loss Tput Duration Volume Bytes, Ratio

FTP (TCP) low low high long large 3.6 GB, 1.6%

Email (TCP) low low low short small 2.9 GB, 1.3%

Telnet (TCP) high high low long small N/A

HTTP (TCP) low high med short/med small/med 116 GB, 53%

VOD (UDP) low med high long large N/A

A/V Phone (UDP) high med high long small/med N/A

Video Game (UDP) high med high long small N/A

DNS (UDP) high high low very short tiny N/A

2.2 IEEE 802.11 Wireless Networks

Because of its mobility and flexibility, wireless networks have been widely deployed with fixed

infrastructure networks in residential places. Most protocols and applications developed for wired

networks have been transferred to wireless networks directly. However, some characteristics of

wireless media that differ from wired media might impact the performance of applications over

wireless. This section reviews characteristics of wireless media, the IEEE 802.11 Wireless Local

Area Networks (WLANs) standard, and additional challenges for wireless QoS.

2.2.1 Characteristics of Wireless Media

The important characteristics of wireless radio medium that differ from wired networks are:

1. Shared Medium. Unlike the wired medium, the broadcast nature of wireless means that

all transmissions share the same medium at half-duplex. Furthermore, the shared medium

causes collisions and interference that additionally degrade network performance. Finally,

with wireless, the network is restricted to a limited available bandwidth for operation and

cannot accommodate more capacity by adding new frequency range or duplicating the medium

as in wired networks.

2. Propagation. Wireless transmissions experience attenuation, reflection, diffraction and scat-

tering effects, and cause multi-path fading which results in radio signals reaching the desti-

nation by two or more paths. The effects of multi-path include constructive and destructive

interference, which produce time varying channel conditions, such as varying received signal

power, and eventually cause propagation loss. Especially in residential environments, indoor
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propagation is dependent on the building layout, the construction material used and the

building type, making it more difficult to model propagation and predict loss [42,43].

3. Bursty channel errors. Wireless channels are error prone with a higher bit error rate (BER)

of 10−3 or more. Such high bit error rates can be caused by the multi-path, transmission

interference, signal fading and other issues such as microwave ovens or thunderstorms.

4. Location dependent carrier sensing. In wireless LANs as well as other kinds of wireless

links, wireless performance is significantly dependent on the location of the wireless stations

relative to its neighboring wireless nodes. For example, hidden terminals and exposed ter-

minals [4] could considerably degrade wireless performance. A hidden terminal is a wireless

station which is within the range of the intended destination but out of the range of the

sender. Thus, collisions may happen at the destination if the sender and the hidden terminal

transmit at the same time because they can not detect each other. On the other hand, an

exposed terminal is one wireless station that is within the range of the sender but out of

interference range of the destination. The sender may mistakenly back-off when the exposed

terminal is transmitting even if that transmission will not collide with the sender’s transmis-

sion. Either hidden terminal and exposed terminal problems cause performance degradations.

This location dependent issue might be worse in crowded residential places.

2.2.2 IEEE 802.11 Overview

IEEE 802.11 is limited in scope to the Physical (PHY) layer and Medium Access Control (MAC) sub-

layer. The IEEE 802.11 MAC layer begins with IEEE 802.3 Ethernet standard, while the PHY layer

supports a few variations, such as Direct Sequence Spread Spectrum (DSSS), Frequency Hopped

Spread Spectrum (FHSS), Orthogonal Frequency Division Multiplexing (OFDM) and Infrared (IR).

The IEEE 802.11 Standard [2, 3] defines a family of Wireless Local Area Networks (WLANs),

including 802.11a, 802.11b, 802.11g, and others [2, 3]. A brief comparison of the main standards

is given in Table 2.2. Note that all the standards use the same MAC layer specification, but with

different physical layer specifications.

IEEE 802.11 standards [2] support both an infrastructure network topology or ad-hoc network

topology. In an infrastructure network, there is a fixed infrastructure that supports communication

between mobile stations and fixed stations via an Access Point (AP). Conversely, in an ad-hoc
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Table 2.2: IEEE 802.11a, b, and g WLAN Standards [2–4]

802.11 list 802.11a 802.11b 802.11g

Frequency 2.4 GHz 5 GHz 2.4 GHz 2.4 GHz
Date Rate(s) 1, 2 5, 9, 12, 18, 1, 2, 5.5, 6,9, 12, 15
(in Mbps) 24, 36, 48, 54 11 24, 36, 48, 54
Modulation FHSS, DSSS OFDM DSSS OFDM
Advertised Range 300 ft 225 ft 300 ft 300 ft
Encryption type 40 bit 40 bit, 104 40 bit, 104 40 bit, 104

RC4 bit RC4 bit RC4 bit RC4
Network Support Ethernet Ethernet Ethernet Ethernet

(IEEE 802.3) (IEEE 802.3) (IEEE 802.3) (IEEE 802.3)

network, there is no fixed infrastructure. The mobile stations communicate directly with each

other without the use of an AP. Recently, IEEE 802.11 mesh networks appear in several commu-

nities [44, 45], which is a hybrid ad-hoc/infrastructure structure. However, this study focuses on

IEEE 802.11 infrastructure networks with a single AP. Ad-hoc networking, mesh network or infras-

tructure network with multiple APs typically is not part of a residence network, thus they are out

of the scope of this dissertation and will not be covered in this review.

The main purpose of this study is to classify the traffic over residential wireless networks into

different categories according to their QoS requirements with same traffic shaping techniques. In

particular, the packet inter-arrival time for different flows impacts traffic detection and treatment

selection. Therefore, we focus on the IEEE 802.11 techniques which directly affect packet inter-

arrival times. These techniques include IEEE 802.11 Distributed Coordination Function (DCF),

frame retransmission and multi-rate physical layer.

IEEE 802.11 Distributed Coordination Function (DCF)

In IEEE 802.11, there exist two mechanisms to control access to the medium: Distributed Coordi-

nation function (DCF) and Point Coordination Function (PCF). DCF is a random access scheme

based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) and it is supported

by all IEEE 802.11 compatible devices [3]. PCF is a centralized MAC protocol that uses a point

coordinator to determine which node has the right to transmit. However, PCF is an optional com-

ponent and not widely deployed [3, 46]. Therefore, in this dissertation, we limit our study to DCF

only.
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CSMA/CA Mechanism

DCF defines two techniques for frame transmission: the default two-way handshake, referred to

as basic access, and an optional four-way handshake.

Figure 2.2 depicts the medium access procedure for a wireless station (WS) in a wireless infras-

tructure network that wants to transfer a frame with the basic access mechanism. A station that

wants to access the channel performs carrier sense on the medium before initiating the transmis-

sion of a new frame. If the channel is idle for a distributed inter-frame space (DIFS), which is a

time period a station has to wait before sensing the medium again, the frame is transmitted. The

receiver of the data (AP in this case) waits a Short Inter Frame Spacing (SIFS), which is a shorter

time period than a DIFS, and replies with an acknowledgment (ACK). When a station has access

to the channel, all other stations defer access.

Figure 2.2: Medium Access Control Procedure Using DCF Basic Access Mechanism.

Otherwise, if the sender senses the channel is busy, it has to wait a DIFS and enter the contention

period. In this contention phase, each station waits a random number of back off time slots (9 usec)

before the sender repeats the carrier sense. If the channel is idle for a DIFS after its back off time

period, the sender repeats the procedure described above and transmits the data frame after a DIFS

if the channel is still idle.

The back-off time period is calculated by an exponential back-off timer. The timer is decre-

mented only when the medium is idle and it is frozen when the medium is sensed busy. The slot

size of the backoff timer is denoted by the time needed by any node to detect the transmission of

a packet by any other node, typically 9 micro seconds in IEEE 802.11g. At each frame transmis-

sion, the back-off time is uniformly chosen in the range (0, CW − 1), where the CW is called the

contention window (CW). For each packet queued for transmission, the contention window CW
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starts from an initial value CWmin that doubles after each unsuccessful frame transmission, up to

a maximum of CWmax. The contention window remains at CWmax for all remaining attempts.

In addition, to avoid channel capture, a node must wait for a random back-off time between two

consecutive frame transmissions even if the medium is sensed idle in the DIFS time [2].

The four-way handshake mechanism is used to mitigate the hidden terminal problem [3,4]. The

four-way handshake mechanism involves the usage of the request-to-send (RTS) and clear-to-send

(CTS) control frames prior to the transmission of the actual data frame. For most of the residential

wireless devices, RTS/CTS is turned off by default [35], as RTS/CTS schemes can significantly

lower system throughput [3, 47]. Thus, we do not investigate the four-way hand shake mechanism

in this dissertation3.

MAC Layer Retransmission

The IEEE 802.11 DCF MAC layer retransmits DATA frames and RTS frames for a number of

times based on the frame size. The IEEE 802.11 standard suggests that the transmission attempts

for a frame with a size less than the RTS Threshold is seven, and for the frame with a size larger

than the RTS Threshold is four. The RTS Threshold parameter is also used as an indicator of the

usage of RTS/CTS mechanism. If the DATA frame is smaller than the RTS Threshold, the frame is

considered as a short frame, and can be transmitted without the RTS/CTS exchanges. Moreover,

if a station has an RTS Threshold value greater than the Maximum Transmission Unit (MTU),

the RTS/CTS mechanism is simply disabled. Then all DATA frames are retransmitted following

the short frame retry limit. In residential wireless networks, the maximum frame size is typically

limited by the MTU size of 1500 bytes/packet, which is smaller than the default RTS threshold

(2312 bytes). Therefore, generally, over a residential network, data frames are handled as short

frames with up to seven retransmissions. Several researchers have tried to dynamically tune the

retransmission threshold to provide better QoS support over wireless LANs [48,49].

IEEE 802.11 Multi-rate Physical Layer

The IEEE 802.11 medium access protocols provide support for multi-rate physical layer modula-

tions. For example, the Extended Rate PHY (ERP) of IEEE 802.11g supports payload data rates of

1, 2, 5.5, and 11 Mbit/s using DSSS modulations to be compatible with IEEE 802.11b devices, and

3The detailed transmission procedure for RTS/CTS could be found in [2, 3, 47].
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additional payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s using OFDM modulation.

The rate adaptation mechanisms are based on either the sender’s inference or receiver’s feed-

back of the current channel conditions. The adaptation schemes can be either SNR-based (few

implementations), statistics-based, such as number of retransmissions, packet error rate (PER) or

throughput based [50]. For instance, the scheme designed in [51] uses the statistical information

on the sender retries and the scheme in [52] uses the SNR data feed back from the receiver.

For a given SNR, the modulation scheme with a higher data rate has a higher BER. By adapting

the data rate with different modulation schemes under various wireless network conditions, a low

BER, and therefore better performance, can be achieved. However, wireless rate adaptation results

in dynamic link capacity changes in wireless networks. Such changes might impact the performance

of rate-based applications, such as streaming and VoIP applications over wireless networks.

IEEE 802.11n

IEEE 802.11n builds on previous 802.11 standards by adding multiple-input multiple-out (MIMO)

and 40 MHz channels to PHY layer, and enhancing the MAC layer with frame aggregation [53].

IEEE 802.11n becomes one implementation of IEEE 802.11ac [54]. IEEE 802.11n can achieve 600

Mbps data rate only with the maximum of four spatial streams using one 40 MHz-wide channel.

IEEE 802.11n can only achieve 72 Mbps data rate on a single 20 MHz channel with one antenna

and 400 ns guard interval; if there is no interference with other nearby Bluetooth, microwave or

WiFi devices by using 40 MHz mode.

Figure 2.3 [10] shows the wireless channels in 2.4 GHz band. IEEE 802.11n only can have three

non-overlapping 20 MHz channels same as IEEE 801.11g. Thus, it is impossible to guarantee OFDM

operation thus affecting the number of possible overlapping channels and limiting the achievable

throughput of IEEE 802.11n devices, especially when IEEE 802.11 b/g devices present. Zubow

et al. shows that 802.11 is an inappropriate protocol for multi-channel MAC/routing protocols

based on multi-radio systems [55] where an explicit MAC layer link-scheduling is a more promising

approach to improve the performance of IEEE 802.11 network.

2.2.3 Wireless Access Points

In an IEEE 802.11 infrastructure network, a wireless access point (AP) is a device that connects

wireless communication devices together to form a wireless network. The AP usually connects to
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Figure 2.3: IEEE 802.11 Channels on 2.4 GHz Band [10].

a wired network and can relay data between wireless devices and wired devices. Several APs can

link together to form a larger network that allows roaming. However, in this study, we focus on

residential wireless networks which typically contain only one AP.

Over residential IEEE 802.11 wireless networks, there exist various wireless devices that provide

wireless coverage in addition to the wireless stations. The off-the-shelf wireless APs play multiple

roles in residential networks. Their functions can be categorized according to the OSI model:

• MAC Layer Function

One of the MAC layer function of an AP is to form a bridge between the wireless client devices

and the hard-wired network. An AP encapsulates IEEE 802.3 frames from wired link into

the IEEE 802.11 frame format and sends them over a wireless link and vice versa. Moreover,
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an AP provides medium access control function and other management functions (such as

beacon frames) for wireless clients associated with it.

• IP Layer Function

Most residential wireless APs in market are wireless routers. They are wireless APs enhanced

with the functions of an IP router and an Ethernet switch. These wireless routers provide

DHCP services, network address translation (NAT) and firewall services for the clients con-

nected with it as well as extend its connectivity to wired devices inside the home. All wireless

routers can be configured to work as traditional wireless APs by disabling the IP layer func-

tions. However, in this study, we interchangeably use the term wireless AP and wireless

router.

• Application Layer Function

In reality, most residential wireless routers and access points act as residential gateways which

are used to connect home networks with the Internet. These wireless residential gateways often

combine the functions of an IP router, firewall, multi-port Ethernet switch and IEEE 802.11

access point, and even integrate with a DSL or Cable Modem in addition to providing Web

interface for maintenance. These wireless gateways also act as wireless routers/access points.

It is widely accepted that the bottleneck of the connection is generally located at the edge routers,

especially when the last hop is a wireless link. Because of the rapid increase of the bandwidth

delivered to residence places, we can still assume the bottleneck exists at the wireless AP. Indeed,

when several applications share the same wireless link, it might be the case that the AP receives

packets at higher rates than its forwarding rate. This can be caused by several circumstances such

as a wireless link not being full-duplex as most wired links.

Table 2.3: Components Used in Several Top Selling Residential Class Wireless APs.

Model Processor Speed RAM Flash Memory

Belkin F5D7130 v1000 Broadcom 4702 @ 125MHz 8 MB 4 MB
LinkSys WRT-54GS, v1.0 Broadcom 4712 @ 200 MHz 32 MB 8 MB
LinkSys WRT-54G, v2.0 Broadcom 5352 @ 200 MHz 16 MB 4 MB
Dell TrueMobile Broadcom 4710 @ 125MHz 16 MB 4 MB
Dlink DI-524UP, vA.2 RealTek RTL8650B @ 200Mhz 16 MB 4 MB
Microsoft MN-700 Broadcom 4710 @ 125MHz 16 MB 4 MB
Netgear WGR614, v3.0 Atheros 2312 @ 180MHz 16 MB 2 MB
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Table 2.3 [56] lists the processors4 and memory installed for several top selling residential wireless

access points. These wireless devices are run embedded Linux on low end processors (most are

32-bit MIPS DSPs) with 8 MB to 32 MB DRAM memory, 8 MB to 16 MB flash memory, and

corresponding wireless and Ethernet modules. Figure 2.4 illustrates the software architecture of

the PRISM Dual Band Access Point Developer Kit (ISL39300A) [11]. The dark grey blocks in

Figure 2.4 represent the non-GNU software which means generally publicly unavailable, and the

light grey blocks are open source modules. Based on Figure 2.4, instrumenting the transmit queue

inside the Linux kernel may be the best way to implement hardware or driver independent QoS

support in an AP.

Figure 2.4: Software Architecture for Prism Dual-Band Access Point Developer Kit [11].

2.3 Possible Treatments

In recent years, network researchers have proposed several schemes to provide better QoS support

for applications running over wireless networks. These schemes can work on various parts of the

4According to OpenWrt [56] the Linksys WRT54G series use several different processors, all of them 32-bit MIPS
architecture processors manufactured by Broadcom.

25



CHAPTER 2. BACKGROUND

network architecture. Focus has been placed on the data link/MAC layer, IP layer, and application

layer. This section contains a brief review of these approaches.

2.3.1 IEEE 802.11e

IEEE 802.11 Task Group E currently defines enhancements to the 802.11 MAC layer mechanisms

described in Section 2.2, called IEEE 802.11e [12,57–59] with an Enhanced Distributed Coordination

Function (EDCF) by introducing a new coordination function: the Hybrid Coordination Function

(HCF). Within the HCF, there are two methods of channel access, similar to those defined in the

legacy 802.11 MAC: HCF Controlled Channel Access (HCCA) and Enhanced Distributed Channel

Access (EDCA). Wi-Fi Multimedia (WMM) [6] certified APs must be enabled for EDCA, but other

enhancements of the 802.11e amendment are optional and HCCA is not mandatorily supported by

802.11e APs.

Both EDCA and HCCA define Access Classes or Category (AC) as a set of access parameters,

such as CWmin, CWMax, AIFS, and TXOP limit. Traffic that falls in the same access category is

effectively given identical priority with respect to access to the medium. A Traffic Category (TC)

is a application category that is not related to access to the medium. Therefore, IEEE 802.11e

wireless stations can support up to eight access categories, one for each TC. However, Ni et al.

propose to use fewer ACs than TCs to reduce the MAC layer overhead based on the observation

that usually eight kinds of applications do not transmit frames simultaneously [5, 58]. Table 2.4

depicts the mapping between Traffic Categories [12] and Access Categories [5, 6, 58].

Table 2.4: Mapping between Traffic Categories (TCs) and Access Categories (ACs) in [5, 6].

TC Designation 802.11e AC Service Type

2 Not defined AC BK(0) Best Effort

1 Back ground (BK) AC BK(0) Best Effort

0 Best Effort (BE) AC BK(0) Best Effort

3 Excellent Effort (BE) AC BE(1) Video Probe

4 Controlled Load (CL) AC VI(2) Video

5 VI (video ≤ 100ms delay and jitter) AC VI(2) Video

6 VO (video ≤ 100ms delay and jitter) AC VO(3) Video/Voice

7 Network Control AC VO(3) Voice

A single IEEE 802.11e station may implement up to eight transmission queues [12], one for

each AC or TC, in order to support IEEE 802.11e QoS parameters that determine their priorities.

Figure 2.5 compares the queue implementation architectures between the 802.11 and the 802.11e
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standard. In the 802.11 queue implementation (on the left part of Figure 2.5), the device driver

only contains one queue which holds various kinds of traffic. In 802.11e devices, as the right part

of Figure 2.5 shows, each AC (TC) queue works as an independent DCF station and uses its

own backoff parameters. Table 2.5 shows the EDCF parameters used by WMM [6], an industrial

standard enhanced with several IEEE 802.11e features. Since the counters of two or more parallel

TCs in a single station reach zero at the same time, a scheduler inside the station is needed to avoid

virtual collision. Also, the scheduler grants the TXOP to the AC (TC) with the highest priority, as

illustrated in Figure 2.5. Note, there is then still a possibility that the transmitted frame collides

at the wireless medium with a frame transmitted by other stations.

Figure 2.5: Virtual Backoff of Eight Traffic Categories [12]

Table 2.5: WMM Default Parameters for Four Access Categories(AC) [6].

AC CWmin CWmax (Slots) AIFS (slots) TXOP
(slots) STA AP STA AP

AC BK 15 1023 1023 7 7 0
AC BE 15 1023 63 3 3 0
AC VI 7 15 15 2 1 3.008 ms
AC VO 3 7 7 2 1 1.504 ms
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Limitation of IEEE 802.11e

The scientific community has designed IEEE 802.11e to assign different priorities to traffic traveling

through the AP in order to favor real-time applications over download-based applications. This

protocol requires the sender to mark each packet with a priority level that can then be used to

differentiate among flows. Thus, IEEE 802.11e faces serious obstacles for deployment because

current applications do not have this functionality. In future, even if all new applications are

enhanced with the ability to mark packets, designers may choose different priority levels for the same

applications or not have priority for old applications. Moreover, few the off-the-shelf IEEE 802.11e

devices are available, products only providing enhanced subsets of the IEEE 802.11e features, such

as WMM [6]. Implementation differences might hinder researchers in providing a general solution

to improve QoS support over wireless LAN by tuning the IEEE 802.11e parameters.

2.3.2 QoS Enhancement at the Network Layer

There are many QoS schemes implemented at the network layer. One major advantage is that

network layer schemes are common to all architectures regardless of the transmission media in-

volved. This subsection reviews Integrated Services (InteServ) and Differentiate Services (DiffServ)

mechanisms in the network layer.

Integrated Services (InteServ)

RFC 1633 [60] describes the Integrated Service (InteServ or IS) architecture, which supports appli-

cations requiring resource reservation and prioritization of individual flows to provide QoS. The IS

framework consists of four blocks: Packet scheduler, Admission control, Classifier, and Reservation

setup [61].

• Packet Scheduler schedules the transmission of packets with various types of queues. These

queues typically exist at the transmit driver in an operating system and correspond to the

link level. Different implementations can have different packet scheduling algorithms.

• Classifier categorizes each incoming packet into a particular service class so as to be scheduled

appropriately for transmission by the packet scheduler. The packets are classified based on

certain information that is present in the IP packet header. All packets belonging to the same

class are treated similarly.
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• Admission Control implements the decision algorithm that a router or host uses to de-

termine whether a new flow can be granted the requested QoS without impairing earlier

guarantees. The decision to accept or reject a reservation request is based on the QoS and

the available QoS on the outgoing link.

• Resource Reservation Protocol (RSVP) [62] is responsible for creating the flow specific

information in the end hosts and the routers along the path from the source to the destination.

The Integrated Service architecture (InteServ) provides defined services to traffic flows with

certain QoS commitments using RSPV signaling. For example, when a station wants to transfer

data, it starts by asking the control mechanism at the resource sharing node for a reservation [13].

The request contains a message-signaling packet specifying characteristics of the sender’s data, and

a resource specification message-signaling packet, which is used for resource reservation. If the

reservation is accepted by the node, there is a one-way resource reservation agreement and the

station starts to transmit packets to the router. Arriving packets are classified into classes and

treated dependent on packet type and the agreement in RSVP [13,62]. Classified packets are then

scheduled and transferred to the next node or its destination.

InteServ provides two services: guaranteed and controlled-load service:

• The guaranteed service is designed for applications which require certain minimum bandwidth

and maximum delay. Both traffic specification message and resource reservation message

signaling packets are used to provide service that guarantees both delay and bandwidth. A

token bucket method is used to reshape the traffic flow into the traffic specification [63].

• The controlled-load service is intended for traffic flows that can tolerate a certain amount of

loss and delay. The applications may assume that only few, if any, packets are lost or exceed

minimum transmission delay. Only a traffic specification-signaling message is used for flow

specification. Admission control is used to assure quality [63].

Unfortunately, the InteServ model is not readily implementable nor scalable [61]. The InteServ

model needs to maintain state information for each flow, which is a burden for backbone routers

where more than thousands of flows are passing simultaneously. On the other hand, one important

assumption made in the development of the IS model is that the network resources can be explicitly

controlled [61]. However, controlling the network resources is difficult for residential APs since home

users cannot influence nodes outside their residence.
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Differentiated Services

Differentiated Service (DiffServ) provides QoS in a network to preferentially identified classes of

traffic flows without maintaining per flow status or per hop signaling [61]. Diffserv setup is static

at network nodes, which builds domains for a long term [13]. When traffic flows enter a boundary

node, they are classified into aggregate behavior classes that designate treatment of packets in the

flow dependent on the service level agreement.

There are two essential components in DiffServ mode for an end-to-end implementation: Marking

TOS bits and Per Hop Behavior [13, 61]:

Marking TOS bits Figure 2.6 illustrates the content of Internet Protocol (IP) packet headers

which are used by switches and routers in a network to direct packets and also by stations to set

values [4]. In particular, Type of Service (TOS) bits are defined to provide QoS support.

Figure 2.6: Internet Protocol Header [13].

The TOS byte format is shown in Figure 2.7 [13]. The TOS field is eight bits long. The two

right most bits (bit 6 and bit 7) are unused. The other six bits are called Differentiated Service

Code Point (DSCP) [61], which are used to describe the packet type and possible treatments. The

DSCP contains two groups, bits 0 to 2 are used for IP precedence and bits 3 to 5 describes the
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DiffServ class selector code points which means the treatment of the packets [13].

Figure 2.7: TOS Bits [13].

In residential wireless networks, the AP acts as an edge router which connects to up-link devices,

wired and wireless residential network. Similar to IEEE 802.11e, applications currently running over

residential networks have no ability to mark the TOS octet. Moreover, these TOS bits are not used

by most of routers [61]. The wireless APs, therefore, can not simply utilize the TOS routing

algorithms to provide QoS support over residential wireless links.

Per Hop Behavior This component refers to the service given for packets dependent on the

DSCP code [13]. When packets arrive at an edge router of a Diffserv domain, they are classified

into classes based on the DSCP code. Meanwhile, the DSCP code specifies what type of service

and treatment the packet shall have in its Per Hop Behavior (PHB). The PHB supports two types

of services: Expedited Forwarding and Assured Forwarding.

• Expedited Forwarding (EF) service assures that packets will be forwarded from the node

with low delay, low jitter and low loss possibility to its destination. Figure 2.7 shows four

examples of DSCP codes with marked EF bits [13]. For applications requiring minimum

delay such as Telnet and SSH, the “low-delay” in EF field is marked. Applications like FTP

with requirements of fast service for its packets through the network, marks them for “high-

throughput”. While packets needing guaranteed delivery through the network are marked

with “high-reliability”. The default is unmarked EF filed with DSCP code “000 000”.
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• Assured Forwarding (AF) offers special service better than best effort, but lower than that in

EF. It defines four classes for aggregate traffic behavior. Each class has a buffer space and

bandwidth specified in the network interface. For each class there are three drop-precedence

values which are used to drop packets when there is congestion [64]. Thus, AF services

provide 12 combinations (four classes and three drop precedences) for a packet. When there

is congestion in a network, packets with high drop precedence are dropped first [64].

One notable network layer QoS DiffServ architecture is SWAN [65] in wireless ad-hoc networks.

SWAN combines several service differentiation features in order to provide service guarantees with-

out requiring special QoS services in the MAC layer. The first feature of SWAN is using an

admission control system to deny flows requesting real-time service if the network is not able to

meet their requested requirements. SWAN also requires nodes to shape best-effort traffic to ensure

no interference with real-time traffic. With these two features, the wireless ad-hoc network can

make sure it is never too congested to satisfy its service guarantees. Moreover, SWAN utilizes the

congestion notification field (ECN) in the IP header to inform nodes about congestion levels in

the network. With the information marked in the ECN field, the nodes can make decisions about

admission and traffic shaping.

2.3.3 Treatments in Application Layer

In addition to QoS enhancements at the MAC layer and Network layer, several real-time applications

introduce application layer treatments to provide better quality over error prone wireless channels.

For example, Skype, a popular VoIP protocol over P2P networks, introduces forward error correction

(FEC) packets when the Skype client experiences high packet loss rate. Windows media streaming

server can stream a video clip with lower encoding bit rates in order to reduce the stress upon a poor

quality wireless link. However, changing such application layer treatments require modification of

the applications running the end hosts. Thus, application layer treatments are beyond the scope of

this dissertation.
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Related Work

This chapter reviews previous research related to the work in this dissertation. Two correspond-

ing research areas are covered: traffic classification techniques in Section 3.1 and traffic shaping

techniques in Section 3.2.

3.1 Traffic Classification

The rapid evolution of the Internet in the last decade has been characterized by dramatic changes to

the way users behave, interact and utilize the network. Academic researchers and network operators

design and deploy new traffic measurement and classification techniques in response to these new

changes. In fact, accurately identifying and categorizing network traffic according to its application

type is at the core of many fundamental network research, operation and maintenance activities,

such as better QoS support, traffic shaping, intrusion prevention and detection.

It is, therefore, not surprising that researchers and network operators are interested in identifying

application types by monitoring network flows. A network flow is defined as a series of IP packets

with the same transport protocol (TCP or UDP), exchanged between two hosts, identified by the

five-tuple (IPsrc, Portsrc, IPdst, Portdst, P rotocol), with flow termination determined by a preset

timeout or by distinct flow termination semantics [23]. Each network application generates at least

one flow, and often, one application can generated multiple concurrent flows. For example, P2P file

downloading often generates dozens of TCP flows. The key part of traffic classification or traffic

categorization is to associate flows to a particular application or a group of applications. Network
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operators seek the ability to identify applications or hosts which generate a large number of flows

or a large volume of traffic.

However, traffic classification is not a trivial undertaking. The rapid emergence of novel applica-

tions such as network games, P2P applications and video conferences results in a significant volume

of data over the Internet. Consequently, monitoring the traffic generated from such applications

becomes difficult. And the increasing presence of malicious traffic requires the traffic classification

techniques to detect the denial of services (DoS) attacks, virus, worms etc. Unfortunately, the

widespread use of encryption over IEEE 802.11 wireless links makes the measurement, analysis

and classification of Internet traffic a more challenging task, even in a well-controlled laboratory

environment.

Meanwhile, network operators realized that supporting different levels of QoS for different ap-

plications requires association of the traffic with the different applications [22]. One issue behind

the slow deployment of QoS support is not the lack of the interest or need, but rather, the absence

of effective classification techniques. For that reason, the research community has attempted to de-

sign novel algorithms capable of overcoming the limitations of port-based classification techniques,

which are ineffective for modern network based applications [20,22,66].

Over residential networks, more and more end systems are connected to edge routers by wireless

LANs using the IEEE 802.11 standard due its convenience and promised high link capacities. Wei

et al. [67] use the packet pair techniques [68] to identify link connection types for the last hop

connection. Their result implies that the same application might behave differently over wireless

links than over Ethernet LANs, especially for the packet inter-arrival timing which is widely used

as a discriminator for several classification techniques [69]. The application behavior information

is vital not just for the research community to design new schemes to provide better QoS supports,

but also in the design of future networks, e.g. in planning the capacity required for each kind of

traffic, or balancing trade-offs of traffic shaping techniques between cost and performance.

The following section reviews several cutting-edge research achievements in the area of network

controlled traffic classification with the emphasis on real-time classification algorithms over resi-

dential networks. The reminder of this section is organized as follows: Section 3.1.1 overviews the

port-based classification techniques. Section 3.1.2 presents the payload based classification model,

and Section 3.1.3 depicts the novel behavior-based approaches. Section 3.1.4 reviews several statis-

tics based approaches. At last, Section 3.1.5 discusses several issues related to classification over
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IEEE 802.11 wireless networks.

3.1.1 Port-Based Classification

As mentioned earlier in this section, the major task of flow classification is to identify which appli-

cation or which kind of application generated such flows. The information used to perform traffic

classification can be gathered from the packet header, the payload or the inter-packet timing. But

the most common identification technique is based on the analysis of the complete or partial packet

header. Based on the information extracted from the packet header, the application type and

characteristics can be identified, especially when the application is running on a well-known port.

Table 3.1 lists some well known transport ports used by several sample applications.

Table 3.1: TCP or UDP Port Numbers Used by Several Applications.

Keyword Port# Protocol Description

ECHO 7 TCP, UDP Echo Protocol
FTP-Data 20 TCP File Transfer [Default Data]
FTP 21 TCP File Transfer [Control]
SSH 22 TCP, UDP SSH Remote Login Protocol
Telnet 23 TCP, UDP Telnet protocol - unencrypted text communications
SMTP 25 TCP SMTP - used for e-mail routing between mail servers
Name 42 TCP, UDP Host Name Server
DNS 53 TCP, UDP Domain Name System
HTTP 80, 8080 TCP HTTP - used for transferring web pages
POP3 110 TCP POP3 - used for retrieving E-mails
IRC 194 TCP Used for Internet Relay Chat
SMB 445 TCP Used for Microsoft SMB file sharing
RTSP 554 TCP, UDP Used for Real Time Streaming Protocol
MMS 1755 TCP, UDP Used for Windows Media Services

Table 3.1 only lists ports used by several common applications, where the information of official

port assignment can be found at Internet Assigned Number Authority (IANA) [70]. Generally, the

TCP and UDP ports are divided into three ranges: the Well Known Ports (0-1023), the Registered

Ports (1024-49151) and the Dynamic and/or Private Ports(49152-65535). For example, a typical

TCP client addresses its initial SYN packet to the well known server port of a particular application,

where the server is listening while the source port number is dynamically chosen by the client. The

UDP connection uses mechanisms similar to TCP but without the connection semantics. All future

packets in a TCP or UDP session use the same pair of ports to identify the client and server side

of the session. Consequently, in principle, the TCP and UDP server port number can be used
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to identify the higher layer application type by simply identifying the server port and mapping it

to an application using the registered port list published by IANA (Internet Assigned Numbers

Authority) [70].

Port-based classification method can be deployed on IP routers in conjunction with QoS routing

in order to direct application flows to capable links. Several classifiers, such as Coralreef1 based on

these kinds of mechanisms are introduced and evaluated in [71], [72], and [73].

Port-based application approaches are the simplest among all traffic classification methods, and

highly scalable since the port number from a single packet is enough to identify the application.

However, in recent years, researchers have recognized that port-based classification is inaccurate [20,

22]. The main limitation of port-based approaches is that the mapping between the server ports

and the applications is not always well defined. For example, many Peer-to-Peer (P2P) applications

dynamically use ports which are not registered in IANA. Moreover, the wide deployment of firewalls

over residential networks forces applications to run on the well-known ports of other applications.

For example, port 80 is used by a variety of non-Web applications, such as Web-based Internet

Chat (Web MSN) or video streaming, because the firewalls and other network security software

often does not filter port-80 traffic. Last but not least, emerging P2P applications and malicious

software (Trojans or DoS attackers) intentionally use well-known ports and generate a high volume

of traffic which should not be correlated to applications running on those ports. In the meantime,

the implementation of IP over HTTP allows non-web applications to tunnel through TCP port

80 [22].

Table 3.2 enumerates the common applications running on TCP port 80. From that table,

applications with different QoS requirements can run on the same port. For example, scp, a file

transfer protocol, runs on the same port as ssh does (TCP port 22). A user can launch a file transfer

session by launching scp command in an ssh session. Thus, a good classification algorithm that

1http://www.caida.org/tools/measurement/coralreef/

Table 3.2: Several Applications Running on TCP Port 80.

HTTP for Web traffic.
Streaming for You-Tube or similar video clips.
Streaming for on-line radio services.
Gaming on for World of War Craft.
Downloading for zipped USENET files.
Downloading for Microsoft online updates and patches.
Using software like Google Earth professional or other similar ‘thin’ client software.
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needs to differentiate should be able to separate these different applications from the traffic running

on same port, and also be able to identify different use cases for the same application [22].

Because of the limitations of port-based classification methods, more and more researchers are

looking for other alternative methods which can accurately differentiate the different applications

running on the same ports or identify new applications running on unknown ports. However, many

network traffic analysis tools [74,75] still integrate port-based approach because of its simplicity.

3.1.2 Packet Payload Based Classification

To overcome the limitations with port-based approaches, new alternative techniques have emerged

by inspecting the content of packet payloads. Payload based methods are based on the assumption

that packets in a given flow contain some pattern or signatures that can unambiguously identify a

kind of application. This payload based approach is similar to the method that has been widely used

in security software which uses the virus signatures (unique bit sequences) to detect the presence

of malicious code in files.

Moore et al. [7] propose a classification method which can approach 100% accuracy by inspecting

the payload of each packet. Their approach is an iterative procedure whose objective is to gain

sufficient confidence that the packet is generated by a specific application. As Table 3.3 shows,

their approach consists of nine distinct procedures; each procedure tests a particular property of

the target flow to obtain evidences of the identity of the causal application.

Table 3.3: Methods of Content Based Flow Classification [7].

Identification Method Example
1 Port-Based classification (only) -
2 Packet Header (including 1) simplex flows
3 Single Packet Signature Many Virus/Worm
4 Single Packet Protocol IDENT
5 Signature on the first KBytes P2P
6 First KByte Protocol SMTP
7 Selected flow(s) Protocol FTP
8 (All) Flow Protocol VNC, CVS
9 Host History Port-scanning

As shown in Figure 3.1, each flow is tested against the nine classification methods sequentially.

When any of the nine methods gives positive output for the flow, the flow is verified by a verification

module. The whole classification process terminates if the flow passes the verification module,

otherwise it is examined by a labor intensive manual interactive process.
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Figure 3.1: Content Based Classification Procedure [7]

The advantage of the classification approach used in [7] is that their approach can identify a flow

with near 100% accuracy. However, it is a computation intensive process. In the worst case, when

automatic classification fails, the flow is tested against nine sequential classification criteria, one

verification process and one manual intervention verification process. The European Networking

Tester Center (EANTC) [76] resulted in 99% of detection and accuracy for popular P2P traffic with

OpenDPI tools2.

