
Matplotlib
Release 1.3.1

John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the matplotlib development team

October 10, 2013

CONTENTS

I User’s Guide 1

1 Introduction 3

2 Installing 5
2.1 Manually installing pre-built packages . 5
2.2 Installing from source . 6
2.3 Build requirements . 7
2.4 Building on OSX . 8

3 Pyplot tutorial 9
3.1 Controlling line properties . 11
3.2 Working with multiple figures and axes . 13
3.3 Working with text . 15

4 Interactive navigation 19
4.1 Navigation Keyboard Shortcuts . 20

5 Customizing matplotlib 23
5.1 The matplotlibrc file . 23
5.2 Dynamic rc settings . 23

6 Using matplotlib in a python shell 35
6.1 Ipython to the rescue . 35
6.2 Other python interpreters . 36
6.3 Controlling interactive updating . 36

7 Working with text 39
7.1 Text introduction . 39
7.2 Basic text commands . 39
7.3 Text properties and layout . 41
7.4 Writing mathematical expressions . 44
7.5 Typesetting With XeLaTeX/LuaLaTeX . 54
7.6 Text rendering With LaTeX . 59
7.7 Annotating text . 63

8 Image tutorial 67
8.1 Startup commands . 67

i

8.2 Importing image data into Numpy arrays . 67
8.3 Plotting numpy arrays as images . 69

9 Artist tutorial 79
9.1 Customizing your objects . 81
9.2 Object containers . 83
9.3 Figure container . 83
9.4 Axes container . 85
9.5 Axis containers . 87
9.6 Tick containers . 90

10 Customizing Location of Subplot Using GridSpec 93
10.1 Basic Example of using subplot2grid . 93
10.2 GridSpec and SubplotSpec . 94
10.3 Adjust GridSpec layout . 95
10.4 GridSpec using SubplotSpec . 96
10.5 A Complex Nested GridSpec using SubplotSpec . 97
10.6 GridSpec with Varying Cell Sizes . 98

11 Tight Layout guide 101
11.1 Simple Example . 101

12 Legend guide 117
12.1 What to be displayed . 117
12.2 Multicolumn Legend . 119
12.3 Legend location . 119
12.4 Multiple Legend . 120
12.5 Legend of Complex Plots . 121

13 Event handling and picking 125
13.1 Event connections . 125
13.2 Event attributes . 126
13.3 Mouse enter and leave . 130
13.4 Object picking . 131

14 Transformations Tutorial 135
14.1 Data coordinates . 135
14.2 Axes coordinates . 138
14.3 Blended transformations . 140
14.4 Using offset transforms to create a shadow effect . 142
14.5 The transformation pipeline . 143

15 Path Tutorial 147
15.1 Bézier example . 148
15.2 Compound paths . 150

16 Annotating Axes 153
16.1 Annotating with Text with Box . 153
16.2 Annotating with Arrow . 155

ii

16.3 Placing Artist at the anchored location of the Axes . 160
16.4 Using Complex Coordinate with Annotation . 162
16.5 Using ConnectorPatch . 165
16.6 Zoom effect between Axes . 166
16.7 Define Custom BoxStyle . 166

17 Our Favorite Recipes 171
17.1 Sharing axis limits and views . 171
17.2 Easily creating subplots . 171
17.3 Fixing common date annoyances . 172
17.4 Fill Between and Alpha . 174
17.5 Transparent, fancy legends . 178
17.6 Placing text boxes . 179

18 Screenshots 181
18.1 Simple Plot . 181
18.2 Subplot demo . 182
18.3 Histograms . 182
18.4 Path demo . 183
18.5 mplot3d . 184
18.6 Streamplot . 185
18.7 Ellipses . 187
18.8 Bar charts . 188
18.9 Pie charts . 189
18.10 Table demo . 190
18.11 Scatter demo . 191
18.12 Slider demo . 192
18.13 Fill demo . 193
18.14 Date demo . 194
18.15 Financial charts . 195
18.16 Basemap demo . 196
18.17 Log plots . 197
18.18 Polar plots . 198
18.19 Legends . 199
18.20 Mathtext_examples . 200
18.21 Native TeX rendering . 201
18.22 EEG demo . 202
18.23 XKCD-style sketch plots . 203

19 What’s new in matplotlib 207
19.1 new in matplotlib-1.3 . 209
19.2 new in matplotlib 1.2.2 . 220
19.3 new in matplotlib-1.2 . 220
19.4 new in matplotlib-1.1 . 231
19.5 new in matplotlib-1.0 . 237
19.6 new in matplotlib-0.99 . 242
19.7 new in 0.98.4 . 245

iii

20 Github stats 253

21 License 287
21.1 Copyright Policy . 287
21.2 License agreement for matplotlib 1.3.1 . 287
21.3 License agreement for matplotlib versions prior to 1.3.0 288

22 Credits 291

II The Matplotlib FAQ 295

23 Installation 297
23.1 Report a compilation problem . 297
23.2 matplotlib compiled fine, but nothing shows up when I use it 297
23.3 How to completely remove matplotlib . 298
23.4 How to Install . 299
23.5 Linux Notes . 300
23.6 OS-X Notes . 300
23.7 Windows Notes . 302

24 Usage 303
24.1 General Concepts . 303
24.2 Matplotlib, pylab, and pyplot: how are they related? . 304
24.3 Coding Styles . 304
24.4 What is a backend? . 305
24.5 What is interactive mode? . 307

25 How-To 311
25.1 Plotting: howto . 312
25.2 Contributing: howto . 322
25.3 Matplotlib in a web application server . 323
25.4 Search examples . 324
25.5 Cite Matplotlib . 324

26 Troubleshooting 327
26.1 Obtaining matplotlib version . 327
26.2 matplotlib install location . 327
26.3 .matplotlib directory location . 327
26.4 Getting help . 328
26.5 Problems with recent git versions . 329

27 Environment Variables 331
27.1 Setting environment variables in Linux and OS-X . 331
27.2 Setting environment variables in windows . 332

iv

III The Matplotlib Developers’ Guide 333

28 Coding guide 335
28.1 Pull request checklist . 335
28.2 Style guide . 337
28.3 Hints . 338

29 Licenses 341
29.1 Why BSD compatible? . 341

30 Working with matplotlib source code 343
30.1 Introduction . 343
30.2 Install git . 343
30.3 Following the latest source . 344
30.4 Making a patch . 344
30.5 Git for development . 346
30.6 git resources . 356

31 Testing 359
31.1 Requirements . 359
31.2 Running the tests . 359
31.3 Writing a simple test . 360
31.4 Writing an image comparison test . 360
31.5 Known failing tests . 361
31.6 Creating a new module in matplotlib.tests . 361
31.7 Using tox . 362
31.8 Using Travis CI . 362

32 Documenting matplotlib 363
32.1 Getting started . 363
32.2 Organization of matplotlib’s documentation . 363
32.3 Formatting . 365
32.4 Figures . 367
32.5 Referring to mpl documents . 370
32.6 Internal section references . 371
32.7 Section names, etc . 371
32.8 Inheritance diagrams . 371
32.9 Emacs helpers . 372

33 Doing a matplotlib release 375
33.1 Testing . 375
33.2 Branching . 375
33.3 Packaging . 376
33.4 Posting files . 376
33.5 Update PyPI . 377
33.6 Documentation updates . 378
33.7 Announcing . 378

34 Working with transformations 379

v

34.1 matplotlib.transforms . 379

35 Adding new scales and projections to matplotlib 401
35.1 Creating a new scale . 401
35.2 Creating a new projection . 402
35.3 API documentation . 403

IV Matplotlib AxesGrid Toolkit 413

36 Overview of AxesGrid toolkit 417
36.1 What is AxesGrid toolkit? . 417
36.2 AXES_GRID1 . 419
36.3 AXISARTIST . 433

37 The Matplotlib AxesGrid Toolkit User’s Guide 439
37.1 AxesDivider . 439
37.2 AXISARTIST namespace . 442

38 The Matplotlib AxesGrid Toolkit API 455
38.1 mpl_toolkits.axes_grid.axes_size . 455
38.2 mpl_toolkits.axes_grid.axes_divider . 456
38.3 mpl_toolkits.axes_grid.axes_grid . 460
38.4 mpl_toolkits.axes_grid.axis_artist . 461

V mplot3d 465

39 Matplotlib mplot3d toolkit 467
39.1 mplot3d tutorial . 467
39.2 mplot3d API . 489
39.3 mplot3d FAQ . 516

VI Toolkits 519

40 Basemap (Not distributed with matplotlib) 523

41 Cartopy (Not distributed with matplotlib) 525

42 GTK Tools 527

43 Excel Tools 529

44 Natgrid (Not distributed with matplotlib) 531

45 mplot3d 533

46 AxesGrid 535

vi

VII The Matplotlib API 537

47 Plotting commands summary 539

48 API Changes 547
48.1 Changes in 1.3.x . 547
48.2 Changes in 1.2.x . 550
48.3 Changes in 1.1.x . 552
48.4 Changes beyond 0.99.x . 553
48.5 Changes in 0.99 . 555
48.6 Changes for 0.98.x . 555
48.7 Changes for 0.98.1 . 557
48.8 Changes for 0.98.0 . 557
48.9 Changes for 0.91.2 . 562
48.10 Changes for 0.91.1 . 562
48.11 Changes for 0.91.0 . 562
48.12 Changes for 0.90.1 . 563
48.13 Changes for 0.90.0 . 564
48.14 Changes for 0.87.7 . 565
48.15 Changes for 0.86 . 566
48.16 Changes for 0.85 . 567
48.17 Changes for 0.84 . 568
48.18 Changes for 0.83 . 568
48.19 Changes for 0.82 . 569
48.20 Changes for 0.81 . 570
48.21 Changes for 0.80 . 571
48.22 Changes for 0.73 . 571
48.23 Changes for 0.72 . 571
48.24 Changes for 0.71 . 572
48.25 Changes for 0.70 . 572
48.26 Changes for 0.65.1 . 573
48.27 Changes for 0.65 . 573
48.28 Changes for 0.63 . 573
48.29 Changes for 0.61 . 574
48.30 Changes for 0.60 . 574
48.31 Changes for 0.54.3 . 574
48.32 Changes for 0.54 . 575
48.33 Changes for 0.50 . 578
48.34 Changes for 0.42 . 579
48.35 Changes for 0.40 . 580