Therefore, generally, payload based approaches are computation intensive and not typically done

in real-time, especially, over high capacity links. It is critical to develop pattern matching algo-

rithms with tight CPU and memory limitations. Another limitation of payload based approaches

is that they require the precise prior knowledge on the application protocol specifications and their

packet format a head of time. This means that payload based approaches can not automatically

detect new applications. To make matters worse, closed protocols (e.g., Skype) do not provide

reliable information to produce signatures for all variants of the same application. For example,

the P2P protocol (Peercast for instance) is not publicly available and is constantly evolving. Even

though some open source P2P protocols like Gnutella provide development documentation3, they

are incomplete. Even worse, various implementations of the Gnutella client may not exactly follow

the specifications. Also, the increasing wide usage of encryption techniques, such as for Skype,

makes it harder for payload based approaches since the signatures are protected by encryption at

the end hosts.

2http://www.OpenDPI.org. It is open source version of ipoque’s DPI engine. However, this tool is no longer
public available in 2014.

3http://www.gnutella.com/
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However, the payload based approaches rely on inspecting of real packet payload, it is not

possible to deceive the payload based approaches by using non-standard ports. Thus, the payload

based approach can be used to establish “ground truth” on the existing datasets [77].

In brief, payload based approaches [7, 76, 78] are computation intensive, less accurate on novel

applications, and ineffective on encrypted packets. However, payload based approaches can be the

most accurate approaches among all classification methods since they get close to the application.

Therefore, they can be used to verify the accuracy of other kinds of classification tools.

3.1.3 Behavior-Based Approaches

Unique user behaviors can be used to identify the presence of a particular user on wireless LANs [79].

Unique behavior of wireless card drivers can be used to detect what kind of wireless card driver

is used [80]. Similarly, Karagiannis et al. [20] proposed a novel classification approach: BLINC by

analyzing the transport layer behaviors of hosts. Unlike other classification methods, BLINC utilizes

the port numbers only as an index without any application related information. The information

gathered from the packet header is used to identify host behavior patterns at the transport layer

on three levels of increasing detail: Social Level (hosts that it communicates with), Functional

Level (server vs. clients or peer-nodes) and Application Level (transport layer interactions between

particular hosts on specific ports) [20, 81]. The three level approach of examining traffic flow is

probably the most important contribution of the authors.

Based on the three level information gathered from the packet header, BLINC uses a set of

heuristic rules empirically derived through inspection of interactions present in various applications

to refine its classification results. These rules are controlled by a set of operator defined thresholds

to achieve the desired balance between aggressive and conservative classification [20]. Generally,

BLINC reports aggregate per class statistics such as the total number of packets, flow and bytes in

addition to producing a list of all flows (five tuple) tagged with the corresponding application for

every given time interval.

BLINC can accurately classify 80%− 90% of real traffic samples with more than 95% accuracy.

The authors of BLINC also developed a payload-based classification method to evaluate the ac-

curacy of BLINC. Moreover, behavior-based approach has potential abilities to identify unknown

applications, such as new P2P applications and malicious flows, which emerge as deviations from

expected behavior. Xie et al. developed a behavior-based classification approach to detect the Web

39



CHAPTER 3. RELATED WORK

traffic under the hood of HTTP traffic [82], and Yang et al. identify P2P live streaming traffic by

analyzing the behavioral characteristics [83]. As we mentioned in previous sections, detecting new

applications is a challenging task for port- or payload-based applications.

On the other hand, BLINC also has several limitations:

• Cannot identify specific application sub-type. BLINC can identify the type of an application

but may not be able to identify distinct applications. However, for network management, the

finer classification may not be needed. For example, different instances of the same application

may have the same QoS requirements.

• Cannot handle encrypted transport layer headers. BLINC is based on the relationship con-

tained in the fields of the packet header. BLINC only has the ability to characterize encrypted

transport layer payload. This limitation is probably true for most classification methods.

• Limitation on points of observation. BLINC is evaluated with traces collected at the edge of

the network although intuitively it should not be affected by the monitoring points. However,

when BLINC is deployed on the backbone networks, the larger variety of individual user

behaviors might be harder to discern.

• Potential for real-time classification. BLINC appears sufficiently efficient to allow for a real

time implementation. It can process 34 hour trace file in less than 8 hours with flow tables

updated over 5 minutes intervals. For network management or security, it is close to a real-

time classification. However, for traffic treatment, it cannot handle short-lived traffic.

The motivation of the behavior based approach is different from our treatment classification

approach. Our treatment based-approach focuses on placing flows into different categories which

can be treated with similar methods. BLINC emphasizes differentiating application types through

server behaviors. Therefore, behavior-based classification is not suitable for our treatment based

classification requirements.

3.1.4 Statistical Approaches

Because of the shortfalls of the header-based and payload-based classification methods, recently

researchers have used machine learning (ML) [84] and statistical approaches to differentiate appli-

cations. Claffy [85] investigated the joint distribution of flow duration and number of packets, and
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observed the differences between the distributions of some application protocols, although over-

laps clearly exist between some applications. After that, a wealth of other researchers [86–88]

characterized and modeled the workloads for particular applications. Therefore, based on better

understanding of applications behavior, researchers [22, 24, 89, 90] propose statistical methods to

infer the application types based on gathered flow statistics.

Compared to the limitation of port-based and payload-based approaches, statistics-based ap-

proaches provide a promising alternative method in classifying flows based on application (payload)

independent features such as packet length or inter-arrival times [89, 91, 92]. Each traffic flow is

characterized by the same set of features but with different feature values [89]. A statistics-based

classifier is built by training on a representative set of flow instances where the network applications

are known, and a classifier is built to determine the type of unknown flows. Thus, the statistics-

based approaches consist of two major steps: features selection and machine learning algorithms

used in the classifier.

Statistical Flow Features

Moore and Zuev list 248 flow features which can be used to differentiate application types in [69].

These features are not only derived from the transport layer header (especial the TCP header), but

also from packet length and inter-arrival time which are independent from packet payload content.

Moore et al. [24] utilize a correlation based feature selection method to identify “stronger” features,

and find only a small subset of the total 248 features are needed to have accurate classification

results.

Roughan et al. summarized the candidate features used in [22] into five levels:

1. Single Packet-Level features such as mean packet length and various moments such as

variance, root mean square size (RMS), etc., are gathered directly from packet header infor-

mation and are simple to compute. Also, these features are independent of the notion of flows,

connection or other higher level aggregations [22]. Another advantage of single packet-level

features is that packet sampling has limited impact on these statistics. Other level features

can be derived from simple packet data such as time series [22].

2. Flow-Level statistics are summary statistics at the granularity of work flows. The five tuple

(source IP, source port, destination IP, destination port, and protocol) is widely used to
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identify a flow. Flow level features generally include mean flow duration, mean data volume

per flow, mean number of packets per flow, and variance of these metrics. These statistics can

be obtained using flow-level data collected at routers, e.g. Cisco NetFlow [93]. The limitation

of flow level statistics is that the flow collection might aggregate packets that belong to

multiple application-level connections into a single flow, which might distort the flow-level

features [22].

3. Connection-Level statistics are required to trace the behaviors associated with transport

level connections such as TCP connections. For example, a typical TCP connection starts

and ends with well-defined handshakes for a client to a server. To collect the connection level

statistics, the classification algorithm needs to track down the connection state changes. Gen-

erally, the connection level includes the advertised windows size and throughput distribution.

The connection level data generally provides better quality data than flow level information,

but requires additional overhead, and can also be impacted by sampling or asymmetric routing

at the collection point.

4. Intra-flow/connection features are statistics about the packets within each flow, e.g., the

inter-arrival times between packets in a flow. This information requires data being collected

at the packet level, but grouped into flows. In addition to inter-arrival packet times, intra-

flow/connection features include loss ratios, one-way delay, etc..

5. Multi-flow: Some characteristics can only be captured by considering statistics across multi-

ple flows or connections. For example, RTSP [94] supports two connections between the same

set of end systems, one connection is used as data connection, and the other concurrently

exchanges intermittent control information. Multi-flow features are more complex to capture

than flow- or connection-level data.

Table 3.4 [22] summarizes the types of features, and the measurements used to collect them.

Note, Roughan et al. [22] define an inter-arrival variability metric and use it as a feature to

differentiate bulk downloading data from streaming data. Inter-arrival variability is found to be

insensitive to whether or not ACKs are included. Roughan et al. find that packet length is another

distinguishing feature that can differentiate the bulk transfer and streaming flows, although this

feature alone does not provide enough information to separate bulk-data transfer from streaming

data.
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Table 3.4: Features’ Availability for Different Measurement Tools.

Data Source
Features

Packet Level Flow Level Connection Level Intra Flow Multi Flow

Packet trace YES YES YES YES YES
Sampled packets YES Biased NO Biased Biased

Flow data Some YES NO NO YES
Server logs Some Some Some NO Some

The representative quality of the selected feature set greatly influences the effectiveness of a

statistics-based classification algorithm [91]. Cutting the number of candidate features reduces

learning and classification times as well as increases classification accuracy by removing irrelevant

or redundant features. The feature selection algorithms can be categorized into a filter or wrap-

per [95]. In this study, our candidate features can be selected by Correlation-based Feature Selection

(CFS) [95,96]. Other feature selection algorithms can be found in [96].

Correlation-Based Feature Selection (CFS)

The Correlation-Based Feature Selection (CFS) algorithm examines the usefulness of individual

features along with the inter-correlation levels among candidate features with heuristic evaluation.

High scores are assigned to subsets containing features which are highly correlated with the class

but with low inter-correlation with each other [91]. Conditional entropy is used to measure the

correlation between each feature and the class. H(X) denotes the entropy of a candidate feature

X, and H(X|Y ) is the entropy of a feature X given the occurrence of another candidate feature Y .

The correlation C(X|Y ) between features X and Y is calculated with:

C(X|Y ) =
H(X)−H(X|Y )

H(Y )

Williams et al. calculate the goodness of a subset of features with the formula [91]:

Gsubset =
kr̄ci√

k + k(k − 1)r̄ii

where Gsubset is the goodness of a subset, k is the number of features in the subset, r̄ci is mean

feature correlation with the class and r̄ii is the mean feature correlation.
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Machine Learning Algorithms

The goal of a statistics-based traffic classifier is to form a model based on training data, and

find a mapping between the training data and the new data. Machine learning techniques are

typically used to find such mapping. Such learning methods are referred as supervised learning

methods [23,91]. McGregor et al. [25] use the Expectation Maximization (EM) algorithm to cluster

flows described by features such as packet length, inter-arrival time and flow duration. With the EM

algorithm, traffic can be correctly classified into generic groups such as bulk-transfer. Armitage et

al. [26] also propose an approach for differentiating network applications based on “greedy forward

feature search” and the EM algorithm. Their result shows that a variety of applications can be

separated into an arbitrary number of clusters. Dunnigan and Ostrouchove [89,97] apply principal

component analysis (PCA) to detect malicious intrusion. Their key findings include that network

flows show consistent statistical patterns and can be detected when running on either default or

non-default ports. Roughan et al. use nearest neighbor (NN) and linear discriminate analysis

(LDA) to map different applications to four different broad QoS classes: Interactive, Bulk data

transfer, Streaming and Transactional.

Williams et al. present a preliminary result of comparing the performance of five supervised

machine learning algorithms in [89, 91]. Table 3.5 lists ML algorithms widely used by statistics-

based traffic classification methods. In our study, Naive Bayesian and Nearest Neighbor (NN) will

be used as benchmarks to compare the performance of our treatment-based classification method.

Thus, we will briefly review these two methods next, and other algorithms can be found in reference

listed in Table 3.5.

Table 3.5: Machine Learning Algorithms Used in Traffic Classification.

Name Used In
C4.5 Decision Tree N. Williams [89,91], G. Armitage [98]
Naive Bayes N. Williams [89,91], Zhang [90].
Nearest Neighbor M. Roughan et al. [22], N. Williams [89,91], Zhang [99]
Multilayer Perception Network N. Williams [89,91], Zhang [90]
Sequential Minimal Optimization N. Williams [89,91], Yu [100]
Bayesian Networks N. Williams [89,91], G. Armitage [98]
Clustering J. Erman et al. [23], Yu [100].
Expectation Maximization A. McGregor et al. [25], G. Armitage et al. [26] Ameel [101]
Linear Discriminate Analysis M. Roughan et al. [22], Ameel et al. [101]

Naive Bayesian
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The Naive-Bayesian classification method is based on the Bayesian theorem, which derives

conditional probability for the relations between feature values and the class by analyzing the

relationship between each feature and the class for each instance. In a Naive Bayesian classifier,

X denotes a vector of instances where each instance is described by k features X1, · · · , Xk, and C

represents a class of an instances, for a given instance x and a given class c. During the training,

the probability of each class, called the prior probability P (C = c), is computed as its occurrence

frequency in the training data set. Also, the Naive Bayesian classifier computes the probability for

the instance x given c. Note, the Naive Bayesian classifier holds the assumption that the features

are independent so that the probability becomes the products of the probabilities of each single

feature. Yet, the Naive Bayesian algorithm can achieve good results even when that assumption

does not hold [90,91].

After the training process, the probability of a flow instance x belonging to a class c is computed

with the Bayes formula:

P (C = c|X = x) =
P (C = c)

∏k
νi=1 P (Xi = xi|C = c)

P (X = x)

The above formula combines the prior probability and the probability from each features density

function. Note, the dominant is invariant across classes and only necessary when used as a normal-

izing constant. Thus, it can be computed as the sum of all joint probabilities of the enumerator [91]:

P (X = x) =

k∑
i=1

P (Cj)P (X = x|Cj).

Nearest Neighbor

One simple method of classification is Nearest Neighbor (NN). When a new instance is presented

to the model established in the training phase, the algorithm assigns the new instance to the class

of its nearest neighbor from the training data set. The distance metric between two instances can

be calculated by the following formula derived by [102]:

D(x, y) =

√√√√ n∑
i=1

f(xi, yj)
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where D(x, y) denotes the distance between two instances x and y. If the ith feature is a numeric

value feature, where f(xi, yi) = (xi−yi)2 (Euclidean Distance), for the nominal feature, f(xi, yi) = 1

if xi matches with yi, otherwise, f(xi, yi) = 0 [91].

For instance, to classify a new flow x, the classifier computes the distance D between x and

each instance in the training data set. If there were 200 training instances, x needs to be evaluated

against each of them. The instance in the training data set which returns with the smallest D is

consider as the nearest neighbor of x, and flow x is assigned with the same label as y. Roughan et

al. find that NN methods work well on low dimensional features (n is small) , but is less effective

on high-dimensional data [22,90].

In general, statistics-based approaches can provide results with higher accuracy than port-based

approaches, with much less computational complexity than payload-based approaches. Therefore,

recent years have seen an increased interests in statistics based approaches with machine learning

knowledge [23–26]. The relatively lower computational complexity makes statistics-based approach

a candidate for a real-time traffic classification algorithm, because port-based approaches cannot

provide accurate classification results over modern networks and other approaches cannot provide

real-time information. Most of statistic based methods are fast enough for real-time classification

of a large number of concurrent flows (at least several thousands per second) [90, 92]. On the

other hand, the objective of current classification approaches is to identify applications without

necessarily improving QoS of application over residential wireless networks. For the purpose of

providing better QoS support for residential wireless networks, a classifier needs to group the traffic

into categories which can be treated similarly.

3.1.5 Challenges for Traffic Classification over Wireless LANs

Traffic classification over IEEE 802.11 wireless LANs have more challenges than over wired Ether-

net. Over encrypted wireless LANs, the payloads of IEEE 802.11 frames are protected by various

encryption schemes (WEP, WPA, or WPA-2), making it impractical to gather information from IP

headers. Thus, statistics-based traffic classification approaches are more important tools if frames

cannot be decrypted.

An important assumption behind statistics-based traffic classification is that applications have

consistent characteristics, so researchers can obtain statistics information (signatures) for that ap-

plication. However, this assumption might not hold over wireless LANs since, as discussed in
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Section 2.2, MAC layer retransmission and rate adaptation changes flow characteristics such as

packet inter-arrival timing. Wei et al. [103] are able to differentiate wireless traffic from the traf-

fic over Ethernet by studying inter-arrival times between ACK-pairs. In earlier studies [67], they

identify different network types based on the estimation of entropy of the inter-arrival time for

packet-pairs. Baiamonte [104] uses a similar approach to passively detect wireless hosts remotely.

If a host sends the same constant bit rate flow through the wired and wireless link, it is expected to

see more variance in the packet inter-arrival time from wireless transmissions [104]. The statistics-

based traffic classification methods developed over a wired link, especially the ones using packet

inter-arrival time might not be as efficient as expected over wireless LANs.

Moreover, the management and control traffic (beacon frames, RTS or CTS frames) over IEEE

802.11 LANs also changes packet inter-arrival timing information. Management and control traffic

acts as competing traffic [37] to regular data frames and introduces more variance into the packet

timing information. In our previous study, we find WBest [37], a bandwidth test tool that uses

packet timing information, to be less accurate in an uncontrolled environment partly because of

management and control traffic. This management and control traffic is dependent on the imple-

mentation of the device driver, and can be passively identified by analyzing the timing of probing

frames [80]. Thus, the implementation of various device drivers introduces more unpredictability to

the inter-packet timings. Furthermore, the network congestion inside wireless APs and multiplexing

with other traffic may distort the timing signature of a given application [104].

Finally, the time varying wireless channel conditions make it more difficult to capture the traffic

signature for various applications. The location dependent noise and unpredictable human move-

ments in residential places vary the propagation over the wireless channel. The frames may then

not be correctly decoded at the receiving wireless stations with packet loss triggering retransmis-

sion or rate adaption. All these unpredictable events introduce variable latency into packet delivery.

This unpredictability is exacerbated when many wireless stations co-exist in a condensed residential

place because the collisions are more likely to cause extra back-offs and retransmissions.

In brief, statistics-based approaches, especially for inter-packet time are less efficient over wireless

networks than over wired networks because of the unpredictable wireless channel conditions and

the impact of wireless MAC layer mechanism [104–107].
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3.2 Improve Application QoS over Wireless Link

3.2.1 Overview

IP architectures designed to improve the QoS given to various flows are based on the design of

packet buffering and scheduling on the IP layer with few assumptions on link layer. However, as

discussed in Section 2.2 and Section 2.3, if link layer behavior is not at least predictable under

known load conditions, it is not possible to accurately predict QoS support.

Compared to wired environments, the following mechanisms used by wireless packet transmission

have direct impact on QoS. First, wireless link layers do not easily fit to either the point-to-point

model or the broadcast model. While the medium is inherently a broadcast environment, the scope

of a ‘line’ can be nebulous as there is no physical wire to connect. Thus, sophisticated association

control and medium access control mechanisms are required to define the scope of a wireless link.

Today, most residential based wireless networks are infrastructure networks (IEEE 802.11 WLAN)

where a single AP provides access to a fixed network for multiple attached wireless devices. As

we discussed in Section 2.2, in an IEEE 802.11 WLAN, access to the shared medium is based on

contention. Therefore, the parameters of the DCF function would impact the QoS over wireless

networks.

Secondly, wireless link layers typically deploy different modulation techniques, encoding schemes,

and retransmission techniques (ARQ) in order to increase the reliability of transmission over the

noisy wireless link. The wireless link adaptation can dynamically choose between different modu-

lation and encoding schemes based on measurements of the prevailing radio environment, trading

bandwidth for delay and more robust transmission, and vice versa. Therefore, the delay and band-

width available for the network layer and network layer flows change over time.

Moreover, the link-layer ARQ retransmission mechanism can introduce unpredictable latency for

individually transmitted packets (frames). Although retransmissions are bounded by some counter

(maximum number of retransmissions), the resulting delay spread can make it difficult for network

layer QoS mechanism to control delay.

Finally, the mobility of wireless stations introduces more problems. In mobile wireless environ-

ments, the setup and release of dynamic links and link layer QoS negotiation and re-negotiation

impact link layer performance. Also, a small movement of a wireless station may change the re-

ceiving signal strength, probably triggering transmission rate changes and unpredictably impact IP
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layer performance.

3.2.2 Classifier and Treatment Scheduling Interactions

Operating systems implement a simple data interface between the network and link layer. Each

network device is attached with a single input queue [35,108–111], with a limited amount of buffer

space to store the packet (frames) to be transmitted over the link. As Figure 3.2 shows, the link

device assumes that the transmitted packet (frames) are in FIFO order and arrive at the network

layer in the same order.

Figure 3.2: Transmission of a Packet in a Host AP, Showing a Link Layer Queue (Driver Queue)
and IP Layer Queue.

However, for wireless environments, especially when serving several concurrent flows with dif-

ferent QoS requirements, the wireless medium can not be abstracted simply as a single channel

because:
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1. The wireless channel may suffer from a high error rate. While the link layer error correction

mechanisms (e.g. retransmission) are often able to recover most errors. However, the errors

are dependent on the location of wireless client and often bursty. Therefore, flows sent to

a particular wireless station may fill up the buffer space in the FIFO queue attached to the

link interface, resulting in “head of line” blocking as all other flows have to wait until these

packets are successfully delivered [17].

2. There may be several APs working on the same channel. In this case, multiple independent

scheduled channels can result in the the head of line blocking again.

3. Flows with different reliability and delay requirements should be treated differently in the link

layer retransmission scheme. If a loss sensitive flow without any delay requirement occupies

the transmission queue just before a delay sensitive flow, the delay sensitive flow may suffer,

especially when the loss sensitive flow has delivery problems.

Figure 3.3 [109,112,113] illustrates four possible approaches to provide different QoS levels with

IP layer queues.

Figure 3.3: Scheduling Models Choices for Wireless Link.

Figure 3.3 (d) shows the network controlled approach following the traditional model. In this

model, the flow classification and scheduling is performed entirely at the network layer and the
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link layer only provides a single FIFO queue. This model works adequately over wired links which

seldom encounter link layer distortions. However, over wireless links with high latency and bursty

error rates, it may encounter the head-of-line blocking.

The link layer controlled model is depicted in Figure 3.3 (a). This model is adopted by IEEE

802.11e [57]. In this model, the link layer handles both classification and scheduling activities. It

avoids the head-of-line blocking problem at the link layer, but it has several major drawbacks. To

classify the packet (frame) at the link layer, the link layer needs to access IP packets, violating the

layered model. Furthermore, the link layer classifier could not access the transport layer header or

application layer header if the IP packet payload is protected by encryption.

Even if the link classifier can perform classification for other flows, it might still have head of

line blocking problem, but in the IP layer queue [112]. When a single flow or several flows are

transmitted at a high data rate, the link layer queue will become full, and finally the packets from

these flows will fill up the FIFO queue inside the IP layer. Therefore, the packets belonging to

these high volume flows may block the delivery of packets arriving later in the IP layer queue and

belonging to higher priority and delay sensitive flows. It results, in turn, that the active queue

management (AQM) which provides congestion control may perform inefficiently since the link

layer queue is filled up before AQM senses the IP queue build up. In addition, the network layer

scheduler needs to implement classification and treatment to support other link layers. Thus, the

link layer controlled model might result in function duplications.

The decoupled approach in Figure 3.3 (b) combines the network controlled approach and link

layer controlled approach by performing flow classification and scheduling independently at each

layer. However, it is inefficient and may have conflicting performance since it has independent

scheduling at both layers.

The network layer controlled, coupled approach is shown in Figure 3.3 (c) [112, 114]. In this

model, flow classification is performed at the IP layer and the IP layer scheduler works together

with an appropriately designed middle layer which forwards packets to the correct link layer queue

with corresponding link QoS context for IP flows. This model enables efficient use of link resources

under upper layer (IP) layer control. Meanwhile, the network layer scheduler should be informed

of link layer condition changes which require cross-layer information sharing.

The first three scheduling models all require IEEE 802.11e device implementations. Although,

network layer controlled coupled approach is an attractive choice, it still needs to implement one ad-
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ditional middle layer in addition to a corresponding link layer. Unfortunately, academic researchers

have limited access to implementations in the wireless card driver. Therefore, from the view point

of implementation, we focus on the network controlled model in Figure 3.3 (d), since it can be done

with current hardware, and its result can be used for the network controlled coupled approaches in

the future.

To avoid the head-of-line blocking problem in the link layer queue, we assume that there is only

a small transmit buffer inside the wireless card driver and wireless device. In reality, the transmit

buffer size inside the device driver is implementation dependent. However, in our previous study,

the capacity of transmission queue inside the device driver is less than 40 packets while the default

IP layer transmission queue capacity inside Linux kernel layer are much larger4. Thus, the dominant

queuing delay is in the IP layer when an AP is congested [35].

Traffic Control inside Linux

Traffic control inside the Linux Kernel (2.4.20 or newer) is called Traffic Control (TC) and is

included in the network layer. The TC module consists of packet-based queues, classification and

scheduling modules, and is designed to provide management of the outgoing traffic. Each network

interface on a wireless AP is assigned one queue discipline (qdisc) to control outgoing traffic. A

qdisc is called a classful queue if it has classes of queues within it [13]. Each traffic type can be

queued into a classless queue under the control of a classful qdisc. The default classless queues

defined in TC include:

• First In First Out (FIFO) is the most well-known classless queue. Packets are dequeued

in the order as arrived. It is the default qdisc for IP queues inside Linux.

• Token Bucket Filter (TBF) is a controlling mechanism using tokens and a leaky bucket.

Tokens are dropped into a bucket and leak from a controlled hole of the bucket. For each

leaking token, a certain amount of data is dequeued. This dequeue method is controlled and

can be used to shape packet flows.

• Stochastic Fair Queue (SFQ) is a fair distribution of services in the queue for all flows [13].

Packets arriving to the queue are sorted by flows into FIFO queues and these queues are

dequeued in a round-robin fashion.

4The default transmission queue capacity in IP layer is 100 packets for 2.4 kernel and 1000 for 2.6 kernel.
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However, the classification module inside Linux is based on the TOS octet inside the IP header

and the traffic control rules are specified by the user. Therefore, the classification module alone

inside generic Linux can not provide the result we need.

3.2.3 Methods to Improve IP QoS

This section reviews several techniques to handle IP layer queues and improve multimedia perfor-

mance on the Internet. There have been two major approaches to handle IP queues rather than

the traditional drop tail FIFO queuing schemes. The first approach uses packet or link scheduling

on multiple logical or physical queues to explicitly reserve and allocate bandwidth to each class of

traffic, where a class can be a single flow or a group of similar flows. This is the basic idea of various

fair queuing (FQ) disciplines such as DRR [115], and class-based queuing (CBQ) [116] algorithms.

When coupled with admission control, these mechanisms provide a solution to congestion as well as

offer potential performance guarantees for the real-time traffic [33,117]. Yu et al. [33] improve VoIP

applications by implementing a classful qdisc with two FIFO queues: a real-time (RT) queue used

for real-time traffic such as VoIP flows, the other a non real-time (NRT) queue used by other kinds

of traffic. However, explicit resource reservation approaches change the “best effort” nature of the

current Internet, and it changes the fairness definition. Thus, deploying this mechanism probably

changes the network management and billing practices. In addition, the algorithmic complexity

and state requirements of its scheduling make its deployment difficult [118].

The second kind of approach, called Active Queue Management (AQM), uses advanced packet

queuing disciplines other than traditional FIFO drop tail queuing on an outbound queue of a router

to actively prevent outbound buffer overflow and control queuing delay with the help of cooperative

traffic sources. When notified of network congestion, cooperative traffic sources like TCP flows

recognize packet loss as an indicator of network congestion, and its back off algorithm reduces

transmission load when congestion is detected [119].

Figure 3.4 lists the AQM taxonomy used in this dissertation, with a more the complete version

summarized by Chung [14]. Generally, the task of AQM is divided into four parts: a Congestion

Monitor which detects and estimates congestion; a Bandwidth Controller that manages the output

bandwidth; a Congestion Controller that calculates and applies the congestion notification proba-

bility (CNP) to incoming traffic and a Queue Controller which manages buffer usage and packet

scheduling schemes. Because treatments used by our proposed treatment based classification are
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Figure 3.4: AQM Taxonomy [14]

to be deployed over wireless APs with limited resources, our treatments focus on the Congestion

Monitor and the Queue Controller.

Congestion Monitor

The first task of an AQM is to efficiently monitor, detect and estimate congestion [14]. This esti-

mation is used by the Bandwidth Controller to manage bandwidth, or by the Congestion Controller

to compute congestion notification probability (CNP).

AQM congestion detection and estimation mechanisms can be classified by the monitoring policy

using either queue length as a measure of congestion, or the incoming traffic load as a measure of

congestion. In each case, either the instant or average measure of the quantity can be used.

By using queue statistics, AQM mechanisms detect impending congestion by monitoring instant

or average queue length against a pre-decided queue threshold. The Congestion Monitor can also

measure the incoming traffic load and detect congestion when the measured load is larger than

preset target load threshold which is typically set to near 1. That means the congestion occurs

when estimated incoming traffic load is greater than the outgoing link capacity. Generally, either an

instant queue or average measure of the traffic load can be used in the load-based policies, whereas

54



3.2. IMPROVE APPLICATION QOS OVER WIRELESS LINK

an average load can be defined as the average of instant loads over a certain period [14].

The traffic load based congestion estimation policies can be further classified by the monitoring

method (traffic rate or queue length) to estimate the traffic load [14]. Traffic load is intuitively

measured in terms of incoming traffic rate over service rate. Moreover, the traffic load can also be

estimated in terms of queue length differences over a measurement interval. Both rate-based and

queue-based load estimation methods have advantages and disadvantages. Rate-based methods have

a little more overhead than queue-based methods since rate-based methods need to collect every

incoming packet length while queue-based methods can sample the queue size every measurement

interval. However, rate-based congestion estimation methods can detect impending congestion

before the queue starts to grow, allowing the Bandwidth Controller or Congestion Controller to more

efficiently respond to imminent congestion. This advantage of the rate-based congestion estimation

is attractive for wireless links. For instance, sending large packets at relative low sending rate to a

wireless station with weak reception signal strength also causes the congestion at the wireless AP

even though the instant queue length might be low for a short time interval, but per packet queuing

delay is probably high.

One important issue in load estimation is to determine an effective measurement interval. A

poorly chosen measurement interval may have negative effects on the stability of the feedback

control system, link utilization and queuing delay and cause unwanted buffer overflow [14]. For

example, an insufficiently small interval can lead to the Congestion Controller over-reacting to

network congestion while an exceedingly large interval can make the Congestion Controller less

responsive. Similarly, when an averaging technique is used for congestion estimation, the averaging

factor affects the responsiveness and performance of the controller.

Queue Controller

AQM queue controllers utilize advanced packet queuing disciplines other than traditional FIFO

drop tail queuing on the egress queue of a wireless AP to actively handle or avoid congestion with

the help of cooperative traffic sources [117]. The back-off algorithm in TCP flows reduces the

transmission rate when there is packet loss as an indicator of congestion. Random Early Detection

(RED) [120] is one of the earliest and most well-known AQM methods, which prevents congestion by

monitoring egress buffers to detect impending congestion and randomly selects and notifies senders

of network congestion to reduce their transmission rate. However, RED fairly handles congestion
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for TCP flows, but non-TCP flows which are unresponsive or have greedier flow control mechanisms

than TCP consume more of the share of the bandwidth than do TCP flows [117]. In the worst case,

unresponsive UDP flows monopolize the output bandwidth while TCP flows are forced to transmit

at their lowest rates.

To address the unfairness between unresponsive UDP flows and well-behaved TCP flows, several

algorithms have been proposed to penalize the unresponsive or misbehaving flows and protect well-

behaved TCP flows, such as Fair Random Early Drop (FRED) [121]. FRED adds per-active-flow

accounting to RED, and isolates each flow from the effects from others. However, FRED has a

potential problems that its TCP favored per-flow punishment could unnecessarily discourage flow

controlled interactive multimedia flows [117,121–123].

Jeffay et al. [118] propose an active queue management scheme called Class-Based Threshold

(CBT), which releases UDP flows from strict per flow punishment while providing protection for

TCP flows by introducing a simple class-based static bandwidth reservation mechanism to RED.

CBT classifies the flows into three categories: tagged UDP (multimedia UDP), untagged UDP and

TCP. It utilizes class thresholds that determine ratios between the number of queue elements that

each category may use during congestion [117]. However, the static resource reservation mechanism

of CBT could result in poor performance when traffic mixes change rapidly.

The Traffic Sensitive QoS controller (TSQ) [124, 125] provides Quality of Service when used in

conjunction with most existing AQM mechanisms. TSQ finds the trade-off between delay-sensitive

applications and throughput-sensitive applications by providing a low queuing delay without sig-

nificantly reducing the link utilization. TSQ also permits the packet from delay sensitive flows

using “cut-in-line” mechanisms. Meanwhile, in order to avoid penalizing throughput-sensitive ap-

plications, during congestion, TSQ adapts the drop probability to provide higher throughput for

delay-sensitive applications [125].

Generally, most AQM techniques try to control the queue size by dropping packets with a

uniform drop probability. The Queue Controller can support diverse per-flow QoS requirements

using a packet scheduling scheme other than FIFO. To provide better QoS, the Queue Controller

can consider the delay requirement of each flow as well as the QoS information gathered from the

traffic sources. However, the QoS packet scheduling may need to address issues such as starvation

that can affect the throughput of window-based traffic such as TCP flows.
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AQM Enhancement over Wireless Link

Palazzi et al. study the interference between MAC layer protocol and Transport layer protocol over

wireless links [105], and propose a solution to reduce last hop delays for real time applications by

tuning the parameters of the IEEE 802.11 MAC protocol [126]. They assume that UDP based real-

time applications are resilient to packet loss while sensitive to packet delivery. Thus, it is preferable

to drop a packet rather than to waste time on retransmissions. Meanwhile, they try to find an

optimal compromise between the needs of TCP-based and real-time applications by adjusting the

MAC layer buffer size in the AP. They argue that a large buffer helps to maintain larger sending

rates and diminishes the impact of busty traffic during a long time period while a large buffer may

jeopardize time sensitive applications because of the longer queuing time when the buffer is filled

up. Li et al improve the video delivery quality over IEEE 802.11 networks by combining AQM with

IEEE 802.11e [127]. Note, our previous study [35] has similar conclusion that larger IP layer buffer

size might be harmful to time-sensitive applications.

When congestion occurs in APs, dropping a small fraction of UDP packets alone will not help

recovery from congestion. Palazzi et al. proposes an approach called Smart Access Point with

Limited Advertised Window (SAP-LAW) [126]. SAP-LAW improves the overall performance of

wireless APs by limiting the maximum sending rate of TCP connections. It maintains the sending

rate of TCP flows high enough to efficiently utilizing the available bandwidth while, at the same

time, avoids excessively using buffers by limiting growth. In a real scenario, SAP-LAW needs to

compute the appropriate upper bound for the sending window size and find a way to change the

advertised window size.

The main goal of SAP-LAW is to achieve full utilization of the available bandwidth with no

queuing delays [126]. To avoid queuing delays, SAP-LAW does not allow the aggregate bandwidth

consumed by TCP flows to exceed the total link capacity of the bottleneck link reduced by the real-

time traffic traveling over UDP. Thus, the maximum sending rate for each TCP flow (Rtcp max) at

time t is presented by :

Rtcp max(t) =
C − Tudp(t)

#TCPflows(t)

where Tudp(t) represents the amount of bandwidth used by UDP-based applications at time t,

#TCPflows(t) corresponds to the number of TCP flows at time t, and C depicts the current link

capacity.
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Computing the most appropriate value for the advertising windows size requires a comprehensive

knowledge about all the flows that are passing through the bottleneck link. Thus, SAP-LAW

selects the wireless AP as the most suitable place to apply the above formula because the AP is

able to retrieve all necessary information from the flow passing through it. The AP can gather

the information such as the connection type and link speed by querying the status of the network

interface, also, it can sniff the wireless channel or inspect the packets passing through to infer the

number of active TCP connections and the aggregate number of UDP flows. The AP hence can

easily compute the ceiling of the TCP sending rate and modify the advertised window size in the

corresponding ACKs.

However, SAP-LAW could not automatically detect real-time traffic since it assumes that real-

time traffic is sent over UDP. However, due to the wide deployment of firewalls, a large fraction of

real-time applications such as video streaming are delivered by TCP [128]. Thus, to take advantage

of SAP-LAW, it needs to be enhanced with an automatic traffic classification module. Otherwise

the real-time applications traveling over TCP would be assigned more bandwidth than they can

consume while other TCP connections are limited by under-rated advertised window size.

Andrew et al. propose CLAMP, a receiver side rate control algorithm in [129, 130]. CLAMP

attempts to allocate bandwidth to users when the user’s channel condition is good, but with fairness

constraints. CLAMP deploys a pair of agents on the wireless AP and wireless client. The agent

on the wireless AP sends the queue length information to the client agent by modifying the packet

header or answering query messages from the client agent. With the queue information, the client

agent computes and sets appropriate TCP advertised window size in TCP-ACK packets in order

to reduce the sender’s congestion window size. Compared to SAP-LAW, the major advantage of

CLAMP is to deploy agents on both wireless stations and wireless APs. Thus, for particular wireless

devices like game consoles CLAMP faces difficulties in deployment. In this study, we will focus on

the methods to enhance APs without any protocol modification on the client or server. However,

the ideas behind the CLAMP algorithm are useful in implementing our rate control algorithms.

3.3 Measurement Tools

This research includes a wireless measurement study to provide a snapshot of the current home

wireless usage. Several measurement tools have been developed and used in our previous study [35]
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and [131], and a couple of them are developed for this study.

Wireless Sniffer

While sniffers have been widely used to monitor network traffic at the data-link layer and above,

most commercial wireless sniffers are costly and are not a flexible open source solution. However,

wireless sniffers are the only tool which does not interfere with the hosts under test and does not

require access to wireless devices themselves. Especially, wireless sniffers can be used to measure

black-box devices such as hand-held smart phones and wireless APs. However, due to the cost of

commercial class wireless sniffers, this study chooses to convert a Linux based laptop as a wireless

sniffer. We chooses to use a Dell laptop with Prism GT IEEE 802.11b/g card as an open source

wireless sniffer. The step by step guide can be found in [132].

However, wireless sniffers including commercial class ones lack the ability to decrypt the frames

protected by WPA2-EAP or WPA-PSK in realtime. Thus, the wireless APs monitored by wireless

sniffers are required to choose WEP or unencrypted, otherwise wireless sniffers only can record the

information of MAC layer headers.

Wireless Scanner

The wireless sniffers only can monitor one of eleven IEEE 802.11b/g channels at same time. Thus,

wireless sniffers are not able to capture the beacon frame sent by APs working on different channels.

Therefore, we develop a small program, wireless scanner (wlscan) to scan all eleven channels and

detect all possible APs even including the APs which disables beacon frames.

The wireless scanner (wlscan) configures the wireless card to transmit probing frames on each of

IEEE 802.11 channels, and collects all probe-response frames replied by every visible neighbor APs.

Wlscan then retrieves AP related information such as received signal strength (RSSI), encryption

scheme used, working channel and BSSID etc, from the collected pro-response frames. Because

wlscan forces the wireless device driver to work in probing mode, it disables the normal send and

receive functions of wireless cards. However, the probing process only takes 15 seconds, and wlscan

resets wireless cards and resumes their normal activities. In this study, wlscan scans for neighbor

APs every half hour for 48 hours. Moreover, we carefully choose the grace period between the

runtime of wlscan and other active measurement tools to allow the network to fully recover from

the probing status.
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WRAPI

WRAPI is a software library that allows user space applications to gather information from IEEE

802 network cards 5. In our previous study [35], we enhanced the WRAPI to support Windows

XP/SP2 and Vista, and developed a tool with same name to collect IEEE 802 statistics from

wireless device drivers. The WRAPI tool records the wireless layer information such as RSSI of the

associated AP, which is collected directly from the IEEE 802.11 device driver. Different from the

wireless sniffer, WRAPI reports the wireless link quality of the active measurement client directly,

while the wireless sniffer observes the wireless traffic from a different observation point. Compared

to the wlscan tool, the WRAPI tool is able to run when the wireless card is configured in their

normal mode. But the WRAPI tool is only able to report the RSSI of the associated APs, and it

could not detect the existence of neighbor APs.

UDP Ping Tool

Our previous studies [35,133] found several limitations of the Ping tool packaged with Windows

XP,

1. many ISPs and WPI network administrators block ICMP traffic based on security concerns.

2. the Ping program could not precisely control the sending rate greater than 2 packets per

seconds.

3. ICMP packets are handled differently than regular IP based packets in most network devices.

Thus, this study reuses the UDP ping tool developed in [35] to measure the round trip time

(RTT). The UDP ping tool sends and receives a 1500 byte long UDP packets every 500 ms and

reports the round trip time just as regular ping does. The UDP ping tool provides a larger time

out threshold up to 5 seconds for each packet, a more actual measurement result with a finer clock

granularity, and an ability to transmit packets at a more accurate rate. The UDP ping can easily

go through the firewall of the WPI campus network.

VoIP and Game Application Emulator

VoIP and game applications are two common kinds of realtime applications running on residential

networks. Both of them have similar characteristics, such as low bandwidth consumption etc. In

5http://sysnet.ucsd.edu/pawn/wrapi/
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this study, we planned to evaluate the performance of them over several volunteers’ places. In stead

of using any commercial software, this study uses a small tool to generate synthetic VoIP and game

flows. The key part of the VoIP and game application emulator is based on the implementation of

MGEN 4.0 6, an open source tool set to generate real-time traffic patterns. The VoIP and game

emulator simply configures the MGEN API and drives the generated loading patterns over the

course of the time.

The duplex VoIP voice traffic is emulated by sending a series of 200 bytes long UDP packets

in both upstream and downstream. The UDP packet size and interval are selected based on the

G.711 codec. Upon connection, both the server and client send 200-byte long packets (including

UDP and IP layer header) every 20 ms to each other. A single VoIP session lasts 40 seconds.

The performance of the VoIP application is measured using the Mean Opinion Score (MOS) and

R-factor produced by the E-Model [134].

The synthetic game flow emulates the traffic of Halo 2 [135], where the game server sends UDP

packets with 72 bytes payload to the client and the client sends UDP packets with 44 bytes payload

every 40 ms. A single game session lasts 40 seconds. Game performance is measured by the MOS

produced by the G-model based on Quake IV game performance [136].

MediaTracker

A customized version of Windows Media Player, MediaTracker 7 developed with the Windows

Media Software Development Kit (SDK), starts to measure video performance over residential

wireless network. MediaTracker provides the basic ability to provide buffering usage and playout

frame rate statistics information when playing back Windows Streaming Media Clips. In this

measurement study, Windows Steaming Media (WSM) Server (v 9.0) streams a high motion, 640×

360 pixel, 24 frames per second, 120 second long video clip to MediaTracker running on the active

measurement client. In order to evaluate the media scaling behavior during our experiments, two

video clips with same content are used in this study. One clip is encoded with multiple bit rate

levels with top rate of 1128 Kbps, and the other is encoded with a fixed rate at 1128 Kbps. Both

video clips stream with TCP protocol to go through the widely deployed firewalls over residential

networks.

In addition to the above tools, this study uses FTP/SFTP tools to measure the uplink and

6http://www.nrl.navy.mil/itd/ncs/products/mgen
7http://perform.wpi.edu/real-tracer/download/MediaTracker/
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downlink capacity respectively. Each ftp session lasts 40 seconds and the average application layer

throughput is calculated based on the actual transferred file size.

3.4 Summary

This chapter summarizes research work related to this study: classification technologies, QoS treat-

ment technologies, and measurement tools used in our home wireless measurement study. We group

the flow classification methods into four categories: port-based, payload-based, statistics-based and

behavior-based. There are trade-offs between each category of classification method, but none of

them can be easily mapped into a QoS treatment method. Similarly, QoS treatment methods are

complicated. Some treatment methods are based on the assumption that the flow has been pre-

classified - for example, TOS bits have been set correctly; other treatment methods are complicated

to configure by a home user; and some treatment policies, e.g., dropping, may not suitable for

TCP-based flows. Thus, this study provides a bridge between flow classification and treatment by

automatically classifying flows in a wireless AP and selecting appropriate treatments to improve

QoS for applications running over home wireless networks.
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Chapter 4

Home Wireless Measurement

A typical home wireless network consists of different kinds of IEEE 802.11 enabled devices including

laptops, smartphones, game consoles, printers and other entertainment devices. The main objec-

tive of the home wireless measurement study is to gather first-hand wireless traces from current

residential networks, measure the performance of different kinds of applications, and have quantita-

tive observations of realtime application running over residential wireless networks. We conducted

a home wireless measurement study at six volunteers’ home around New England area in Spring

2009. Because of resource limitations, this wireless measurement study only provides a snapshot

instead of a generic picture of residential wireless network usage in year 2009.

An objective is to evaluate the performance of several applications including VoIP, game, video

streaming and file transfer over residential wireless networks. In particular, this study wants to

answer questions such as:

1. What kind of wireless frames are transmitted?

2. Do the neighbors’ APs effect the performance of wireless networks ?

3. What kind of applications are running on wireless links ?

4. How does a real time application perform over home wireless links ?

Additionally, the measurement study results also help tune simulation parameters of the CAT-

NAP implementation as well as validate the wireless model of NS-2.3.

This chapter is organized as : Section 4.1 describes the experimental design and set up; Sec-

tion 4.2 shows the one slice of our measurement study results from physical layer to application
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layer as a case study; and Section 4.3 validates our NS-2 simulation setup with our measurement

result.

4.1 Experiment Design

Figure 4.1 depicts the generic topology setup for the wireless measurements conducted. As the

Internet connection speed in Massachusetts increases from 5.7 Mbps (2009 Q4) to 9.1 Mbps (2012

Q3) [137, 138], IEEE 802.11g wireless APs with 54 Mbps link capacities are typically not the

bottleneck over residential networks. Therefore, we place an internal application server behind

users’ broadband ingress devices to emulate the future Internet server with fast link connections.

In addition to the internal server, the measurement study set up an external server on the WPI

campus network to emulate an application server over the current Internet. This measurement

setup allowed us to control the application servers and the measurement client, although this study

does not have access to any network devices along the network path between servers and wireless

clients.

Figure 4.1: Residential Measurement Study Setup

As Figure 4.1 shows, the internal application server, the active measurement client and the

wireless sniffer sit inside the volunteer’s home. The measurement study consists of two parts:

active measurement and wireless sniffer measurement. Even though time sensitive multimedia
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applications have become popular, researchers only identified a small fraction of home network traffic

as time sensitive [139]. HTTP still dominates traffic over residential networks [139]. Therefore, the

measurement study introduces active measurement, which intentionally injects a set of applications:

video streaming, FTP, and emulated VoIP/game applications to ensure that the same type of time

sensitive applications are running over the volunteer’s home network. In this way, the expectation

is to observe performance degradation of the injected applications when they are contending with

the users’ normal network traffic.

The wireless sniffer shown in Figure 4.1 collects the wireless layer traffic from the volunteers’

wireless network. Because this study only has access to the application servers and the active

measurement client, the wireless sniffer is the only way to provide information of network activity

of volunteers’ wireless APs and their wireless clients.

4.1.1 Active Measurement

The active measurement suite runs between the “active” measurement client and two Windows

2003 servers: internal and external servers. An IBM ThinkPad T41 laptop with Windows XP/SP2

equipped with a Netgear WAG-311 IEEE 802.11g card serves as the active measurement client.

A P4 Windows Server 2003/SP2 desktop is placed in our volunteer’s home network, acting as the

internal server. Another Windows 2003 Server with Intel Core2 CPU is deployed on the WPI

campus network, acting as our external server. Both the internal and external server provide FTP,

SSH, Windows Media, emulated VoIP and game services to the active measurement client.

Figure 4.2: Time Execution of Programs Used in Active Measurement Study
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Figure 4.2 diagrams the execution plan of applications in each active measurement suite running

on our wireless active measurement client. As Figure 4.2 shows, the wireless measurement client

launches FTP, streaming, emulated VoIP and game applications sequentially. In addition to the

wireless sniffer, several measurement tools (described in Section 3.3): a wireless scanner (wlscan),

a wireless link monitor program (WRAPI), and a RTT measurement tool (UDP ping) also runs

from the active measurement client. The whole active measurement suite runs for 10 minutes. The

active measurement suite runs four times every hour: two with the internal server and two with

external server. A five minute grace period is introduced between each run, and a script collects

and backs up log files on the active measurement client during the grace period.

The active measurement suite is designed to minimize its intrusiveness. Except for the two

40 second long “bandwidth eager” FTP sessions at the end of each run, other applications are

non-greedy. Among the injected real applications, windows video streaming consumes the most

bandwidth, as much as 1 Mbps, and the rest VoIP/Game flows only consumes an insignificant

amount of bandwidth. During our measurement test period, five of the six volunteer families did

not notice the presence of the active measurement traffic. Thus, the active measurement client just

acts as one additional wireless client in the volunteer’s home network, and launches the pre-known

applications periodically. The wireless sniffer treats the active measurement same as the volunteer’s

wireless client.

4.1.2 Wireless Sniffer Measurement

A Dell laptop with a Prism GT IEEE 802.11b/g card acts as a wireless sniffer in this study. It

monitors the wireless activities over the volunteer’s home network. Since the location of the sniffer

significantly influences the sniffer result [140], the sniffer is placed no more than six feet from the

volunteer’s AP to capture traffic from/to the AP as much as possible. The side effect of placing the

sniffer close to the AP rather than to the active measurement client is that the RSSI observed by

the sniffer is different from the RSSI observed by the active measurement client. As compensation,

WRAPI running on the active measurement client provides the signal strength information when

analyzing the active measurement results.

With the respect to the privacy of our volunteers, the sniffer only stores the first 250 bytes

when the captured wireless frame length is greater than 250 bytes. The first 250 bytes include the

complete information of wireless layer header, IP layer header and Transport layer header which is
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adequate to identify flows and application type through a port-based classification approach. The

study was run between 8 : 00 AM every Tuesday and 8 : 00AM every Thursday during March 17th

and May 20th, 2009.

4.2 Home Wireless Measurement Results

Table 4.1 lists the selected seven volunteer residences in this study. However, the data sets gathered

from the last residence are not complete, because the owner uses an IEEE 802.11n AP, which

transmits and receives frames on two individual channels. The wireless sniffer used in this study

lacks the ability to concurrently monitor traffic on two separate channels. Therefore, our analysis

focuses on the data set gathered from the first six residences.

Table 4.1: Residential Places Selected

DataSet Description Access Point Clients
Model Channel Security Wired Wireless

Glaston Retired couples in a LinkSys 6 None 2 2-3
single family house. WRT54GL

A graduate student LinkSys
Worcester1 in a residence tower WRT54GL 6 None 1 1

with more than 100 units.

A graduate student LinkSys
Worcester2 in a house in a thickly WRT54G-TM 6 128-WEP 1 2

settled area.

A couple with a one year DLink
Worcester3 old baby, and a senior WBR-1310 11 128-WEP 1 2

in a two family house.

A graduate student Berlkin
Worcester4 in a three family F5D7234 1 64-WEP 1 2

house.

Waltham A software engineer LinkSys 8 128-WEP 0 1
in an apartment WRT54GL

Worcester5 A young couple on the third Trendent 3 128-WEP 1 2-3
floor in 9 unit apartment. 54N /WPA-PSK

Table 4.2 summaries experimental information from the active measurement study and the vol-

ume of data collected by the wireless sniffer. The original plan was to find two locations with

different signal strengths at each of volunteer’s residence. However, while conducting the experi-

ments, it was difficult to find a location experiencing low RSSI in four out of the six residences.

Consequently, the wireless active measurement client was not moved to a bad location in four resi-

dential places on the second day. The active measurement runs 48 hours and only generates a small

size (less than 10 MBytes) application level trace file. Therefore, only active measurement traces
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collected over the first 24 hours at each location are processed.

Moreover, some unexpected issues arose when the active measurement suite was running at

several residences. For example, because the AP in the residence of Glaston renews the DHCP

address automatically for the internal server, the active measurement client lost its connection to

the internal server. Consequently, the active measurement with the internal server only ran for 6-8

hours. The WPI network administrator shut down the port used for the UDP ping tool when the

wireless measurement study was running at the residence of Waltham and Worcester1. Because

the measurement client is behind the firewall of participating residences, it is impossible for us to

fix it remotely without the owner’s cooperation. Thus, some of the active measurement results are

incomplete.

Meanwhile, because the wireless card on the wireless sniffer is configured in monitor mode, the

sniffer does not have a network connection and it is not re-configurable once it starts. Due to the

lack of network connectivity, the sniffer could neither synchronize its clock with a NTP server nor

take any command remotely. Thus, the wireless sniffer starts collecting the wireless trace when it is

deployed and stops collecting when the active measurement study finished. As Table 4.2 shows, the

duration of the wireless sniffer trace is longer than the duration of the active measurement trace.

Table 4.2: Data Sets Collected during Home Wireless Measurement Study

Dataset Date
Active Measurement Wireless Sniffer

Internal External Size Duration

Glaston 04/14-04/15 6-8 hrs Complete 5.75GB 89hrs

Waltham 03/17-03/18 Complete ping failed 10.17GB 85hrs

Worcester1 05/12-05/13 Complete ping failed 9.69GB 55hrs

Worcester2 04/21-04/22 Complete Complete 23.12GB 75hrs

Worcester3 05/18-05/20 Complete Complete 12.85GB 97hrs

Worcester4 03/30-04/01 Complete(33hrs) Complete(33hrs) 3.68GB 16hrs

Because each active measurement study runs for 48 hours Tuesdays and Wednesdays, there is

not much traffic during the daytime, late night and early morning. Unlike enterprise or campus

networks, the most active time period of the residential networks is during the early evening. After

parsing all wireless sniffer traces collected, no traffic except the injected active measurement traffic

is found during the daytime, late night or early morning. Therefore, it is redundant to show the

analyzed results of all wireless traces.

Table 4.3 summarizes the results, tools and involved datasets. The following part of this section

is organized follows: Section 4.2.2 and Section 4.2.3 only show the results from a one hour long
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evening wireless trace and a one hour long early morning trace from gathered wireless sniffer traces

as a case study. Section 4.2.1 and Section 4.2.4 shows the results from our active measurement

experiments from all six residences.

Table 4.3: Summary of Measurement Results

Layer Measurement Tools Data Set

Physical Active wlscan All six locations

Wireless Sniffer sniffer Worcester2

Network
Sniffer Sniffer

Worcester2 excludes active
Transport measurement traffic

Application Active
FTP, UDP ping, WRAPI,

All six locationsVoIP/UDP, Game/UDP,
MediaTracker

4.2.1 Physical Layer Result

Two small tools, the wireless scanner (wlscan) and WRAPI [35], are developed to collect wireless

physical layer information. Different from the wireless sniffer, these two small tools are running

upon the wireless active measurement client, and report the physical layer information from the

view of the wireless client. Figure 4.3(a) shows the cumulative distribution function (CDF) of the

observed APs reported by the wireless scanner (wlscan) running on the first day of each experiment,

while Figure 4.3(b) depicts the CDF of RSSI of the volunteer’s AP observed by WRAPI.
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Figure 4.3: Wireless Environment of Volunteers’ Residences

Figure 4.3(a) shows that the wireless scanner observes more than one AP in five of six residences.

At the residence in Glaston, the wireless scanner sees only one AP most of the time. As expected,

several APs are visible to the active measurement client at the other five residences in the thickly

settled suburbs around Boston or Worcester. For example, Figure 4.3(a) indicates that the residence
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Worcester1 sitting in a residential tower in Worcester downtown observes more than 30 APs in its

neighborhood. At such a location with high-density APs, the wireless frames would experience high

error rate if the user picks a channel which a large number of APs use.

Figure 4.3(b) summarizes the RSSI measured by WRAPI at the six residences. Our previ-

ous studies [17, 34, 133] demonstrate the wireless received signal strength indicator (RSSI) is an

important metric to predict whether video streaming applications are experiencing good quality.

In [34] and [133], reception locations with RSSI between -70 dBm and -30 dBm are considered

locations with good wireless conditions, where usually video streaming applications perform well.

Figure 4.3(b) shows that the RSSI at all six locations is in “good” range and it predicts that video

streaming applications will perform well under such signal strengths. The results in Section 4.2.4

confirm this prediction.

4.2.2 Wireless Layer Result

The wireless sniffer is the only tool used in this measurement study to monitor the volunteer’s

wireless activity. However, there is no active network activity during the daytime, deep night or

early morning. During these time periods, the only traffic captured on the volunteer’s network is

injected by the active measurement client. Therefore, this study simply divides captured wireless

sniffer traces into two categories:

• “busy” traces: gathered during the early evenings between 1900PM and 2100PM, when most

likely family members are running network applications; or

• “quiet” traces: gathered during the early morning, daytime and night, when the volunteer

family members are seldom online.

After parsing all 60+ GB of sniffer traces, the quiet traces gathered from all six volunteers’

families are virtually similar: they only contain the traffic injected by the active measurement

client. Meanwhile, the busy traces contain the traffic generated by the volunteers as well as the

traffic injected by the active measurement client. However, the dominant traffic from the volunteers

are HTTP-based traffic. Because only six families were involved in this study, one cannot draw

statistics significance from these results. The wireless, IP and Transport layer analysis is based

on two one-hour sniffer traces collected at the Worcester2 residence as a case study: one gathered

between 19:00PM-20:00PM, April 21st, 2009 as the representative of “busy” traces, and the one
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collected between 05:00-06:00AM April 22nd, 2009 as the representative of the “quiet” hour traces.

Table 4.4: Different Wireless Frames Captured during a Busy and a Quiet Hours

Busy Quiet
Frame Type Count Volume Count Volume

Num. Perc. bytes Perc. Num. Perc. bytes Perc.

Mgmt

Probe Req. 12.2 kilo 0.3 0.8 MB 0.1 1.3 kilo 0.2 85.7 KB < 0.1
Probe Resp. 35.5 kilo 0.9 3.5 MB 0.2 37.6 kilo 5.7 3.2 MB 1.0
Beacon 61.0 kilo 1.5 6.3 MB 0.4 107.2kilo 16.1 10.0 MB 3.8
Authen. 2 0 79 0 - - - -

Ctrl
Reserved 1 0 18 0 1 0 18 0.0
CTS 13.5 kilo 0.3 0.2 MB < 0.1 1.0 kilo 0.6 14.2 KB < 0.1
ACK 1.9 mill. 45.9 26.2 MB 1.8 0.2 mill 36.7 3.4 MB 1.1

Data
Data 2.1 mill. 51.7 1.4 GB 97.5 0.3 mill 41.1 0.3 GB 94.5
NULL Data 1.9 kilo < 0.1 53.5 KB 0.0 25 0.0 700 0.000
QoS Data 2 0 205 0 - - - -

Table 4.4 compares different types of wireless frames captured during the representative busy

and quiet hours at the residence Worcester2. The data frames (type 32) and ACK frames (type

29) are the two major dominant frame types during both busy and quiet hours. Note, the data

frames and ACK frames shown in the quiet hour are traffic injected by the active measurement

client. The wireless layer analysis does not exclude the active measurement traffic because the active

measurement client can be treated as another normal wireless user on the volunteer’s network.

In additional to data and ACK frames, 0.3% frames from the busy hour trace are CTS frames

while no corresponding RTS frames are captured. The 802.11g standard provides CTS-to-Self

signaling protection mechanism to manage communication in a hybrid 802.11 b/g environment [141].

Although the volunteer’s AP at Worcester2 disables RTS/CTS, an IEEE 802.11b device associated

with a neighbor’s AP still sends CTS frames. Since both APs are sitting on Channel #6, the

wireless sniffer captures the CTS frames from the neighbor’s AP due to the shared media nature

of wireless networks. However, the CTS-to-Self scheme introduces more overhead and lowers the

overall throughput of IEEE 802.11g APs [141].

Furthermore, Table 4.4 shows that the wireless sniffer collects more beacon frames during the

early morning (the “quiet” hour) than the early evening (the “busy” hour). According to IEEE

802.11 standard, an AP transmits a beacon frame every 100 ms by default. It is expected that the

sniffer captures the same amount of beacon frames during the same time period because an AP

is always on and stationary. As Abib et al. noticed, human activity has effects on IEEE 802.11
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wireless channel conditions [142]. One possible explanation is that wireless channel conditions are

much better during the early morning than the early evening because there are almost no human

or computer activities around 5AM.

(a) a “busy” hour (b) a “quiet” hour

Figure 4.4: Frame Count by Types

(a) a “busy” hour (b) a “quiet” hour

Figure 4.5: Frame Volume by Types

Table 4.4 gives the volume of each type of frame in addition to their count, and Figure 4.4 and

Figure 4.5 visualize the content of Table 4.4. Most of the management or control frames are small,

but data frames produce 95% or more of the traffic volume. However, the small management or

control frames still potentially reduce the overall throughput of wireless link because the per frame

physical layer header introduces relatively more overhead and reduces the channel utilization [140].

Figure 4.6 (a)-(e) compares the cumulative distribution functions (CDF) of frame size and

transmission rate for management, control and data frames captured in the busy and quiet hours.

The majority of the management frames and control frames are smaller than 250 bytes. But the

length of data frames are in bi-modal distribution, 20% to 50% frames are smaller than 250 bytes
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Figure 4.6: Size and Transmission Rate Comparison between Different Types of Wireless Frames

and the rest of them are larger than 1000 bytes. The small data frames could be control packets

from upper layers such as TCP ACK, and TCP control packets which are transmitted as data

frames in the wireless layer; or they could be application packets (VoIP or game packets).

Meanwhile, the majority of data frames are transmitted at high speed as fast as 54 Mbps

because the users’ wireless clients are usually placed in the same room or the room next to the

AP. However, management frames, such as probing response frames sent by APs, travel at a lower

speed to reach a large range. These low speed and retransmit-able management frames lower the

wireless throughput when a wireless client sends probing requests to an AP at a distance.

Wireless Data Frames

Although control frames and management frames can have significant impact on the performance

of residential wireless APs, data frames are more interesting to study. Tuning the wireless param-
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eters on control frames and management frames for residential APs potentially can improve the

performance of home wireless networks, but this measurement study focuses on the understanding

the behavior of data frames.

The technical report from Broadcom Inc [141] shows that wireless IEEE 802.11g cards are able to

support 54 Mbps transmission rates within 75 feet. Considering the size of a typical house in North

American is only 2000 square feet, most wireless clients will be within 75 feet of the wireless AP

sitting in the middle of the house. Additionally, wireless signals can easily penetrate materials such

as drywall, plywood, wood and glass, which are common construction material in North American

houses. Thus, it is expected to observe a large fraction of data frame transmitted at rates of 54

Mbps in the six volunteers’ small houses.

Table 4.5: Data Frame Transmission Rate Comparison

Busy Quiet
Transmission Count Volume Count Volume
Rate(Mbps) count frac. bytes frac count frac. bytes frac

1 5,589 0.3 1.0 MB 0.1 1,900 0.7 640.3KB 0.2

2 570 0.0 0.1 MB 0.0 - - - -

5.5 138 0.0 97.3 KB 0.0 87 0.0 7.8 KB 0.0

6 1,283 0.1 0.5 MB 0.0 3 0.0 252 0.0

9 687 0.0 0.6 MB 0.0 - - - -

11 1,188 0.1 1.0 MB 0.1 - - - -

12 3,139 0.2 1.6 MB 0.1 13 0.0 1.2 KB 0.0

18 3,056 0.1 2.2 MB 0.4 40 0.0 6.7 KB 0.0

24 7,569 0.4 4.4 MB 0.3 101 0.0 27.2 KB 0.0

36 52,869 2.5 38.1 MB 2.4 367 0.1 241.9 KB 0.1

48 155,677 7.5 102.3 MB 7.4 1,865 0.7 587.6 KB 0.2

54 1.8 mill. 88.9 1.2 GB 89.4 269,376 98.4 287.8 MB 99.5

Table 4.5 lists the physical transmission rates of data frames gathered at Worcester2, during

the busy hour and quiet hour as a case study. The physical transmission rate is reported by the

Prism2 wireless card device driver on our wireless sniffer, and the actual data transfer rate is lower

than the physical transmission rate. Table 4.5 shows than more than 88% of data frames are sent

at 54Mbps, which is the maximum transmission of IEEE 802.11g during either busy or quiet hour.

Even during the busy hour, 19:00-20:00PM on April 21st 2009, when wireless frames have high

collision probability, only 12% of data frames are sent at rates lower than 54 Mbps.

Figure 4.7 depicts transmission attempts of data frames gathered at the Worcester2 location

during the busy and quiet hours. The logical link control layer (LLC) of IEEE 802.11 introduces
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Figure 4.7: Data Frames and Retransmitted Data Frames

the retransmission mechanism in order to provide the reliable communication over an error prone

wireless channel. However, the IEEE 802.11 retransmission and the exponential backoff algorithm

actually introduces more overhead and lowers the medium utilization [58]. Figure 4.7(a) shows that

about 90% of the data frames arrive at their recipient with their first attempt, and less than 1% of

the data frames attempt more than 4 times. Figure 4.7(b) focuses on the physical transmission rate

of retransmitted data frames which have been attempted transmission more than once. During the

busy hour, more than 50% retransmitted data frames are sent at 54 Mbps and 13% retransmitted

data frames are sent at the lowest 1 Mbps. However, during the quiet hour, nearly 70% of the

retransmitted data frames are sent at 1 Mbps.

4.2.3 IP and Transport Layer Results

The initial objective of analysis of the IP and transport layer information is to understand the

flow level behavior of network applications running at home. However, we lack control over the

volunteer’s AP. This study only can retrieve the IP and transport layer information from the IP

and TCP/UDP headers encapsulated by the wireless frames from the wireless sniffer traces. The

wireless sniffer is not able to capture all airborne wireless frames. Shulman et al. report that wireless

sniffers inevitably miss at least 5% of wireless frames [140]. Recovering the IP and transport layer

information from frames captured by a wireless sniffer is not a reliable approach for flow level

analysis. To avoid the disadvantage of the sniffer, several researchers choose an indirect way to get

the flow level information of residential wireless networks by analyzing traces gathered from the

ISP’s edge routers [106, 143, 144]. But this study has no access to any ISP devices and the traces

from the ISP’s edge router do not contain any wireless level information.
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Since the flow level information retrieved from a wireless sniffer trace may not be reliable,

this study only presents the IP and Transport layer results from the busy hours at Worcester2

location as a case study. In order to study “native” flows generated by our volunteers, the flow

level analysis excludes the traffic injected by the active measurement client. The quiet hour is at

the early morning between 05:00-06:00AM, and there is no active volunteers’ network activity after

excluding our active measurement traffic. Therefore, our case study focuses on the traffic gathered

between 19:00PM-20:00PM, April 21st, 2009 at the Worcester2 location.

As discussed in Section 3.1, no reliable flow level classifier is available to analyze the wireless

traces captured during this measurement study. For example, statistics based approaches usually

need training datasets, but our home wireless measurement does not have enough historical traces

to train the classifiers. Therefore, we choose port-based traffic classification methods, which may

be somewhat inaccurate. To respect the volunteer’s privacy, the wireless sniffer truncates any

packets larger than 250 bytes and stores the first 250 bytes of each wireless frame. This information

is enough to recover the IP and Transport layer information but may not be enough to recover

application layer information.

Table 4.6 lists the native flows detected in the “Worcester2” site, during 19:00-20:00PM, April

21st, 2009, the busy hour. As expected, the port-based classifier marks a large fraction of flows

as “unknown”. However, the port-based approach identifies another large fraction of flows as

some applications which should not appear on residential networks. But after carefully inspecting

the flows, we find that these flows are mistakenly classified by the port-based classifier because the

source port or destination port of these flows accidentally matches some port registered with IANA.

Therefore, this study groups these flows as “misc”. Except for these two categories, the dominating

flows captured over residential networks are Web flows and DNS flows. However, some interactive

flows could be covered under the big umbrella of Web, e.g. browser-based games and Web-based

online chats. Unfortunately, the port based approach cannot identify them separately.

Figure 4.8(a) summarizes the duration of native flows detected during the busy hour trace. We

use the terms, dragonflies and tortoises defined by Brownlee et al. [145] to describe the lifetime

nature of IP flows: dragonflies are the flows lasting less than 2 seconds and tortoises are flows

lasting longer than 15 minutes. As Figure 4.8 shows, 40-50% of flows captured over residential

networks are dragonflies.

Figure 4.8(b) shows that the throughput of most TCP and UDP flows is lower than the link
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Table 4.6: Native Flows Captured over Busy and Quiet Hours

Upstream Flows Downstream Flows
Total

TCP UDP Subtotal TCP UDP Subtotal

Web (port 80,8080,443) 703 0 703 708 0 708 1411
DNS (port 53) 0 616 616 0 638 638 1254
acmsoda (port 4939) 107 0 107 218 0 218 325
unknown 155 383 538 217 512 729 1267
misc 644 134 778 678 180 858 1636

Total 1609 1133 2742 1821 1330 3151 5893

capacity of an IEEE 802.11g network. This is because the gateways in the volunteer’s residential

network are bottleneck devices, and most home users only surf Web pages. Figure 4.8(c) depicts

the number of packets detected in each flow.
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Figure 4.8: IP and Transport Layer Results of Native Traffic

Web flows

Web flows are the dominant flows detected in the busy hour at Worcester2 location. Although the

port-based classifier does not work well for applications running on unpublished ports, it is a reliable

approach on applications running on well-known ports, e.g. Web applications, DNS applications.

Thus, we analyze all Web flows detected from the trace gathered during 19:00-20:00PM on the

first day at all six locations. The Web port used are Port 80, 443, 8080 and 8081 [70]. Figure 4.9
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summarizes the duration, throughput, packets in flow and flow volumes for the Web flows detected.
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Figure 4.9: Web Flows

Figure 4.9 shows that high similarity exists in the Web flows captured at all 6 volunteers’

locations. The majority of Web flows are mice flows with small volume as well as dragonflies with

short duration. 75% of the Web flows last less than 10 seconds, and 80% of them are smaller than

10 KB in total.

4.2.4 Application Layer

This section presents the results of our active measurement study. The main purpose of our active

measurement study is to provide performance for game, VoIP and video streaming applications over

residential wireless network. Different from Section 4.2.2 and Section 4.2.3 which analyze our sniffer

traces, this section uses the results from application logs gathered from our active measurement

client.

However, the active measurement test suite experienced several unexpected technical and non-

technical issues. In Glaston, because the owners’ AP reset its DHCP service 8 hours after our active

measurement starts, our active client was unable to detect the internal server’s IP address changes

and the active measurement in Glaston includes only 7 hours of data collection with our internal

server1. Moreover, a WPI network administrator shutdown our UDP ping port due to security

1The wireless scanner (wlscan) and WRAPI collect 48 hour data because they do not need to connect to the
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concerns when we ran the tests from Worcester1 and Waltham locations. Thus, the datasets of

Worcester1 and Waltham do not contain external ping results which makes its more difficult to

understand the performance of VoIP and Game application performance with our external server

at these two locations.

Round Trip Time

Round trip time (RTT) is one of the most important metrics to evaluate the performance of network

applications. However, ICMP ping is not able to go through the firewall of the WPI campus

network. Furthermore, in our previous studies [17, 34, 133], ICMP ping program packaged with

Windows XP did not precisely control the packet sending rate. Thus, this study utilizes UDP Ping,

a UDP based ping tool to measure RTT [35] between our wireless active measurement client and

the Internal/External servers respectively.
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Figure 4.10: Round Trip Time Measured

Figure 4.10(a) depicts the CDF of RTTs between our active measurement client and the internal

server which is behind the volunteer’s gateway. Note, due to the system clock granularity, our UDP

based ping tool only provides the degree of accuracy of 1 ms. Figure 4.10(a) clearly shows 80% of

RTTs between our active measurement client and internal server are under 5 ms. Figure 4.10(c)

internal server.
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shows the density function of RTTs: the internal RTTs follow a positive skewed normal distribution

with the mode at 3 ms and the mean at 6 ms.

Figure 4.10(b) shows the CDF of RTTs between the active client and the external server sitting

on the WPI campus network. Figure 4.10(b) illustrates that the majority of external RTTs are

under 100 ms, while Figure 4.10(c) shows that the external RTTs fit a bi-modal distribution, with

one peak at 16 ms and the other at 28 ms. Our external RTTs are consistent with the result

reported in [139], where Maier et al. reported that RTTs over Germany residential network fit a

bi-modal distribution, with one peak at 7 ms and the other at 45ms.

It is quite surprising that Figure 4.10(c) shows 4% of internal RTTs exceed the first peak of

external RTTs, and a tiny fraction (0.07%) of local RTTs are larger than 1 second. Typically, large

RTTs indicate large queuing delays. Since there is only the wireless AP between the measurement

client and our internal server, it is possible that the AP queue fills up occasionally. However,

because the measurement study ran with the owner’s off-the-shelf AP at all locations, we are

unable to determine the AP queue length to further investigate this issue. Meanwhile, the above

mentioned neighbor interference which acts like hidden terminals would yield multiple MAC layer

retries, and depending on the timeouts this neighborhood interference could also increase the RTTs.

Last but not least, the UDP ping tool might occasionally mismatch the sending and received ACK

sequence numbers and these outlier ping times could also skew the RTTs.

File Transfers

End-to-end throughput is another important metric representing the network quality. The active

measurement suite measures application layer throughput between the active measurement client

and the internal/external server with two FTP sessions in different directions: one downstream and

one upstream.