49 The top level matplotlib module 583

50 afm (Adobe Font Metrics interface) 587
50.1 matplotlib.afm . 587

51 animation 591
51.1 matplotlib.animation . 591

vii

52 artists 599
52.1 matplotlib.artist . 599
52.2 matplotlib.lines . 608
52.3 matplotlib.patches . 616
52.4 matplotlib.text . 653

53 axes 665
53.1 matplotlib.axes . 665

54 axis 831
54.1 matplotlib.axis . 831

55 backends 841
55.1 matplotlib.backend_bases . 841
55.2 matplotlib.backends.backend_gtkagg . 860
55.3 matplotlib.backends.backend_qt4agg . 860
55.4 matplotlib.backends.backend_wxagg . 861
55.5 matplotlib.backends.backend_pdf . 862
55.6 matplotlib.dviread . 864
55.7 matplotlib.type1font . 867

56 cbook 869
56.1 matplotlib.cbook . 869

57 cm (colormap) 881
57.1 matplotlib.cm . 881

58 collections 885
58.1 matplotlib.collections . 885

59 colorbar 901
59.1 matplotlib.colorbar . 901

60 colors 905
60.1 matplotlib.colors . 905

61 dates 915
61.1 matplotlib.dates . 915

62 figure 925
62.1 matplotlib.figure . 925

63 font_manager 945
63.1 matplotlib.font_manager . 945
63.2 matplotlib.fontconfig_pattern . 950

64 gridspec 953
64.1 matplotlib.gridspec . 953

65 legend 957

viii

65.1 matplotlib.legend . 957

66 Markers 961
66.1 matplotlib.markers . 961

67 mathtext 965
67.1 matplotlib.mathtext . 967

68 mlab 983
68.1 matplotlib.mlab . 983

69 path 1005
69.1 matplotlib.path . 1005

70 pyplot 1013
70.1 matplotlib.pyplot . 1013

71 sankey 1189
71.1 matplotlib.sankey . 1189

72 spines 1197
72.1 matplotlib.spines . 1197

73 ticker 1201
73.1 matplotlib.ticker . 1201

74 tight_layout 1211
74.1 matplotlib.tight_layout . 1211

75 triangular grids 1213
75.1 matplotlib.tri . 1213

76 units 1225
76.1 matplotlib.units . 1225

77 widgets 1227
77.1 matplotlib.widgets . 1227

VIII Glossary 1237

Bibliography 1241

Python Module Index 1243

Python Module Index 1245

Index 1247

ix

x

Part I

User’s Guide

1

CHAPTER

ONE

INTRODUCTION

matplotlib is a library for making 2D plots of arrays in Python. Although it has its origins in emulating the
MATLAB® 1 graphics commands, it is independent of MATLAB, and can be used in a Pythonic, object
oriented way. Although matplotlib is written primarily in pure Python, it makes heavy use of NumPy and
other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a few
commands, or just one! If you want to see a histogram of your data, you shouldn’t need to instantiate
objects, call methods, set properties, and so on; it should just work.

For years, I used to use MATLAB exclusively for data analysis and visualization. MATLAB excels at mak-
ing nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in MATLAB. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of MATLAB as a programming language, and decided to start over in Python.
Python more than makes up for all of MATLAB’s deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK more than exceeds all of my needs).

When I went searching for a Python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc.)

• Postscript output for inclusion with TeX documents

• Embeddable in a graphical user interface for application development

• Code should be easy enough that I can understand it and extend it

• Making plots should be easy

Finding no package that suited me just right, I did what any self-respecting Python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate MATLAB’s plotting capabilities because that is something MATLAB does very well. This had the
added advantage that many people have a lot of MATLAB experience, and thus they can quickly get up to
steam plotting in python. From a developer’s perspective, having a fixed user interface (the pylab interface)
has been very useful, because the guts of the code base can be redesigned without affecting user code.

The matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions
provided by matplotlib.pylab which allow the user to create plots with code quite similar to MATLAB

1 MATLAB is a registered trademark of The MathWorks, Inc.

3

http://www.python.org
http://www.numpy.org
http://www.vtk.org/

Matplotlib, Release 1.3.1

figure generating code (Pyplot tutorial). The matplotlib frontend or matplotlib API is the set of classes that
do the heavy lifting, creating and managing figures, text, lines, plots and so on (Artist tutorial). This is an
abstract interface that knows nothing about output. The backends are device dependent drawing devices, aka
renderers, that transform the frontend representation to hardcopy or a display device (What is a backend?).
Example backends: PS creates PostScript® hardcopy, SVG creates Scalable Vector Graphics hardcopy,
Agg creates PNG output using the high quality Anti-Grain Geometry library that ships with matplotlib,
GTK embeds matplotlib in a Gtk+ application, GTKAgg uses the Anti-Grain renderer to create a figure and
embed it a Gtk+ application, and so on for PDF, WxWidgets, Tkinter etc.

matplotlib is used by many people in many different contexts. Some people want to automatically generate
PostScript files to send to a printer or publishers. Others deploy matplotlib on a web application server to
generate PNG output for inclusion in dynamically-generated web pages. Some use matplotlib interactively
from the Python shell in Tkinter on Windows™. My primary use is to embed matplotlib in a Gtk+ EEG
application that runs on Windows, Linux and Macintosh OS X.

4 Chapter 1. Introduction

http://www.adobe.com/products/postscript/
http://www.w3.org/Graphics/SVG/
http://www.antigrain.com
http://www.gtk.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.wxpython.org/
http://docs.python.org/lib/module-Tkinter.html

CHAPTER

TWO

INSTALLING

There are many different ways to install matplotlib, and the best way depends on what operating system
you are using, what you already have installed, and how you want to use it. To avoid wading through all
the details (and potential complications) on this page, the easiest thing for you to do is use one of the pre-
packaged python distributions that already provide matplotlib built-in. The Enthought Python Distribution
(EPD) for Windows, OS X or Redhat is an excellent choice that “just works” out of the box. Another
excellent alternative for Windows users is Python (x, y) which tends to be updated a bit more frequently.
Both of these packages include matplotlib and pylab, and lots of other useful tools. matplotlib is also
packaged for almost every major Linux distribution. So if you are on Linux, your package manager will
probably provide matplotlib prebuilt.

2.1 Manually installing pre-built packages

2.1.1 General instructions

For some people, the prepackaged pythons discussed above are not an option. That’s OK, it’s usually pretty
easy to get a custom install working. You will first need to find out if you have python installed on your
machine, and if not, install it. The official python builds are available for download here, but OS X users
please read Which python for OS X?.

Once you have python up and running, you will need to install numpy. numpy provides high-performance
array data structures and mathematical functions, and is a requirement for matplotlib. You can test your
progress:

>>> import numpy
>>> print numpy.__version__

matplotlib requires numpy version 1.5 or later. Although it is not a requirement to use matplotlib, we
strongly encourage you to install ipython, which is an interactive shell for python that is matplotlib-aware.

Next, we need to get matplotlib installed. We provide prebuilt binaries for OS X and Windows on the
matplotlib download page. Click on the latest release of the “matplotlib” package, choose your python
version (2.6, 2.7 or 3.2) and your platform (macosx or win32). If you have any problems, please check the
Installation, search using Google, and/or post a question the mailing list.

If you are on Debian/Ubuntu linux, it suffices to do:

5

http://www.enthought.com/products/epd.php
http://www.pythonxy.com/
http://www.python.org/download
http://www.numpy.org/
http://ipython.org
https://github.com/matplotlib/matplotlib/downloads/
http://sourceforge.net/project/showfiles.php?group_id=80706

Matplotlib, Release 1.3.1

> sudo apt-get install python-matplotlib

Instructions for installing our OSX binaries are found in the FAQ Installing OSX binaries.

Once you have ipython, numpy and matplotlib installed, you can use ipython’s “pylab” mode to have a
MATLAB-like environment that automatically handles most of the configuration details for you, so you can
get up and running quickly:

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]: x = randn(10000)

In [2]: hist(x, 100)

Note that when testing matplotlib installations from the interactive python console, there are some issues
relating to user interface toolkits and interactive settings that are discussed in Using matplotlib in a python
shell.

2.1.2 Installing on Windows

If you don’t already have python installed, you may want to consider using the Enthought edition of python,
which has scipy, numpy, and wxpython, plus many other useful packages, preinstalled - Enthought Python.
With the Enthought edition of python + matplotlib installer, the following backends should work out of the
box: agg, wx, wxagg, tkagg, ps, pdf and svg.

For standard python installations, you will also need to install numpy in addition to the matplotlib in-
staller. On some systems you will also need to download msvcp71.dll library, which you can download
from http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71 or other sites. You will need to unzip the
archive and drag the dll into c:windowssystem32.

All of the GUI backends run on Windows, but TkAgg is probably the best for interactive use from the
standard python shell or ipython. The Windows installer (*.exe) on the download page contains all the code
you need to get up and running. However, there are many examples that are not included in the Windows
installer. If you want to try the many demos that come in the matplotlib source distribution, download the
zip file and look in the examples subdirectory.

2.2 Installing from source

If you are interested in contributing to matplotlib development, running the latest source code, or just like to
build everything yourself, it is not difficult to build matplotlib from source. Grab the latest tar.gz release file
from the download page, or if you want to develop matplotlib or just need the latest bugfixed version, grab
the latest git version Source install from git.

6 Chapter 2. Installing

http://www.enthought.com/python
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71
https://github.com/matplotlib/matplotlib/downloads

Matplotlib, Release 1.3.1

Once you have satisfied the requirements detailed below (mainly python, numpy, libpng and freetype), you
can build matplotlib:

cd matplotlib
python setup.py build
python setup.py install

We provide a setup.cfg file that goes with setup.py which you can use to customize the build process. For
example, which default backend to use, whether some of the optional libraries that matplotlib ships with are
installed, and so on. This file will be particularly useful to those packaging matplotlib.

If you have installed prerequisites to nonstandard places and need to inform matplotlib where they are,
edit setupext.py and add the base dirs to the basedir dictionary entry for your sys.platform. e.g., if
the header to some required library is in /some/path/include/someheader.h, put /some/path in the
basedir list for your platform.