Figure 4.11 shows the CDF of average downlink and uplink throughput between the active

measurement client and the internal server, where the volunteer’s AP is the only device between

them. Figure 4.11(a) shows that most downlink FTP sessions reach 18-22 Mbps throughput at five

of six measurement locations. Because an IEEE 802.11b based network printer is on the Worcester3

network, the Worcester3 AP involves the CTS-to-self mechanism to provide backward capability

for the IEEE 802.11b printer. Thus, the maximum throughput of the FTP application measured at

Worcester3 is only around 15.0 Mbps when the IEEE 802.11b printer is turned on. This is consistent
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with the maximum throughput (14.7 Mbps) reported by Broadcom in an IEEE 802.11b/g mixed

environment [141]. As Figure 4.11(b) shows, the uplink throughput to the internal server is similar

to the downlink throughput counterpart, and the downlink and uplink throughput look symmetric

inside IEEE 802.11 residential networks.
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Figure 4.11: Throughput Measurement with Internal Server

The result of throughput measured with our external server is complicated. First of all, compared

with the claimed link capacity of IEEE 802.11g AP, the users’ DSL modems or cable modems are

the bottleneck devices. Second, the uplink and downlink capacities of DSL or cable modems are

not symmetric. For example, Worcester2, Worcester3 and Worcester4 share the same ISP, and the

ISP provides 6-8 Mbps downlink capacity and 1-2 Mbps uplink capacity. Finally, we have little

knowledge on the brand and model of the volunteers’ cable modems, even when the users share

the same ISP, their cable modems are from different vendors. Figure 4.12 shows the downlink and

uplink throughput measured at the six places. Generally, the external links have higher downlink

capacity than the uplink capacity. “Glaston” is the only location that has symmetric link capacity

because it may have a different ISP than the other residences2.
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Figure 4.12: Throughput Measurement with External Server

2Glaston is the only residential place around Hartford, CT; the rest of them are in Worcester and Waltham, MA
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VoIP Applications

The performance of the VoIP application is one of the benchmarks to evaluate ability of the network

to support for multimedia applications. We use the MOS values for each talk spurt [146] as the

VoIP application quality indicator, and the 10th percentile as the end-of-call quality for each VoIP

session. How to apply E-Model based on the one way latency from the VoIP server to the VoIP

client is a challenging task. Because of the lack of an accurate system clock, although the wireless

client and servers synchronize their system clocks with the WPI NTP server every hour, there still

is a 1 or 2 second clock skew between them. Thus, this study estimates the one way latency based

on the RTT measured at the active measurement client, and computes the R-Value and MOS value

with the estimated RTT.

Figure 4.13(a) shows that the MOS value of 95% or more VoIP calls with our internal server

is as high as 4.34 and only a couple of VoIP calls experience lower voice quality, their MOS value

less than 4. The quality of 90% of the external VoIP calls are with good quality and their MOS

value is also as high as 4.34 also. Note, the measurement study suffers ping failure in Worcester1

and Waltham locations because WPI network administrator shutdown the ports used by our UDP

pings due to security concerns. Therefore, the average RTT of the remaining four residences is used

for these two locations when calculating their MOS values.

The reason that almost all VoIPs have with good quality is because VoIP applications have low

bandwidth consumption, and their qualities are vulnerable to large delays. More than 173 ms3 one

way latency significantly degrades the quality of VoIP calls. However, this study observes some

occasionally more than 1 second RTTs between the internal server and the active measurement

client, the median RTT between our internal server and client is under 5 ms, which is far below

173 ms.

Moreover, after inspecting VoIP log file carefully, no bursty packet loss happened during the

measurement study. One of the possible reasons for no VoIP packet loss might be the majority of

traffic detected over the volunteer’s place is HTTP based Web flows, which are typically mice and

dragonflies: small volume and short duration. It is difficult to saturate a 8 Mbps DSL modem with

TCP flows [139] only and even more difficult to saturate IEEE 802.11g AP with Web flows only.

Thus, with the assumption of no AP queue loss, there is a small probability that a 200 byte long

VoIP frame fails to reach its destination after seven sequential transmission attempts. Therefore,

3173 ms is the threshold in the Heavyside function used to compute R-factor and MOS value [146].
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it is low probability that the quality of VoIP applications degrade due to bursty packet loss.
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Figure 4.13: Quality of VoIP Applications

FPS Game Applications

Similar to VoIP applications, games, especially First Person Shooter (FPS) games, are another

benchmark application to evaluate the performance of multimedia applications over networks. Dif-

ferent from the VoIP applications, the FPS games are more vulnerable to large network delays [136].

Our home measurement study emulates the Quake IV game with constant rate UDP flows, and

calculates the MOS value for each game session [136] as their quality metrics. Due to the lack of

a high accuracy NTP server, this study uses the same approach to compute the MOS value for

game flows as it does with VoIP applications: estimating the one-way latency based on the RTTs

reported by the UDP Ping tool.

Figure 4.14(a) shows the MOS values of emulated game applications running with the internal

server at six residential places. Most of emulated game applications experience high QoS, and their

MOS value are greater than 4.2. However, unlike the VoIP applications, game applications are more

sensitive to large network latencies, and approximately 10% of the game applications experience

some performance degradation. The MOS value of 20% game sessions at the Worcester2 location

even drops under 4 and enters the “fair” range. The reason is that the owner attempts to copy

a DVD image from one wireless laptop to a desktop through Windows SMB service. This large

file transfer saturates the wireless link and builds up the queue inside the wireless AP. As a result,

the game applications are severely punished by the large queuing delay. The VoIP application also

experiences quality degradation and packet loss, but the quality of VoIPs does not degrade as much

as game applications.

Figure 4.14(b) shows the MOS values of game applications with our external server at WPI.
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Figure 4.14: Quality of Game Applications

Compared with the game quality with the internal server, the quality with the external server

drops into the “fair” zone at all six locations, because one way latency between the external and

our wireless client is larger than the latency between our internal server and client. However, the

performance of games degrades more than VoIP, although the game flow consumes only 14.4 Kbps,

which is much lower than G.711 based VoIP flows. Because of the delay sensitive nature of FPS

games, it is more suitable than VoIP applications to serve as a benchmark program to measure

residential wireless network performance.

Video Applications

The active measurement suite also includes video streaming applications to evaluate their perfor-

mance over residential wireless networks. Video streaming applications traditionally use UDP as

a transport layer protocol. However, more and more streaming video applications choose TCP

to penetrate widely deployed firewalls, and some Web based streaming applications even choose

HTTP as their application layer protocol instead of traditional streaming protocol such as RTSP.

This study chooses TCP based video streaming to go through the users’ firewalls.

Similar to our previous video performance measurement studies [34,35], this study uses Windows

Media Maker to encode two HD video clips with the same content and resolutions, one multiple

layer video and the other single layer video. The highest video encoding bit rate is 1128 Kbps which

is the same as the single layer video encoding rate. The purpose of using a multiple layered video

clip is to take the advantage of modern media scaling and media thinning techniques [37], which

are widely used by media servers.

Figure 4.15 depicts the performance of multilayer video streaming from the internal and external

server respectively. The multiple layer video performs well with the internal server. Generally, the
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playout frame rate reaches its original encoding rate of 24 frames per second (fps), and much higher

than the “good” quality threshold, 15 fps. In total, only one or two multiple layer video clips fail

to play out. The multiple layer video from our external server perform a little worse than the clips

from our internal server. However, less than 5% of the video clips fail to play out and 90% of the

multiple video clips receive high quality.
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Figure 4.15: Quality of the Multiple Layer Video Clip Streaming

Compared with multiple layered video, the performance of single layer video from the internal

server is almost the same as multiple layer video, but the performance of single layer video with

the external server degrades. 40% of the single layer video could not stream at Glaston, and 15%

of the single layer video fails at the location of Worcester1. However, the FTP throughput results

in Section 4.2.4 show that the external link capacity of Glaston is approximately 2 Mbps. Thus,

it is not surprising to observe video performance degradation when streaming 1128 Kbps video

with a shared 2000 Kbps link. The single layer video performance degradation at the location of

Worcester1 is a little bit complicated: the volunteer at Worcester1 used a wired connected desktop

during the measurement period and the video performance might be degraded by “unseen” wired

traffic which might cause congestion at the volunteer’s gateway.
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Figure 4.16: Quality of the Single Layer Video Clip Streaming
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However, with current residential wireless network setup, video streaming applications generally

perform well, which is consistent with our previous measurement results over campus networks [17,

34, 133]. However, multiple layer video more likely performs better than single layer video on the

residential networks which have smaller “last mile” ingress link capacities.

4.3 Validation NS-2 Simulator with Home Measurement Re-

sults

4.3.1 Case 1: Congested Wireless Link

One of the main objectives of the residential wireless measurement study is to find when the wireless

AP is saturated by normal network usage, which would help us to design NS-2 simulations and more

realistically simulate a residential wireless environment. However, most of the network activities

observed in this measurement study were Web-based traffic. The sniffer traces captured in Waltham

contain a long World of Warcraft game session, confirmed with the volunteer. It is surprising that

no P2P (eDonkey or Bit Torrent) traffic was identified in any sniffer traces. Most of the traffic

identified in the sniffer traces is not heavy enough to saturate IEEE 802.11g links. Therefore, most

of the active measurement results with the internal application server do not show any performance

degradation.

Moreover, because this measurement study was conducted in six volunteers’ home, friends of

graduate students, the selected residential places are smaller than typical American houses where

the largest place in our study is under 1800 square feet. Consequently, it is difficult to find a location

with “poor” wireless signal reception where the RSSI is below -75 dBm [133]. Additionally, due to

the small size of the volunteers’ places, only a small fraction of wireless data frames is transmitted

at the rates lower than 54Mbps, and rate adaptation is rarely observed.

To avoid disturbing the volunteer’s normal network activity, the active measurement test suite

only injects small amounts of traffic during a short time period. It might cause congestion on

the users’ gateway, but it hardly congests the residential wireless APs. However, in order not to

inconvenience the volunteers, this study does not inject large volume traffic to build up the queue

inside AP. This made the task more difficult.

Fortunately, at least three congestion instances, one at Worcester2, one at Worcester3 and
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one at Worcester4, are identified, where the volunteer’s network activity might saturate their own

wireless link. However, there is an IEEE 802.11b based wireless printer sitting at Worcester3,

and the Worecester3 AP invokes CTS-to-self mechanism to provide backward capability for the

IEEE 802.11b device. The overall throughput of Worcester3 is only 14.7 Mbps, which is at least

5 Mbps less than the theoretical throughput in 802.11g only environment. Meanwhile, since we

have no plan to simulate an IEEE 802.11b/g mixed environment, and we did not consider the

Worcester3 instances. Worecester2 is an IEEE 802.11g only environment, although its neighbor has

one 802.11b device sitting on the same channel. The main issue is that the Worcester2 AP is not

stable under heavy TCP traffic, and the downlink throughput dips approximately every 10 seconds

or so. Therefore, this study did not analyze the instance found at Worcester2 because we could not

fully understand what causes the periodic throughput dips.

Thus, the instance of Worcester4 is the only evidence which demonstrates that normal user’s

network activity can saturate the residential wireless link and degrade the performance of appli-

cations running on the active measurement client. A two minute long, high volume TCP flow is

identified between 15:00 PM and 16:00 PM EDT, March 31, 2009, which was concurrently running

with several of the active measurement applications. Confirmed with the volunteer, the “back-

ground” TCP traffic contains a 100 second long file transfer session between one wireless client and

a wireless server using Windows Samba (SMB) service, and a couple of very short and insignificant

Web flows.

Figure 4.17(a) shows a 60 second snapshot of the IP throughput traffic when the FTP down-

loading application from the active measurement suite is concurrently running with the SMB file

transfer traffic. The 40 second long FTP flow is injected by the active measurement client. Fig-

ure 4.17(a) shows that after the FTP flow starts, the two file transfer flows share the bandwidth

and both of them reach 10-11 Mbps throughput. Note, because of the lack of control over the

volunteer’s laptop or desktop, the IP layer throughput of background traffic is calculated based on

the information retrieved from the wireless sniffer traces. The sniffer was two or three feet away

from the wireless AP, and it was not at the same location as the volunteer’s station. Thus, even

within such short distance, the wireless sniffer might still miss 5% of the frames transmitted by the

wireless AP [140].

Figure 4.17(b) shows that the NS-2 simulator is able to simulate the above congestion instance.

A simulated FTP flow named “background FTP” starts at the 0th second, and another FTP flow
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(c) FTP Downloading w/ Insignificant Background
Traffic
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Figure 4.17: FTP Downloading Flows with/without Background Traffic (Simulation)

joins at the 10th second. The simulation result matches with the above congestion evidence found

in the wireless sniffer traces. Therefore, by carefully tuning the simulation parameters, the NS-2

simulator is able to simulate wireless network activity close to reality. Table 4.7 summarizes the

parameters used in the NS-2 simulator validation. Note, Chapter 6 utilizes the same physical and

MAC layer settings while several IP and transport layer settings are tuned to provide a better

performance comparison between CATNAP and DropTail AP queue controllers.

Table 4.7: Simulation Parameters Used for Validation

Layer Parameter Value Notes

Physical User-AP Distance 5 m Wireless & AP and clients in same room

MAC

Wired Link 100 Mbps Common Ethernet link Speed.
Wireless Link Capacity 54 Mbps Max. data rate for 802.11g.
Retry Threshold 6 Default for short frames w/o RTS.
Shadowing Deviation 7 Indoor environment, medium interference.
Beacon Interval 100 ms Default for most APs.
Rate Adaptation off Default module for NS-2.33.

IP
RTT 3 ms Mode of RTTs measured w/ our internal server.
AP Queue Capacity 150 packets Maximum queue capacity for home APs [35]
MTU 1500 bytes Typical setting w/o jumbo frames

Transport
TCP Version NewReno NS-2 fulltcp supports
TCP CWND Max 40 packets NS-2 default.
TCP Nagle Algorithm Disable NS-2 default.
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In order to have a complete comparison, Figure 4.17(c) shows that the FTP throughput without

the heavy SMB traffic. The sniffer traffic trace is gathered at the same residence during 09:00-09:15

AM on March 31st, 2009. Because all residents go to work, there is no competing or contending

traffic. The FTP flow reaches its expected maximum throughput around 22 Mbps, which is same

as the FTP maximum throughput measured on the WPI campus wireless network [17]. Note, the

tiny spike of the background traffic observed in Figure 4.17(c) is injected by the UDP ping tool

which monitors the round trip time between the internal server and the active measurement client.

Similar to other occasional IP layer traffic, the tiny spike can be ignored. Figure 4.17(d) shows the

simulation result of a single FTP flow running alone on the NS-2 simulation testbed. Without any

competing or contending traffic, the simulated FTP flow reaches its maximum throughput as 22

Mbps, which is consistent with the measurement result shown in Figure 4.17(c).

4.3.2 Case 2: VoIP under High Volume Background Traffic

In addition to validating the simulation setup with two non-interactive FTP flows, this study

also compares the performance of simulated VoIP flows with VoIP flows identified in the wireless

sniffer traces. Figure 4.18(a) depicts the measured throughput results of VoIP and background

traffic including the SMB flow, which is from the same sniffer trace used in the previous section.

Figure 4.18 shows that the throughput of simulated traffic is similar to the measurement result.

Figure 4.18(b) shows the throughput results of VoIP and background flows simulated with the NS-

2 simulator. Note, the background traffic in Figure 4.18(a) is the data flow from SMB windows

file sharing, and the background traffic in Figure 4.18(b) is the FTP flow generated by NS-2.33

simulator.
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(b) Simulated VoIP with Heavy Background Traffic

Figure 4.18: Throughput Comparison

Figure 4.19(a) and Figure 4.19(b) compares the CDF of packet inter-arrival time between the
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simulated and measured VoIP flows. Because of the clock skew problem mentioned earlier, it is

not suitable to compare the skewed one way delay of measurement result with simulation results

which do not have the clock drifting problem. Thus, Figure 4.19(a) chooses the packet inter-arrival

time instead of one way delay to avoid the clock skew problem. Figure 4.19(a) and Figure 4.19(b)

also compare the CDF packet inter-arrival time of simulated and measured VoIP flows without high

volume background flows. When no high volume background flows, 99% of packet inter-arrival time

is 20 ms which is the packet sending interval specified by G.711 standard. There is almost no jitter

in both the simulated and measured VoIP flows when the wireless link is not saturated.
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Figure 4.19: VoIP Quality

When VoIP flows are running with the stress of high volume background traffic, the CDF of

packet inter-arrival time shown Figure 4.19(a) is similar to what is shown in Figure 4.19(b). But,

around 20% of packet inter-arrival times is 0 ms, which means 20% of the actual VoIP packets arrive

back-to-back while simulated VoIP flows do not have any back-to-back packets. This phenomenon

could be explained as side effects from the Windows device driver implementation. Due to the

small length of VoIP packets, the device driver is able to buffer several small packets and pass them

together to application layer within one interrupt. This kind of implementation generally saves CPU

time on I/O related operations, but it potentially impairs the performance of real-time applications.

As Figure 4.19(c) shows, however, because the packet inter-arrival time of the measured VoIP is
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similar to the simulated VoIP flow, the qualities (MOS value) of simulated and measured VoIPs are

almost same.

Section 4.3.1 and Section 4.3.2 demonstrate that NS-2 simulator is able to simulate residential

wireless network accurately by carefully designing the simulation testbed and tuning the simulation

parameters.

4.4 Summary

With the spread of high speed broadband network activity to the home, the interest in home

networks has increased in the last decade. Numerous researchers have measured residential net-

work performance [106, 107, 139, 143, 144, 147–149]. However, most previous studies have focused

on the measuring Internet access connections to the home [107, 139], which are often large scale

by analyzing traces gathered from ISP’s gateways or servers. Other studies have focused on man-

agement and trouble shooting techniques by measuring the performance and utilization of home

networks [148,149]. Although the performance of home wireless networks has been received substan-

tial attention in the past few years, few studies have been done with residential wireless networks.

Especially when we designed our home measurement study in 2008, there were not any home wire-

less measurement study results public available. The closest research work to our goal is the research

done by Papagiannaki et al. [147] and Dicioccio [106]. However, neither of them provides a picture

of home wireless networks to cover a complete network stack, from physical layer to application

layer as does our measurement study.

Through this home wireless measurement study, we find the answers for several questions which

we could not find answers from other researchers, such as:

1. What the current home wireless network looks like? Because this study only involves

six volunteer families, and most of them are in their early 30’s, we could only provide a snap-

shot of current usage of home wireless network. The home wireless network are different from

enterprise or campus network: most of six volunteers are only active during early evenings.

Majority of identified flows are Web based.

2. What kind wireless frames are traveling in air? During the early evening, the most

active time of week day, most of wireless frames are data frames, and control frames. However,

during the quiet time such as early morning, the majority frames are control and management
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frames.

3. Do the neighbors’ APs effect the performance of my wireless network? The short

answer is yes. The neighbor’s AP or other wireless device such as wireless printer, might have

influences on your wireless network. However, it might be difficult to quantify their influences.

4. What kind of applications are running on wireless link? We observe Web, game

(WoW) traffic, DNS, and several video sessions.

5. How does a real time application perform over home wireless link? Generally

speaking, the VoIP and game application in our active measurement suite perform well.

In addition, the home wireless measurement results help us to design the NS-2 simulation testbed

and choose simulation parameters to realistically simulate home wireless networks. As Section 4.3

shows, by carefully tuning the simulation parameters, NS-2 is able to simulate traffic behaviors seen

on residential wireless network fairly well.

At the end of this chapter, we conclude some high level experimental lessons and suggests future

research for home wireless measurement study,

1. Measurement point must be inside home. The absence of home network measurement

data, especially for home wireless network data, is due to the difficulties of gathering home

network data on a large scale. Because the majority of home networks are behind firewalls

and network address translators, any observation point outside the residence places can not

measure the characteristics of home networks themselves. The traffic traces gathered on the

ISP’s gateways can provide statistics on connection links, but can not provide information

inside home. Without deploying physical devices (e.g., a sniffer) inside home, there is no way

to provide the MAC layer information for home wireless networks.

2. Host AP needed. Sundaresan et al. select the gateway as their observation point for home

networks [144], yet they could not provide any wireless MAC information for home wireless

networks. Most off-the-shelf wireless APs provides four or more wired ports, and they act

as gateways in most volunteers’ home seen in this study. However, because the residential

class APs usually do not provide packet capture functions like high-end enterprise level APs,

simply using residential wireless APs as observation points can not provide any MAC layer

information. Host AP [35], a Linux based wireless AP, might be a good choice for residential
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wireless network studies. By modifying the Linux driver, the host AP could record every

IEEE 802.11 frames sent and received. Meanwhile, because a host AP can also record the

traffic on its wired port, it can solve the problem of monitoring the wired link. Last but not

least, the host AP avoids the encryption schemes (WPA-2) widely used in APs since inside

the device driver, all MAC frames are plain text. A group of researchers from University of

Wisconsin [31] deployed 30 OpenWrt-based WiFi APs, which is similar to host APs, with

enhanced measurement and analysis software into volunteers’ home, and studied the home

wireless experience through their unique APs.

3. Wireless sniffer is not entirely effective. In our measurement study, our wireless sniffer

still misses up to 5% of the frames even when the wireless sniffer sits just 1 or 2 feet away

from the home AP. Though Schuman et al. [140] provide a way to estimate the uncaptured

wireless frames, their method could not provide a valid “ground truth” for wireless traffic.

Moreover, IEEE 802.11n has become a dominant product recently. Because an IEEE 802.11n

AP uses two dynamic channels for transmission and reception, it is more difficult to use a

sniffer to monitor home wireless usage. Thus, a host AP or an AP with a “dump” function is

a better choice for home wireless measurement study than a commercial wireless sniffer.

4. Respect users’ privacy. Unlike measurement studies in well controlled environments, or

measurement studies for a campus wireless network [17, 34, 133], the volunteers involved in

these study all expressed privacy concerns in some degree. A couple of volunteers actually

intentionally avoided using their wireless network during this study, although we explained

that the wireless sniffer only collected packet headers and not packet payloads. Because of

privacy concerns, users may change their use of their wireless network; for example, we were

unable to identify a large volume of P2P traffic, perhaps because users stopped using P2P

downloading through wireless links after they knew the existences of the wireless sniffer.

In addition to the above lessons and conclusions, Sundaresan et al. also list three lessons:

“One measurement does not fit all”, “One ISP does not fit all”, and “Home network equipment

matters” in [144], which our measurement experiences confirm. Due to the nature of a home wireless

measurement study, it is difficult to determine which set of homes is representative. Actually, finding

a large number of volunteers itself is a challenging problem in itself. Thus, the combination of a large

scale ISP based measurement study and a wireless measurement study in a small representative
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group might be a feasible solution.
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Chapter 5

CATNAP

This chapter describes our approach to improve the QoS of applications running over residential

wireless networks by utilizing a treatment-based traffic classification technique. CATNAP focuses

on IEEE 802.11 infrastructure networks in residential places. It infers application types by observ-

ing the characteristics of IP flows, and applies the treatment policies inside the IP and the transport

layer. The major advantage of working inside the network layer is to make CATNAP independent

from wireless network interface hardware and device driver implementations. Moreover, the clas-

sification techniques applied to the approach include statistics-based classification techniques. As

discussed in Section 3.1, compared with other classification techniques such as port or payload-

based approaches, statistics-based classification techniques can provide the fast convergence times

and low computation power necessary for real-time processing for an AP. Finally, security and pri-

vacy related issues are assumed to not be an issue for this study, because home users have full access

to any traffic content on their own networks. Thus, the CATNAP classifier has full access to IP

and transport layer headers. On the other hand, malicious applications are assumed to be blocked

by users’ firewalls and are not treated as normal applications. Thus, we consider that viruses or

any other malicious applications are out of the scope of this study.

The CATNAP approach contains three main components:

1. Classification Modules: a set of classifiers with high accuracy and low convergence time for

applications running over residential wireless networks.

2. Treatment Modules: shape traffic passing through an AP in order to provide better QoS
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support.

3. Utility Functions: functions such as downlink effective capacity estimator and round trip

time estimator which provide necessary information for CATNAP treatment and classification

modules.

The rest of this chapter is organized as: Section 5.1 starts with a discussion of the possible traffic

treatments which could be deployed on resource-limited wireless access points (APs); Section 5.2

describes three utility functions: the downlink effective capacity estimator, round trip time (RTT)

estimator, and per-flow information tracker, which CATNAP depends on; Section 5.3 gives a set of

novel treatment-based traffic classification criteria in CATNAP; Section 5.4 presents implementation

details on the CATNAP treatment modules; and Section 5.5 summarizes the content of this chapter.

5.1 Possible Treatments

Unlike backbone routers or commercial class wireless APs, residential APs are equipped with less

powerful processors. As mentioned in Section 2.2.3, the processor inside a Link-Sys WRT54G

wireless router is based on Broad-Com BCM5352 chip [150]. It contains a 200-MHz MIPS32 CPU

core with only a 16 KB instruction cache and 8 KB data cache, plus a SDRAM controller which

supports only up to 256 MB memory. Enterprise class wireless APs also use the low-end processors

but they are more powerful than the ones in residential APs. For instance, the IBM PowerPC

405 200MHz chip [151] in Cisco Aironet 1240 series APs, has its highest performance at 1.52

DMIPS/MHz with a 4 GB data and instruction address space1. On such under powered processors,

especially for residential class APs, it is difficult to implement complicated traffic shaping and traffic

classification schemes.

Roughan et al. describe a classification framework to differentiate applications into several cat-

egories based on statistics-based application signatures [22]. Claypool et al. propose a classification

scheme to differentiate applications into different QoS groups based on the nature of traffic [30].

Inspired by this QoS related classification work, we implement a treatment-based classification

method which allows APs to treat equally application flows that have similar QoS requirements

providing better QoS support over the wireless links.

1The Cisco Aironet 1242 A/G AP is only equipped with 16 MB memory plus 8 MB flash memory.
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Our previous study [35] discovered sub-IP layer transmission queues inside wireless APs. For

residential wireless APs, these queues are packet based with maximum capacities ranging from 50

to 120 packets2. Based on this knowledge, we propose five traffic treatment [30] schemes which can

be implemented with these sub-IP layer queues inside the AP. These five types of treatments are:

1. Drop Packets. For some flows, packets can be dropped if the AP is congested as these

applications are more tolerant to lost data. For example, when the transmission queue inside

a wireless AP nears capacity, a small fraction of packets from a streaming flow over UDP can

be dropped without serious degradation to quality.

2. Limit Transmission Rate. When congestion occurs, an AP can limit the advertised window

size carried by ACK packets to force the TCP sender to lower its transmission rate. This

treatment method can avoid the costly retransmission of TCP packets over a long RTT

connection.

3. Push or Delay Packets. Packets in interactive flows can be pushed or placed at the head

of the transmission queue to reduce latency. For example, packets from VoIP applications can

be put in the front of the queue when congestion occurs. Packets from non-interactive flows

can be delayed slightly without impairing the applications’ performance. For instance, P2P

file downloading can take hours. Thus, it is possible to delay P2P packets and give higher

priority to the packets of time sensitive applications, such as VoIP or games.

4. Reserve Bandwidth. The bandwidth usage of some applications is limited by their

implementations, for example the video codec usually decides the bandwidth usage of video

streaming flows. Therefore, we can reserve a fraction bandwidth for these flows. Moreover,

we also can allocate and reserve bandwidth to help TCP flows in their slow start phase.

Based on the queue implementation inside the Linux kernel [108], these five operations do not

require CPU intensive operations, only needing several pointer operations and some additional

statistical information for each flow. Thus, these operations can be done within the packet-based

queue inside APs without significantly changing the IEEE 802.11 MAC layer protocol stack or

current architecture of wireless APs. Moreover, unlike backbone routers, there are only dozens

of flows concurrently passing through an AP in most residences. In fact, most wireless access

2The queue capacity inside commercial APs is from 50 to 350 packets [35].
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devices only support hundreds of concurrent connections. Even the RTL 8186, a commercial class

wireless gateway, can only support 1024 concurrent connections as well as a maximum of 64 client

associations [152]. Accordingly, we assume that the wireless AP has enough resources (processor

power and memory space) to perform these operations and maintain flow state information.

5.2 CATNAP Supporting Functions

This section presents several functions on which CATNAP depends. CATNAP includes a flow-based

classifier and a treatment module, and it needs to maintain flow level information for traffic passing

through an AP. Typical wireless APs only forward packets from wired link to wireless link and

vice versa, and would not maintain per-flow level statistics information. Moreover, the CATNAP

treatment functions require some system level information such as how many concurrent flows are

currently active at the AP in addition to per-flow level information. Therefore, a set of utility

functions provide support for the functionality of CATNAP. These supporting functions include: a

system and flow information tracker, a downlink capacity estimator, and a round trip time (RTT)

estimator. Although these supporting functions provide the foundation of CATNAP, they can be

replaced with third party algorithms with better implementations in future.

5.2.1 Statistics Information Tracker

Residential wireless APs usually act as IP routers in addition to bridges between wired and wireless

networks. A wireless AP can access the MAC layer, IP layer and Transport layer, but normally most

residential wireless APs do not provide flow level information aggregation. Table 5.1 summarizes

the set of functions to retrieve information from packet headers of IP packets and functions to

update the IP headers used by CATNAP.

This study enhances the wireless AP NS-2.33 implementations to keep per-flow statistics and

flow classification results. Table 5.2 lists the per-flow information entries and their descriptions

tracked by CATNAP. The per-flow information can be categorized into three categories,

1. Flow information: flow id i, start timestamp tstart, last active timestamp tlast, round trip

time RTT , flow ingress rate r, and EWMA packet Length L.

2. CATNAP classification result flags: isResponse, isInteractive, isGreedy, isActive, and

isEnd.
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Table 5.1: Functions to Manipulate IP Packets

Name Description

get pkt length(packet p) get packet length including IP headers.

get src ip(packet p) get sender’s IP address.

get dst ip(packet p) get receiver’s IP address.

get src port(packet p) get source port number.

get dst port(packet p) get destination port number.

get protocol(packet p) get transport layer protocol.

get awnd size(packet p) get advertised window size carried by TCP packet.

isTCPCtrl(packet p) returns true for TCP control only packets, otherwise returns false.

isTCPACK(packet p) returns true when TCP ACK flag is set, otherwise returns false.

isTCPSYN(packet p) returns true when p is TCP SYN packet, otherwise returns false.

set awnd size(packet p, long newsize) set advertised window size (newsize) for TCP.

update crc(packet p) recalculate TCP and IP CRC for TCP.

3. CATNAP treatment parameters: Advertised Window Size AWND and Drop Probability d.

The per-flow record is implemented with a hash map to achieve linear searching time, where

the flow id i is used as the hash key, and the pointer to the corresponding flow entry is stored

as a hash value. Meanwhile, CATNAP provides a set of getter and setter APIs to maintain the

flow records. Several of the flow level statistics such as EWMA packet length are updated every

packet while others are calculated every small time period (as an epoch), for example flow rate

(r) and advertised window size (AWND). The main purpose to introduce epoch is to reduce

the computational overhead for rate related metrics, such as flow ingress rate and link capacity

estimation, Section 5.2.2 and Section 5.4.2 have a discussion on the epoch value chosen.

In addition to the per-flow information maintained by the CATNAP, Table 5.3 summarizes the

system-wide information the CATNAP needed. The most important system metric is the downlink

capacity (C) which is calculated by Algorithm 1 in addition to the counters associated with different

type of flows.

5.2.2 Link Capacity Estimator

One key function of CATNAP is to perform rate control for flows passing through the AP. CATNAP

needs to estimate the downlink capacity used to calculate dropping probability for non-response-

based flows and the advertised window size for response-based flows. CATNAP includes a light

weight bandwidth estimator to provide realtime downlink capacity for classification and treatment

modules. However, most bandwidth estimation algorithms are designed for end-to-end link path

estimation [37] and computational model-based estimation approaches are generally either com-
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Table 5.2: Flow Information Stored by CATNAP

Symbol Description

i flow id, a hash value of <srcip, srcport,dstip, dstport, proto>.

isExist flag indicates a flow whose information has been stored by CATNAP.

isEnd flag indicates a terminated flow; true for an alive flow,
false for a terminated flow.

isActive flag indicates active flow; true for an active flow,
false for an inactive flow.

isResponse flag indicates response-based flow; true for a response-based flow,
false for a non-response-based flow.

isInteractive flag indicates interactive flow; true for an interactive flow,
false for a non-interactive flow.

isGreedy flag indicates greedy flow; true for a greedy flow,
false for a non-greedy flow.

isEmpty flag indicates that some packets from flow i are enqueued.

isNewBorn flag indicates a new detected flow; true for a new detected flow,
false for a flow has been classified as Response/NonResponse-Based.

RTT RTT measured by RTT estimator.

tstart timestamp when the first packet of this flow received.

tlatest timestamp when the latest packet received.

l queuing delay when TCP SYN is enqueued.

r Flow ingress rate in the most recent epoch.

L Total length of packets received in the most recent epoch.
n∑

j=1

length(pj for n packets received in the most recent epoch.

L EWMA packet length.

AWND Advertised window size (TCP based flow only).

d Packet dropping probability. (UDP based flow only.)

Table 5.3: System Information

Symbol Description

C Downlink Capacity.

Rnint Fairshare rate for non-interactive flows.

Rgreedy Fairshare rate for greedy flows.

Sb Total queue size in bytes.

Sp Total queue size in packets.

n Total number of packets sent in last epoch.

Nact Total number of active flows.

Nnact Total number of inactive flows.

Nint Total number of interactive flows.

Nnint Total number of non-interactive flows.

Ngreedy Total number of greedy flows.

Nngreedy Total number of non-greedy flows.

putationally intensive or lack accuracy. Therefore, we propose a light weight downlink capacity

estimator (Algorithm 1), which can be easily implemented on resource limited home wireless APs.

The core idea of Algorithm 1 is to measure the actual sending time (∆t) for each IP packet inside

the IP layer dequeue function. For example, at time ts, the AP queue controller removes the IP
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packet p and passes it to the underlying wireless driver. At time te, after finishing the transmission

of p and receiving the corresponding IEEE 802.11 ACK frame, the wireless device driver returns the

control back to the AP queue controller through a callback function, and the AP queue controller

retrieves the next IP packet if the queue is non-empty. The actual sending time (∆t) is time elapsed

between when the packet dequeued from IP queue and when the control returned to IP layer queue

controller from the callback function.

The instantaneous link capacity C ′ can be estimated by the actual sending rate of the packet p:

C ′ =
get pkt length(p)

∆t
=
get pkt length(p)

te − ts
(5.1)

where get pkt length(p) returns the size of the packet p and ∆t is the actual sending time which is

the time difference between when packet p is dequeued from IP queue at the time ts and when the

device driver call back function returns to the IP queue controller at te for packet p. C ′ should be

close to the theoretical IP layer throughput over wireless link because once the wireless device driver

receives packet p, the device driver transmits the packet. The actual sending time (∆t) includes

the overhead from transmitting an IP packet over the wireless link, such as possible retransmission

overhead, rate adaptation overhead, exponential back off and even overhead from beacon frames.

From the view of recipient and sender, it takes ∆t to deliver the packet p from the wireless AP to

its destination.

In order to assimilate overhead introduced by occasional system events, CATNAP calculates

the average effective capacity Cepoch at the end of each epoch time period as Line 3 in Algorithm 1

shows, where
n∑
k=1

length(pk) is the summation of the length of all n packets sent in the epoch, and

the
n∑
k=1

∆tk is the summation of actual sending time of all IP packets sent in the epoch. Although

we calculate the downlink capacity Cepoch every epoch in our first implementation, Cepoch still

oscillates over time with a large ω. Thus, Line 4 of Algorithm 1 introduces an exponential weighted

moving average (EWMA) to reduce the variance of the calculated downlink capacity.

The initial value of effective capacity (C0) is set as 25 Mbps which is the maximum value we

observed in our previous measurement study [17] as well as in our initial simulation studies. If

there is no IP packet transmitted during an epoch time period, the estimator simply assumes that

the wireless condition has not changed in the last epoch time period and carries over the effective

capacity (C) from the previous epoch.
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Algorithm 1 Estimate Effective Link Capacity

At the end of each epoch,
1: n← get total pkt sent() . get total number of packet sent in this epoch.
2: if n > 0 then

3: Cepoch ←

n∑
k=1

get pkt length(pk)

n∑
k=1

∆tk

. compute instantaneous capacity

4: C ← (1− ω)× get link capacity() + ω × Cepoch
5: else
6: C ← get link capacity() . No packet, so use previous estimate.
7: end if

8: set link capacity(C) . Save link capacity into CATNAP system variable table.

Parameter Selection for Capacity Estimator

Our initial implementation shows that the selection of EWMA weight (ω) for effective capacity

and the length of epoch time have significant effect on the performance of Algorithm 1. The epoch

selection, however, not only impacts the effective capacity estimation but also affects the calculation

of the CATNAP treatment policy maker. Therefore, Section 5.4.2 focuses on the selection of epoch

time and this section focuses on the selection of EWMA weight (ω) used by our effective capacity

estimator, Algorithm 1.

In order to assist the selection process of EWMA weight (ω), we designed a simulation setup to

evaluate our capacity estimator. An FTP flow starts transmitting 1500 byte packets from a wired

node to a wireless client when the simulation starts. The wireless link speed is reduced from 54

Mbps to 11 Mbps at the 20th second and is reset at the 40th second. In this way, two dramatic

link speed change events are introduced to assist the selection of EWMA weight (ω) of Algorithm 1

under various wireless link capacities. An alternative way to change the wireless condition is to

move simulated wireless node away from the AP, but mobility of wireless nodes would introduce

more uncontrolled variables to our simulation and increases the complexity of simulation analysis.

Figure 5.1 visualizes the effects from EWMA weight (ω) on the effective capacity estimation

results by comparing the results of Algorithm 1 with ω = 0.1 and ω = 1.0, respectively. Note,

Figure 5.1(b) actually depicts the instantaneous capacity (Cepoch) where the weight (ω) is set as

1.0. Clearly, the effective capcity reported with ω = 1.0 is oscillating and has more variance than

the effective capacity reported with smaller ω as 0.1. Except for the intentionally introduced link

capacity changes at 20th and 40th second, there is not any other sudden wireless condition changes

such as node mobility. Thus, the link capacity (C) should not have high variance except for the
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(a) Capacity Estimator with ω = 0.1
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(b) Capacity Estimator with ω = 1.0

Figure 5.1: Comparison of Capacity Estimators with ω = 0.1 and ω = 1.0

time period around the 20th and 40th second when resetting wireless link speed.