2.3 Build requirements

These are external packages which you will need to install before installing matplotlib.
Windows users only need the first two (python and numpy) since the others are built
into the matplotlib Windows installers available for download at the download page
<https://github.com/matplotlib/matplotlib/downloads>_. If you are building on OSX,
see Building on OSX. If you are installing dependencies with a package manager on Linux, you may need
to install the development packages (look for a “-dev” postfix) in addition to the libraries themselves.

Note: If you are on debian/ubuntu, you can get all the dependencies required to build matplotlib with:

sudo apt-get build-dep python-matplotlib

If you are on Fedora/RedHat, you can get all the dependencies required to build matplotlib by first installing
yum-builddep and then running:

su -c "yum-builddep python-matplotlib"

This does not build matplotlib, but it does get the install the build dependencies, which will make building
from source easier.

python 2.6, 2.7, 3.1 or 3.2 Download python.

numpy 1.5 (or later) array support for python (download numpy)

libpng 1.2 (or later) library for loading and saving PNG files (download). libpng requires zlib. If you are
a Windows user, you can ignore this because we build support into the matplotlib single-click installer

freetype 1.4 (or later) library for reading true type font files. If you are a windows user, you can ignore
this since we build support into the matplotlib single click installer.

dateutil 1.1 or later Provides extensions to python datetime handling. If using pip, easy_install or in-
stalling from source, the installer will attempt to download and install python_dateutil from PyPI.
Note that python_dateutil also depends on six. pip and other package managers should handle
installing that secondary dependency automatically.

2.3. Build requirements 7

https://github.com/matplotlib/matplotlib/raw/master/setup.cfg.template
http://www.python.org/download/
http://numpy.org
http://www.libpng.org/pub/png/libpng.html

Matplotlib, Release 1.3.1

pyparsing Required for matplotlib’s mathtext math rendering support. If using pip, easy_install or in-
stalling from source, the installer will attempt to download and install pyparsing from PyPI.

Optional

These are optional packages which you may want to install to use matplotlib with a user interface toolkit.
See What is a backend? for more details on the optional matplotlib backends and the capabilities they
provide.

tk 8.3 or later The TCL/Tk widgets library used by the TkAgg backend

pyqt 4.0 or later The Qt4 widgets library python wrappers for the Qt4Agg backend

pygtk 2.4 or later The python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend

wxpython 2.8 or later The python wrappers for the wx widgets library for use with the WX or WXAgg
backend

Required libraries that ship with matplotlib

agg 2.4 The antigrain C++ rendering engine. matplotlib links against the agg template source statically, so
it will not affect anything on your system outside of matplotlib.

PyCXX 6.2.4 A library for writing Python extensions in C++.

2.4 Building on OSX

The build situation on OSX is complicated by the various places one can get the libpng and freetype re-
quirements (darwinports, fink, /usr/X11R6) and the different architectures (e.g., x86, ppc, universal) and
the different OSX version (e.g., 10.4 and 10.5). We recommend that you build the way we do for the OSX
release: get the source from the tarball or the git repository and follow the instruction in README.osx.

8 Chapter 2. Installing

CHAPTER

THREE

PYPLOT TUTORIAL

matplotlib.pyplot is a collection of command style functions that make matplotlib work like MATLAB.
Each pyplot function makes some change to a figure: eg, create a figure, create a plotting area in a figure,
plot some lines in a plotting area, decorate the plot with labels, etc.... matplotlib.pyplot is stateful, in
that it keeps track of the current figure and plotting area, and the plotting functions are directed to the current
axes

import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel(’some numbers’)
plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

so
m

e
 n

u
m

b
e
rs

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide a single

9

Matplotlib, Release 1.3.1

list or array to the plot() command, matplotlib assumes it is a sequence of y values, and automatically
generates the x values for you. Since python ranges start with 0, the default x vector has the same length as
y but starts with 0. Hence the x data are [0,1,2,3].

plot() is a versatile command, and will take an arbitrary number of arguments. For example, to plot x
versus y, you can issue the command:

plt.plot([1,2,3,4], [1,4,9,16])

For every x, y pair of arguments, there is an optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from MATLAB, and you
concatenate a color string with a line style string. The default format string is ‘b-‘, which is a solid blue line.
For example, to plot the above with red circles, you would issue

import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], ’ro’)
plt.axis([0, 6, 0, 20])
plt.show()

0 1 2 3 4 5 6
0

5

10

15

20

See the plot() documentation for a complete list of line styles and format strings. The axis() command
in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example
below illustrates a plotting several lines with different format styles in one command using arrays.

10 Chapter 3. Pyplot tutorial

http://numpy.scipy.org

Matplotlib, Release 1.3.1

import numpy as np
import matplotlib.pyplot as plt

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, ’r--’, t, t**2, ’bs’, t, t**3, ’g^’)
plt.show()

0 1 2 3 4 5
0

20

40

60

80

100

120

3.1 Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see
matplotlib.lines.Line2D. There are several ways to set line properties

• Use keyword args:

plt.plot(x, y, linewidth=2.0)

• Use the setter methods of the Line2D instance. plot returns a list of lines; eg line1, line2 =
plot(x1,y1,x2,y2). Below I have only one line so it is a list of length 1. I use tuple unpacking in
the line, = plot(x, y, ’o’) to get the first element of the list:

3.1. Controlling line properties 11

Matplotlib, Release 1.3.1

line, = plt.plot(x, y, ’-’)
line.set_antialiased(False) # turn off antialising

• Use the setp() command. The example below uses a MATLAB-style command to set multiple
properties on a list of lines. setp works transparently with a list of objects or a single object. You can
either use python keyword arguments or MATLAB-style string/value pairs:

lines = plt.plot(x1, y1, x2, y2)
use keyword args
plt.setp(lines, color=’r’, linewidth=2.0)
or MATLAB style string value pairs
plt.setp(lines, ’color’, ’r’, ’linewidth’, 2.0)

Here are the available Line2D properties.

Property Value Type
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color or c any matplotlib color
contains the hit testing function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ...]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

12 Chapter 3. Pyplot tutorial

Matplotlib, Release 1.3.1

To get a list of settable line properties, call the setp() function with a line or lines as argument

In [69]: lines = plt.plot([1,2,3])

In [70]: plt.setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

3.2 Working with multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All plotting com-
mands apply to the current axes. The function gca() returns the current axes (a matplotlib.axes.Axes
instance), and gcf() returns the current figure (matplotlib.figure.Figure instance). Normally, you
don’t have to worry about this, because it is all taken care of behind the scenes. Below is a script to create
two subplots.

import numpy as np
import matplotlib.pyplot as plt

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1)
plt.subplot(211)
plt.plot(t1, f(t1), ’bo’, t2, f(t2), ’k’)

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), ’r--’)
plt.show()

3.2. Working with multiple figures and axes 13

Matplotlib, Release 1.3.1

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

The figure() command here is optional because figure(1) will be created by default, just as a
subplot(111) will be created by default if you don’t manually specify an axes. The subplot() com-
mand specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols. The
commas in the subplot command are optional if numrows*numcols<10. So subplot(211) is identical
to subplot(2,1,1). You can create an arbitrary number of subplots and axes. If you want to place an axes
manually, ie, not on a rectangular grid, use the axes() command, which allows you to specify the location
as axes([left, bottom, width, height]) where all values are in fractional (0 to 1) coordinates. See
pylab_examples-axes_demo for an example of placing axes manually and pylab_examples-line_styles for an
example with lots-o-subplots.

You can create multiple figures by using multiple figure() calls with an increasing figure number. Of
course, each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt
plt.figure(1) # the first figure
plt.subplot(211) # the first subplot in the first figure
plt.plot([1,2,3])
plt.subplot(212) # the second subplot in the first figure
plt.plot([4,5,6])

plt.figure(2) # a second figure
plt.plot([4,5,6]) # creates a subplot(111) by default

plt.figure(1) # figure 1 current; subplot(212) still current

14 Chapter 3. Pyplot tutorial

Matplotlib, Release 1.3.1

plt.subplot(211) # make subplot(211) in figure1 current
plt.title(’Easy as 1,2,3’) # subplot 211 title

You can clear the current figure with clf() and the current axes with cla(). If you find this statefulness,
annoying, don’t despair, this is just a thin stateful wrapper around an object oriented API, which you can
use instead (see Artist tutorial)

If you are making a long sequence of figures, you need to be aware of one more thing: the memory required
for a figure is not completely released until the figure is explicitly closed with close(). Deleting all refer-
ences to the figure, and/or using the window manager to kill the window in which the figure appears on the
screen, is not enough, because pyplot maintains internal references until close() is called.

3.3 Working with text

The text() command can be used to add text in an arbitrary location, and the xlabel(), ylabel() and
title() are used to add text in the indicated locations (see Text introduction for a more detailed example)

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor=’g’, alpha=0.75)

plt.xlabel(’Smarts’)
plt.ylabel(’Probability’)
plt.title(’Histogram of IQ’)
plt.text(60, .025, r’$\mu=100,\ \sigma=15$’)
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

3.3. Working with text 15

Matplotlib, Release 1.3.1

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty

µ=100, σ=15

Histogram of IQ

All of the text() commands return an matplotlib.text.Text instance. Just as with with lines above,
you can customize the properties by passing keyword arguments into the text functions or using setp():

t = plt.xlabel(’my data’, fontsize=14, color=’red’)

These properties are covered in more detail in Text properties and layout.

3.3.1 Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
σi = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r’$\sigma_i=15$’)

The r preceding the title string is important – it signifies that the string is a raw string and not to treat
backslashes and python escapes. matplotlib has a built-in TeX expression parser and layout engine, and
ships its own math fonts – for details see Writing mathematical expressions. Thus you can use mathematical
text across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed,
you can also use LaTeX to format your text and incorporate the output directly into your display figures or
saved postscript – see Text rendering With LaTeX.

16 Chapter 3. Pyplot tutorial

Matplotlib, Release 1.3.1

3.3.2 Annotating text

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate()method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

import numpy as np
import matplotlib.pyplot as plt

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor=’black’, shrink=0.05),
)

plt.ylim(-2,2)
plt.show()

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.

3.3. Working with text 17

Matplotlib, Release 1.3.1

There are a variety of other coordinate systems one can choose – see Annotating text and Annotating Axes
for details. More examples can be found in pylab_examples-annotation_demo.

18 Chapter 3. Pyplot tutorial

CHAPTER

FOUR

INTERACTIVE NAVIGATION

All figure windows come with a navigation toolbar, which can be used to navigate through the data set. Here
is a description of each of the buttons at the bottom of the toolbar

The Forward and Back buttons These are akin to the web browser forward and back buttons. They are
used to navigate back and forth between previously defined views. They have no meaning unless you
have already navigated somewhere else using the pan and zoom buttons. This is analogous to trying
to click Back on your web browser before visiting a new page –nothing happens. Home always takes
you to the first, default view of your data. For Home, Forward and Back, think web browser where
data views are web pages. Use the pan and zoom to rectangle to define new views.

The Pan/Zoom button This button has two modes: pan and zoom. Click the toolbar button to activate
panning and zooming, then put your mouse somewhere over an axes. Press the left mouse button
and hold it to pan the figure, dragging it to a new position. When you release it, the data under the
point where you pressed will be moved to the point where you released. If you press ‘x’ or ‘y’ while
panning the motion will be constrained to the x or y axis, respectively. Press the right mouse button
to zoom, dragging it to a new position. The x axis will be zoomed in proportionate to the rightward
movement and zoomed out proportionate to the leftward movement. Ditto for the y axis and up/down
motions. The point under your mouse when you begin the zoom remains stationary, allowing you to
zoom to an arbitrary point in the figure. You can use the modifier keys ‘x’, ‘y’ or ‘CONTROL’ to
constrain the zoom to the x axis, the y axis, or aspect ratio preserve, respectively.

With polar plots, the pan and zoom functionality behaves differently. The radius axis labels can be
dragged using the left mouse button. The radius scale can be zoomed in and out using the right mouse
button.

19

Matplotlib, Release 1.3.1

The Zoom-to-rectangle button Click this toolbar button to activate this mode. Put your mouse some-
where over and axes and press the left mouse button. Drag the mouse while holding the button to
a new location and release. The axes view limits will be zoomed to the rectangle you have defined.
There is also an experimental ‘zoom out to rectangle’ in this mode with the right button, which will
place your entire axes in the region defined by the zoom out rectangle.

The Subplot-configuration button Use this tool to configure the parameters of the subplot: the left,
right, top, bottom, space between the rows and space between the columns.

The Save button Click this button to launch a file save dialog. You can save files with the following
extensions: png, ps, eps, svg and pdf.

4.1 Navigation Keyboard Shortcuts

The following table holds all the default keys, which can be overwritten by use of your matplotlibrc
(#keymap.*).

Command Keyboard Shortcut(s)
Home/Reset h or r or home
Back c or left arrow or backspace
Forward v or right arrow
Pan/Zoom p
Zoom-to-rect o
Save ctrl + s
Toggle fullscreen ctrl + f
Close plot ctrl + w
Constrain pan/zoom to x axis hold x when panning/zooming with mouse
Constrain pan/zoom to y axis hold y when panning/zooming with mouse
Preserve aspect ratio hold CONTROL when panning/zooming with mouse
Toggle grid g when mouse is over an axes
Toggle x axis scale (log/linear) L or k when mouse is over an axes
Toggle y axis scale (log/linear) l when mouse is over an axes

If you are using matplotlib.pyplot the toolbar will be created automatically for every figure. If you are
writing your own user interface code, you can add the toolbar as a widget. The exact syntax depends on
your UI, but we have examples for every supported UI in the matplotlib/examples/user_interfaces
directory. Here is some example code for GTK:

20 Chapter 4. Interactive navigation

Matplotlib, Release 1.3.1

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas
from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar

win = gtk.Window()
win.connect("destroy", lambda x: gtk.main_quit())
win.set_default_size(400,300)
win.set_title("Embedding in GTK")

vbox = gtk.VBox()
win.add(vbox)

fig = Figure(figsize=(5,4), dpi=100)
ax = fig.add_subplot(111)
ax.plot([1,2,3])

canvas = FigureCanvas(fig) # a gtk.DrawingArea
vbox.pack_start(canvas)
toolbar = NavigationToolbar(canvas, win)
vbox.pack_start(toolbar, False, False)

win.show_all()
gtk.main()

4.1. Navigation Keyboard Shortcuts 21

Matplotlib, Release 1.3.1

22 Chapter 4. Interactive navigation

CHAPTER

FIVE

CUSTOMIZING MATPLOTLIB

5.1 The matplotlibrc file

matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call rc
settings or rc parameters. You can control the defaults of almost every property in matplotlib: figure
size and dpi, line width, color and style, axes, axis and grid properties, text and font properties and so on.
matplotlib looks for matplotlibrc in three locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you do
not want to apply elsewhere.

2. It next looks in a user-specific place, depending on your platform:

• On Linux, it looks in .config/matplotlib/matplotlibrc (or
$XDG_CONFIG_HOME/matplotlib/matplotlibrc) if you’ve customized your environ-
ment.

• On other platforms, it looks in .matplotlib/matplotlibrc.

See .matplotlib directory location.

3. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is some-
thing like /usr/lib/python2.5/site-packages on Linux, and maybe
C:\Python25\Lib\site-packages on Windows. Every time you install matplotlib, this file
will be overwritten, so if you want your customizations to be saved, please move this file to your
user-specific matplotlib directory.

To display where the currently active matplotlibrc file was loaded from, one can do the following:

>>> import matplotlib
>>> matplotlib.matplotlib_fname()
’/home/foo/.config/matplotlib/matplotlibrc’

See below for a sample matplotlibrc file.

5.2 Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively from the python
shell. All of the rc settings are stored in a dictionary-like variable called matplotlib.rcParams, which is

23

Matplotlib, Release 1.3.1

global to the matplotlib package. rcParams can be modified directly, for example:

import matplotlib as mpl
mpl.rcParams[’lines.linewidth’] = 2
mpl.rcParams[’lines.color’] = ’r’

Matplotlib also provides a couple of convenience functions for modifying rc settings. The
matplotlib.rc() command can be used to modify multiple settings in a single group at once, using
keyword arguments:

import matplotlib as mpl
mpl.rc(’lines’, linewidth=2, color=’r’)

There matplotlib.rcdefaults() command will restore the standard matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.rcsetup for
details.

5.2.1 A sample matplotlibrc file

MATPLOTLIBRC FORMAT

This is a sample matplotlib configuration file - you can find a copy
of it on your system in
site-packages/matplotlib/mpl-data/matplotlibrc. If you edit it
there, please note that it will be overwritten in your next install.
If you want to keep a permanent local copy that will not be
overwritten, place it in HOME/.matplotlib/matplotlibrc (unix/linux
like systems) and C:\Documents and Settings\yourname\.matplotlib
(win32 systems).
#
This file is best viewed in a editor which supports python mode
syntax highlighting. Blank lines, or lines starting with a comment
symbol, are ignored, as are trailing comments. Other lines must
have the format
key : val # optional comment
#
Colors: for the color values below, you can either use - a
matplotlib color string, such as r, k, or b - an rgb tuple, such as
(1.0, 0.5, 0.0) - a hex string, such as ff00ff or #ff00ff - a scalar
grayscale intensity such as 0.75 - a legal html color name, eg red,
blue, darkslategray

CONFIGURATION BEGINS HERE

the default backend; one of GTK GTKAgg GTKCairo GTK3Agg GTK3Cairo
CocoaAgg MacOSX Qt4Agg TkAgg WX WXAgg Agg Cairo GDK PS PDF SVG
Template
You can also deploy your own backend outside of matplotlib by
referring to the module name (which must be in the PYTHONPATH) as
’module://my_backend’
backend : qt4agg

24 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.3.1

If you are using the Qt4Agg backend, you can choose here
to use the PyQt4 bindings or the newer PySide bindings to
the underlying Qt4 toolkit.
#backend.qt4 : PyQt4 # PyQt4 | PySide

Note that this can be overridden by the environment variable
QT_API used by Enthought Tool Suite (ETS); valid values are
"pyqt" and "pyside". The "pyqt" setting has the side effect of
forcing the use of Version 2 API for QString and QVariant.

The port to use for the web server in the WebAgg backend.
webagg.port : 8888

If webagg.port is unavailable, a number of other random ports will
be tried until one that is available is found.
webagg.port_retries : 50

When True, open the webbrowser to the plot that is shown
webagg.open_in_browser : True

if you are running pyplot inside a GUI and your backend choice
conflicts, we will automatically try to find a compatible one for
you if backend_fallback is True
#backend_fallback: True

#interactive : False
#toolbar : toolbar2 # None | toolbar2 ("classic" is deprecated)
#timezone : UTC # a pytz timezone string, eg US/Central or Europe/Paris

Where your matplotlib data lives if you installed to a non-default
location. This is where the matplotlib fonts, bitmaps, etc reside
#datapath : /home/jdhunter/mpldata

LINES
See http://matplotlib.org/api/artist_api.html#module-matplotlib.lines for more
information on line properties.
#lines.linewidth : 1.0 # line width in points
#lines.linestyle : - # solid line
#lines.color : blue # has no affect on plot(); see axes.color_cycle
#lines.marker : None # the default marker
#lines.markeredgewidth : 0.5 # the line width around the marker symbol
#lines.markersize : 6 # markersize, in points
#lines.dash_joinstyle : miter # miter|round|bevel
#lines.dash_capstyle : butt # butt|round|projecting
#lines.solid_joinstyle : miter # miter|round|bevel
#lines.solid_capstyle : projecting # butt|round|projecting
#lines.antialiased : True # render lines in antialised (no jaggies)

PATCHES
Patches are graphical objects that fill 2D space, like polygons or
circles. See
http://matplotlib.org/api/artist_api.html#module-matplotlib.patches

5.2. Dynamic rc settings 25

Matplotlib, Release 1.3.1

information on patch properties
#patch.linewidth : 1.0 # edge width in points
#patch.facecolor : blue
#patch.edgecolor : black
#patch.antialiased : True # render patches in antialised (no jaggies)