This study chooses stability and small reaction time as two major selection criteria to evaluate

the performance of Algorithm 1. Stability means that the capacity estimator should provide a

stable estimation, not oscillating all the time, otherwise the fluctuating estimated capacity would

introduce more difficulties for our treatment module implementation. Meanwhile, when the link

condition dramatically changes, the estimator should be able to detect the wireless changes in a

short time period for the CATNAP AP to adapt its treatment policies promptly.

Because there is no commonly accepted metric for stability of estimated wireless link capacity,

this study chooses the Coefficient of Variation (CoV) of estimated capacity as an indicator of

stability. Figure 5.2(a) shows the CoV of estimated capacity under different EWMA weights (ω)

and epoch time periods between 5 ms and 30 ms. Although Section 5.4.2 mainly discusses the

selection of epoch time, we still choose several possible epoch values between 5 ms to 30 ms to help

understand the behavior of our effective link capacity estimator under the combination of different

EWMA weights and epoch time period. Each curve in Figure 5.2(a) represents the Coefficient of

Variation (CoV) of estimated link capacity with various EWMA weights with a pre-selected epoch

value in range of 10 ms and 30 ms. Figure 5.2(a) shows a knee point exists between ω = 0.1 and

ω = 0.2 for all curves. The CoV of estimated link capacity increases when ω is greater than 0.3.

Thus, under the given epoch time period values, the EMWA weight (ω) should be between 0.1 and

0.2 to have a stable link capacity estimation result.

On the other hand, Figure 5.2(b) depict the reaction time under the various combination of

the EWMA weights (ω) and epoch time periods. The reaction time is the difference between the

moment when the estimated capacity is below or above a preset threshold and the moment when the

link speed is set to a new value. Gretarsson et al. found that the maximum IP layer throughput over

103



CHAPTER 5. CATNAP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
O

V

Weight

epoch 0.005
epoch 0.010
epoch 0.015
epoch 0.020
epoch 0.025
epoch 0.030

(a) Stability (CoV)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ea

ct
io

n 
T

im
e 

(s
ec

)

EWMA Weight

epoch 0.005
epoch 0.010
epoch 0.015
epoch 0.020
epoch 0.025
epoch 0.030

(b) Reaction Time

Figure 5.2: Capacity Estimator with Different ω

802.11b network is only up to 9 Mbps while the maximum IP layer throughput over 802.11g is above

20 Mbps [17]. Therefore, as the physical link capacity reduces from 54 Mbps to 11 Mbps, this study

measures the reaction time as the time difference between when the CATNAP effective capacity

estimator first reports the effective capacity below 9 Mbps, and the 20th second. Similarly, the

reaction time is measured as the time difference between the CATNAP effective capacity estimator

first reports the effective capacity above 20 Mbps and the 40th second.

Similar to the curves of stability shown in Figure 5.2(a), each curve in Figure 5.2(b) shows the

reaction times of Algorithm 1 with different EWMA weights and one fixed epoch time. Figure 5.2(b)

shows that the reaction time of Algorithm 1 are not sensitive to the selection of epoch time period

between 5 ms and 30 ms because all curves are in similar shape. Meanwhile, given a particular

epoch time, e.g. 10 ms, a larger EWMA weight such as 0.6 results in a quick reaction time while a

smaller EWMA weight gives a slower reaction time.

Figure 5.2(a) and Figure 5.2(b) show that:

1. a smaller EWMA weight (ω) usually provides a stable effective capacity estimator with smaller

CoV.

2. a larger EWMA weight (ω) generally results in a faster reaction time, and it allows Algorithm 1

to detect link speed change promptly.

3. neither reaction time and stability of Algorithm 1 is sensitive to the epoch time period in a

given range between 10 ms and 30 ms.

Thus, this study selects the EWMA weight as 0.1 for Algorithm 1 to balance reaction time

and stability. The relatively small EWMA weight as 0.1 can provide a stable effective capacity

estimation which helps the implementation of the CATNAP treatment module, as well as have a
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reasonable reaction time to capture the link speed variations. The reasonable reaction time actually

helps Algorithm 1 to be able to assimilate occasional wireless condition changes and avoid reporting

oscillating link capacity.

5.2.3 RTT Estimator

Round Trip Time (RTT) is another important network metric which can significantly effect the

performance of applications. This section explains how CATNAP estimates RTT for response-

based flows (TCP flows). However, although the CATNAP treatment modules do not need the

RTT for non-response-based flows (UDP flows), the RTT estimator sets the RTT for non-response-

based flows to the average RTT for Internet flows reported in [153] and [139].

The key part of the RTT estimator (Algorithm 2) derives from the well-known TCP SYN,

SYN-ACK, ACK three-way handshaking approach [106,107,139,143]. CATNAP measures the time

difference between when it detects the first TCP SYN segment from the TCP initiator to the TCP

responder and when it detects the first TCP ACK segment from the TCP initiator.

However, CATNAP treats the first TCP SYN packet as a packet from an non-interactive and

greedy flow because CATNAP can not decide flow characteristics through a single TCP SYN packet.

CATNAP would not transmit the SYN packet until it sends all enqueued packets, and the esti-

mated RTT through the TCP SYN-ACK method includes the possible queuing delay. Therefore,

CATNAP introduces a small adjustment step to subtract the queuing delay from estimated RTT

in Algorithm 2. After detecting the first TCP SYN packet of a new flow, CATNAP records the

SYN packet arrival time (tsyn,i) as well as retrieves the current queue length (Sb) in bytes and

the current effective capacity (C) estimated in Algorithm 1. As Line 16 in Algorithm 2 shows,

CATNAP calculates the estimated queuing delay (li) for the SYN packet for flow i as:

li =
Sb
C

=
get queue length in bytes()

get link capacity()
(5.2)

where i is the flow id for the SYN packet, C as the estimated capacity and Sb is current queue size

in bytes when the SYN packet arrives.

For non-response-based (UDP) flows, there is no reliable way to estimate RTT because of their

connectionless nature. However, our current treatment module implementation does require the

RTT of non-response-based (UDP) flows when making treatment decisions. Therefore, we simply
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Algorithm 2 Estimate RTT

1: for each arrival packet p do
2: i← get flow id(p)
3: if isExists(i) = false then . Detects a new flow i
4: create entry(i)
5: set newborn(i, true)
6: end if
7: if get rtt(i) > 0 then
8: return . The RTT of flow i has been measured.
9: end if

10: if isResponse(i) = false then . Non-response based flows usually are UDP flows.
11: RTTi ← RTTudp ← 200 ms
12: set rtt(i, RTTi)
13: else
14: if isTCPSY N(p) = true then . first TCP SYN packet detected.
15: tsyn ← now()

16: li ← get queue length in bytes()
get link capacity()

17: set timestamp syn(i, tsyn)
18: set queue latency(i, li)
19: else if isTCPACK(p) = true then . first TCP ACK packet detected.
20: tack ← now()
21: RTTi ← tack − get timestamp syn(i)− get queue latency(i)
22: set rtt(i, RTTi)
23: end if
24: end if
25: return
26: end for

use a fixed value 200 ms as the default RTT for non-response-based flows (RTTudp) in order to

maintain completeness in Algorithm 2. The 200 ms RTT is measured by Maier et al. in Germany

residential places in [139]. Coincidentally, PingER [153] also reports the RTT measured between

EDU.SLAC.STANFORD.N3 and worldwide sites with mean as 237 ms and median RTT as 210

ms. In the future, if any new treatment method requires the RTT from non-response-based flows,

we may estimate the RTT for non-response-based flows by measuring the RTT of response flows

between the same pair of nodes.3

3For example, RTSP, a video streaming protocol, always uses response-based (TCP) flows to carry control messages
and uses response-base (TCP) or non-response-based (UDP) to deliver the video content. In this case, we can use
the RTT of control flows to estimate the RTT of non-response-based (UDP) flows.
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5.3 Treatment-Based Classification

This section describes the treatment-based traffic classification method in detail. Unlike other

classification methods, the objective of CATNAP is not to identify which particular application

generates a particular flow, but to develop a better and more effective matching strategy between

the resultant flow signatures and the potential treatments that need to be applied to wireless traffic

flows over residential networks. Thus, the traffic characterization in CATNAP is based on three

treatment based classifiers in terms of the nature of the traffic. In addition to three treatment

based classifiers, we also introduce an active/inactive classifier to differentiate the inactive flows

from active flows to improve the link utilization.

5.3.1 Identify Response-Based/Non-Response-Based Traffic

Wireless APs act as central communication points in most residential networks. Because all traffic

passes through the wireless AP with a single Internet connection, we can assume that asymmetric

routing does not exist in residential networks. Thus, wireless APs can capture all residential traffic

and observe whether a flow is uni-directional or bi-directional.

An IP flow can be identified by the five-tuple:

(IPsrc, Portsrc, IPdst, Portdst, P rotocol).

where port numbers are only used to identify a single flow and are not used to determine application

type. A Reverse flow is defined as:

Definition 1 (Reverse Flow) Flow A : (S,X,D, Y, P ) is the reverse flow of Flow B : (D,Y, S,X, P )

.

Based on the definition of reverse flow, we describe a response-based flow as a flow where packets

flowing in one direction directly or indirectly (e.g., delayed TCP ACKs) cause packets to flow in

the reverse direction. In a TCP connection, the flow (data flow) from the active peer to the passive

peer is response-based. Meanwhile, the other flow (ACK flow) from passive peer to active peer is

also a response flow of the data flow.

Response-based flows over UDP are difficult to differentiate. For transaction-based applications,

such as DNS, the request sent by the client is a response-based flow. However, when considering a
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VoIP application over UDP, a duplex VoIP connection working over the same two UDP ports has

two UDP streams carrying voice data. While both UDP streams are reverse streams of each other,

they are not response-based flows, because neither application directly or indirectly sends packets

in direct response to other packets. If one flow terminates, it would not immediately cause the other

one to fail or block. Fortunately, these duplex VoIP flows can often be identified by inspecting other

features, such as a unique packet size or its information inside packet headers.

Packet 64746

Internet Protocol, Src: 130.215.29.93 (130.215.29.93),

Dst: 130.215.29.29 (130.215.29.29)

Transmission Control Protocol, Src Port: http (80),

Dst Port: 1573 (1573), Seq: 58654752, Ack: 1706, Len: 1460

%Hypertext Transfer Protocol

Packet 64747 (ACK Packet)

Internet Protocol, Src: 130.215.29.29 (130.215.29.29),

Dst: 130.215.29.93 (130.215.29.93)

Transmission Control Protocol, Src Port: 1573 (1573),

Dst Port: http (80), Seq: 1706, Ack: 58656212, Len: 0

Figure 5.3: A Sample of IP and Transport Layer Packet Header.

Figure 5.3 illustrates the decoded IP and the transport layer packet headers for one TCP

packet and one ACK packet from the corresponding ACK flow. Packet 64746 is from a TCP

data flow, which is identified by the five tuple: (130.215.29.93, 80, 130.215.29.29, 1573, TCP).

Packet 64747 is captured from the corresponding ACK flow and can be identified as (130.215.29.29,

1573, 130.215.29.93, 80, TCP). Based on the definition of reverse flow and response-based flows,

they are both response-based flows. To identify the reverse flow and response-based flow is thus

fairly easy on a residential wireless AP because there is symmetric routing and packets in both

directions pass through the same AP.

Differentiating response-based flows is important for the selection of treatment methods. If one

packet is intentionally dropped from a response-based flow, it triggers upper layer retransmissions.

Thus, simply dropping a packet from a response-based flow may not alleviate congestion inside an

AP effectively. On the contrary, dropping from response-based flows might aggravate congestion

by introducing more retransmissions. For instance, dropping packets from a DNS flow will cause a

timeout and retransmission in the DNS client. The DNS client resends the request while the end

user experiences a long response time.
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Algorithm 3 describes the response/non-response-based flow classifier. The current CATNAP

implementation simply classifies the UDP flows as non-response based while TCP flows as response

based flows because DNS is the only UDP-based response-based application found over residential

network. However, DNS flows must be on a well known DNS port, and CATNAP can easily iden-

tify DNS flows by checking its source or destination port number. By inspecting the first packet’s

IP header, Algorithm 3 is able to determine the response/non-response-based nature of a flow.

TCP and UDP are dominant transport layer protocols over current residential networks, but in

the future some new transport layer protocols might appear over residential networks. Thus, our

current response/non-response-based flow classifier simply classifies the flow with other transport

layer protocol as response-based, and CATNAP would treat them as response-based flows. Algo-

rithm 3 might be enhanced to distinguish the response-based UDP flows after having more thorough

understanding of UDP based multimedia application behavior.

Algorithm 3 CATNAP Response/Non-Response-Based Flow Classifier

1: for each arrival packet p do
2: i← get flow id(p)
3: if isNewBorn(i) = true then
4: if is UDP header(p) = true then
5: if is DNS(p) = true then . Classify DNS flow as a special case.
6: set response based(i, true)
7: else
8: set response based(i, false)
9: end if

10: else
11: set response based(i, true)
12: end if
13: set newborn(i, false)
14: end if
15: end for

5.3.2 Identify Interactive/Non-interactive Traffic

Karagiannis [20] and Roughan [22] identify applications based on average packet length. The

CATNAP interactive/non-interactive flow classifier is similar to these classification methods based

on the average packet length. However, CATNAP examines the ratio of full to non-full packets,

where bulk-data transfers are likely dominated by full packets and interactive applications tend to

send smaller, non-full packets.

The maximum packet length could be limited either by the network MTU or by the application
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Figure 5.4: CDF of Packet Length for a VoIP and an FTP Application.

Table 5.4: Statistical Information of Packet Length for Several Application Instances.

Application Maximum(bytes) Avg (bytes) Std Dev (bytes) CoV

Web Browsing 1500 883.10 676.91 0.76
FTP data 1500 1459.56 190.19 0.13
Windows Media Streaming 1417 1413.43 32.64 0.02
RealMedia Audio 1500 1392.32 332.25 0.24
FPS Game 248 83.86 28.76 0.34
VoIP (Vonage) 200 200.00 0 0
VoIP (Yahoo Messenger) 100 75.58 4.15 0.06
SSH 1300 276.59 319.45 1.15

itself. Figure 5.4 compares the difference in packet length density between a VoIP session and

an FTP file downloading session (data flow). As Figure 5.4 shows, the maximum packet length 4

observed in a VoIP flow generated by a LinkSys VoIP PAP2T adapter is only 200 bytes, much less

than the typical MTU of 1500 bytes. The length of most data packets in the FTP data flow is 1500

bytes, which is the typical MTU setting over an Ethernet. Thus, the packet length and its various

moments can be used as a feature to classify application type [20,22].

To create the packet length signature for each flow, we choose statistics on packet length which

can be updated in real-time with low computational complexity. The moving average, weighted

moving average, and windowed average (used in [154]) are good candidates for packet length sig-

nature, and more complicated statistics such as quantile can also be calculated in real-time by

approximation algorithms [155]. Table 5.4 lists the packet length signatures calculated with an

average for several kinds of application instances gathered during the early stage of this study. The

packet length in several applications is limited by the application or device involved. The VoIP

4Packet length in this preliminary study includes the IP header and its IP payload length.
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voice stream generated by the Linksys VoIP adapter consists of packets with the same length (200

bytes in Table 5.4). These packets can be taken as “non-full” packets. In addition, interactive

programs generate flows with high variance in packet length, for example, SSH and Web browsing.

On the other hand, some flows such as an FTP data contain large packets with low variance. The

maximum packet length in FTP flow is probably limited by the MTU settings. Thus, the FTP data

packets are “full”. Therefore, different applications can be identified by these statistical signatures

based on their packet length.

The main purpose of introducing “full” or “non-full” packets is to identify time sensitive interac-

tive applications. The flow which contains a large fraction of “non-full” packets is most likely to be

generated by interactive applications, and needs to be treated in a timely fashion when congestion

occurs at the AP. Based on the packet length classification results of our preliminary experiments,

the CATNAP interactive/non-interactive classifier chooses the exponentially weighted moving av-

erage EWMA) of packet length as the interactive/non-interactive signature of a flow. For instance,

when the packet p of flow i arrives, the CATNAP interactive/non-interactive classifier updates the

packet length signature for flow i:

L← L× (1− α) + α× get pkt length(p) (5.3)

where α is a constant used to calculate EWMA packet length and L is the EWMA length.

The main functionality of pure TCP control packets such as SYN, FIN, SYN-ACK, and ACK

(not including piggyback ACK) are:

1. establish, manage and terminate a TCP connection.

2. provide flow control and avoid possible congestion.

3. provide reliable data transmission.

Since pure TCP control packets only provide TCP connection mechanism and do not carry

any information from the application layer, calculating the EWMA packet length with pure TCP

control packets can not help to infer the interactive/non-interactive nature of applications. Thus,

as Line 3 - 5 of Algorithm 4 shows, the CATNAP interactive/non-interactive classifier excludes

pure TCP control packets when calculating the EWMA packet length. However, the CATNAP

interactive/non-interactive classifier calculates the EWMA packet length with every packet from
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UDP flows because the UDP flows do not have flow control or connection control mechanism at the

transport layer and generally there are no UDP packets without any payload.

Algorithm 4 describes the CATNAP interactive/non-interactive classifier, and Table 5.5 lists

the values of constants and thresholds used in Algorithm 4.

Algorithm 4 CATNAP Interactive/non-interactive Flow Classifier

1: for each arrival packet p do
2: i← get flow id(p)
3: if isTCPCtrl(p) = true then
4: return . Skip pure TCP control packets
5: end if
6: if get ewma pkt length(i) = 0 then . Initial interactive/non-interactive classification.
7: if get packet length(p) > T init then
8: set interactive(i, false)
9: else

10: set interactive(i, true)
11: end if
12: set ewma pkt length(i, get pkt length(p))
13: return
14: end if

15: if isInterative(i) = true then . Choose EWMA weight α based on current flow type.
16: α← αint
17: else
18: α← αnint
19: end if

20: L← (1− α)× L+ α× get pkt length(p)
21: set ewma pkt length(i, L) . Update EWMA length for flow i

22: if Li > Tnint then
23: set interactive(i, false) . Non-interactive flow.
24: else if Li < Tint then
25: set interactive(i, true) . Interactive flow.
26: else . Don’t change the interactive/non-interactive attribute of flow i.

27: end if
28: return
29: end for

As Line 6 to 14 of Algorithm 4 shows, the CATNAP interactive/non-interactive classifier initially

classify the flow based on its first non TCP-control-only packet. If the length of the first non TCP-

control-only packet is larger than the initial interactive/non-interactive packet length threshold

(Tinit), flow i is classified as an non-interactive flow; otherwise it is classified as a interactive

flow. Figure 5.5 depicts the initial classification process of the CATNAP interactive/non-interactive
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Table 5.5: Constants in Algorithm 4

Symbol Description Value

Tinit
Packet Length Threshold for initial

750
interactive/non-interactive classification

Tint Packet Length Threshold for interactive flows 500 bytes

Tnint Packet Length Threshold for non-interactive flows 1000 bytes

αint EWMA weight for interactive flows 0.6

αnint EWMA weight for non-interactive flows 0.05

classifier, when the packet length (l1) of the first non-pure control packet from a given flow is greater

than the initial interactive/non-interactive packet length threshold (Tinit), CATNAP categorizes the

flow as an non-interactive flow. On the contrary, CATNAP classifies a flow as an interactive flow

when the packet length of its first non-pure control packet is smaller than Tinit. In this manner,

CATNAP is able to have initial interactive/non-interactive classification result on the first non-pure

control packet from each flow.

Figure 5.5: State Diagram for Interactive/non-Interactive
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Unlike the response/non-response based classification, a flow can switch from interactive state

to non-interactive state when the EWMA packet length (L) is greater than a given threshold, and

vice versa. However, our preliminary study shows that the classification results oscillate when there

is only a single fixed classification threshold. Therefore, the CATNAP interactive/non-interactive

classifier chooses two set thresholds and EWMA weights for interactive and non-interactive flow

respectively. As Figure 5.5 shows, flow i leaves the interactive state and enters non-interactive state

only when its EWMA length L is greater than the non-interactive threshold (Tnint). Similarly,

CATNAP re-classifies flow i from non-interactive to interactive only when its EWMA length L is

smaller than the interactive threshold (Tint).

In addition to stability, the interactive/non-interactive classifier also needs to detect when the

interactive/non-interactive flow nature changes. CATNAP uses two different weights to calculate

the EWMA packet length in order to meet the requirements of stability and low reaction time of the

interactive/non-interactive classifier. For non-interactive flows, we choose a small EWMA weight

(αnint) to assimilate the effects from occasional small packets in non-interactive flows. We use a

large EWMA weight (αint) to calculate the EWMA packet length for interactive flows in order to

detect the flow nature promptly.

Parameter Selection

As Figure 5.5 shows, Algorithm 4 utilize two sets of thresholds and EWMA weights for interactive/non-

interactive flows respectively to provide:

1. stable classification results, which implies the EWMA weight should be small.

2. short reaction time when the link quality changes, which implies the EWMA weight should

be large.

This study utilizes a special SSH flow with flow state changes to help choose the two sets of

thresholds and EWMA weights for Algorithm 4. As Figure 5.6 shows, a SSH flow switches from

interactive to non-interactive at the 40th second when the user starts to cat a large log file; and the

same SSH flow returns to interactive at the 60th second after the cat command finishes. Each red

+ dot in Figure 5.6 indicates the IP packet length of each packet from the SSH downstream. The

SSH flow consists of “non-full” packets as an interactive flow except between the 40th and 60th

seconds when it acts as an non-interactive flow. Note, Figure 5.6 also shows the EWMA packet
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length calculated by Algorithm 4 with parameters listed in Table 5.5, which are parameters used

on our simulation study.
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Figure 5.6: An SSH Flow Switching between Interactive and Non-interactive

To facilitate the selection of parameters and reduce the number of variables, this study first

determines the EWMA weight (α) for Algorithm 4. Intuitively, Algorithm 4 with a larger EWMA

weight (α) gives more stable results. However, there is no commonly accepted metric to evaluate

the stability of EWMA packet length. This study chooses the coefficient of variance (CoV) of the

EWMA packet length as the indicator of stability for Algorithm 4. Figure 5.7(a) shows the CoV of

EWMA packet length calculated by Algorithm 4 with EWMA weight (α) between 0.01 and 1 for

the whole SSH trace. Figure 5.7(a) shows that the CoV of EWMA packet length of the whole SSH

trace increases as the EWMA weight (α) increases. But there exists a knee when α is around 0.05.
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Figure 5.7: Interactive/non-interactive Classifier Parameter Selection

The reaction time is another metric to evaluate the performance of Algorithm 4. However,

because Algorithm 4 is a packet based approach not a time-based approach, a temporal metric

may not effectively evaluate its reaction speed. Thus, we choose the number of packets received by

CATNAP after the flow changes its interactive/non-interactive nature until Algorithm 4 detects the

change. Algorithm 4 chooses the initial interactive/non-interactive packet length threshold (Tinit)

as 750 bytes which is half of the default MTU setting as 1500 bytes. To simplify the problem, we
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choose a single fix threshold,where Tint = Tnint when evaluating the reaction speed of Algorithm 4.

The three curves in Figure 5.7(b) show the reaction speed under three different thresholds (T ): 500

bytes, 750 bytes, and 1000 bytes. The reaction speed increases as the EWMA weight (α) increases.

When α is greater than 0.6, CATNAP only needs a couple more packets before it is able to detect

the flow nature changes. As Figure 5.7(b) shows, all three curves are in same shape, each of them

has a knee point when EWMA weight (α) is in the range of 0.01 and 0.1. Moreover, Figure 5.7(b)

tells that the selection of the interactive/non-interactive threshold (Tint and Tnint) is not sensitive

in the range between 500 bytes and 1000 bytes.

CATNAP pushes interactive flows by dequeing the packet from interactive flows first before any

packet of non-interactive flows. If CATNAP chooses a large EWMA weight (α), a couple of small

packets from an non-interactive flow may mislead CATNAP to classify it as an interactive flow

mistakenly. Therefore, mistakenly classifying an non-interactive flow as interactive flow potentially

harms other flows. On the contrary, mistakenly classifying an interactive flow as non-interactive

would not harm other flows. Thus, Algorithm 4 chooses a two threshold and two EWMA weight

scheme to balance the stability and reaction time. For interactive flows, Algorithm 4 calculates

packet length with a large EWMA weight to have quick reaction when they switch to non-interactive.

For non-interactive flows, CATNAP calculates packet length with a small EWMA weight to avoid

mistakenly classifying them as interactive by only several small packets among a stream of large

packets. Thus, in combination of Figure 5.7(a) and Figure 5.7(b), CATNAP choose αnint = 0.05 for

non-interactive flows, and αint = 0.6 for interactive flows. Meanwhile, CATNAP chooses Tnint =

1000 bytes as “high water” marker for flows switching from interactive to non-interactive, and

Tint = 500 bytes as the “low water” marker for flows switching from non-interactive to interactive.

In this way, CATNAP is able to assimilate occasional outlier packets to have a stable classification

result.

This section describes how CATNAP classifies interactive/non-interactive flows by using packet

length information. In the future, the interactive/non-interactive classifier can be improved by

combining with other classification techniques. For example, TCP based interactive applications

usually set the PUSH flag at the TCP headers. However, the implementation of this study only

differentiates interactive and non-interactive flows simply by the packet length.
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5.3.3 Identify Greedy/Non-Greedy Traffic

There exist two kinds of applications from the perspective of their bandwidth usage behavior, greedy

applications and non-greedy applications. Greedy applications such as file downloading (FTP) and

P2P file sharing, always try to use as much as bandwidth as the transport layer allows, while non-

greedy applications only consume a certain amount of bandwidth even when more bandwidth is

available. The bandwidth usage of these non-greedy applications is usually constrained by applica-

tion implementation (e.g., codec used) or the content to deliver. For example, DivX MPEG-4/CIF

format videos with high dynamic content usually are encoded at 80 - 2000 Kbps [156], which is

much less than the IEEE 802.11 link capacity. Thus, CATNAP tries to differentiate applications

into greedy and non-greedy categories based on the application behavior of bandwidth usage. Over

residential wireless network, typical non-greedy applications are multimedia applications, such as

video streaming, VoIP, and game applications.

Unlike interactive/non-interactive flows, greedy/non-greedy flows is relative to the current link

capacity. There is no constant threshold to decide the greedy/non-greedy nature of flows. CATNAP

classifies a flow as greedy when its bandwidth usage is greater than the fair share rate. In reality,

greedy flows tend to be non-interactive flows. Therefore, this study introduces the non-interactive

fair share rate (Rnint) to help identify the greedy flows from non-greedy flows. Meanwhile, CATNAP

uses the fair share rate (Rgreedy) as the upper limitation of bandwidth of greedy flows. Section 5.4.4

presents how the CATNAP treatment module limits the greedy flow bandwidth usage under the

fair share rate (Rgreedy) for greedy flows.

The CATNAP greedy/non-greedy classifier uses the fair share rate (Rnint) of non-interactive

flows as a threshold to differentiate greedy/non-greedy flows:

Rnint ←
C −

∑
rint

Nnint
← C −

∑
ri

count noninteractive flows()
,where isInteractive(i) = true (5.4)

where C is estimated downlink capacity calculated by Algorithm 1, Nnint is the number of non-

interactive flows, and
∑
rint is the summation of bandwidth usage of all interactive flows. Algo-

rithm 5 presents the implementation details of Eq 5.4.

When calculating the fair share rate Rnint, Algorithm 5 excludes the bandwidth consumed

by interactive flows when reserving the bandwidth for non-interactive flows. Therefore, malicious

applications might take advantage of the CATNAP implementation by sending numerous small
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Algorithm 5 Calculate Fair Share Rate for Non-interactive Flows

At the end of each epoch period,
1: t← now()
2: C ← get link capacity()
3: Rint ← Nnint ← 0 . Reset counters.
4: for each flow i do
5: if isActive(i) = true then . Skip inactive flows.
6: if isInteractive(i) = true then
7: Rint ← Rint + get flow rate(i)
8: else . non interactive flows
9: Nnint ← Nnint + 1

10: end if
11: end if
12: end for
13: Rnint ← (C −Rint)/Nnint
14: set fairshare noninteractive(Rnint)

packets to exhaust all available bandwidth because the CATNAP interactive/non-interactive clas-

sifier mistakenly categorizes them as interactive flows. However, we could not find any application

which fit into this category in reality. In the future, if there are any greedy and interactive flows,

we may use other techniques to filter out these malicious applications and apply special treatment

on them5.

Algorithm 6 CATNAP Greedy/Non-greedy Flow Classifier

At the end of each epoch period,
1: for each flow i do
2: if isActive(i) = true then . Skip inactive flows.
3: ri ← get flow rate(i)

4: Tgreedy ← Rnint

2 ← get fairshare noninteractive()
2

5: if ri < Tgreedy then
6: set greedy(i, false)
7: else
8: set greedy(i, true)
9: end if

10: end if
11: end for

Algorithm 6 shows the CATNAP greedy/non-greedy classifier. With the assumption that the

bandwidth usage of a flow would not double during the next epoch period, we classify the flows

whose current bandwidth usage is lower than half of the fair share rate as non-greedy flows, and

the rest as greedy flows. Note, in order to protect TCP flows during slow start, new start/restart

TCP flows are classified as non-greedy until their bandwidth usage is greater than the greedy/non-

5In theory, transmitting small packets would significantly lower the overall throughput of a wireless AP.
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greedy threshold, which is half of the fair share rate. Meanwhile, CATNAP tests all active flows’

bandwidth usage with the greedy or non-greedy threshold, including both interactive and non-

interactive flows. In this way, CATNAP is able to detect and treat any interactive flows acting as

greedy flows consuming too much bandwidth.

5.3.4 Identify Active/Inactive Traffic

In addition to above three treatment-based classifiers, this study also implements an active/inactive

flow classifier to differentiate inactive flows from active flows. An inactive flow is a flow which has

not transmitted any packets in a given time period. By identifying the inactive flows, CATNAP

is able to temporarily loan the link capacity assigned to inactive flows to other active flows and

improve the overall link capacity utilization. In addition to detecting inactive flows, CATNAP also

needs to detect terminated flows. However, currently there exists no widely accepted method to

determine when is the end of a flow [93]. NetFlow [93], a widely used commercial flow analyzer,

allows users to set the inactive flow threshold between 1 to 60 seconds. If no packet arrives during the

inactive flow threshold, Netflow marks the corresponding flow as inactive, and if no packet arrives

after more than 60 seconds, NetFlow considers the corresponding flow as terminated. CATNAP is

able to determine a TCP flow is terminated when detecting a FIN/RST packets, while it is difficult

to detect the end of a UDP based flow without inspecting the payload of every packet.

Similar to NetFlow, CATNAP also maintains the per-flow information listed in Table 5.2 to

classify active and inactive flows. The CATNAP treatment module uses the active/inactive classi-

fication result such as number of inactive flows to calculate fair share rate for greedy flows. Thus,

a large flow inactive threshold such as 60 seconds would reduce the link utilization because CAT-

NAP would mark the corresponding flow as active even if it has not received any packets in the

past 60 seconds. Therefore, we introduce an active/inactive classifier as Algorithm 7 to promptly

distinguish the active, inactive and terminated flows.

Instead of using a fixed threshold to classify the active/inactive flows, Algorithm 7 calculates

active/inactive threshold Tact for each flow i. The active/inactive threshold Tact for flow i is

calculated as c×RTTi, where c is a positive constant, and RTTi is the round trip time for flow i.

If no packet from the given flow arrives in the last Tact time period, the flow is marked as inactive

by setting the IsActive flag as false. In this study, we assume that an active sender always has

some content to send in one RTT, otherwise the flow does not act as an active sender. Therefore,
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Algorithm 7 CATNAP active/in-active flow classifier

At the end of each epoch period,
1: t← now()
2: for each flow i do
3: ∆t← t− get last active tm(i)
4: Tact ← c× get rtt(i)
5: if (∆t > Tend) then
6: set end(i, true)
7: else if (∆t > Tact) then
8: set active(i, false)
9: else

10: set active(i, true)
11: end if
12: end for

CATNAP is able to loan the bandwidth reserved for inactive flows and give it to active flows. In

this study, active/inactive threshold Tact for flow i is chosen as one and half of flow i’s RTT (c is

set to 1.5).

Table 5.6: Constants/Variables Used in Algorithm 7

Symbol Description Value

Tend Threshold to determine terminated flows. 60 secs

c Constant to calculate active/inactive Threshold 0.5

Tact Threshold to determine active/inactive flows -

5.3.5 Summary

Table 5.7: Treatment Classification for Typical Applications.

Classification
Representative Application

Response-based Interactive Greedy

false true false
Game w/UDP

VoIP w/UDP, Streaming w/UDP

false false true NFS w/UDP

false false true/false High Quality Video Streaming w/UDP

true true false
Instant Messenger, SSH/Telnet,

Game w/TCP, Web, DNS
VoIP w/ TCP, Streaming w/TCP

true false true Email, FTP, P2P

true false true/false Streaming High Quality Video w/TCP

Table 5.7 lists classification categories in CATNAP with typical representative applications run-

ning over residential networks. The CATNAP classifier divides the applications into eight different
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categories, where applications in the same category can be treated with the same treatment methods

because they have the similar QoS requirement.

FTP
P2P, Email, etc

NFS w/UDP
iSCSI w/UDP

Streaming Video

VoIP

Game

Telnet/SSH
DNS, IM 

Web

Drop Packets

Delay 
Packets

Push 
Packets

Limit Rate

Bandwidith
Eagerness

Interactivity

Reserve 
Bandwidth

Responsiveness

Non-Greedy

Greedy

Non-Interactive

Interactive

Response-Based Non-Response-Based

Figure 5.8: Treatment-Based Traffic Classification.

Figure 5.8 visualizes the mappings between applications and potential treatments. The three

classifiers form axes in a classification space for both applications and treatments. Focusing on

representative applications, which are overlaid as areas with different file patterns on the face of the

cube, most instances of an application are expected to consistently be classified in one category. For

example, interactive applications, such as Telnet or DNS, exhibit response-based, non-full packet

traffic that is sent as it is available. Instances of other applications, such as Web or Games, might

span multiple categories in the classification cube.

Rather than this ‘multiple classification’ being a problem, our CATNAP classifier indicates that

not all instances of an application should be treated in the same manner. For instance, downloading

game maps and playing games are two different use cases with different QoS requirements, and they

should be handled differently when congestion occurs. The key point in showing the application

classification in Figure 5.8 is to visualize the expected range of instances of an application instead
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of associating flows with one application.

Response-based or non-response based flows can be identified by matching its reverse traffic

except for several special cases such as duplex VoIP applications over UDP. Interactive or non-

interactive can be decided after inspecting the packet length of several packets in a short time

period. Before distinguished whether a flow is interactive or non-interactive, the flow is marked

as non-interactive flow by default. Similarly, for non-greedy or greedy, it may take several epoch

periods before classifying a flow as greedy. When a new flow is detected, CATNAP marks it as

a default flow which is response-based, non-interactive, greedy until the CATNAP classifier can

gather enough information to decide its type.

5.4 Treatments on Classified Flows

Section 5.1 briefly discusses the possible treatments to be deployed onto a resource limited wireless

AP. This section describes the implementation details of CATNAP treatment modules: Section 5.4.1

describes the CATNAP per-flow queue controller; Section 5.4.2 presents the treatment policy maker

which decides how to treat each active flow; Section 5.4.3 describes how to implement push and

delay treatment within the IP layer dequeue function; and Section 5.4.4 shows how to handle flows

which consume too much bandwidth.

5.4.1 Queue Implementation

CATNAP implements the four treatment methods: push, delay, drop, and limit advertised window

size by modifying the default queue discipline inside a wireless AP. Several types of queues can be

used to implement the four treatment policies.

1. An individual queue for each flow:

The AP maintains one queue for each flow and uses a common scheduler to decide the dequeue

procedure and dropping or rate control policy.

2. An individual queue for each category:

Instead of maintaining a separate queue for each flow, the AP maintains a separate queue for

each of the eight categories.
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3. An individual queue based on treatment operations:

Two of the four treatments: push and delay, can simply have a separate queue. Packets

enqueued in the push queue have higher priority than packets in the delay queue. However,

the operations limit advertised windows and drop require additional implementation overhead.

For instance, flows in the same drop queue may have different drop probabilities.

4. An individual queue for each client:

The AP maintains a separate queue for each wireless client.

5. A single queue with complex queue discipline:

The AP still uses one single queue to buffer the packets from all flows, but it provides an

enhanced enqueue and dequeue policy to provide the treatment operations.

A separate queue for each traffic category is a method widely used in traffic shaping. For

example, IEEE 802.11e uses a similar approach. However, in the CATNAP classification, a flow

may change its category as its traffic nature changes, thus, requiring a move of a batch of packets

from one queue to another. Another disadvantage of using a separate queue for each traffic category

is that this method requires a complicated scheduler when multiple queues are moved from one

category to another category at the same time because the scheduler needs to maintain the inter-flow

packet order as well as intra-flow packet order. In this case, CATNAP needs a complicated/efficient

dequeue and enque method to preserve the ordering of packets of each flow. Similar to a separate

queue for each traffic category, the individual queue for each treatment operation and individual

queue for each wireless client face similar problems.