FONT
#
font properties used by text.Text. See
http://matplotlib.org/api/font_manager_api.html for more
information on font properties. The 6 font properties used for font
matching are given below with their default values.
#
The font.family property has five values: ’serif’ (e.g., Times),
’sans-serif’ (e.g., Helvetica), ’cursive’ (e.g., Zapf-Chancery),
’fantasy’ (e.g., Western), and ’monospace’ (e.g., Courier). Each of
these font families has a default list of font names in decreasing
order of priority associated with them. When text.usetex is False,
font.family may also be one or more concrete font names.
#
The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is not
present.
#
The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of ’smaller’, or about 83% of the current font
size.
#
The font.weight property has effectively 13 values: normal, bold,
bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as
400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.
#
The font.stretch property has 11 values: ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.
#
The font.size property is the default font size for text, given in pts.
12pt is the standard value.
#
#font.family : sans-serif
#font.style : normal
#font.variant : normal
#font.weight : medium
#font.stretch : normal
note that font.size controls default text sizes. To configure
special text sizes tick labels, axes, labels, title, etc, see the rc
settings for axes and ticks. Special text sizes can be defined
relative to font.size, using the following values: xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller
#font.size : 12.0

26 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.3.1

#font.serif : Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
#font.sans-serif : Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif
#font.cursive : Apple Chancery, Textile, Zapf Chancery, Sand, cursive
#font.fantasy : Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy
#font.monospace : Bitstream Vera Sans Mono, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixed, Terminal, monospace

TEXT
text properties used by text.Text. See
http://matplotlib.org/api/artist_api.html#module-matplotlib.text for more
information on text properties

#text.color : black

LaTeX customizations. See http://www.scipy.org/Wiki/Cookbook/Matplotlib/UsingTex
#text.usetex : False # use latex for all text handling. The following fonts

are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
matplotlib mailing list

#text.latex.unicode : False # use "ucs" and "inputenc" LaTeX packages for handling
unicode strings.

#text.latex.preamble : # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES
AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
preamble is a comma separated list of LaTeX statements
that are included in the LaTeX document preamble.
An example:
text.latex.preamble : \usepackage{bm},\usepackage{euler}
The following packages are always loaded with usetex, so
beware of package collisions: color, geometry, graphicx,
type1cm, textcomp. Adobe Postscript (PSSNFS) font packages
may also be loaded, depending on your font settings

#text.dvipnghack : None # some versions of dvipng don’t handle alpha
channel properly. Use True to correct
and flush ~/.matplotlib/tex.cache
before testing and False to force
correction off. None will try and
guess based on your dvipng version

#text.hinting : ’auto’ # May be one of the following:
’none’: Perform no hinting
’auto’: Use freetype’s autohinter
’native’: Use the hinting information in the
font file, if available, and if your
freetype library supports it
’either’: Use the native hinting information,
or the autohinter if none is available.
For backward compatibility, this value may also be

5.2. Dynamic rc settings 27

Matplotlib, Release 1.3.1

True === ’auto’ or False === ’none’.
#text.hinting_factor : 8 # Specifies the amount of softness for hinting in the

horizontal direction. A value of 1 will hint to full
pixels. A value of 2 will hint to half pixels etc.

#text.antialiased : True # If True (default), the text will be antialiased.
This only affects the Agg backend.

The following settings allow you to select the fonts in math mode.
They map from a TeX font name to a fontconfig font pattern.
These settings are only used if mathtext.fontset is ’custom’.
Note that this "custom" mode is unsupported and may go away in the
future.
#mathtext.cal : cursive
#mathtext.rm : serif
#mathtext.tt : monospace
#mathtext.it : serif:italic
#mathtext.bf : serif:bold
#mathtext.sf : sans
#mathtext.fontset : cm # Should be ’cm’ (Computer Modern), ’stix’,

’stixsans’ or ’custom’
#mathtext.fallback_to_cm : True # When True, use symbols from the Computer Modern

fonts when a symbol can not be found in one of
the custom math fonts.

#mathtext.default : it # The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

AXES
default face and edge color, default tick sizes,
default fontsizes for ticklabels, and so on. See
http://matplotlib.org/api/axes_api.html#module-matplotlib.axes
#axes.hold : True # whether to clear the axes by default on
#axes.facecolor : white # axes background color
#axes.edgecolor : black # axes edge color
#axes.linewidth : 1.0 # edge linewidth
#axes.grid : False # display grid or not
#axes.titlesize : large # fontsize of the axes title
#axes.labelsize : medium # fontsize of the x any y labels
#axes.labelweight : normal # weight of the x and y labels
#axes.labelcolor : black
#axes.axisbelow : False # whether axis gridlines and ticks are below

the axes elements (lines, text, etc)
#axes.formatter.limits : -7, 7 # use scientific notation if log10

of the axis range is smaller than the
first or larger than the second

#axes.formatter.use_locale : False # When True, format tick labels
according to the user’s locale.
For example, use ’,’ as a decimal
separator in the fr_FR locale.

#axes.formatter.use_mathtext : False # When True, use mathtext for scientific

28 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.3.1

notation.
#axes.unicode_minus : True # use unicode for the minus symbol

rather than hyphen. See
http://en.wikipedia.org/wiki/Plus_and_minus_signs#Character_codes

#axes.color_cycle : b, g, r, c, m, y, k # color cycle for plot lines
as list of string colorspecs:
single letter, long name, or
web-style hex

#axes.xmargin : 0 # x margin. See ‘axes.Axes.margins‘
#axes.ymargin : 0 # y margin See ‘axes.Axes.margins‘

#polaraxes.grid : True # display grid on polar axes
#axes3d.grid : True # display grid on 3d axes

TICKS
see http://matplotlib.org/api/axis_api.html#matplotlib.axis.Tick
#xtick.major.size : 4 # major tick size in points
#xtick.minor.size : 2 # minor tick size in points
#xtick.major.width : 0.5 # major tick width in points
#xtick.minor.width : 0.5 # minor tick width in points
#xtick.major.pad : 4 # distance to major tick label in points
#xtick.minor.pad : 4 # distance to the minor tick label in points
#xtick.color : k # color of the tick labels
#xtick.labelsize : medium # fontsize of the tick labels
#xtick.direction : in # direction: in, out, or inout

#ytick.major.size : 4 # major tick size in points
#ytick.minor.size : 2 # minor tick size in points
#ytick.major.width : 0.5 # major tick width in points
#ytick.minor.width : 0.5 # minor tick width in points
#ytick.major.pad : 4 # distance to major tick label in points
#ytick.minor.pad : 4 # distance to the minor tick label in points
#ytick.color : k # color of the tick labels
#ytick.labelsize : medium # fontsize of the tick labels
#ytick.direction : in # direction: in, out, or inout

GRIDS
#grid.color : black # grid color
#grid.linestyle : : # dotted
#grid.linewidth : 0.5 # in points
#grid.alpha : 1.0 # transparency, between 0.0 and 1.0

Legend
#legend.fancybox : False # if True, use a rounded box for the

legend, else a rectangle
#legend.isaxes : True
#legend.numpoints : 2 # the number of points in the legend line
#legend.fontsize : large
#legend.borderpad : 0.5 # border whitespace in fontsize units
#legend.markerscale : 1.0 # the relative size of legend markers vs. original
the following dimensions are in axes coords
#legend.labelspacing : 0.5 # the vertical space between the legend entries in fraction of fontsize

5.2. Dynamic rc settings 29

Matplotlib, Release 1.3.1

#legend.handlelength : 2. # the length of the legend lines in fraction of fontsize
#legend.handleheight : 0.7 # the height of the legend handle in fraction of fontsize
#legend.handletextpad : 0.8 # the space between the legend line and legend text in fraction of fontsize
#legend.borderaxespad : 0.5 # the border between the axes and legend edge in fraction of fontsize
#legend.columnspacing : 2. # the border between the axes and legend edge in fraction of fontsize
#legend.shadow : False
#legend.frameon : True # whether or not to draw a frame around legend
#legend.scatterpoints : 3 # number of scatter points

FIGURE
See http://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure
#figure.figsize : 8, 6 # figure size in inches
#figure.dpi : 80 # figure dots per inch
#figure.facecolor : 0.75 # figure facecolor; 0.75 is scalar gray
#figure.edgecolor : white # figure edgecolor
#figure.autolayout : False # When True, automatically adjust subplot

parameters to make the plot fit the figure
#figure.max_open_warning : 20 # The maximum number of figures to open through

the pyplot interface before emitting a warning.
If less than one this feature is disabled.

The figure subplot parameters. All dimensions are a fraction of the
figure width or height
#figure.subplot.left : 0.125 # the left side of the subplots of the figure
#figure.subplot.right : 0.9 # the right side of the subplots of the figure
#figure.subplot.bottom : 0.1 # the bottom of the subplots of the figure
#figure.subplot.top : 0.9 # the top of the subplots of the figure
#figure.subplot.wspace : 0.2 # the amount of width reserved for blank space between subplots
#figure.subplot.hspace : 0.2 # the amount of height reserved for white space between subplots

IMAGES
#image.aspect : equal # equal | auto | a number
#image.interpolation : bilinear # see help(imshow) for options
#image.cmap : jet # gray | jet etc...
#image.lut : 256 # the size of the colormap lookup table
#image.origin : upper # lower | upper
#image.resample : False

CONTOUR PLOTS
#contour.negative_linestyle : dashed # dashed | solid

Agg rendering
Warning: experimental, 2008/10/10
#agg.path.chunksize : 0 # 0 to disable; values in the range

10000 to 100000 can improve speed slightly
and prevent an Agg rendering failure
when plotting very large data sets,
especially if they are very gappy.
It may cause minor artifacts, though.
A value of 20000 is probably a good
starting point.

SAVING FIGURES
#path.simplify : True # When True, simplify paths by removing "invisible"

30 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.3.1

points to reduce file size and increase rendering
speed

#path.simplify_threshold : 0.1 # The threshold of similarity below which
vertices will be removed in the simplification
process

#path.snap : True # When True, rectilinear axis-aligned paths will be snapped to
the nearest pixel when certain criteria are met. When False,
paths will never be snapped.

#path.sketch : None # May be none, or a 3-tuple of the form (scale, length,
randomness).
scale is the amplitude of the wiggle
perpendicular to the line (in pixels). *length*
is the length of the wiggle along the line (in
pixels). *randomness* is the factor by which
the length is randomly scaled.

the default savefig params can be different from the display params
e.g., you may want a higher resolution, or to make the figure
background white
#savefig.dpi : 100 # figure dots per inch
#savefig.facecolor : white # figure facecolor when saving
#savefig.edgecolor : white # figure edgecolor when saving
#savefig.format : png # png, ps, pdf, svg
#savefig.bbox : standard # ’tight’ or ’standard’.
#savefig.pad_inches : 0.1 # Padding to be used when bbox is set to ’tight’
#savefig.jpeg_quality: 95 # when a jpeg is saved, the default quality parameter.
#savefig.directory : ~ # default directory in savefig dialog box,

leave empty to always use current working directory

tk backend params
#tk.window_focus : False # Maintain shell focus for TkAgg

ps backend params
#ps.papersize : letter # auto, letter, legal, ledger, A0-A10, B0-B10
#ps.useafm : False # use of afm fonts, results in small files
#ps.usedistiller : False # can be: None, ghostscript or xpdf

Experimental: may produce smaller files.
xpdf intended for production of publication quality files,
but requires ghostscript, xpdf and ps2eps

#ps.distiller.res : 6000 # dpi
#ps.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

pdf backend params
#pdf.compression : 6 # integer from 0 to 9

0 disables compression (good for debugging)
#pdf.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

svg backend params
#svg.image_inline : True # write raster image data directly into the svg file
#svg.image_noscale : False # suppress scaling of raster data embedded in SVG
#svg.fonttype : ’path’ # How to handle SVG fonts:
’none’: Assume fonts are installed on the machine where the SVG will be viewed.
’path’: Embed characters as paths -- supported by most SVG renderers

5.2. Dynamic rc settings 31

Matplotlib, Release 1.3.1

’svgfont’: Embed characters as SVG fonts -- supported only by Chrome,
Opera and Safari

docstring params
#docstring.hardcopy = False # set this when you want to generate hardcopy docstring

Set the verbose flags. This controls how much information
matplotlib gives you at runtime and where it goes. The verbosity
levels are: silent, helpful, debug, debug-annoying. Any level is
inclusive of all the levels below it. If your setting is "debug",
you’ll get all the debug and helpful messages. When submitting
problems to the mailing-list, please set verbose to "helpful" or "debug"
and paste the output into your report.
#
The "fileo" gives the destination for any calls to verbose.report.
These objects can a filename, or a filehandle like sys.stdout.
#
You can override the rc default verbosity from the command line by
giving the flags --verbose-LEVEL where LEVEL is one of the legal
levels, eg --verbose-helpful.
#
You can access the verbose instance in your code
from matplotlib import verbose.
#verbose.level : silent # one of silent, helpful, debug, debug-annoying
#verbose.fileo : sys.stdout # a log filename, sys.stdout or sys.stderr

Event keys to interact with figures/plots via keyboard.
Customize these settings according to your needs.
Leave the field(s) empty if you don’t need a key-map. (i.e., fullscreen : ’’)

#keymap.fullscreen : f # toggling
#keymap.home : h, r, home # home or reset mnemonic
#keymap.back : left, c, backspace # forward / backward keys to enable
#keymap.forward : right, v # left handed quick navigation
#keymap.pan : p # pan mnemonic
#keymap.zoom : o # zoom mnemonic
#keymap.save : s # saving current figure
#keymap.quit : ctrl+w, cmd+w # close the current figure
#keymap.grid : g # switching on/off a grid in current axes
#keymap.yscale : l # toggle scaling of y-axes (’log’/’linear’)
#keymap.xscale : L, k # toggle scaling of x-axes (’log’/’linear’)
#keymap.all_axes : a # enable all axes

Control location of examples data files
#examples.directory : ’’ # directory to look in for custom installation

###ANIMATION settings
#animation.writer : ffmpeg # MovieWriter ’backend’ to use
#animation.codec : mp4 # Codec to use for writing movie
#animation.bitrate: -1 # Controls size/quality tradeoff for movie.

-1 implies let utility auto-determine
#animation.frame_format: ’png’ # Controls frame format used by temp files
#animation.ffmpeg_path: ’ffmpeg’ # Path to ffmpeg binary. Without full path

32 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.3.1

$PATH is searched
#animation.ffmpeg_args: ’’ # Additional arguments to pass to ffmpeg
#animation.avconv_path: ’avconv’ # Path to avconv binary. Without full path

$PATH is searched
#animation.avconv_args: ’’ # Additional arguments to pass to avconv
#animation.mencoder_path: ’mencoder’

Path to mencoder binary. Without full path
$PATH is searched

#animation.mencoder_args: ’’ # Additional arguments to pass to mencoder

5.2. Dynamic rc settings 33

Matplotlib, Release 1.3.1

34 Chapter 5. Customizing matplotlib

CHAPTER

SIX

USING MATPLOTLIB IN A PYTHON SHELL

By default, matplotlib defers drawing until the end of the script because drawing can be an expensive oper-
ation, and you may not want to update the plot every time a single property is changed, only once after all
the properties have changed.

But when working from the python shell, you usually do want to update the plot with every command, eg,
after changing the xlabel(), or the marker style of a line. While this is simple in concept, in practice it
can be tricky, because matplotlib is a graphical user interface application under the hood, and there are some
tricks to make the applications work right in a python shell.

6.1 Ipython to the rescue

Fortunately, ipython, an enhanced interactive python shell, has figured out all of these tricks, and is mat-
plotlib aware, so when you start ipython in the pylab mode.

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]: x = randn(10000)

In [2]: hist(x, 100)

it sets everything up for you so interactive plotting works as you would expect it to. Call figure() and a
figure window pops up, call plot() and your data appears in the figure window.

Note in the example above that we did not import any matplotlib names because in pylab mode, ipython will
import them automatically. ipython also turns on interactive mode for you, which causes every pyplot com-
mand to trigger a figure update, and also provides a matplotlib aware run command to run matplotlib scripts
efficiently. ipython will turn off interactive mode during a run command, and then restore the interactive
state at the end of the run so you can continue tweaking the figure manually.

There has been a lot of recent work to embed ipython, with pylab support, into various GUI applications, so
check on the ipython mailing list for the latest status.

35

http://ipython.org/
http://projects.scipy.org/mailman/listinfo/ipython-user

Matplotlib, Release 1.3.1

6.2 Other python interpreters

If you can’t use ipython, and still want to use matplotlib/pylab from an interactive python shell, e.g., the
plain-ole standard python interactive interpreter, you are going to need to understand what a matplotlib
backend is What is a backend?.

With the TkAgg backend, which uses the Tkinter user interface toolkit, you can use matplotlib from an
arbitrary non-gui python shell. Just set your backend : TkAgg and interactive : True in your
matplotlibrc file (see Customizing matplotlib) and fire up python. Then:

>>> from pylab import *
>>> plot([1,2,3])
>>> xlabel(’hi mom’)

should work out of the box. This is also likely to work with recent versions of the qt4agg and gtkagg
backends, and with the macosx backend on the Macintosh. Note, in batch mode, i.e. when making figures
from scripts, interactive mode can be slow since it redraws the figure with each command. So you may want
to think carefully before making this the default behavior via the matplotlibrc file instead of using the
functions listed in the next section.

Gui shells are at best problematic, because they have to run a mainloop, but interactive plotting also involves
a mainloop. Ipython has sorted all this out for the primary matplotlib backends. There may be other shells
and IDEs that also work with matplotlib in interactive mode, but one obvious candidate does not: the python
IDLE IDE is a Tkinter gui app that does not support pylab interactive mode, regardless of backend.

6.3 Controlling interactive updating

The interactive property of the pyplot interface controls whether a figure canvas is drawn on every pyplot
command. If interactive is False, then the figure state is updated on every plot command, but will only be
drawn on explicit calls to draw(). When interactive is True, then every pyplot command triggers a draw.

The pyplot interface provides 4 commands that are useful for interactive control.

isinteractive() returns the interactive setting True|False

ion() turns interactive mode on

ioff() turns interactive mode off

draw() forces a figure redraw

When working with a big figure in which drawing is expensive, you may want to turn matplotlib’s interactive
setting off temporarily to avoid the performance hit:

>>> #create big-expensive-figure
>>> ioff() # turn updates off
>>> title(’now how much would you pay?’)
>>> xticklabels(fontsize=20, color=’green’)
>>> draw() # force a draw
>>> savefig(’alldone’, dpi=300)
>>> close()

36 Chapter 6. Using matplotlib in a python shell

Matplotlib, Release 1.3.1

>>> ion() # turn updating back on
>>> plot(rand(20), mfc=’g’, mec=’r’, ms=40, mew=4, ls=’--’, lw=3)

6.3. Controlling interactive updating 37

Matplotlib, Release 1.3.1

38 Chapter 6. Using matplotlib in a python shell

CHAPTER

SEVEN

WORKING WITH TEXT

7.1 Text introduction

matplotlib has excellent text support, including mathematical expressions, truetype support for raster and
vector outputs, newline separated text with arbitrary rotations, and unicode support. Because we embed the
fonts directly in the output documents, eg for postscript or PDF, what you see on the screen is what you get
in the hardcopy. freetype2 support produces very nice, antialiased fonts, that look good even at small raster
sizes. matplotlib includes its own matplotlib.font_manager, thanks to Paul Barrett, which implements
a cross platform, W3C compliant font finding algorithm.

You have total control over every text property (font size, font weight, text location and color, etc) with
sensible defaults set in the rc file. And significantly for those interested in mathematical or scientific fig-
ures, matplotlib implements a large number of TeX math symbols and commands, to support mathematical
expressions anywhere in your figure.

7.2 Basic text commands

The following commands are used to create text in the pyplot interface

• text() - add text at an arbitrary location to the Axes; matplotlib.axes.Axes.text() in the API.

• xlabel() - add an axis label to the x-axis; matplotlib.axes.Axes.set_xlabel() in the API.

• ylabel() - add an axis label to the y-axis; matplotlib.axes.Axes.set_ylabel() in the API.