Using a single queue for several flows avoids moving packets between queues. However, it is

still complicated from the point of view of implementation, requiring a set of enqueue and dequeue

policies to place packets in front of other packets and to prevent starvation. Moreover, although

a single queue can avoid the movement between different queues when the classification result of

a flow changes, it eventually has to be able to switch the position of a batch of enqueued packets

inside the single queue.

Based on implementation considerations, a separate queue for each flow is the best candidate for

implementing our treatment policies. The obvious advantage of a separate queue for each flow is to

avoid copying packets in or across queues and easily maintain the packet ordering inside each flow

when applying push and delay operations. With this method, each flow can be easily associated
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with its classification result and corresponding treatment. When the classification result changes

as the flow nature changes, a separate queue can adapt without moving the enqueued packets from

one class-based queue as required by other methods.

However, the per flow queue method will need a complicated scheduler to dequeue the packets

and a complicated queue monitor6 to detect congestion because the number of concurrent flows

could be large and varying over time. In our preliminary implementation, a congestion detection

module based on [14] controls the CATNAP treatment module, and the treatment module only

activates when congestion occurs. However, the congestion detection module triggers unnecessary

oscillation of the overall throughput of the CATNAP AP especially when FTP flows with long RTT

are present. In order to avoid the oscillation introduced by the congestion monitor, we decide to

enable the treatment module all the time instead of only enabling when congestion occurs because

our treatment methods are also not computational intensive, introducing little CPU overhead with

light traffic load.

5.4.2 Treatment Policy Maker

When greedy or non-interactive flows exceed the fair share rate allocated to them, CATNAP needs

to intentionally drop some packets from non-response-based flows or reduce the advertised window

size for response-based flows in order to avoid possible congestion inside the AP. Therefore, this

study implements a treatment policy maker to decide how to apply treatment on flows to control

their bandwidth usage. Figure 5.9 shows how CATNAP decides the dropping probability (d) for

non-response-based flows, and the advertised window size (AWND) for response-based flows. Note,

because the DNS flows are response-based UDP and there is no AWND field in UDP packet

headers, CATNAP simply bypasses the step of setting AWND for DNS flows. However, DNS flows

are usually classified as interactive flows and CATNAP still pushes the DNS flows. Moreover, at

the time of this research, no interactive flows behaved in a greedy manner. Therefore, CATNAP

treats interactive flows only based on their response-based/non-response-based nature and do not

differentiate greedy/non-greedy among interactive flows. If any future applications act as interactive

and greedy at same time, CATNAP is able to apply drop and limit advertised window size treatment

policies similar to greedy and non-interactive flows.

6A virtual queue can be introduced to monitor the total buffer usage for congestion detection purposes.
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The treatment policy maker in Figure 5.9 decides how CATNAP treats flows. However, CAT-

NAP implements actual treatments by enhancing the wireless AP queue controllers: the push or

delay treatment is implemented inside the down-link enqueue function, the drop treatment is im-

plemented inside the down-link dequeue function, and the limited advertised windows function is

implemented inside the uplink enqueue function.

Algorithm 8 shows the implementation details of our CATNAP treatment policy maker where

di is drop probability for a non-response-based flow i, and AWNDi is the advertised window size

for response-based flow i. Note, in most cases, the fair share rate of non-interactive flows Rnint

is greater than the fair share rate of greedy flows Rgreedy. But when interactive and greedy flows

exist, the Rgreedy might be larger than Rnint. Although no flows acting as interactive and greedy

are observed in real network traces, CATNAP uses the larger of Rgreedy and Rnint when calculating

the advertised window size or drop probability for non-greedy flows. In this way, CATNAP protects

the non-greedy flows or any newly started TCP flows. Additionally, the CATNAP treatment policy

maker would not make any new decisions on the inactive flows which do not transmit any packets

in a given time period. If any packet from inactive flows arrives in the next epoch period, the

CATNAP treatment module applies the same treatment policy as during the last known active

epoch period.

Epoch Selection

As mentioned earlier, the interactive/non-interactive classifier and response/non-response classifier

are packet based, and CATNAP checks every packet header and updates the classification result.

However, the active/inactive classifier, the greedy/non-greedy classifier, the treatment policy maker

and the downlink capacity estimator are epoch based: they are triggered by a soft timer interrupt

every epoch.

This study introduces the epoch period because the four modules require global flow information

such as the number of active flows in the current system and the traffic volume of every active flows

passing through the CATNAP AP. However, a true real-time method would be a CPU intensive

per packet based approach, and its time complexity is O(N2) where N is number of packets passing

through the AP. The packet-based approach would introduce unnecessary computational overhead

especially when the CATNAP AP is under the pressure of high volume FTP flows. Therefore,

CATNAP chooses the epoch-based method: for every epoch, the CATNAP module updates per
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Algorithm 8 Determine Treatments for Downlink Flows

At the end of each epoch period,
1: C ← get link capacity()
2: for each flow i do
3: if isActive(i) = false then
4: continue . Skip inactive flows
5: end if
6: RTTi ← get rtt(i)
7: if isInteractive(i) = true then
8: if isResponse(i) = true then
9: AWNDi ← C ×RTT i

10: set AWND(i, AWNDi)
11: else
12: di ← 0
13: set drop probability(i, di)
14: end if
15: else . isInteractive(i) = false
16: if isResponse(i) = true then
17: if isGreedy(i) = true then
18: AWNDi ← Rgreedy ×RTT i
19: else
20: AWNDi ← max(Rgreedy, Rnint)×RTT i
21: end if
22: set AWND(i, AWNDi)
23: else . isResponse(i) = false
24: ri ← get flow rate(i)
25: if isGreedy(i) = true then

26: di ← max(
ri−Rgreedy

ri
, ri−Rnint

ri
, 0)

27: else
28: di ← max( ri−Rnint

ri
, 0)

29: end if
30: set drop probability(i, di)
31: end if
32: end if
33: end for
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flow statistics, recalculates the fair share rate for greedy flows, and detects possible inactive flows.

Determining the value of epoch time is another challenge of this study. A small epoch value may

place overwhelming computation load without significantly improving performance and even worse

a small epoch value may cause the CATNAP treatment module to overtreat flows. On the contrary,

a large epoch time could not accurately capture the fluctuation of traffic, and CATNAP may not

treat bursty greedy flows, for example FTP flows, with long RTTs.
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Figure 5.10: Simulation to Selection Epoch

Figure 5.10 depicts a special simulation test bed to help determine an appropriate epoch value.

To fully saturate the IEEE 802.11g link, this study injects five concurrent FTP flows into the

simulation testbed. Each of them has homogeneous settings: RTT is set as 20 ms and the maximum

of CWND is set as 50 packets by NS-2.33 default. In order to demonstrate that the CATNAP

module treats each FTP flows fairly, a new FTP flow is launched every 10 second interval since the

fifth second. From the 75th second when the fifth FTP flow has been running for 30 seconds, the

flows leave every 10 seconds in the reverse order of their arrival sequence. The mean cumulative

throughput for the whole system is calculated between the 50th second and the 70th second to avoid

the initial state of this experiment. Moreover, to reduce the number of variables in the simulation

setup, we replace the CATNAP downlink capacity estimator with a static estimator which returns a

preset static link capacity (C). In our previous measurement studies, we learned that the maximum

effective capacity of an IEEE 802.11g link is between 20-26 Mbps. Thus, we repeat our simulation

with gradually increased link capacity from 20 to 30 Mbps in order to find out a priori the available

capacity for our simulation set up when the cumulative throughout of five FTP flows reaches its

peak.

Meanwhile, the epoch value varies between 0.001 seconds to 0.2 seconds to evaluate the perfor-

128



5.4. TREATMENTS ON CLASSIFIED FLOWS

mance of Algorithm 8 under different epoch values. This simulation setup uses FTP flows with the

same settings with RTT of 0.02 seconds. Thus, we choose the epoch value as 0.001 second as 1/20

of RTT, 0.002 second as 1/10 of RTT, 0.01 second as a half of RTT, 0.02 second as 1 RTT, 0.1

second as 5 times of RTT, and 0.2 seconds as 10 times of RTT. The simulation repeats under various

combination of epoch values and link capacities (C), and calculates the average overall throughput

between the 50th and the 70th seconds shown in Table 5.8.

Moreover, to study the AP queue dropping behavior, the same traffic load is applied onto a

DropTail AP with the queue size of 100 packets (the queue size CATNAP used in this simulation).

Table 5.9 lists the total number of packet dropped over the whole simulation time.

Table 5.8: Average Downlink Throughput (Mbps) with Various Epochs and Link Capacities

CATNAP Epoch (sec)
Capacity 0.001 0.002 0.01 0.02 0.1 0.2

C = 20 Mbps 18.40 ± 0.32 18.51 ± 0.41 18.92 ± 0.67 18.93 ± 0.65 18.08 ± 0.64 21.43 ± 2.38
C = 22 Mbps 20.88 ± 0.26 20.42 ± 0.21 20.89 ± 0.21 20.90 ± 0.22 20.85 ± 0.27 20.86 ± 0.24
C = 23 Mbps 21.65 ± 0.41 21.50 ± 1.22 22.10 ± 0.24 22.09 ± 0.27 22.07 ± 0.25 21.26 ± 0.29
C = 24 Mbps 22.66 ± 0.44 22.70 ± 0.38 22.72 ± 0.45 22.23 ± 0.47 22.60 ± 0.37 22.74 ± 0.52
C = 25 Mbps 22.71 ± 0.49 22.71 ± 0.40 22.73 ± 0.38 22.80 ± 0.38 22.80 ± 0.42 22.42 ± 1.98
C = 26 Mbps 22.50 ± 0.45 22.53 ± 1.76 22.48 ± 0.45 22.39 ± 0.77 22.24 ± 0.46 22.13 ± 0.83
C = 28 Mbps 21.47 ± 0.51 22.12 ± 0.80 21.96 ± 1.65 22.02 ± 1.19 21.88 ± 1.68 22.19 ± 0.99
C = 30 Mbps 21.40 ± 0.47 21.62 ± 0.39 21.90 ± 1.40 22.10 ± 0.76 22.10 ± 0.76 21.82 ± 1.63

DropTail
21.08 ± 3.76

Table 5.9: Queue Drop Events in with Various Epochs and Link Capacities

CATNAP Epoch (sec)
DropTail

Capacity 0.001 0.002 0.01 0.02 0.1 0.2

C = 20 Mbps 0 0 0 0 0 163

4802

C = 22 Mbps 0 0 0 0 0 176
C = 23 Mbps 0 6 4 4 0 167
C = 24 Mbps 4 4 0 27 54 134
C = 25 Mbps 13 8 1 6 12 163
C = 26 Mbps 18 11 110 135 96 313
C = 28 Mbps 51 42 330 301 507 101
C = 30 Mbps 64 59 573 310 309 528

Table 5.8 shows that an inflexion point exists around the 24 Mbps with all possible epoch values.

The overall throughput does not increase even with a link capacity greater than 25 Mbps. In some

cases when the dummy link capacity estimator over estimated the link capacity by giving a link

capacity more than 25 Mbps, the overall throughput is even lower because the five FTP flows

over saturate the link. Table 5.9 also shows the number of packet drop events increase when the

estimator mistakenly over-estimates the link capacity. Based on the information shown in Table 5.8,
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the achievable throughput over IEEE 802.11g is between 21 to 22 Mbps, which matches the results

from our previous measurement study [17]. Meanwhile, Table 5.8 helps us choose the initial value

of effective link capacity (C0) used in Algorithm 1 in Section 5.2.2.

Table 5.8 and Table 5.9 show that the simulations with smaller epoch times of 0.001 and 0.002

seconds achieve similar performance as an the epoch time of 0.01 seconds. CATNAP with smaller

epoch time (0.002 and 0.002 seconds) has better performance than CATNAP with larger epoch

time when the effective link capacity estimator over-estimates the link capacity. A large epoch

time of 0.2 seconds, as large as 10 times the RTT, does accurately capture the fluctuation of TCP

flows, and the AP queue still drops packets even when underestimated available capacity (C=20

Mbps). How to more accurately estimate the RTT at middle point is beyond the scope of this

study. Because we assume that all wireless nodes are immobile, the RTT between source nodes and

destination nodes does not change much. CATNAP with 0.01 or 0.02 epoch time introduces less

computational overhead and has similar performance as CATNAP with small epoch values when

the effective link capacity estimator does not over-estimate the link capacity.

In addition to the CATNAP treatment modules, our link capacity estimator described in Algo-

rithm 1 is also an epoch based approach. Theoretically, Algorithm 8 is able to choose a different

epoch value than Algorithm 1. However, both Algorithm 8 and Algorithm 1 result in a similar

epoch time period: 10 ms. Thus, this study selects the epoch time as 0.01 seconds.

5.4.3 Push or Delay

The push and delay operations can be easily implemented with a priority queue. Because the

CATNAP classifier categorizes flows into two categories: interactive and non-interactive, CATNAP

pushes interactive flows while delaying non-interactive flows. Therefore, we implement a dequeue

function with a two-band priority, which always dequeues the packet from interactive flows before

dequeuing any packet from non-interactive flows. In this way, CATNAP always pushes interactive

flows in front of non-interactive flows. When CATNAP detects more than one flow with the same

priority, it acts as a FIFO queue controller, and dequeues the packet with the lowest enqueue time

stamp.

Algorithm 9 describes implementation of the CATNAP dequeue function to support push and

delay treatments. In Algorithm 9, the function get front pkt tm(i) returns the enqueue timestamp

of the current head packet in the head of the queue of flow i.
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Algorithm 9 Dequeue Function to Support Push and Delay

At the end of each epoch period,
1: flagnint ← true . Default to send non-interactive flows.
2: tmin ←∞
3: next← 0 . the id of next flow to dequeue.
4: for each flow i do
5: if isEmpty(i) = false then
6: tfront ← get front pkt tm(i)
7: if isInteractive(i) = true then
8: if flagnint = true then . flow i becomes interactive.
9: flagnint ← false

10: tmin ← tfront
11: next← i
12: else if tmin > tfront then . sending packets from interactive flows as FIFO
13: tmin ← tfront
14: next← i
15: end if
16: else . flow i is non-interactive flow.
17: if flagnint = true and tmin > tfront then
18: tmin ← tfront
19: next← i
20: end if
21: end if
22: end if
23: end for
24: if next > 0 then
25: p← dequeue(next)
26: else
27: p← null
28: end if
29: return p

The preliminary CATNAP implementation chooses a weighted round robin (WRR) dequeue

function to avoid possible starvation of non-interactive flows. However, during the simulation, the

CATNAP queue controller never uses WRR dequeue function even with 10 pairs of current VoIP

flows as interactive flows and 2 FTP flows as non interactive flows, because the interactive flows

usually consumes much smaller bandwidth with small packets than non-interactive flows such as

FTP flows. Thus, CATNAP simply choose the two-band priority queuing scheme to implement the

push and delay operations.

5.4.4 Drop or Limit Advertised Window Size

In addition to push and delay operations, the CATNAP treatment module also implements drop

and limit advertised window size operations to control the bandwidth usage of non-interactive flows,
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especially non-interactive and greedy flows, to protect the interactive flows. The drop operation

for non-response-based flows is implemented in the enqueue function of the CATNAP downlink

controller, while the limit advertised window size is implemented in the uplink enqueue controller.

However, either drop operation or limit advertised window size operation requires CATNAP to

decide how much bandwidth needs to be reduced for a given flow when its bandwidth usage exceeds

the fair share rate for non-interactive flows (Rnint) calculated in Algorithm 5, or the fair share rate

for greedy flows (Rgreedy) calculated in Algorithm 10.

Fair Share Rate for Greedy Flows

Although the fair share rate of non-interactive flows (Rnint) provided by Algorithm 5 works well

with the CATNAP greedy/non-greedy classifier, it is conservative because the link capacity reserved

for the non-greedy and non-interactive flows is wasted and not used by any other flows. Thus, in

order to improve the overall link capacity utilization, we introduce Algorithm 10 to calculate the

fair share rate of greedy flows (Rgreedy). As Equation 5.5 shows, the fair share rate of greedy flows

(Rgreedy) is calculated as

Rgreedy ←
C −

∑
rinteractive −

∑
rnon−greedy

Ngreedy
(5.5)

where C is effective downlink capacity provided by Algorithm 1,
∑
rinteractive is the bandwidth

usage of all interactive flows,
∑
rnon−greedy is the bandwidth usage of all non-greedy and non-

interactive flows, and Ngreedy is the count of greedy flows. Algorithm 10 describes the implemen-

tation detail of Equation 5.5.

Downlink Enqueue Controller

The downlink enqueue function implements the drop treatment of non-response-based flows. Algo-

rithm 11 describes the dropping treatment. The drop treatment only applies to non-response-based

and non-interactive flows because no interactive greedy flow has been observed in real residential

networks. Note, the current CATNAP implementation still helps DNS flows by pushing DNS pack-

ets because DNS flows are classified as interactive flows as they usually consists of packets under

500 bytes.
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Algorithm 10 Calculate Fair Share Rate for Greedy Flows

At the end of each epoch period,
1: C ← get link capacity()
2: Ngreedy ← 0
3: Rint ← 0
4: Rngreedy ← 0
5: for each flow i do
6: if isActive(Fi) = false then
7: continue
8: else if isInteractive(i) = true then
9: Rint = Rint + get rate(i)

10: else if isGreedy(i) = true then
11: Ngreedy ← Ngreedy + 1
12: else . isGreedy(i) = false
13: Rngreedy ← Rngreedy + get rate(i)
14: end if
15: end for
16: if Ngreedy > 0 then

17: Rgreedy ← C−Rint−Rngreedy

Ngreedy

18: else
19: Rgreedy ← C
20: end if
21: set fairshare greedy(Rgreedy)
22: return

Algorithm 11 Enque Downlink Packet (drop operation)

1: for every downlink packet p do
2: i← get flow id(p)
3: if isResponse(i) = false and isInteractive(i) = false then
4: . Treat non-interactive, non-response (UDP) flow
5: di ← get drop probability(i)
6: if uniform(0, 1) ≤ di then
7: drop(p)
8: return
9: end if

10: end if

11: if enque(p) = false then . Downlink queue is full.
12: drop(p)
13: end if
14: return
15: end for

Uplink Queue Controller

The limit advertised window size treatment for response-based TCP flows is implemented by en-

hancing the uplink enqueue function. For each arriving ACK packet, the enqueue function retrieves

its advertised window size (AWNDorig) from its TCP header. Because the flow is unidirectional,
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the advertised window size is used to control the sending rate of the reverse flow of the ACK flow

as Line 3-4 shows. The advertised window size of the downlink stream flow i is calculated in Algo-

rithm 8. As Line 6-9 in Algorithm 12 shows, CATNAP updates the TCP header with the smaller

of AWNDorig and AWNDi in packet p, and the corresponding TCP and IP layer CRC. In this

way, CATNAP explicitly informs the TCP sender to reduce its transmission rate by reducing the

advertised window size, and the TCP sender reduces its sending rate if the advertised window size

is smaller than the sender’s window size.

Algorithm 12 Enque Uplink Packet

1: for every uplink packet p do
2: if isTCPACK(p) = true then
3: i← get reverse flow id(p)
4: AWNDorig ← get awnd size(p)
5: . AWNDi advertised window size is calculated in Algorithm 8
6: if AWNDi < AWNDorig then
7: set awnd size(p,AWNDi)
8: update crc(p) . Update IP and Transport Layer CRC
9: end if

10: end if
11: return
12: end for

5.5 Summary

This chapter describes the design and implementation of the CATNAP classification and treatment

methods. Table 5.10 summaries the key variables and their initial values used in CATNAP.

Table 5.10: Constants and Thresholds Used in CATNAP

Layer Parameter Value Notes

Classifier

Tinit 750 Bytes Initial threshold for inter/non-interactive flows
Tnint 1000 Bytes Threshold for non-interactive flows
Tint 500 Bytes Threshold for interactive flows
αnint 0.60 EWMA packet length weight α for non-interactive flows
αint 0.05 EWMA packet length weight α for interactive flows

Tend 60 sec. Threshold used to detect end of flows

c 1.5 Flow i would be considered as inactive
if no packet received after c×RTTi

Treatment
epoch 10 ms
AWNDinit 1000 packets Init advertised window size for unclassified/interactive TCP flows

Supporting
ω 0.1 EWMA weight used to estimate effective downlink capacity
C0 25 Mbps Initial valued for effective downlink capacity

func. RTTudp 200 ms [139] Threshold used to detect inactive UDP flows
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5.5. SUMMARY

Additionally, Figure 5.11 summaries all implemented modules and the dependencies between

them. The CATNAP modules can be grouped into three functional categories: supporting func-

tions, classifiers, and treatment modules. The supporting modules are not part of the CATNAP

architecture itself, they can be replaced with the function integrated within current AP or the third

party algorithms. However, when this research was conducted, no AP was able to provide these

functions. The treatment methods are integrated with the uplink and downlink queue controllers.

Meanwhile, the CATNAP modules can be categorized into packet-based or epoch based from

the implementation perspective. The packet-based modules updates their information based every

arriving packets, and the epoch-based modules updates their information every epoch time. The

modules implemented as epoch based could be implemented as packet based modules, but it may

introduce more computational complexity and unnecessary overhead.
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Chapter 6

Simulation

This chapter describes simulation results for CATNAP implemented with NS-2.33 [157, 158]. This

chapter is organized as following: Section 6.1 presents the classification simulation; Section 6.2

describes the NS-2 simulation setup; Section 6.3 compares simulation results between CATNAP,

DropTail and Strict Priority Queue (SPQ); Section 6.4 further compares the performance between

CATNAP and DropTail under various configurations, such as different latency, different queue

capacity and multiple foreground applications.

6.1 Classification

As described in Section 5.3, the CATNAP classifier consists of four parts: response-based/non-

response-based classifier, interactive/non-interactive classifier, greedy/non-greedy classifier, and ac-

tive/inactive classifier.

The response-based/non-response-based classifier is straightforward because CATNAP only

needs to examine one packet from a given flow to determine its response or non-response na-

ture. The greedy/non-greedy classifier requires runtime information such as the downlink capacity

and the statistical information of concurrent flows. Without this runtime information, it is almost

meaningless to run the greedy/non-greedy classifier to decide the greedy/non-greedy nature of a

given flow. Thus, the greedy/non-greedy classifier is not suitable to validate with offline traces.

Moreover, the main purpose to introduce the active/inactive classifier is to improve the downlink

capacity utilization by allowing inactive flows to surrender their bandwidth share to active flows.
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The active/inactive classification result would change the treatment methods of flows. Therefore,

this section focuses on the evaluation of the CATNAP interactive/non-interactive classifier imple-

mented with Perl and NS-2.33 against offline traces.

6.1.1 Dataset Used

Real network traces are essential to verify the accuracy of the CATNAP interactive/non-interactive

classifier. These real network traces have to be pre-classified or provide corresponding application

layer information, which helps to determine the interactive/non-interactive nature for a given flow.

Though numerous IP level packet traces are available over the Internet, most of them only keep

the IP header information and erase the application layer information due to privacy concerns.

Moreover, most public available traces are gathered from core routers that may contain enterprise

application traffic in addition to residential traffic. These enterprise applications may have different

flow characteristics and QoS requirements than residential applications.

Even the same kind of applications might behave differently under different scenarios, and their

QoS requirements might be different also. For example, a SSH user can start an interactive SSH

session by editing a file on a remote host, but another user can copy a huge binary file with a

SSH session. In this case, the ordinary port-based classifiers would classify these two different

SSH sessions as the same kind of application because they are using the same port, but the CAT-

NAP interactive/non-interactive classifier classifies them into two different categories since their

interactive/non-interactive nature are different. Therefore, verifying the CATNAP interactive/non-

interactive classifier requires traces with pre-classified traffic.

In this study, the traces used to verify the CATNAP interactive/non-interactive classifier need

to meet the following requirements:

1. cover all CATNAP traffic categories;

2. have results from a known classification method;

3. provide application level information to understand their QoS requirements.

A group of Italian researchers published a set of packet level traces [159] along with their traffic

statistic and analysis tool: Tstat. Their traces contain Skype (VoIP) flows with different audio

codec, MSN (instant message) traces, and FastWeb IP-TV (video) traces. Kinicki and Claypool

gather packet level traces for Second Life [160], a virtual world with 3D graphics players interacting

138



6.1. CLASSIFICATION

with each other through avatars. The Second Life traces use TCP to handle the login server and

other utilities, while the communication between the game client and server is based on UDP.

In addition to these traces provided by other researchers, this study setup a testbed to gather

more traces to cover the rest of CATNAP traffic categories. The testbed included a Dell P4

server running with Windows 2003 media center placed inside the WPI campus network, a Dell

P4 desktop running with Windows XP/SP2 stationed in a residence near WPI. The client and

server were connected through the WPI campus network and a cable network. Windows Media

Video traces were generated from the Windows 2003 server to the XP client. The Dell P4 desktop

collected traffic of World of Warcraft, Online Radio, Flash Video and SSH.

Web traces used in this study are gathered by a group of Italian network researchers [161]

in 2004. The trace files are collected from a 200 Mbps link connecting the University of Napoli

“Federico II” network to the rest of the world. The Web traces only contain TCP port 80 traffic

between clients inside the University of Napoli and the outside world. Because of privacy concerns,

the trace files only contains TCP and IP headers with anonymous IP addresses.

Table 6.1 summarizes traces used to validate the CATNAP interactive/non-interactive classifier.

Figure 6.1 presents the CDF of packet length of flows identified from the traces. To have a clear

presentation, Figure 6.1 groups flows into six categories according to their application types, e.g.,

the online radio flows include both BBC and AOL online radio broadcasting.

Table 6.1: Trace Used to Validate CATNAP Interactive/Non-interactive Classifier

APPs Type Source Approx. Notes
Gathered

IPTV Video [159] 2008 UDP-based HD video.

Skype VoIP [159] 2008 Skype audio trace w/ various audio codec.

MSN IM [159] 2008 MSN messenger, online chatting.

SecondLife Game [160] 2007 UDP-based MMO game

flash video TCP WPI 2009 TCP-based flash video clips provided by Adobe.

SSH TCP WPI 2009 A graduate student daily SSH login traces (reading email
with Pine, and list/read/write plain text files.

Windows Media TCP & WPI 2009 Multi-layer video clips encoded with Windows Media 2003
Streaming UDP server, the highest video encoding rate is 1192 Kbps.

War Of Warcraft TCP WPI 2009 A level 80+ Korean player played 10 sessions with a
Korean server.

BBC audio TCP WPI 2009 bbc online live news radio broadcasting with BBC real
player IE plugin.

NPR, AOL TCP WPI 2009 AOL and NPR online live news radio broadcasting
with player downloaded from the NPR website.

Web HTTP [161] 2004 Traffic on Port 80 generated inside network of
University of Napoli, Italy.
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Figure 6.1: CDF of Packet Length of Different Applications

6.1.2 Offline Interactive/Non-interactive Classifier Result

Figure 6.2 to Figure 6.7 depict the sample results of our Perl-based CATNAP interactive/non-

interactive classifier. To provide a clear explanation, we randomly select one flow from each of the

six categories and group figures together:

1. figure (a) not only depicts the EWMA packet length calculated by Algorithm 4 but also shows

the packet length for each packet as a “plus” sign.

2. figure (b) shows the CDF of packet length from the selected flow.

Figure 6.2 presents the sample result for VoIP applications, and Figure 6.3 shows the sample

result for game applications. The CATNAP interactive/non-interactive classifier classifies both

VoIP and game flows as interactive, because their EWMA packet length is much smaller than the

interactive to non-interactive threshold (Tnint) of 1000 bytes.
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Figure 6.2: VoIP (Skype w/TCP) CATNAP Interactive/Non-interactive Classification Result
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Figure 6.3: Game (2nd life) CATNAP Interactive/Non-interactive Classification Result

Figure 6.4 shows a sample SSH stream. Different from VoIP or game flows, SSH flows might be

interactive or non-interactive or both. The user behavior might effect the interactive/non-interactive

nature of SSH flows. CATNAP classifies the sample SSH flow as interactive because the majority

of its packets are small.

Figure 6.5 shows one sample of UDP-based IPTV flows gathered in [159]. The IPTV flow

gathered in [159] carries HD video, and the size of video packets are greater than the non-interactive

packet threshold (Tnint). Thus, CATNAP classifies the IPTV flows as non-interactive.
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Figure 6.4: SSH (interactive) CATNAP Interactive/Non-interactive Classification Result
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Figure 6.5: Video Streaming (Windows Media) with UDP CATNAP Interactive/Non-interactive
Classification Result
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Figure 6.6: Online Radio (AOL) CATNAP Interactive/Non-interactive Classification Result

Figure 6.6 shows one sample of AOL online radio flows. Some online radio applications still

choose traditional streaming protocols such as RTSP, and their flows consist of small packets similar

to VoIP flows. But some the online radio applications such as the one shown in Figure 6.6 choose to

use buffering technology: they download and buffer audio clips as temporary files, and play media

back later from local file caches. Thus, the online radio flow shown in Figure 6.5 only lasts for one

second, and some of its audio packets are larger than 1250 bytes. Thus, CATNAP classifies it as

non-interactive.
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Figure 6.7: File Downloading (FTP) CATNAP Interactive/Non-interactive Classification Result
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Figure 6.7 shows a sample of FTP/SFTP flows. As expected, the majority of the FTP/SFTP

packets are large, and CATNAP classifies it as non-interactive.

6.1.3 NS-2 Implementation of CATNAP Classifier

This section compares the CATNAP interactive/non-interactive classification results between the

NS-2 and Perl implementation. We implement all four CATNAP classifiers in both NS-2 and Perl,

but the greedy/non-greedy classifier is not suitable to be verified with offline traces because its clas-

sifier requires bandwidth estimation results. The NS-2 implementation of the response-based/non-

response-based and active/in-active classifiers is the same as the Perl offline implementation, and

we did not see any difference between their results.

The main difference between NS-2 and Perl implementation is that the Perl based CATNAP

classifier directly takes offline trace files in Wireshark/PCap format as input, which is the same as

the file format used by the wireless sniffer in our home wireless measurement study. However, due

to the limitation of NS-2 simulator, the Wireshark/PCap trace file needs to be converted to NS-2

trace format before it can be fed into the NS-2 CATNAP classifier. Due to the implementation

limitation of NS-2 TCP layer, the NS-2 TCP agent combines small packets into several big packets

where the maximum packet length is limited by the MTU settings if the NS-2 TCP layer receives

a large amount of small packets from the application layer in a short time period. Thus, the actual

packet size transmitted does not exactly match the trace file fed into the NS-2 simulator. Thus,

this Section needs to confirm that the NS-2 implementation would not skew the interactive and

non-interactive classification results.

To compare Perl and NS-2 classification results, this study chooses a special SSH trace collected

from a controlled wireless testbed. The reason to choose SSH flows is that SSH flows typically act

as interactive flows but they can act as non-interactive flows when transferring a large file through

a SSH connection. Therefore, a special SSH flow is generated:

1. after the user logged into the SSH server, he traversed through several directories with shell

commands;

2. around the 40th second after he logged in, the user opened a 20MB plain text file, and “cat”ed

its contents to the screen;

3. around the 55th second, the whole file content has been displayed; the user resumed the
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directory operations until disconnected at 65th second.

Clearly, the SSH flow contains two flow nature transitions: at the 40th second, it changed from

interactive to non-interactive while it changed from non-interactive to interactive at the 55th second.

The offline and NS-2 classifier should be able to detect the two flow state transitions.
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Figure 6.8: EMWA Calculated by Perl (offline) and NS-2 Implementation

Figure 6.8 compares the EWMA packet lengths calculated by the Perl based CATNAP offline

classifier and the CATNAP NS-2 implementation respectively. The green “plus” symbols represent

packet length for each packet in the SSH flow, and the red line presents the EMWA length calculated

in the CATNAP interactive/non-interactive classifier (Algorithm 4).
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Figure 6.9: Interative/Non-Interactive Classification Results

Figure 6.9(a) compares the EWMA packet length calculated by the NS-2 implementation and

Perl based implementation which is marked as “offline”. Figure 6.9(b) shows that both Perl and

NS-2 implementation yield the same interactive/non-interactive classification result.

6.1.4 Offline Interactive/Non-Interactive Classification Results

The CATNAP interactive/non-interactive classifier is a packet-based approach. It infers the inter-

activeness of a flow by calculating the EWMA packet length when each packet arrives. A flow may
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change from interactive to non-interactive if its packet length nature changes, e.g. the SSH flow

shown in the previous section. Thus, we use two tables to summarize the CATNAP interactive/non-

interactive classification results for traces listed in Table 6.1:

1. Table 6.2 summarizes the flows which do not switch their interactiveness state during their

life cycle,

2. Table 6.3 summarizes the flows which involve interactive state changes.

Table 6.2: Interactive and Non-Interactive Classification Result (Flows without State Changes)

Apps # of Interactive Non-Interactive SubTotal
flows Count % Count % Count %

msn 100 90 90.0 0 0 90 90

skype(audio) 24 24 100.0 0 0 24 100.0

ssh 138 137 99.3 0 0 137 99.3

second-life 115 101 87.8 0 0 101 87.8

WoW 10 10 100.0 0 0 10 100.0

iptv 125 1 0.8 122 97.6 123 98.4

flash-video 10 0 0 0 0 0 0.0

wmtcp(video) 10 0 0.0 0 0.0 0 0.0

wmudp(video) 10 0 0.0 10 100.0 10 100.0

BBC(audio) 22 10 45.5 0 0.0 10 45.5

AOL,NPR(audio) 12 1 8.3 0 0.0 1 8.3

Web 317 41 12.9 31 9.8 72 22.6

Table 6.3: Interactive and Non-Interactive Classification Result (Flows with State Changes)

Apps # of Interactive Non-Interactive SubTotal As One Flow
flows Count % Count % Count % % %

msn 100 9 9.0 1 1.0 10 10.0 83.6 16.4

skype(audio) 0 0 0.0 0 0 0 0 - -

ssh 138 1 0.7 0 0 1 0.7 97.7 2.3

second-life 115 14 12.2 0 0 14 12.2 96.3 3.7

WoW 10 0 0.0 0 0 0 0 - -

iptv 125 0 0.0 2 1.6 2 1.6 26.9 73.1

flash-video 0 0 0 0 0 0 0 - -

wmtcp(video) 10 0 0.0 10 100.0 10 100.0 1.6 98.4

wmudp(video) 10 0 0.0 0 0.0 0 0.0 - -

BBC(audio) 22 2 9.1 10 45.4 0 54.5 45.1 54.9

AOL,NPR(audio) 12 2 16.7 9 75.0 11 91.7 - -

Web 317 63 19.9 182 57.4 245 77.2 11.4 88.6

As Table 6.2 shows, 90 of the 100 MSN flows are consistently classified as interactive without any

flow state changes. The remaining 10 MSN flows involve CATNAP classification result changes:

some packets in the flow are classified as interactive while some packets are classified as non-
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interactive. However, if we treat the 10 MSN flow as one flow, 83.6% packets of the 10 flows are

classified as interactive, as the rightmost column shown in Table 6.3.

VoIP applications such as Skype are all classified as interactive because the bandwidth usage of

Skype is limited by the audio codec used. World of Warcraft flows are all classified as interactive,

while the 87.8% of Second Life flows are classified as interactive flows. The 14 of 115 Second Life

flows which involves flow state changes are more likely be interactive also. 96.3% of packets are

classified as interactive if we consider the 14 flows with state changes as one flow.

The behaviors of online radio player such as BBC-audio, AOL-audio and NPR-audio are different

from VoIP audio application such as Skype. After manually inspecting the online radio traces,

we notice that AOL and NPR audio players are flash based and the player buffers audio clips

through HTTP protocol just as a regular FTP downloading flow. Thus, although the audio traffic

normal consists of small packets, flash based players behave like a non-interactive FTP downloading

application.

Moreover, Web flows listed in Table 6.2 and Table 6.3 diversify in interactive and non-interactive

categories. Web traffic is the most popular and the most interesting traffic among residential

network. Different types of applications can be hidden under the umbrella of Web. Browser based

game, flash video player as browser plug-in, and regular Web content are all delivered on the well-

known Web port 80, 443 and 8080 in order to go through widely deployed firewalls. Thus, as

expected, Web traffic are classified either interactive or non-interactive. However, if we consider all

Web flows as one flow, 88.6% of packets are classified as non-interactive.

6.2 Traffic Generation in NS-2

This section describes the traffic generation in the NS-2 simulator: how to generate game, VoIP,

video and Web flows to evaluate the performance of CATNAP.

6.2.1 Online Games

Among many genres of games widely played by residential users, such as First Person Shooter

(FPS), Real Time Strategy (RTS) and Massively Multi player Online (MMO), FPS games are

generally more fast paced and require more frequent user interactive actions than other genres.

This study utilizes an NS-2 traffic generator for Quake 4, a popular FPS game with an Auto
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Regressive Moving Average (ARMA) model [162,163]. Cricenti et al. apply ARMA (1,1) model to

capture the correlated nature of Quake 4 traffic through a combination of an auto regressive (AR)

component and a moving average (MA) component. The parameter (1,1) describes the number of

terms in the AR and MA components respectively. Cricenti et al. demonstrate that the ARMA(1,1)

process models the server to client packet size distribution of Quake 4 better than the simpler AR(1)

process [162].