• title() - add a title to the Axes; matplotlib.axes.Axes.set_title() in the API.

• figtext() - add text at an arbitrary location to the Figure; matplotlib.figure.Figure.text()
in the API.

• suptitle() - add a title to the Figure; matplotlib.figure.Figure.suptitle() in the API.

• annotate() - add an annotation, with optional arrow, to the Axes ;
matplotlib.axes.Axes.annotate() in the API.

All of these functions create and return a matplotlib.text.Text() instance, which can be configured
with a variety of font and other properties. The example below shows all of these commands in action.

39

http://freetype.sourceforge.net/index2.html

Matplotlib, Release 1.3.1

-*- coding: utf-8 -*-
import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle(’bold figure suptitle’, fontsize=14, fontweight=’bold’)

ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title(’axes title’)

ax.set_xlabel(’xlabel’)
ax.set_ylabel(’ylabel’)

ax.text(3, 8, ’boxed italics text in data coords’, style=’italic’,
bbox={’facecolor’:’red’, ’alpha’:0.5, ’pad’:10})

ax.text(2, 6, r’an equation: $E=mc^2$’, fontsize=15)

ax.text(3, 2, unicode(’unicode: Institut f\374r Festk\366rperphysik’, ’latin-1’))

ax.text(0.95, 0.01, ’colored text in axes coords’,
verticalalignment=’bottom’, horizontalalignment=’right’,
transform=ax.transAxes,
color=’green’, fontsize=15)

ax.plot([2], [1], ’o’)
ax.annotate(’annotate’, xy=(2, 1), xytext=(3, 4),

arrowprops=dict(facecolor=’black’, shrink=0.05))

ax.axis([0, 10, 0, 10])

plt.show()

40 Chapter 7. Working with text

Matplotlib, Release 1.3.1

0 2 4 6 8 10
xlabel

0

2

4

6

8

10

y
la

b
e
l

boxed italics text in data coords

an equation: E=mc2

unicode: Institut für Festkörperphysik

colored text in axes coords

annotate

axes title

bold figure suptitle

7.3 Text properties and layout

The matplotlib.text.Text instances have a variety of properties which can be configured via keyword
arguments to the text commands (eg title(), xlabel() and text()).

7.3. Text properties and layout 41

Matplotlib, Release 1.3.1

Property Value Type
alpha float
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color any matplotlib color
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform a matplotlib.transform transformation instance
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

You can layout text with the alignment arguments horizontalalignment, verticalalignment, and
multialignment. horizontalalignment controls whether the x positional argument for the text in-
dicates the left, center or right side of the text bounding box. verticalalignment controls whether
the y positional argument for the text indicates the bottom, center or top side of the text bounding box.
multialignment, for newline separated strings only, controls whether the different lines are left, center or
right justified. Here is an example which uses the text() command to show the various alignment possibil-
ities. The use of transform=ax.transAxes throughout the code indicates that the coordinates are given
relative to the axes bounding box, with 0,0 being the lower left of the axes and 1,1 the upper right.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

build a rectangle in axes coords
left, width = .25, .5
bottom, height = .25, .5
right = left + width
top = bottom + height

fig = plt.figure()
ax = fig.add_axes([0,0,1,1])

42 Chapter 7. Working with text

Matplotlib, Release 1.3.1

axes coordinates are 0,0 is bottom left and 1,1 is upper right
p = patches.Rectangle(

(left, bottom), width, height,
fill=False, transform=ax.transAxes, clip_on=False
)

ax.add_patch(p)

ax.text(left, bottom, ’left top’,
horizontalalignment=’left’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(left, bottom, ’left bottom’,
horizontalalignment=’left’,
verticalalignment=’bottom’,
transform=ax.transAxes)

ax.text(right, top, ’right bottom’,
horizontalalignment=’right’,
verticalalignment=’bottom’,
transform=ax.transAxes)

ax.text(right, top, ’right top’,
horizontalalignment=’right’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(right, bottom, ’center top’,
horizontalalignment=’center’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), ’right center’,
horizontalalignment=’right’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), ’left center’,
horizontalalignment=’left’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(0.5*(left+right), 0.5*(bottom+top), ’middle’,
horizontalalignment=’center’,
verticalalignment=’center’,
fontsize=20, color=’red’,
transform=ax.transAxes)

ax.text(right, 0.5*(bottom+top), ’centered’,
horizontalalignment=’center’,

7.3. Text properties and layout 43

Matplotlib, Release 1.3.1

verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(left, top, ’rotated\nwith newlines’,
horizontalalignment=’center’,
verticalalignment=’center’,
rotation=45,
transform=ax.transAxes)

ax.set_axis_off()
plt.show()

left top
left bottom

right bottom
right top

center top

ri
g
h
t

ce
n
te

r
le

ft
 c

e
n
te

r

middle
ce

n
te

re
d

ro
ta

te
d

with
 n

ew
lin

es

7.4 Writing mathematical expressions

You can use a subset TeX markup in any matplotlib text string by placing it inside a pair of dollar signs ($).

Note that you do not need to have TeX installed, since matplotlib ships its own TeX expression parser, layout
engine and fonts. The layout engine is a fairly direct adaptation of the layout algorithms in Donald Knuth’s
TeX, so the quality is quite good (matplotlib also provides a usetex option for those who do want to call
out to TeX to generate their text (see Text rendering With LaTeX).

Any text element can use math text. You should use raw strings (precede the quotes with an ’r’), and sur-

44 Chapter 7. Working with text

Matplotlib, Release 1.3.1

round the math text with dollar signs ($), as in TeX. Regular text and mathtext can be interleaved within the
same string. Mathtext can use the Computer Modern fonts (from (La)TeX), STIX fonts (with are designed
to blend well with Times) or a Unicode font that you provide. The mathtext font can be selected with the
customization variable mathtext.fontset (see Customizing matplotlib)

Note: On “narrow” builds of Python, if you use the STIX fonts you should also set ps.fonttype and
pdf.fonttype to 3 (the default), not 42. Otherwise some characters will not be visible.

Here is a simple example:

plain text
plt.title(’alpha > beta’)

produces “alpha > beta”.

Whereas this:

math text
plt.title(r’$\alpha > \beta$’)

produces “α > β”.

Note: Mathtext should be placed between a pair of dollar signs ($). To make it easy to display monetary
values, e.g., “$100.00”, if a single dollar sign is present in the entire string, it will be displayed verbatim as
a dollar sign. This is a small change from regular TeX, where the dollar sign in non-math text would have
to be escaped (‘$’).

Note: While the syntax inside the pair of dollar signs ($) aims to be TeX-like, the text outside does not. In
particular, characters such as:

$ % & ~ _ ^ \ { } \(\) \[\]

have special meaning outside of math mode in TeX. Therefore, these characters will behave differently
depending on the rcParam text.usetex flag. See the usetex tutorial for more information.

7.4.1 Subscripts and superscripts

To make subscripts and superscripts, use the ’_’ and ’^’ symbols:

r’$\alpha_i > \beta_i$’

αi > βi (7.1)

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of xi from 0 to∞, you could do:

r’$\sum_{i=0}^\infty x_i$’

7.4. Writing mathematical expressions 45

http://www.aip.org/stixfonts/
http://wordaligned.org/articles/narrow-python
http://thread.gmane.org/gmane.comp.python.matplotlib.general/19963/focus=19978

Matplotlib, Release 1.3.1

∞∑
i=0

xi (7.2)

7.4.2 Fractions, binomials and stacked numbers

Fractions, binomials and stacked numbers can be created with the \frac{}{}, \binom{}{} and
\stackrel{}{} commands, respectively:

r’$\frac{3}{4} \binom{3}{4} \stackrel{3}{4}$’

produces
3
4

(
3
4

)
3
4 (7.3)

Fractions can be arbitrarily nested:

r’$\frac{5 - \frac{1}{x}}{4}$’

produces
5 − 1

x

4
(7.4)

Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things
the obvious way produces brackets that are too small:

r’$(\frac{5 - \frac{1}{x}}{4})$’

(
5 − 1

x

4
) (7.5)

The solution is to precede the bracket with \left and \right to inform the parser that those brackets
encompass the entire object:

r’$\left(\frac{5 - \frac{1}{x}}{4}\right)$’

5 − 1
x

4

 (7.6)

7.4.3 Radicals

Radicals can be produced with the \sqrt[]{} command. For example:

r’$\sqrt{2}$’

√
2 (7.7)

Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expres-
sion, and can not contain layout commands such as fractions or sub/superscripts:

46 Chapter 7. Working with text

Matplotlib, Release 1.3.1

r’$\sqrt[3]{x}$’

3√x (7.8)

7.4.4 Fonts

The default font is italics for mathematical symbols.

Note: This default can be changed using the mathtext.default rcParam. This is useful, for example, to
use the same font as regular non-math text for math text, by setting it to regular.

To change fonts, eg, to write “sin” in a Roman font, enclose the text in a font command:

r’$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$’

s(t) = Asin(2ωt) (7.9)

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

r’$s(t) = \mathcal{A}\sin(2 \omega t)$’

s(t) = A sin(2ωt) (7.10)

Here “s” and “t” are variable in italics font (default), “sin” is in Roman font, and the amplitude “A” is in
calligraphy font. Note in the example above the caligraphy A is squished into the sin. You can use a spacing
command to add a little whitespace between them:

s(t) = \mathcal{A}\/\sin(2 \omega t)

s(t) = A sin(2ωt) (7.11)

The choices available with all fonts are:

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter

\mathcal{CALLIGRAPHY} CALLIGRAPHY

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} lakoar

\mathrm{\mathbb{blackboard}} lakoar

\mathfrak{Fraktur} Fraktur

\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

7.4. Writing mathematical expressions 47

http://www.aip.org/stixfonts/

Matplotlib, Release 1.3.1

There are also three global “font sets” to choose from, which are selected using the mathtext.fontset
parameter in matplotlibrc.

cm: Computer Modern (TeX)

stix: STIX (designed to blend well with Times)

stixsans: STIX sans-serif

Additionally, you can use \mathdefault{...} or its alias \mathregular{...} to use the font used for
regular text outside of mathtext. There are a number of limitations to this approach, most notably that far
fewer symbols will be available, but it can be useful to make math expressions blend well with other text in
the plot.