The simulated game server sends a packet with average payload size of 69.5 bytes, excluding IP,

Transport and Application layer headers, every 50 ms. The game client sends a payload with an

average size of 64.5 bytes, excluding all headers, to the game server every 10.75 ms. However, UDP

game packets are 8 bytes smaller than TCP game packets because of the size differences between

UDP and TCP headers.

6.2.2 Voice over IP (VoIP)

VoIP applications send small packets carrying audio information during small time intervals. Al-

though VoIP applications are built over a variety of VoIP protocols, the overall bandwidth usage

of VoIP application is small, usually less than 80 Kbps [164]. This study implements a VoIP traffic

generator to simulate VoIP flows with G.711 codec, which is one of the first audio codecs used by

VoIP protocols and still widely supported by various VoIP applications such as Skype1 and Yahoo

Talk [165]. The VoIP traffic generator is able to simulate either TCP-based or UDP-based VoIP

flows. Based on the G.711 specification, the VoIP traffic generator transmits a constant rate stream

consisting of packets with 172 byte transport layer payload between two nodes every 20 ms.

6.2.3 Streaming Video

There are many applications and protocols for video streaming along with a variety of video codec.

This study utilizes the NS-2 video application plug in developed by researchers at Arizona State

University [166, 167]. The video frames used by the video generator are extracted from a pre-

encoded video traces, Indiana Jones I: Raiders of the Lost Ark, and encoded in single layer Common

Intermediate Format (CIF) at 30 frame per second (fps) with a resolution of 352× 288 pixels. The

Group of Pictures (GoP) consists of 16 frames with 3 B-frames between each pair of I/P frames.

1G.711 as the first codec implemented by Skype team http://devforum.skype.com/t5/Audio-Video/Forcing-G-
711/td-p/34.
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The quantization scales used for I, P, and B frames are 10, 10, and 12, respectively. Note, the

simulated video flows can be transmitted with either TCP or UDP protocol.

6.2.4 Web Browsing

The characteristics of Web traffic largely depend on the content of Web page. However, the duration

of a Web session is short, usually ending in a couple of seconds. Therefore, treating Web traffic is

challenging because Web flows might terminate before any treatment can take effect. Consequently,

CATNAP may not be able to improve the performance of Web applications even when it can

correctly and promptly classify Web flows.

Although Web traffic analysis has been done with core routers by numerous researchers, little

describes Web traffic from the residential end-user’s perspective. This study utilizes a Web traffic

model based on a study conducted by a group of researchers from IBM [9] and enhanced the Web

traffic model with a NS-2 Gamma random number generator [8]. Table 6.4 summarizes the Web

model and its parameters used in this study.

Table 6.4: Simulation Parameters for Web Flows [8, 9]

Parameters Mean Std. Dev. Best Fit
(Parameters)

HTML Object size 11872(Max 2MB) 38036 Truncated Lognormal
(µ 7.90272, δ 1.7643)

Embedded Object 12460(Max 6MB) 116050 Truncated Lognormal
size (µ 7.51384, δ 2.17454)
Number of Gamma
Embedded Objects 5.07 (Max 300) (κ 0.141385, θ 40.3257)
Parsing Time 3.12 (median 0.30 14.21 Truncated Lognormal

(Max 300 sec.) (µ − 1.24892, δ 2.08427)
Embedded Object 0.83 8.4 Weibull
Inter-Arrival Time (α 0.2089, β 0.376)
Reading Time 39.70 8.4 Truncated Lognormal

(µ − 0.495204, δ 2.7731)
Request Size 318.59 179.46 Uniform(350 Bytes)

The sequence of the simulated Web session assumes that all the objects in the requested Web

page are placed on the same Web server; and the Web client and server simulate HTTP1.1 for a

persistent connection and pipelining. The Web client starts with a built-in TCP traffic generator to

connect to the Web server, and sends a request to the Web server after establishing a connection.

Upon receiving the request from the Web client, the server responds with one HTML object. After
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receiving the HTML object, the Web client calculates the number of embedded objects and the size

of each embedded object, and sends the corresponding requests to the Web server. If the requested

Web page contains at least one embedded object, the Web client transmits another request for

each embedded object to the Web server. Finally, the Web server responds to the request with the

simulated objects.

6.2.5 File Downloading

In this simulation study, file downloading traffic is generated by the built-in FTP application in

NS-2. However, the TCP’s advertised window is not implemented in either the default TCP or

FULLTCP headers because the NS-2 simulator assumes that the receiving buffer size on TCP

sender or receiver is unlimited. Thus, this study enhances the built-in TCP and FULLTCP agent

in NS-2 simulator by adding the advertised window data structure into the TCP header structure,

and modifying the corresponding code at the sender and the receiver sides.

Because the NS-2 TCP implementation does not have complete TCP headers and most of

the TCP header flags are missing. Both the CATNAP classifier and the round trip time (RTT)

estimator depend on the TCP headers and flags. Thus, this study implements the advertised

window mechanism based on the NS-2 FULLTCP header. Unlike the TCP NS-2 implementation,

most popular TCP congestion control mechanisms, such as TCP CUBIC or TCP Compound, are

not supported by the NS-2 FULLTCP agents. We are only able to simulate TCP flows with TCP

NewReno, Reno or Tahoe, and this study chooses TCP NewReno as its default TCP flavor.

P2P downloads are only a collection of multiple FTP downloads [8], and the downstream behav-

ior of P2P application will be very similar to a file downloading flow. Thus, CATNAP would classify

P2P flows as non-interactive, response-based, and greedy as it classifies FTP flows. Therefore, this

simulation traffic does not include P2P applications.

In typical residential networks, there are few non-response-based, non-interactive and greedy

flows because firewalls classify these flows as malicious traffic and reject them2. One possible

candidate of this kind of applications is NFS with UDP over a local area network. NFS clients

and servers can communicate to each other through either UDP or TCP. When an NFS file is

transmitted over UDP, the NFS application layer does the file integrity check and retransmits the

2In enterprise level Data center or other reliable Ethernet environment, iSCSI with UDP flows are non-response-
based,non-interactive and greedy flows. Some Fiber Channel over Ethernet (FCoE) flows can be classified and treated
as non-response-based, non-interactive and greedy.
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missing part.

NFS file transfer is simulated over UDP with a high volume UDP flow. A high volume UDP

flow of 32Mbps, higher than the maximum effective capacity of IEEE 802.11g link, is used to stress

the wireless link and our CATNAP queue controller. For evaluation purposes, these high volume

UDP flows can be taken as misbehaved flows to stress wireless links.

6.2.6 NS-2 Simulation Setup

(a) Simulation Setup

(b) Flow Timeline

Figure 6.10: Simulation Setup

Figure 6.10(a) illustrates the topology of our simulation test bed, and Figure 6.10(b) shows the

flow schedule plan for all core simulation runs. Two wireless nodes, W1 and W2, are connected

to the access point (AP) with distance D1 and D2 respectively. The wireless nodes and AP are

connected with each other through a single channel IEEE 802.11 infrastructure network at two

different link speeds: 54 Mbps (IEEE 802.11g) or 11 Mbps (IEEE 802.11b). An IEEE 802.11b

network is used to simulate 802.11 nodes with poor signal strength because the nodes with weak

reception tend to roll back to the 802.11b rate. However, rate adaptation is turned off for this study
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due to the lack of support in the NS-2 simulator.

Just as in most residential APs, this simulation study set most of the wireless layer parameters

as their default values: RTS/CTS is disabled for all wireless nodes, MAC layer retransmissions are

set to 4, and the wireless AP is configured to transmit a beacon frame every 100 ms.

The NS-2.33 simulator supports three different radio propagation models: free space, two-

ray ground reflection and shadowing [157]. However, both the free space and two-ray ground

models represent wireless communication channels in a open flat space. The shadowing model is

a realistic and widely used signal fading model for indoor wireless environments. Based on the

NS-2 user manual [157], parameters of shadowing model are selected to represent a typical home

environment partitioned into several rooms. Specifically, the study chooses the path loss exponent

of the shadowing model as 4.0, and the shadowing deviation as 7.0. The path loss exponent of 4.0

corresponds to an obstructed indoor environment while standard deviation of 7.0 corresponds to

an office with hard partitions [157] 3

As Figure 6.10(a) shows, the wireless AP is connected to the gateway with a duplex 100 Mbps

Ethernet link with 1 ms latency, which are typical settings of most residential networks. The

gateway is connected with multiple wired servers over symmetric 100 Mbps links with various

latencies of L1 to Ln.

The simulated AP is implemented with different queuing disciplines: DropTail, Strict Priority

Queue (SPQ), and CATNAP, for the downstream traffic coming from the wired nodes S1 through

Sn to the wireless nodes W1 and W2. The queue capacity limit is configured to q packets. We set

the CATNAP queue capacity as 1000 packets because CATNAP tries to treat flows rather than

simply drop packets. The queue capacity limit for DropTail and SPQ is decided by the product of

bandwidth and round-trip time (RTT). Table 6.5 shows the queue capacity limits for DropTail and

SPQ under different combinations of RTT and link capacities.

Table 6.5: Queue Capacity of DropTail and SPQ

Link Speed 54 Mbps 11 Mbps

max(L1, L2) = 10ms 90 pkts 20 pkts
max(L1, L2) = 102ms 900 pkts 200 pkts

The distances (D1 andD2) between the AP and wireless nodes are set to 5 meters to simulate the

wireless node in a different room than the AP. Unless specified, the parameters used by CATNAP

3There is no clear documents on which parameter should be used for residential places, thus we choose the one
most close to dry wall.
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are listed in Table 5.10.

Two types of network traffic are simulated in the test bed illustrated in Figure 6.10(a) (a). Each

wireless node serves as a destination for one application: wireless node W1 runs with Foreground

Application (Flow 1), which starts at the 10th second and ends at the 110th second for a total

duration of 100 seconds; wireless node W2 is the destination node of background application (Flow

2), which starts at the 5th second and terminates at the 115th second with the total duration of 110

seconds. The background and foreground application run concurrently between the 10th second

and 110th seconds. However, only the measurements and quality metrics between the 15th and

105th seconds with 90 second simulation duration are used for analysis in order to exclude the

initial and final states when the foreground flow joins and departs. Note, the SPQ queue controller

always prioritizes the foreground flow over the background flow even when they are same kind of

traffic.

Two applications, FTP or NFS with UDP, run as background flows to stress the wireless link.

CATNAP classifies both FTP and NFS with UDP as non-interactive and greedy. While CATNAP

classifies FTP flows as response-based, and NFS with UDP flows as non-response-based. Therefore,

CATNAP applies different treatments to constrain their rates when congestion occurs: reducing

advertised window sizes for FTP flows and dropping packets from NFS over UDP flows.

Table 6.6: Applications Used for Simulation

Background Flow Foreground Flow
Apps Type

FTP

FTP response-based non-interactive greedy
NFS w/UDP non-response-based non-interactive greedy

Game w/UDP non-response-based interactive non-greedy
Game w/TCP response-based interactive non-greedy
VoIP w/UDP non-response-based interactive non-greedy
VoIP w/TCP response-based interactive non-greedy
Video w/UDP non-response-based non-interactive non-greedy
Video w/TCP response-based non-interactive non-greedy

Web response-based both both

NFS w/UDP

FTP response-based non-interactive greedy
Game w/UDP non-response-based interactive non-greedy
Game w/TCP response-based interactive non-greedy
VoIP w/UDP non-response-based interactive non-greedy
VoIP w/TCP response-based interactive non-greedy
Video w/UDP non-response-based non-interactive non-greedy
Video w/TCP response-based non-interactive non-greedy

As Table 6.6 shows, foreground flows consist of applications from each category of the CATNAP
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architecture. Note, Web flows may be either interactive or non-interactive depending upon the

contents of the Web pages, such as number of objects and sizes of objects.

In addition to the wireless latency, the latency between the wireless nodes and the application

server also have significant effects on the application performance. This simulation study chooses

three latency configurations based on the measurement study conducted by Maier et al. in Ger-

many [139], in which they report the round-trip times (RTTs) of flows over residential networks are

with two modes of 20 ms and 205 ms. Thus, this study chooses three latency configurations:

1. short: both flows with 10 ms one-way latency;

2. long: both flows with 102 ms one-way latency;

3. mixed: the foreground flow with 102 ms one-way latency, and the background flow with 10

ms one-waylatency.

Note, because it is difficult to stress IEEE 802.11g link with a background flow with 102ms one-

way latency, this study eliminates the other mixed case where the background flow is with 102 ms

latency and the foreground flow is with 10 ms one-way latency.

6.3 Core Results

This section summarizes the core simulation results which compare the performance between CAT-

NAP, DropTail and SFQ queues. To reduce the uncontrolled variables in simulations, the core

simulation study only involves two concurrent flows, one is the foreground flow and the other is the

background flow. As Table 6.6 shows, FTP and UDP based NFS flows act as the background flow

to stress the wireless link, while VoIP, game, and video applications with tight QoS requirements

act as foreground flows.

6.3.1 File Downloading Applications as Foreground Applications

CATNAP classifies FTP flows as response-based, non-interactive, and greedy. This study generally

uses FTP flows as background flows to stress the wireless link. This section, however, evaluates the

performance of the three queue controllers when two FTP flows are concurrently passing through

them. Figure 6.11 and Figure 6.12 summarize the results with two current FTP flows, one as
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foreground (FTP Flow 1) and the other as background (FTP Flow 2), under IEEE 802.11g and

IEEE 802.11b link respectively.

Figure 6.11 (a) shows the cumulative downstream throughput of two FTPs over IEEE 802.11g

link. The two stackable bars represent the average throughput for each flow. All three queue

controllers give similar average throughput around 20-21Mbps, which is approximately the effective

TCP throughput over an IEEE 802.11g network. However, the throughput of CATNAP is slightly

lower than DropTail or SPQ because the CATNAP bandwidth estimation algorithm is conservative

in order to lower queuing delay for interactive applications by strictly controlling the queue length.
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Figure 6.11: Two FTP Flows over IEEE 802.11g Link

The stackable bar graph in Figure 6.11 (a) also discloses that SPQ and DropTail do not treat

FTP flows fairly, especially under the mixed latency configuration. SPQ is expected to be unfair

because it always prioritizes the foreground flow even when the foreground flow is the same type

as the background flow. Therefore, we exclude the analysis of SPQ controller in the discussion of

fairness. The DropTail queue controller, however, tends to prioritize the FTP flow with shorter

RTT over the FTP flow with longer RTT.

Figure 6.11 (b) presents the “unfairness” by using Jain’s Fairness Index, which is calculated by

the following equation:

fairness index =
(
∑
xi)

2

n×
∑
x2
i

(6.1)
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where xi is the throughput of ith flow and n stands for the number of flows.

The closer Jain’s Fairness Index to 1, the fairer the queue controller is to the flows. When both

FTP nodes have the same latency from the servers, they achieve about the same average throughput

for DropTail and CATNAP. Jain’s Fairness Index for FTP flows under DropTail and CATNAP for

both FTP are close to 1. However, for the mixed configuration, when the foreground FTP flow

has 102 ms one-way latency and the background flow has 10 ms one-way latency, CATNAP treats

them more fairly than DropTail because DropTail drops Jain’s Fairness Index to 0.8 but CATNAP

maintains Jain’s Fairness Index as high as 0.98.

Figure 6.11 (c) shows the internal queue buffer usage of each queue controller. CATNAP more

effectively controls queue length than DropTail or SPQ. Because the queue capacity of SPQ and

DropTail (listed in Table 6.5), is carefully selected to avoid any queue drops inside the AP due to

the limitation of queue size, DropTail and SPQ maximize the throughput of TCP flows passing

through them. However, as a trade-off, a large queue capacity significantly increases the queuing

delay, and eventually impairs the performance of interactive applications.

Figure 6.11 (d) shows the measured queuing delay for foreground FTP flows. The SPQ controller

always prioritizes the foreground flow and there is almost no queuing delay for the foreground FTP

flow. Thus, it provides a “floor” for the queuing delay imposed by any queue controller. As

Figure 6.11 (d) indicates, the queuing delay introduced by CATNAP is similar to SPQ, while

DropTail imposes more than 150 ms queuing delay because it fills up its queuing buffer.

Figure 6.12 shows the result of all three queue controllers with an IEEE 802.11b link. Although

the link capacity is reduced, the result with IEEE 802.11b link is very similar to the result shown

in Figure 6.11, illustrating CATNAP has similar performance with smaller link capacities except

that CATNAP outperforms the two queue controller in terms of fairness.

UDP based NFS vs. FTP

Figure 6.13 illustrates the results when a foreground UDP based NFS flow concurrently runs against

a background FTP flow. Different from the FTP flows, CATNAP classifies UDP based NFS flows

as non-response-based, non-interactive, and greedy. Because UDP does not have retransmissions

as does TCP, this study assumes that the NFS application layer does file completeness checking

and error handling. When the CATNAP AP detects that the ingress bandwidth is greater than the

effective wireless downlink capacity, the CATNAP treatment module starts to drop packets from
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Figure 6.12: Two FTP Flows over IEEE 802.11b Link

non-response-based, non-interactive, and greedy flows to avoid congestion if there exists any. In

the meantime, if any response-based, non-interactive, and greedy flow such as an FTP flow exists,

the CATNAP treatment module informs the FTP sender to slow down by reducing the advertised

window size carried by TCP ACK packets.
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Figure 6.13: NFS w/UDP and FTP flows over IEEE 802.11g Link
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Figure 6.13(a) compares the cumulative throughput of the three different APs with IEEE 802.11g

links. Over IEEE 802.11g links, the saturate rate of UDP based flows is around 30-31 Mbps, about

6 Mbps higher than the saturate rate of TCP based flows. However, when UDP based flow and

TCP based flows are concurrently running, the throughput of the “polite” TCP flow is greatly

reduced and the TCP connection may ever be terminated. Figure 6.13(a) clearly shows that under

such condition, the FTP flow hardly survives with either DropTail or SPQ. Figure 6.13(b) shows

the unfairness of DropTail and SPQ under such configuration. However, on the contrary, CATNAP

is able to fairly treat the UDP based NFS flow and TCP based FTP flows when they co-exist.

Additionally, Figure 6.13(a) and Figure 6.13(b) exhibit the potential risk of a static priority queue,

such as SPQ or port based priority scheme, where an incorrect priority setting can be harmful.

The cumulative throughput of CATNAP is only 26 Mbps, lower than throughput of DropTail

or SPQ whose throughput is dominated by the UDP foreground flow. When TCP and UDP flows

co-exist, the possible range of saturated throughput of IEEE 802.11g should be between 23 Mbps

(TCP only) and 31 Mbps (UDP only). However, there is no theoretical study to show the saturated

throughput when heavy volume UDP and TCP flows are currently running4. More accurately

estimating the downlink capacity under different traffic loads is addressed in Section 6.4.3.

Figure 6.14 shows the results when a UDP based NFS flow and a FTP flow are concurrently

running with an IEEE 802.11b link, which are very similar to the results over an IEEE 802.11g

link.

6.3.2 VoIP as Foreground Application

UDP based VoIP vs. FTP

Figure 6.15 summarizes simulation results where a foreground UDP based VoIP flow is running with

a FTP background flow over IEEE 802.11g links. CATNAP categorizes UDP based VoIP flows as

non-response-based, interactive, and non-greedy, and classifies FTP flows as response-based, non-

interactive, and greedy.

Figure 6.15(a) shows that all three AP provide similar cumulative throughput because the VoIP

flow only consumes up to 80 Kbps bandwidth which is insignificant to the bandwidth taken by the

FTP background flow. Moreover, Figure 6.15(a) indicates that it is difficult for a single background

4Experimental study may not work because TCP flows hardly survive under the pressure of high volume UDP
flows.
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Figure 6.14: NFS w/UDP and FTP flows over IEEE 802.11b Link
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Figure 6.15: VoIP (w/UDP) and FTP over IEEE 802.11g Link

FTP flow with a long latency (102ms) to saturate IEEE 802.11g links. Under a long latency

configuration, the TCP sender more likely reaches its retransmission timeout (RTO) threshold and

triggers retransmissions due to any occasional RTT variances. Thus, the overall throughout with

long latency configuration is only around 17 Mbps and less than throughput (20-21 Mbps) observed
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in the other two configurations where the FTP flow is running with a short latency (10 ms).

Figure 6.15(b) shows the internal buffer usage for each queue controller. The wireless link is not

completely saturated because no queue buffer is fully utilized in any of three APs while the queue

length of DropTail is between 30 to 50 packets, much larger than the queue length (less than 10

packets) in CATNAP.

Because the wireless link is not fully saturated in all three latency configurations, as Fig-

ure 6.15(c) shows, the maximum average queuing delay observed in this simulation is around 30

ms, which is not large enough to degrade the quality of the VoIP applications. The VoIP quality

indicator, MOS, is calculated every talkspurk (1.0 seconds). The 10th percentile of all MOS values

for one run is used as indicator of overall quality shown in Figure 6.15(d). The VoIP qualities under

all configurations are similar, though the quality with DropTail queue degrades to 4 but quality

with CATNAP or SPQ stays with 4.39.
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Figure 6.16: VoIP (w/UDP) and FTP over IEEE 802.11b Link

Figure 6.16 shows the results when the foreground VoIP and background FTP flows are concur-

rently running over IEEE 802.11b links. Unlike IEEE 802.11g links, the effective downlink capacity

of IEEE 802.11b links is only 6-9 Mbps. Because the TCP sender can adjust its sending speed

by observing RTT and counting sequence number of ACKs, a single FTP flow with a large RTT

still hardly saturates IEEE 802.11b link. However, as Figure 6.16 (b) shows, the background FTP
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background flow is able to fill a 50-100 packet queue inside the DropTail AP or the SPQ AP under

the long and mixed configurations. In consideration of the low link speed of IEEE 802.11b links,

50-100 enqueued packets are still able to dramatically increase queuing delay and impair the VoIP

quality. The VoIP quality with the DropTail AP degrades below 4.0 and enters the “fair” zone. On

the contrary, the VoIP flow over CATNAP has similar quality as on SPQ: the VoIP with these two

APs maintains the high VoIP quality as high as 4.34, which is the ceiling of MOS value for G.711

codec.

UDP based VoIP vs. NFS w/UDP
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Figure 6.17: VoIP (w/UDP) and NFS (w/UDP) over IEEE 802.11g Link

Figure 6.17 shows the results when the foreground UDP based VoIP flow and the background

UDP based NFS flow are concurrently running with IEEE 802.11g links. CATNAP classifies the

UDP based NFS flow as non-response-based,non-interactive, and greedy. Because of the lack of

rate control mechanisms and connectionless, the UDP based NSF flow is able to easily saturate

wireless link, and triggers congestion in APs.

To saturate IEEE 802.11g wireless links, this study intentionally configures the UDP sender to

send packets at 32 Mbps which is a little bit higher than the effective throughput of UDP flows as 30

Mbps over IEEE 802.11g links. Figure 6.17(a) clearly shows that the cumulative throughput of all
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three APs reaches 30 Mbps. Note, we do not show the result with the mixed configuration, because

the UDP throughput is not related to latency settings and the result with mixed configuration is

almost same as the result with long configuration.

Figure 6.17(b) illustrates internal buffer usage of three APs. DropTail and SPQ almost reach

their queue capacity limits, and 90+% of their buffer spaces are filled up for the long latency

configuration. With a such large queue size, DropTail imposes high delay for foreground VoIP flows

(Figure 6.17(c)) and dramatically degrades the VoIP quality.

The large queue length inside the SPQ also impairs the quality of the foreground VoIP appli-

cation. Because SPQ runs out of room in its queue buffer, the foreground VoIP flow experiences

around 7-8% packet loss, and the VoIP quality is significantly degraded by such a high loss. On

contrary, the VoIP quality with CATNAP still remains 4.38 because CATNAP AP intentionally

drops packets from the greedy NFS flow to avoid congestion and protects the interactive VoIP flow

by giving it higher priority.

TCP-based VoIP vs. FTP

TCP-based VoIP applications have become more and more popular over residential networks be-

cause TCP-based applications can easily go through widely deployed firewalls. CATNAP classifies

TCP-based VoIP flows as responses-based, interactive and non-greedy. Even when the congestion

occurs, CATNAP still protects the TCP-based VoIP flows without dropping packets or reducing

their transmission rate by shrinking their advertised window size.

However, CATNAP is not able to improve the quality of VoIP application much with all three

latency configurations. Figure 6.18(d) shows that there is not much difference between CATNAP,

DropTail and SPQ under all three configurations. Figure 6.19(d) indicates that the CATNAP

improves the quality of VoIP flows better than DropTail over the IEEE 802.11b links. In general,

the result of TCP-based VoIP flows is similar to the result of UDP-based VoIP flows.

Because the TCP protocol retransmits dropped packets, the loss ratio of TCP VoIP is calcu-

lated based on the number of TCP packets received during a one-second talk spurt.5 In reality,

retransmission of VoIP packets is also not helpful to improve VoIP quality if the VoIP recipient

might run out its playback buffer before the retransmitted packets arrive. Retransmission of VoIP

packets may not be able to improve the VoIP quality at all.

5The VoIP recipient knows that the sender sends 50 packets per second.
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Figure 6.18: VoIP (w/TCP) and FTP over IEEE 802.11g Link
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Figure 6.19: VoIP (w/TCP) and FTP over IEEE 802.11b Link

When the UDP-based NFS flow acts as the background flow, CATNAP actually improves the

quality of TCP-based VoIP flows. Figure 6.20(d) shows that CATNAP improves the VoIP quality

with both configurations.6 As expected, all three wireless AP provide similar cumulative throughput

6The result with IEEE 802.11b network is in Appendix Table A.2.
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as much as 30 Mbps. However, the high volume UDP flow consumes almost all of the queue space

inside DropTail and SPQ. Consequently, DropTail or SPQ drops a large fraction (7-10%) of TCP-

based VoIP packets and significantly impairs the VoIP quality. The quality of the VoIP flow with

DropTail or SPQ drops as low as 2.3. On the contrary, CATNAP actively drops 7% of the packets

from greedy NFS flows, and maintains a high MOS (4.39) for TCP-based VoIP flows.
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Figure 6.20: VoIP (w/TCP) and NFS (w/UDP) over IEEE 802.11g Link

6.3.3 Game as Foreground Application

Game applications are another kind of popular multimedia application running over home networks.

Similar to VoIP flows, game flows usually consist of small packets, and CATNAP classifies them as

interactive, non-greedy flows also. Different from VoIP applications, the quality of game applications

are more sensitive to delay and jitters [162].

This study chooses the 10th percentile of the G-Model MOS value as the end of session quality

metric. In reality, when an FPS game player experiences a couple seconds of frozen actions, he/she

may disconnect and rejoin another server. Thus, this study chooses the lowest game quality as the

quality indicator for a whole game session.
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UDP-based Game vs. FTP

Figure 6.21 summaries simulation results where a UDP-based game flow acts as the foreground

flow and an FTP flow runs as the background flow. Similar to the simulation when a VoIP flow

running foreground, the cumulative throughput of three APs are also close to each other. Because

the background FTP flow with long latency settings is unable to saturate IEEE 802.11g links, the

cumulative throughput of the all three APs with long latency configuration are only around 17-18

Mbps. As the queue size of the three APs shown in Figure 6.21(b), DropTail and SPQ builds up a

30-40 packet queue under the short and mixed configurations. Moreover, Figure 6.21(c) indicates

that DropTail imposes 20 ms delay on the game flow under the short and mixed configurations.

Because game flows are less tolerant to delay changes, the small queuing delay introduced by

DropTail impairs the quality of the game flow as seen in Figure 6.21(d).

Except for the short latency configuration, the game quality of all three APs are below 3 because

the G-Model is more sensitive to long one way latency. With a large latency (105 ms), the maximum

MOS is only 2.50 or so. Thus, neither CATNAP nor SPQ can improve the quality of game flows with

such long one-way latency. Because game flows are very sensitive to latency changes, Section 6.4.1

discusses the simulations with game flows under a variety of latency settings.
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Figure 6.21: Game (w/UDP) and FTP over IEEE 802.11g Link

Figure 6.22 shows the results where the UDP-based foreground flow and the FTP background
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flow concurrently running on IEEE 802.11b links. The quality of the game flow is similar to the

ones running on IEEE802.11g links except the cumulative throughput is between 7-8 Mbps because

the IEEE 802.11b links provides slower link speed as 11 Mbps.
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Figure 6.22: Game (w/UDP) and FTP over IEEE 802.11b

TCP-based Game vs. FTP

Figure 6.23 and Figure 6.24 show the simulation results when the TCP-based foreground game

flow concurrently runs with the FTP background flow on IEEE 802.11g and IEEE 802.11b links

respectively. Different from the UDP-based game flows, CATNAP classifies the TCP-based game

flows as response-based. CATNAP still prioritizes TCP-based game flows over FTP flows as it does

for UDP based game flows.

Game vs. UDP-based NFS

As discussed in previous sections, UDP-based NFS flows severely degrade the quality of other flows

concurrently running. Game flows are unable to survive from the pressure of greedy UDP-based

NFS flows on the DropTail and SPQ APs.

Because the UDP protocol does not have any rate control mechanism, a high volume UDP flow

can easily fill up the queue in the DropTail or SPQ APs. As Figure 6.25(b) shows, the simulated
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Figure 6.23: Game (w/TCP) and FTP over IEEE 802.11g
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Figure 6.24: Game (w/TCP) and FTP over IEEE 802.11b Link

NFS flow fills up the queue in both DropTail and SPQ. Figure 6.25(c) shows than DropTail imposes

average 320 ms queuing delay to the foreground game flow. With a such large queuing delay, the

quality of the game flow drops below 3.2 on DropTail even with the short latency configuration

in Figure 6.25(d). However, CATNAP favorites the game flows in all configurations: CATNAP

166



6.3. CORE RESULTS

provides the same quality for the game flow as SPQ, even with IEEE 802.11b links (shown in

Figure 6.26).
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Figure 6.25: Game (w/UDP) and NFS (w/UDP) over IEEE 802.11g Link
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Figure 6.26: Game (w/UDP) and NFS (w/UDP) over IEEE 802.11b Link
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6.3.4 Video Applications as Foreground Applications

CATNAP classifies video streaming flows as non-interactive and non-greedy flows. Different from

VoIP or games flows, video streaming flows generally consists of “large” packets. However, video

flows are less sensitive to large delay than VoIP and game flows because most video players are

able to buffer 3-5 seconds video ahead when they play back. Meanwhile, with the help of widely

deployed video repair techniques, e.g. FEC, video applications can tolerate 1% to 3% packets loss

without degrading video quality [39].

On the other hand, because the video encoding rate limits the actual network bandwidth de-

mands of video applications, video applications are less greedy than the file downloading applica-

tions. Based on the above characteristics, CATNAP treats video applications differently than VoIP

or FTP: protecting video flows without any dropping or rate limitation until its bandwidth goes

over its fair share rate.

UDP-based Video Application vs. FTP

Figure 6.27 summarizes the results when the UDP-based foreground video flow is concurrently

running with the background FTP flow with IEEE 802.11g links. Shown in Figure 6.27(a), CATNAP

provides only 19 Mbps cumulative downlink throughput in mixed and short latency configurations,

which is 1 Mbps less than DropTail or SPQ. The reason is that CATNAP does not fully take

the advantage of the large queue buffer size. For example, Figure 6.27(b) shows that CATNAP

still maintains a much smaller queue than DropTail or SPQ in the “mixed” configuration where

DropTail or SPQ has 150 or more enqueued packets. With such a large queue, DropTail imposes 70

ms delay for the video flow. The video flow running over the SPQ AP does not degrade its quality

because SPQ prioritizes the video flow.

This study chooses the 10th percentile of playout frame rate as the metric of video quality, which

is shown in Figure 6.27(d). Although the video flows running on DropTail suffers from increased

queuing delay, their quality do not degrade because the video player’s playout buffer assimilates

the increased delay. Figure 6.27(d) shows that all video flows experience the similar qualities with

all three APs.

Figure 6.28 shows the results when video and FTP concurrently run over an IEEE 802.11b link.

The cumulative throughput are decreased to 7-8 Mbps as the link capacity is reduced to 11 Mbps.

Meanwhile, DropTail uses 150-200 out of 900 queuing spaces, and introduces more than 200 ms
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Figure 6.27: Video (w/UDP) and FTP over IEEE 802.11g Link

queuing delay. Therefore, the 10th percentile video frame rate for the DropTail AP degrades to 25-

26 fps, while CATNAP and SPQ maintain 29 fps. Although video performance with the DropTail

is still in the range of good quality, considering its large queuing delay, other video applications

which are sensitive to delay, such as a video conference, might be significantly impaired.
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Figure 6.28: Video (w/UDP) and FTP over IEEE 802.11b
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TCP-based Video Application vs. FTP

Figure 6.29 and Figure 6.30 show the results when TCP-based foreground video flows and FTP

background flows are concurrently running over IEEE 802.11g and IEEE 802.11b networks respec-

tively. With FTP as a background flow, there is only trivial performance differences between the

TCP-based and the UDP-based video flows.
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Figure 6.29: Video (w/TCP) and FTP over IEEE 802.11g

Video Application vs. UDP-based NFS

Figure 6.31 elucidates the results when the UDP-based foreground video flows and the UDP-based

NFS background flow are concurrently running over IEEE 802.11g links. Similar to other simulation

cases when the UDP-based NFS flow acts as a background flow, DropTail and SPQ build up

large queues and almost exhaust their queuing spaces with the “long” latency configuration in

Figure 6.31(b). Shown in Figure 6.31(c) A such large queue inside the DropTail introduces more

than 300 ms delay for the video flow.

Although SPQ priorities the video flow and it does not introduce a large queuing delay for the

video flow, SPQ has to drop 7-8% video packets because it run out of buffer spaces. Thus, as

Figure 6.31(d) shows, both SPQ and DropTail degrade the video frame rate to 25 bps.

On the contrary, the video flow running with CATNAP survives from the pressure of the greedy
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Figure 6.30: Video (w/TCP) and FTP over IEEE 802.11b

NFS flow. Its playout frame rate remains at 28-30 fps and experiences almost no queuing delay.

Thus, CATNAP performs better than the other two APs when wireless link are under the pressure

of greedy UDP flows.
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Figure 6.31: Video (w/UDP) and NFS (w/UDP) over IEEE 802.11g
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6.3.5 Web Applications as Foreground Applications

CATNAP might classify Web flows as either non-interactive or interactive depending upon the

nature of Web flows themselves. A typical Web session starts with the Web client sending a request

and ends when the server returns all requested content to the client. Because Web sessions generally

only last for a couple seconds, CATNAP has only a small chance to treat Web flows before they

terminate. The short duration of Web flows increases the implementation difficulties. However,

because of the short duration of typical Web flows, there is no punishment even when CATNAP

inaccurately classifies Web flows into a wrong category and mistakenly treats them. Thus, CATNAP

should provide similar performance as DropTail, which is the bottom line of treating Web flows.

In our simulation or experimental study [35], Web flows are not able to survive with DropTail

or SPQ under the pressure of heavy load UDP flows. The Web clients’ requests keep timing out

because UDP packets fill up the DropTail or SPQ AP’s queue. Thus, this study only runs foreground

Web flows with background FTP flows.

It is difficult to compare performance of Web flows with other types of foreground flows with

the same metric because of the Web flows’ short life cycle. It may only complete a couple of

Web sessions in 120 second simulation time because our Web traffic model includes users’ reading

time [9]. Therefore, the Web flow simulation extends the simulation time to 600 seconds: FTP

background flows kicks off at the 5th second and ends at the 595th second; the Web client sends its

first Web request at the 10th second and stops to send requests after the 590th second. To avoid

cold start effects, this study choose the traffic between the 10th second and the 590th second for

analysis.

Figure 6.32 presents the result when the foreground Web flows and the background FTP flow

are concurrently running on IEEE 802.11g links. As Figure 6.32(a) shows, all three APs provide

similar throughput with the three latency configurations. Because of the short duration of Web

flows, the background FTP flow contributes the dominant part of the throughput. Figure 6.32(b)

shows the throughput for Web flows only. However, because the Web session duration includes

the server response time, Web throughput is lower than FTP throughput. CATNAP provides 30%

more Web throughput than the DropTail in Figure 6.32(b). Similar to our other simulation results,

Figure 6.32(c) shows that CATNAP maintains a smaller queue than DropTail or SPQ.

This study chooses the Web response time as the main performance metric for Web flows. The

Web response time is the time period between the time when the Web client sent a request and the
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time when the Web client receives last object from the Web server. Figure 6.32(d) shows that both

CATNAP and SPQ have a similar and a smaller response time than DropTail.
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Figure 6.32: Web Flow vs FTP over IEEE 802.11g

Figure 6.33 shows the simulation results when the foreground Web flows and the FTP back-

ground flow are concurrently running with IEEE 802.11b links. Over the slower IEEE 802.11b

link, CATNAP performs similar as it does with IEEE 802.11g link, specifically, CATNAP provides

about a 0.5 seconds smaller Web responses time than DropTail under the long and mixed latency

configurations.

6.4 Extended Results

Section 6.3 discusses the simulation results when a foreground flow currently runs with one back-

ground flow under three different latency settings. To reduce the number of variables in simulations,

the simulation cases in Section 6.3 only has three different latency settings, and two flows (a fore-

ground flow and a background flow). This section demonstrates the performance of CATNAP,

DropTail and SPQ under a variety of simulation configurations.
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Figure 6.33: Web Flow vs FTP over IEEE 802.11b

6.4.1 Variety of Latency Settings

Simulations with three latency settings are not enough to validate the performance of CATNAP,

especially for delay sensitive flows such as game flows. The application server involved in residential

users’ network activities may be all around the world, with end-to-end latencies over a large range.

Thus, this section demonstrates how different network latencies affect the performance of CATNAP,

DropTail and SPQ.

The foreground flow latency (L1) varies from 5 ms, 10 ms, 25 ms, 50 ms, 75 ms, and 102.5ms,

where 10 ms and 102.5 ms7 are two modes of one way latencies measured by Maier et al. over

German residential networks [139]. Because a single FTP flow with a large one-way latency (102.5

ms) is not able to saturate IEEE 802.11 links, the simulations in this section stress the wireless link

with a background FTP flow with 10 ms one-way latency. Meanwhile, the simulations in this section

only run with IEEE 802.11g since Section 6.3 showed that most of results with IEEE 802.11b links

are similar to the simulations with IEEE 802.11g links. Additionally, to avoid repetitive results, we

only choose game and video flows as foreground flow since the game flows are sensitive to latencies

and video flows usually are not sensitive to latencies because of playout buffers.

7In [139], Maier at al. measured round-trip time and the two modes are 20 ms and 205 ms.
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Game Flows with Different Latencies

Figure 6.34 shows the simulation results as the latency increases between the game server and client.

With the increment of latency of the foreground game flow, all three APs provide similar cumulative

throughput of 20 Mbps because the background FTP flow dominates throughput. However, in

Figure 6.34(a) the cumulative throughput on CATNAP is 1 Mbps or so less than the other two

since CATNAP controls the queue length in a conservative manner. Among the three APs, SPQ

introduces the smallest queuing delay because of its strict priority nature. As Figure 6.34(c) shows,

the queuing delay of game flows on CATNAP is the same as the game flow on SPQ while DropTail

imposes 15-20 ms more delays on game flows. Under all latency settings, SPQ provides the best

game quality, CATNAP provides similar quality as SPQ, and DropTail has the lowest game quality

even in the simulations with short latency settings. Note, because game quality is sensitive to delay,

game flows for all APs drop into fair quality in simulations with large latencies, such as 102.5 ms,

although SPQ and CATNAP provide a little bit better game quality than DropTail does.
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Figure 6.34: Server Latency Cases (Game w/UDP)

As Figure 6.35 shows, the TCP-based game flows have similar performance to their UDP coun-

terparts. DropTail still provides the poorest game quality in all simulation cases, while SPQ and
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CATNAP achieve similar performance.
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Figure 6.35: Server Latency Cases (Game w/TCP)
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Video Applications with Different Latencies

Figure 6.36 shows the simulation results of foreground UDP video flows under different latency

settings. As in the video simulation in Section 6.3, the 10th percentile of frame rate is chosen as

the quality metric for end-of-video quality. Figure 6.36(d) shows that all three APs yield a similar

video play out frame rate.

Moreover, Figure 6.36(c) shows that DropTail introduces around 100 ms delay for video flows,

while CATNAP and SPQ only introduce 2-3 ms delay. The reason is that the background FTP

packets fill up the queue inside DropTail. Although the SPQ queue is also filled with FTP packets,

it prioritizes the video flows and does not impair the video performance. Figure 6.36(c) shows that

CATNAP has the potential to provide better performance for interactive video applications, such

as video conferences, which have less tolerance to large delays.
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Figure 6.36: Server Latency Cases (video w/UDP)

Figure 6.37 shows the simulation results of TCP-based video flows under different latency set-

tings. The results of TCP-based video flows are very similar to the results of UDP-based flows.
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Figure 6.37: Server Latency Cases (video w/TCP)

Summary

This section used two indicator applications to assess CATNAP : games which are sensitive to delay,

and videos which are not too sensitive to delay, to evaluate over a large range of latency settings.

Since the results are similar to simulation results in Section 6.3, we did not repeat all simulation

combinations over different server latency settings.
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6.4.2 Range of DropTail Queue Capacities

The queue capacity inside network devices affects the performance of network applications running

through them [35, 168]. Generally, a large queue capacity is able to assimilate occasionally bursty

traffic and improve the TCP throughput, but it may harm the quality of time sensitive applications,

e.g., game applications.

Table 6.5 summaries the queue capacities used in in Section 6.3 where DropTail and SPQ choose

the queue capacity based on bandwidth delay products, and CATNAP sets its queue capacity as

sufficiently large as 1000 packets. However, our earlier studies [35,168] show that the queue capacity

in residential APs is between 35 packets to 100 packets, much smaller than the queue capacity used

in Section 6.3. Therefore, this section evaluates the performance of DropTail, the default queue

controller for residential wireless APs, under a variety of queue capacity settings.

To reduce the number of independent variables, this section uses only the UDP-based game

flows as foreground flows, and the FTP flows as background flows because the quality of games is

most sensitive to delay. The latency between both clients and servers is set as 10 ms. DropTail

queue capacities of are chosen as 35, 50, 100, 200, 400, and 900 packets, where the 35 packet queue

is the smallest one found in [35], and the 900 packet queue is the largest one used in Section 6.3.

Figure 6.38(a) shows the cumulative throughput on DropTail with different queue capacities.

The cumulative throughput increase as the DropTail queue capacity increases. However, after the

queue capacity is larger than 200 packets, the cumulative throughput stop increasing. Because the

background FTP flow is the dominant part of the throughput, the large queue capacity helps to

improve the bursty TCP throughput.

Figure 6.38(b) presents the average queue length 8 during the simulation life cycle. The average

queue length also increases as the queue capacity increases. However, after the queue capacity is

greater than 400 packets, the average queue length stays around 50 packets.

Figure 6.38(c) shows the queuing delay for the foreground game flow. As the queue capacity

and queue length increase, the queuing delay of the game flow also increases. When the AP queue

capacity is greater than 200 packets, the queuing delay stays around 20 ms delay because the queue

length becomes stable.

The queuing delay is almost two times the link latency between the game client and server, but

the MOS value of the game flow does not decrease much. Although the game is sensitive to delay,

8Queue length is average queue length over one second.
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Figure 6.38: Game (w/UDP) on DropTail with Different Queue Capacities

30 ms delay (20 ms queuing delay and 10 ms link latency) does not dramatically degrade game

performance because of the G-Model [136].

However, Figure 6.21(d) in Section 6.3 shows that CATNAP maintains the MOS value as 4.39 at

all three latency settings, which is slightly better than DropTail that range of 4.18 to 4.30. Overall,

CATNAP provides similar or better performance with game applications than DropTail, regardless

of its queue capacity.

6.4.3 Multiple Foreground Applications

To control the number of random variables, the simulation in the previous section only involves two

flows: one background flow and one foreground flow. Thus, this section compares the performance

between CATNAP and DropTail with multiple flows. Note, this section excludes SPQ, because

SPQ is a static priority scheme and without any common acceptable standard for flow priorities.
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Setup

Palazzi et al. have the assumption that the typical American middle class family consists of two

working parents and two teenage kids [105,126,169]9, and four computers are concurrently running.

Thus, the simulation setup in this section is: one AP, one gateway, four wireless clients, and four

Internet servers.

One wireless node serves as the destination for the background FTP flow. The one way latency

between the FTP client and server is 10 ms, which is half of the shorter mode of RTTs which is

measured over German residential networks [139]10. This simulation uses the FTP background flow

to stress the IEEE 802.11g links.

The remaining three wireless nodes are used as the destination for the UDP-based game, UDP-

based VoIP and TCP-based video flows, respectively. CATNAP classifies the game and VoIP flows

as non-response-based, interactive, and non-greedy, and the video flow as response-based, non-

interactive, and non-greedy. To reduce the number of simulation variables, the foreground flows are

set with the same one-way latency as 50 ms.

The background FTP flow starts the 5th second of the simulation and ends at the 115th second.

The VoIP, game and Video Flow start at the 9.7th seconds with 0.3 seconds interval, and they

terminate at 110th second. To avoid the effect of cold start, the results are calculated with the

simulation data between the 15th second and 105th seconds to avoid the cold start and cool down

effects.

The queue capacity of DropTail is calculated based on bandwidth delay products: 50 packets

(small) and 450 packets (large) respectively. The queue capacity of CATNAP is 1000 packets, as

same as the CATNAP queue capacity in Section 6.3.

Refined Estimated Link Capacity Algorithm

In Section 6.2, CATNAP provides lower cumulative throughput than DropTail, especially when in-

teractive flows exist. One possible reason is that CATNAP underestimates the effective throughput,

over-treating the non-interactive flows. After revisiting the CATNAP effective capacity estimator

(Algorithm 1), we decided to refine Algorithm 1 to improve the performance of CATNAP.

9According to the 2010 Census data, the average household size is 2.63, slightly growing from 2.62 in the 2007
Census.

10Maier et al. report 20 ms and 205 ms as two modes of RTTs over Germany residential network are 20 ms and
205 ms respectively.
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Figure 6.39: IP Packet Transmission

Figure 6.39 gives the detailed timing information of an IP packet transmission process inside a

wireless driver, where tPLCP is the transmission time for the PLCP header; tMAC is the transmission

time for the MAC layer header including CRC; tIP is the transmission time for the IP packet

excluding the MAC and PLCP headers; and t′MAC is the overhead to receive MAC layer ACK

frames and possible time used for MAC layer retransmission. Note, the actual sending time (∆tn)

for packet pn measured in Algorithm 1 is ∆tn = tn+1 − tn. Algorithm 1 calculates the effective

capacity C as:

C =
lengthp(n)+HMAC

tm+t+ ´tm

=
lengthp(n)+HMAC

∆tn−tPLCP

≈ LIP

∆tn−tPLCP
,when LIP >> LMAC

= LIP

∆tn
,used in effective capacity estimator (Algorithm 1)

(6.2)

Comparing Figure 6.39 and Eq 6.2, one can see that Algorithm 1 works well when the IP packet

size length(pn) is much larger than the MAC layer header length. For example, compared to a 1500

byte long FTP packet, the 34 byte MAC layer header is negligible. But for the 80 byte long Quake

IV game packets, the MAC layer header is significant when calculating the effective capacity. Thus,

182



6.4. EXTENDED RESULTS

Algorithm 13 simply improves the CATNAP effective capacity estimator by considering the length

of MAC header and PLCP overhead.

Algorithm 13 Estimate Link Effective Capacity (refined)

At the end of each epoch,

1: HMAC ← 34 bytes . MAC Layer header including CRC.
2: tPLCP ← 48 ms . Transmission time used for PLCP header
3: n← get total pkt sent() . get total number of packet sent in this epoch.
4: if n > 0 then

5: Cepoch ←

n∑
k=1

(get pkt length(pk)+HMAC)

n∑
k=1

(∆tk

− tPLCP ) . Instantaneous Capacity in ith epoch

6: C ← (1− ω)× get link capacity() + ω × Cepoch
7: else
8: C ← get link capacity() . No packet was transmitted in ith epoch, Ci is same as Ci−1.
9: end if

10: set link capacity(C) . Save the link capacity into the CATNAP system variable tab.

According to the IEEE 802.11 standard [2, 141], the physical layer header is sent at a lower

rate (the preamble rate) where the MAC header and MAC payload are transmitted at the higher

IEEE 802.11 rate. Based on IEEE 802.11g standard [2], the long and short PLCP preamble and

the long PLCP header are transmitted at 1 Mbps, and the short PLCP header is be transmitted

at 2 Mbps. However, the NS-2 implementation only supports one PLCP data rate which is used

to transmit both the PLCP preamble and the PLCP header. Thus, in this study, we use our NS-2

simulator with the PLCP Header length as a 48 bit (short preamble length) and PLCP rate as 1

Mbps respectively.11 Therefore, the PLCP overhead per frame is calculated in Equation 6.3

tPLCP =
HPLCP

RPLCP
=

48 bits

1 Mbps
= 48µs (6.3)

Results of Multiple Foreground Applications

Table 6.7 and Table 6.8 summarize the results when three foreground flows and one background

flow are concurrently running with DropTail and CATNAP. We have several key observations from

these two tables:

11The NS-2 implementation is inconsistent with the IEEE 802.11 standard. In addition to the possible 1 Mbps or
2 Mbps PLCP rate listed above, some researchers argue that the PLCP data rate should be set as 6 Mbps - the base
date rate for the IEEE 802.11g network.
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Table 6.7: Throughput Comparison between Bandwidth Estimators

Application
Throughput (Mbps)

DropTail CATNAP
50 pkt queue 450 pkt queue Orig Estimator Refined Estimator

Background FTP 17.26 19.72 16.58 18.48
VoIP w/UDP 0.080 0.08 0.0800 0.08
Game w/UDP 0.01 0.01 0.01 0.01
Video w/TCP 1.66 1.65 1.66 1.66

Total 19.00 21.46 18.23 20.34

Table 6.8: QoS comparison between Bandwidth Estimators

Application
Quality

DropTail CATNAP
50 pkt queue 450 pkt queue Orig Estimator Refined Estimator

Background FTP(Mbps) 17.26 19.72 16.58 18.48
VoIP w/UDP (MOS) 4.36 4.03 4.37 4.37
Game w/UDP (MOS) 2.52 1.32 3.28 3.28
Video w/TCP (fps) 16.00 29.00 30.00 30.00

1. CATNAP provides better QoS for interactive applications, especially for game applications

which are more sensitive to delay. From the view of interactive applications’ quality, CATNAP

with either the original or refined bandwidth estimator performs better than DropTail.

2. CATNAP with refined bandwidth estimator provides higher cumulative throughput than

CATNAP with the original estimator. Both implementations of CATNAP have lower cu-

mulative throughput than DropTail with a large queue, but CATNAP with refined capacity

estimator provides better cumulative throughput than DropTail with small queue capacity.

3. The queue capacity of DropTail significantly affects its performance. The bigger queue ca-

pacity ensures the bulk file transfer applications achieve higher throughput, while the smaller

queue can provide better performance for interactive applications, such as Game and VoIP.

However, it is not easy to decide the “best” queue capacity for DropTail.

4. CATNAP does not fully take advantage of a large queuing buffer space even with the refined

bandwidth estimator. The cumulative throughput of DropTail with 450 packets is 1.1 Mbps

(5%) higher than CATNAP with the refined estimator, and 3.2 Mbps higher than CATNAP

with the original estimator. Thus, there are still a possibility to improve the throughput of
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CATNAP, but would require a more accurate bandwidth estimator. We leave this as future

work.

6.5 Summary

This section summarizes the simulation results Section 6.3 and Section 6.4, and provides a general

overview of performance comparison between CATNAP and SPQ. SPQ provides a performance

ceiling for an AP over a residential network. In reality, however, it is impractical for SPQ to

reach its best performance without having apriori knowledge on each flow’s characteristics. Thus,

this summary section uses the result of DropTail as a baseline to calculate the improvement from

CATNAP.

CATNAP always improves the foreground application quality in the presence of a high volume

UDP flow. A TCP-based flow will be terminated when a high volume UDP flow stresses the

wireless link [17], and DropTail yields extremely low performance. Although DropTail provides

higher downlink throughput than CATNAP for some simulation cases, the quality of foreground

applications is always poor with DropTail because the foreground application cannot survive when

competing with high volume UDP flows. Since DropTail performs so poorly when a high volume

UDP flow is present, this section only focuses on the simulation results with FTP flows as a

background application and excludes results involving the UDP-based flows in the summary section.

Interested readers can refer to Table A.1 to Table A.4 in Appendix for further information.

Table 6.9 and Table 6.10 summarize the quality (QoS) improvement of foreground applications,

and Table 6.11 and Table 6.12 compare throughput differences between CATNAP and DropTail

over high capacity links (11g) and low capacity links (11b) respectively. Appendix lists the com-

plete tables with numerical values. The positive ratio means that CATNAP performs better than

DropTail, while the negative number means that CATNAP performs worse than DropTail. Note,

bold fonts highlight the results when CATNAP differs by 10% more than DropTail. Several key

observations are made from these four tables:

1. CATNAP improves the quality (QoS) of foreground applications on both high capacity (IEEE

802.11g) links and low capacity (IEEE 802.11b) links, especially for interactive applications

with tight latency requirements such as First Person Shooter (FPS) games [162,170]. However,

CATNAP does not significantly improve the quality of VoIP applications over IEEE 802.11g
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Table 6.9: QoS improvement for CATNAP over DropTail on IEEE 802.11g Links.

Background Foreground Quality
Latency Settings

short mixed long

FTP

FTP
Throughput 1.3% 104.4% 18.4%
Jain’s Fairness 1.0% 23.8% 6.4%

Game w/UDP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 58.1% 52.4% 15.7%

Game w/TCP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 54.5% 55.6% 53.7%

VoIP w/UDP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 1.1% 1.8% 1.6%

VoIP w/TCP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 0.2% 0.6% 0.9%

Video w/UDP
Throughput 0.0% 0.0% 0.0%
Fr Rate(10% tail) 0.0% 0.0% 0.0%
Video Fr Delay 89.5% 97.6% 75.0%

Video w/TCP
Throughput 0.0% 0.0% 0.0%
Fr Rate(10% tail) 3.4% 3.4% 0.0%
Video Fr Delay 80.9% 95.6% 77.8%

Web
Throughput 23.5% 41.3% 75.7%
Response Time (sec) 13.6% 48.1% 56.4%

Table 6.10: QoS improvement for CATNAP over DropTail on IEEE 802.11b Links.

Background Foreground Quality
Latency Settings

short mixed long

FTP

FTP
Throughput -8.8% 46.5% 106.4%
Jain’s Fairness 4.2% 25.0% 7.6%

Game w/UDP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 32.6% 113.9% 93.7%

Game w/TCP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 34.7% 117.7% 111.2%

VoIP w/UDP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 5.3% 25.4% 11.6%

VoIP w/TCP
Throughput 0.0% 0.0% 0.0%
MOS (10% tail) 5.2% 29.6% 12.7%

Video w/UDP
Throughput 1.4% -1.4% 0.7%
Fr Rate(10% tail) 11.5% 7.4% 11.1%
Video Fr Delay 50.0% 96.9% 96.4%

Video w/TCP
Throughput 0.0% 0.0% 0.0%
Fr Rate(10% tail) 7.4% 20.0% 3.4%
Video Fr Delay 14.3% 93.8% 78.7%

Web
Throughput 75.8% 63.8% 115.7%
Response Time (sec) 54.6% 55.0% 57.9%
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Table 6.11: Cumulative Throughput Improvement for CATNAP over DropTail on IEEE 802.11g
Links.

Background Foreground
Improvement

short mixed long

FTP

FTP -1.7% 2.0% -2.7%
Game w/UDP -4.2% -5.1% -2.1%
Game w/TCP -2.8% -6.0% -2.1%
VoIP w/UDP -1.5% -5.6% 0.7%
VoIP w/TCP -2.1% -5.0% 2.5%
Video w/UDP -5.9% -12.3% -2.2%
Video w/TCP -6.8% -13.1% -7.3%

Web -4.4% -5.4% -5.1%

Table 6.12: Cumulative Throughput Improvement for CATNAP over DropTail on IEEE 802.11b
Links.

Background Foreground
Improvement

short mixed long

FTP

FTP -4.0% 3.1% 1.0%
Game w/UDP 9.6% -9.6% -16.2%
Game w/TCP 10.1% -10.9% -0.6%
VoIP w/UDP 6.1% -5.4% -5.9%
VoIP w/TCP 8.5% -10.8% -9.9%
Video w/UDP 6.5% -13.2% -10.6%
Video w/TCP 8.9% -10.8% 12.0%

Web 3.7% -11.6% 13.1%

links, because the quality of VoIP degrades only when one way delay is greater than 173ms.

The average playout frame rate is also not improved much by CATNAP with high capacity

IEEE 802.11g links, but the video frame queuing delay is significantly reduced. However,

because VoIP is more sensitive to bursty loss and its quality is not sensitive to delay relative

to typical AP queue sizes, the quality of VoIP is not improved much by CATNAP.

2. CATNAP generally provides a slightly lower cumulative downlink throughput than DropTail.

Primarily, throughput is not the objective of CATNAP. Moreover, the original downlink ca-

pacity estimator, described in Algorithm 1, excludes PLCP headers and MAC layer headers

when estimating downlink available capacity. The PLCP or MAC layer overhead is insignif-

icant compared to the transmission times for “full” packets, but these PLCP or MAC layer

overhead should not be excluded for “non-full” packets, especially for tiny packets from in-

teractive flows, such as VoIP or game flows. Therefore, Algorithm 13 amends the downlink
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capacity calculation by subtracting the PLCP and MAC layer overhead, the corresponding

result are listed in Table 6.7.

3. CATNAP reduces the queuing delay for game, VoIP and video applications for most simulation

cases. Video applications with CATNAP and DropTail yield similar average frame rate over

either high link capacity (11g) or low link capacity (11b), but CATNAP introduces smaller

overhead for video frame queuing delays than DropTail.

188



Chapter 7

Future Work

This chapter considers several possible areas of future work based on this thesis.

7.1 Implementation

Chapter 6 shows the evaluation and validation of CATNAP with the NS-2.33 network simulator.

One important reason that we implement CATNAP with NS-2 instead of an actual AP is that

network simulators are able to evaluate CATNAP under various network conditions. Implementing

CATNAP with the Open Source tools, e.g. Openwrt [56] could provide realistic results, but evalu-

ating AP performance could not be done as thoroughly as in simulation. As Chapter 6 discussed, it

is difficult to analyze wireless traffic collected from uncontrolled environments because many factors

degrade the performance of wireless APs.

Initially, we tried to implement CATNAP as a host AP [168] based on a Intel P4 desktop in

2010. OpenWrt [56] is an alternative development tool, but OpenWrt only supported LinkSys

WRT54g router. However, the Linux based host AP provides more development flexibility than

OpenWrt. The per-flow queue, response-base/non-response-based classifier, and interactive/non-

interactive classifier were functional as a prototype. However, in 2010, the Linux kernel did not

support wireless IEEE 802.11g card very well. We tried several wireless cards from different vendors

including Netgear, Belkin, Trendnet and Lucent, and encountered various technical difficulties. For

example, the greedy/non-greedy classifier needs information on link capacity, but most driver APIs

only can provide current physical link speeds. We enhanced the Madwifi driver to collect wireless
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layer and physical layer information, but the Madwifi driver became unstable with heavy loads.

CATNAP could be implemented with OpenWrt or other wireless network development kit. In

detail, the implementation of a prototype CATNAP consists of several steps:

• Implement CATNAP with a virtual machine: Directly implementing CATNAP with

OpenWrt might be difficult because CATNAP is a cross layer solution. CATNAP needs

modifications with wireless layer drivers as well as IP and transport layers implementation.

However, several CATNAP modules can be implemented inside IP and Transport layer. These

IP and transport layer modules can be implemented on virtual machines to save debug time.

• Implement CATNAP with a Host AP: Host AP [168] is a Linux based desktop with

wireless network card, acting as a wireless access point. The Host AP provides more compu-

tational power, memory resources and debugging compatibility. Implementing CATNAP on

a host AP could be helpful to tune the parameters of CATNAP, reduce its resource usage,

and improve its performance.

• Implement CATNAP with OpenWrt: The OpenWrt tool kit supports a variety of hard-

ware [56]. Several OpenWrt compatible devices, e.g., SMC 7908ISP-A and Freescale MPC85xx

(p1020wlan), are based on multi-core CPUs with similar architectures to Intel X86. These

APs can be the first candidates when porting CATNAP from a Host AP.

CATNAP is a cross layer solution, and the majority of its modules can be implemented within

the IP and Transport layer. Theoretically, CATNAP can be built upon any hardware supported by

OpenWrt. Only the downlink capacity estimator must be integrated within the MAC or physical

layer, and it depends on the hardware. The “push” and “delay” can be implemented with IEEE

802.11e standard by simply mapping the CATNAP classification results into TOS bits or IEEE

802.11e traffic categories (TC).

7.2 Resouce Consumption

CATNAP could be implemented in commerically sold APs, but consideration would need to be

made for the hardware resources required. Wireless APs are resource limited devices. For example,

among 200 APs supported by OpenWrt, only six of them are built with dual core CPU and only

few of them have 1G RAM [56].
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Although CATNAP is designed for resource limited devices, it still introduces memory and CPU

overheads. CATNAP requires additional O(N) memory, where N is number of current flows, to

keep per flow statistics information for each active flow, such as packet rate, RTT, classification

results, EWMA packet length, and start and last active timestamp. However, the per flow in-

formation is small, and 1 KB space is sufficient to store one flow record. Meanwhile, unlike core

network routers, residential wireless APs do not need to handle thousands of concurrent flows.

Our home wireless measurement study only observed 10-20 concurrent flows occasionally. Thus, in

real implementation, CATNAP only needs up to 50 KB additional memory space to keep per flow

information. In addition to per flow information, CATNAP tracks system variables, such as total

number of active flows, downlink capacity, and cumulative packet arriving rate, but these system

wide information are independent with the number of flows and the number of packets, and requires

1 KB additional memory.

The CATNAP modules are divided into two categories from the implementation perspective:

packet-based or epoch-based. The computational complexity of packet-based modules such as the

interactive/non-interactive classifier is O(M) where M is the number of packets per seconds; the

computational complexity of epoch-based modules such as the greedy/non-greedy classifier is O(N)

where N is the number of flows per epoch. Our NS-2 implementation integrates the packet-based

modules into the uplink and downlink queue controller and triggers the epoch-based modules with

a timer (soft interrupt). An AP implementation could use a similar approach. Computation-heavy

operations such as recalculating CRC after modifying the advertised window size for each TCP

packet can be done with hardware to save CPU cycles.

However, the challenging part is to estimate the CPU consumption under a heavy loaded system.

7.3 Identify Paced Traffic

In addition to response-based/non-response-based, interactive/non-interactive, and greedy/non-

greedy flows, packet inter-arrival timing information can be also used to identify the type of appli-

cations [22,30]. Packets can be transmitted in bursts on a paced basis or an as-available basis [30].

While the former pattern often indicates both throughput and response-oriented applications, the

latter pattern is indicative of applications that require a steady data rate to limit jitter, e.g., video

streaming and VoIP. We assume that packet inter-arrival time is usually dominated by the ap-

191



CHAPTER 7. FUTURE WORK

plications themselves, but it can also be affected by the wireless network conditions. Congestion

and queuing on the devices along the path from servers to the residential clients are potential im-

pediments to correct determination of this classification, but the long-term nature of the timing

information of these applications makes classification feasible.

Paced flows should be treated with smooth method: sometime push and sometime delay. How-

ever, detecting response-based traffic or inspecting packet length is not effective in differentiating

video streaming flows from other flows. High quality video can be transferred over TCP with full

packets as in FTP, and our current implementation of CATNAP might classified high quality video

flows as non-interactive and/or greedy. However, high quality video flows are different from FTP

flows in the nature of packet inter-arrival timing information.

For the file transfer, the limiting factor is typically the TCP congestion control mechanisms. It

is well known that TCP congestion control, combined with ACK compression, induces burstiness in

traffic patterns. However, streaming traffic typically involves continuous data transfer over a long

time period1, and its data rate is determined by the video or audio codec. Thus, streaming traffic

has a more regular traffic pattern and transmission rate than does file transfer. Hence, streaming

traffic is expected to be less bursty in terms of packet inter-arrival time than bulk downloading

data2.

Roughan et al. [22] propose a method to differentiate streaming traffic by studying the ratio of

mean and standard deviation of inter-arrival times, referred to as the inter-arrival variability metric.

Their result shows the inter-arrival variability appears to be a good method for differentiating data

transfer from streaming. However, the bursty nature of the wireless medium introduces additional

variance into the packet inter-arrival time. Therefore, one potential improvement is to develop a

new flow classification metric based on the various moments of inter-arrival times.

Figure 7.1 compares packet inter-arrival time between a streaming flow over UDP (the data

flows from server to client)3 and an FTP download (the data flow from server to client) over a

wireless link in our preliminary study. The downstream packets are captured at the wireless client

instead of at an AP over a residential network. In Figure 7.1, bin size is selected as 0.001 second.

Louma et al. [171] use a similar approach, with different bin size, to identify real time video traffic

from FTP traffic. However, as Figure 7.1 shows, the distribution of packet inter-arrival times of

1The median video clip length on the Internet is 2 minutes [38].
2A VBR codec may be bursty because of the nature of information content, but this burstiness appears in the

packet size, not in the packet inter-arrival times [22].
3The video used in our preliminary study is encoded at 300 Kbps by Windows Media Encoder v9.0.
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Figure 7.1: Packet Inter-Arrival Time Distribution of a Streaming and an FTP Application.

these two different applications are difficult to differentiate.
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Figure 7.2: Two Example Dot-Strip Plots for the Packet Inter-Arrival Time for a Windows Media
Streaming with UDP Flow and an FTP Data Flow.

Figure 7.2 shows the same dataset in dot-strip plot graphs. The plot shows the arrival time

(in seconds) of a packet along the x-axis, and to make the timings of individual packets more

obvious, displays the milliseconds along the y-axis. The major advantage of dot-strip plot graph

is that the patterns from the packet inter-arrival time plots can be visually identified by human

eyes. In Figure 7.2 (a), after the initial buffering phase, the packets in the streaming application

are transferred in paced groups, while the FTP flow (in Figure 7.2 (b) ) does not show similar

characteristics. To study the gap pattern between paced packet groups in a streaming flow, a

threshold is introduced to quantitatively analyze the gaps between packet groups.

Figure 7.3 shows the packet inter-arrival time on the y-axis, and packet arrival time along the

x-axis for the same data set with a threshold (the horizontal line in both graphs). The packets

above the horizontal line arrive 100 milliseconds or more after its previous packet. The preliminary
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threshold in Figure 7.3 is arbitrarily selected, but one could study the sensitivity of classification

to the threshold selection.
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Figure 7.3: Two Examples of Packet Timing Information.

In addition to the gap between packet groups, other timing information such as a moving average

of packet inter-arrival time can be used to differentiate paced and as-available traffic [22]. Thus,

CATNAP could use a statistical-based method to differentiate paced traffic (such as streaming

video and audio) from other best effort flows and attempt to reduce the jitter of paced flows when

congestion occurs.

7.3.1 Smooth the Flow

Packets in flows that need a consistent rate with little jitter can be smoothed (pushed or delayed) to

maintain a consistent rate as the network load varies. This treatment is appropriate for streaming

video (VoD) and audio (VoIP) applications that need bandwidth estimation and low delay jitter.

Smoothing the flow is the most complex of the four treatments. Smoothing can be done with

both push and/or delay operations or separate queues. For instance, using a separate queue to

support video streaming applications, packets from the streaming server can be placed in the queue

(buffer), and the wireless AP dequeues and transmits packets from this queue periodically. This

method minimizes jitter on the wireless client and improves quality.

The smoothing operation might require additional information to decide the drain rate for

streaming applications. When a flow is categorized as a paced flow4, the CATNAP classifier already

knows the arrival rate before placing packets into a separate queue. Thus, the AP can buffer the

incoming traffic and periodically dequeue the packets at the same rate as the arrival rate. Between

4It is typically a streaming audio or video flow.
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the transmission of paced packets, the non-paced flows such as file downloading still have a chance

to be transmitted.

7.4 Improve RTT Estimator

Simulation results show that CATNAP treats the FTP flows more fairly than DropTail because

CATNAP sets the TCP advertised windows size with estimated fair share rate. Because the ad-

vertised window size calculation is based on the RTT estimation, CATNAP could perform better

if we can improve the current RTT estimator.

Algorithm 2 measures the round time time (RTT) for TCP flows based on the TCP SYN/ACK

three-way handshake - it simply sets the RTT of UDP flows on the average RTT for Internet flows

reported in [153]. Thus, the RTT of TCP flows is only measured once when the TCP connection

is established. After that, even when RTT changes due to queuing delay variations or routing

changes, the CATNAP treater still calculates the advertised window size based on the obsolete

RTT measured at the first time.

Therefore, CATNAP might have a better performance if we can improve the Algorithm 2 by

measuring RTT during their entire lifetime of TCP streams. However, passive estimation of RTT

at the middle observation point is not a trivial problem [172, 173]. In addition to the SYN/ACK

estimation, Jiang and Dovrolis [173] propose a Slow-Start algorithm which is based on the slow-

start phase of TCP. The Slow-Start algorithm only works with TCP flow starts with at least five

consecutive segments, and the first four of them are MSS packets. Thus, their method does not

work with TCP flows with small segments, or TCP flows with unusual MSS settings. Jaiswal et

al. [172] and But et al. [174] present algorithms to continuously estimate RTT for TCP flows. But

their algorithms are inaccurate under certain conditions [174] though they can be used to predict

an upper bound of the actual RTT.

On the other hand, it is even more difficult to estimate RTT for non-response-based or UDP

flows at the mid-point, especially for UDP video streaming flows, because there might not exist

reverse flows for them. However, we might use some other information to estimate the RTT of

non-response-based flows. For example, RTSP [94] specifies the video stream can be sent through

either UDP or TCP, but the control signaling are always transmitted over a TCP connection. In

this case, we might estimate the RTT of UDP flows by measuring paired TCP flows.
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7.5 Self-Tuning Epoch

The value of the epoch used in Algorithm 1 and Algorithm 8 is empirically decided by a set of

simulations. Ideally, the size of the epoch should be half of the shortest RTT observed by CATNAP.

However, because our current implementation of RTT estimator only estimates once when the TCP

connection is established and the one time measured RTT might be inaccurate, we decide to choose

a fixed epoch in order to reduce the implementation complexity. A too short epoch time would

introduce too much computational overhead for flows with long RTTs, while a too large epoch time

would not be able to detect the fluctuation of flow rate promptly. Thus, it is promising to improve

the performance of CATNAP by introducing a scheme to dynamically choose the value of epoch

based on the shortest RTT observed.

7.6 Identify Interactive flows with TCP PUSH flag

Some other packet level information can help to more accurately identify the type of applications.

For example, according to different application types, the client may have a different number of

packets flagged with the PUSH flag. By using the PUSH flag, the TCP sender tells the operating

system and the receiving peer that all buffered data needs to be sent to the receiving applications.

In interactive applications, when the client sends a command to the server, the client sets the PUSH

flag and waits for the server’s response. Without the PUSH flag, this process would be delayed

by the operating system on the receiver which may continue to wait for additional data. Thus,

interactive applications tend to have a larger fraction of non-full packets with the PUSH flag.
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Conclusions

As the last-mile link speed is increasing and wireless devices become widely deployed, wireless access

points are becoming the bottleneck device along the Internet path in near future. Improving the

quality of realtime applications, such as network games and VoIP over residential wireless networks is

becoming increasingly important. A wireless access point acts as the central communication point

for a residential network, connecting all network devices inside home through a shared Internet

connection. However, compared with enterprise class APs, residential APs are usually resource

limited: low CPU computation capabilities and small memory size.

This dissertation presents a cross-layer solution, Classification And Treatment iN Access Point

(CATNAP), which can be implemented over residential access points to 1) provide an automatic

flow classification scheme without any manual user interventions; 2) minimize queuing delays to

meet quality of service (QoS) requirements of delay sensitive applications such as Web, VoIP, game

and streaming video. CATNAP is an active queue management approach which is designed for

low end devices, such as residential APs: both classification and treatment modules consume small

amount of resources. CATNAP classifies flows into treatment-based categories without any manual

user configurations or training with historic datasets.

CATNAP meets a few requirements for “smart” devices. Its pre-configured parameters remove

the burden from home users to configure their APs. Typically, home users are not required to

know any detailed information of their applications, such as which ports are used. Meanwhile,

CATNAP is an approach that does not require any modification to end hosts, and it is compatible

with existing TCP/IP based network applications. Moreover, because CATNAP is independent
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from any particular application, it is able to classify and treat any future applications which behave

similarly to applications in the eight categories.

A thorough simulation study demonstrates that CATNAP is able to improve multimedia appli-

cation quality with a wide range of network configurations, especially applications such as games

and VoIP whose quality is sensitive to delay. In most simulation cases, CATNAP is able to provide

better performance than DropTail and similar performance to SPQ which needs prior knowledge

on flow types. Especially for simulation cases where a non-response-based, greedy flow is a back-

ground flow, CATNAP provides even better performance than SPQ. Web flows cross the boundary

between the interactive and non-interactive flows. There is only small opportunity to treat Web

flows because of their short life cycle. However, CATNAP can improve the Web quality with smaller

response time.

This dissertation makes an effort to investigate current wireless network usage at home. By

analyzing traces gathered during the home wireless measurement study, we provide a better un-

derstanding of home wireless network usage, with a set of reality-based parameters to tune NS-2

simulation.

This study shows that

• CATNAP is a “plug-and-play” solution, which automatically classifies and treats home ap-

plications, without any modification to end devices or applications.

• CATNAP generally provide better QoS than DropTail. CATNAP lowers the queuing delay

for time sensitive applications by effectively controlling queue length. Results show that

CATNAP improves QoS for interactive applications, VoIP and games, as well as reduces the

response time for Web applications.

• Results show that CATNAP tames greedy traffics efficiently, especially for misbehaved high

volume UDP flows. Meanwhile, CATNAP treats greedy TCP flows more fairly than DropTail.
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