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and should
be considered an experimental feature for patient users only. By setting the rcParam mathtext.fontset
to custom, you can then set the following parameters, which control which font file to use for a particular
set of math characters.

Parameter Corresponds to
mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf \mathbf{} bold italic
mathtext.cal \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters, such as Greek.
If you want to use a math symbol that is not contained in your custom fonts, you can set the rcParam
mathtext.fallback_to_cm to True which will cause the mathtext system to use characters from the
default Computer Modern fonts whenever a particular character can not be found in the custom font.

48 Chapter 7. Working with text

Matplotlib, Release 1.3.1

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

7.4.5 Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

Command Result
\acute a or \’a á
\bar a ā
\breve a ă
\ddot a or \"a ä
\dot a or \.a ȧ
\grave a or \‘a à
\hat a or \^a â
\tilde a or \~a ã
\vec a ~a
\overline{abc} abc

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} x̂yz
\widetilde{xyz} x̃yz

Care should be taken when putting accents on lower-case i’s and j’s. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

î ı̂ (7.12)

7.4.6 Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

α \alpha β \beta χ \chi δ \delta z \digamma
ε \epsilon η \eta γ \gamma ι \iota κ \kappa
λ \lambda µ \mu ν \nu ω \omega φ \phi
π \pi ψ \psi ρ \rho σ \sigma τ \tau
θ \theta υ \upsilon ε \varepsilon κ \varkappa ϕ \varphi
$ \varpi % \varrho ς \varsigma ϑ \vartheta ξ \xi
ζ \zeta

Upper-case Greek

7.4. Writing mathematical expressions 49

Matplotlib, Release 1.3.1

∆ \Delta Γ \Gamma Λ \Lambda Ω \Omega Φ \Phi Π \Pi
Ψ \Psi Σ \Sigma Θ \Theta Υ \Upsilon Ξ \Xi f \mho
∇ \nabla

Hebrew

ℵ \aleph i \beth k \daleth ג \gimel

Delimiters

/ / [[⇓ \Downarrow ⇑ \Uparrow ‖ \Vert \ \backslash
↓ \downarrow 〈 \langle d \lceil b \lfloor x \llcorner y \lrcorner
〉 \rangle e \rceil c \rfloor p \ulcorner ↑ \uparrow q \urcorner
| \vert { \{ ‖ \| } \}]] | |

Big symbols⋂
\bigcap

⋃
\bigcup

⊙
\bigodot

⊕
\bigoplus

⊗
\bigotimes⊎

\biguplus
∨
\bigvee

∧
\bigwedge

∐
\coprod

∫
\int∮

\oint
∏
\prod

∑
\sum

Standard function names

Pr \Pr arccos \arccos arcsin \arcsin arctan \arctan
arg \arg cos \cos cosh \cosh cot \cot
coth \coth csc \csc deg \deg det \det
dim \dim exp \exp gcd \gcd hom \hom
inf \inf ker \ker lg \lg lim \lim
lim inf \liminf lim sup \limsup ln \ln log \log
max \max min \min sec \sec sin \sin
sinh \sinh sup \sup tan \tan tanh \tanh

Binary operation and relation symbols

50 Chapter 7. Working with text

Matplotlib, Release 1.3.1

m \Bumpeq e \Cap d \Cup
+ \Doteq Z \Join b \Subset
c \Supset
 \Vdash � \Vvdash
≈ \approx u \approxeq ∗ \ast
� \asymp � \backepsilon v \backsim
w \backsimeq Z \barwedge ∵ \because
G \between © \bigcirc 5 \bigtriangledown
4 \bigtriangleup J \blacktriangleleft I \blacktriangleright
⊥ \bot ./ \bowtie � \boxdot
� \boxminus � \boxplus � \boxtimes
• \bullet l \bumpeq ∩ \cap
· \cdot ◦ \circ $ \circeq
D \coloneq � \cong ∪ \cup
2 \curlyeqprec 3 \curlyeqsucc g \curlyvee
f \curlywedge † \dag a \dashv
‡ \ddag � \diamond ÷ \div
> \divideontimes � \doteq + \doteqdot
u \dotplus [\doublebarwedge P \eqcirc
E \eqcolon h \eqsim 1 \eqslantgtr
0 \eqslantless ≡ \equiv ; \fallingdotseq

_ \frown ≥ \geq = \geqq
> \geqslant � \gg ≫ \ggg
� \gnapprox 	 \gneqq � \gnsim
' \gtrapprox m \gtrdot R \gtreqless
T \gtreqqless ≷ \gtrless & \gtrsim
∈ \in ᵀ \intercal h \leftthreetimes
≤ \leq 5 \leqq 6 \leqslant
/ \lessapprox l \lessdot Q \lesseqgtr
S \lesseqqgtr ≶ \lessgtr . \lesssim
� \ll ≪ \lll � \lnapprox
� \lneqq � \lnsim n \ltimes
| \mid |= \models ∓ \mp
3 \nVDash 1 \nVdash 0 \napprox
� \ncong , \ne , \neq
, \neq . \nequiv � \ngeq
≯ \ngtr 3 \ni � \nleq
≮ \nless - \nmid < \notin
∦ \nparallel ⊀ \nprec / \nsim
1 \nsubset * \nsubseteq � \nsucc
2 \nsupset + \nsupseteq 6 \ntriangleleft

7.4. Writing mathematical expressions 51

Matplotlib, Release 1.3.1

5 \ntrianglelefteq 7 \ntriangleright 4 \ntrianglerighteq
2 \nvDash 0 \nvdash � \odot
	 \ominus ⊕ \oplus � \oslash
⊗ \otimes ‖ \parallel ⊥ \perp
t \pitchfork ± \pm ≺ \prec
v \precapprox 4 \preccurlyeq � \preceq
� \precnapprox � \precnsim - \precsim
∝ \propto i \rightthreetimes : \risingdotseq
o \rtimes ∼ \sim ' \simeq
/ \slash ^ \smile u \sqcap
t \sqcup @ \sqsubset @ \sqsubset
v \sqsubseteq A \sqsupset A \sqsupset
w \sqsupseteq ? \star ⊂ \subset
⊆ \subseteq j \subseteqq (\subsetneq
$ \subsetneqq � \succ w \succapprox
< \succcurlyeq � \succeq � \succnapprox
� \succnsim % \succsim ⊃ \supset
⊇ \supseteq k \supseteqq) \supsetneq
% \supsetneqq ∴ \therefore × \times
> \top / \triangleleft E \trianglelefteq

, \triangleq . \triangleright D \trianglerighteq
] \uplus � \vDash ∝ \varpropto
C \vartriangleleft B \vartriangleright ` \vdash
∨ \vee Y \veebar ∧ \wedge
o \wr

Arrow symbols

⇓ \Downarrow ⇐ \Leftarrow
⇔ \Leftrightarrow W \Lleftarrow
⇐= \Longleftarrow ⇐⇒ \Longleftrightarrow
=⇒ \Longrightarrow � \Lsh
t \Nearrow v \Nwarrow
⇒ \Rightarrow V \Rrightarrow
� \Rsh u \Searrow
w \Swarrow ⇑ \Uparrow
m \Updownarrow 	 \circlearrowleft
� \circlearrowright x \curvearrowleft
y \curvearrowright c \dashleftarrow
d \dashrightarrow ↓ \downarrow
� \downdownarrows � \downharpoonleft
� \downharpoonright ←↩ \hookleftarrow
↪→ \hookrightarrow { \leadsto
← \leftarrow � \leftarrowtail
↽ \leftharpoondown ↼ \leftharpoonup
⇔ \leftleftarrows ↔ \leftrightarrow
� \leftrightarrows � \leftrightharpoons
! \leftrightsquigarrow f \leftsquigarrow

52 Chapter 7. Working with text

Matplotlib, Release 1.3.1

←− \longleftarrow ←→ \longleftrightarrow
7−→ \longmapsto −→ \longrightarrow
" \looparrowleft # \looparrowright
7→ \mapsto (\multimap
: \nLeftarrow < \nLeftrightarrow
; \nRightarrow ↗ \nearrow
8 \nleftarrow = \nleftrightarrow
9 \nrightarrow ↖ \nwarrow
→ \rightarrow � \rightarrowtail
⇁ \rightharpoondown ⇀ \rightharpoonup
� \rightleftarrows � \rightleftarrows

 \rightleftharpoons
 \rightleftharpoons
⇒ \rightrightarrows ⇒ \rightrightarrows
 \rightsquigarrow ↘ \searrow
↙ \swarrow → \to
� \twoheadleftarrow � \twoheadrightarrow
↑ \uparrow l \updownarrow
l \updownarrow � \upharpoonleft
� \upharpoonright � \upuparrows

Miscellaneous symbols

$ \$ Å \AA ` \Finv
a \Game = \Im ¶ \P
< \Re § \S ∠ \angle
8 \backprime F \bigstar � \blacksquare
N \blacktriangle H \blacktriangledown · · · \cdots
X \checkmark r \circledR s \circledS
♣ \clubsuit { \complement © \copyright
. . . \ddots ♦ \diamondsuit ` \ell
∅ \emptyset ð \eth ∃ \exists
[\flat ∀ \forall ~ \hbar

♥ \heartsuit } \hslash
#
\iiint!

\iint
!
\iint ı \imath

∞ \infty  \jmath . . . \ldots
] \measuredangle \ \natural ¬ \neg

@ \nexists
)
\oiiint ∂ \partial

′ \prime] \sharp ♠ \spadesuit
^ \sphericalangle \ss O \triangledown

∅ \varnothing M \vartriangle
... \vdots

℘ \wp U \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX
fonts), Unicode characters can also be used:

ur’$\u23ce$’

7.4. Writing mathematical expressions 53

Matplotlib, Release 1.3.1

7.4.7 Example

Here is an example illustrating many of these features in context.

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)

plt.plot(t,s)
plt.title(r’$\alpha_i > \beta_i$’, fontsize=20)
plt.text(1, -0.6, r’$\sum_{i=0}^\infty x_i$’, fontsize=20)
plt.text(0.6, 0.6, r’$\mathcal{A}\mathrm{sin}(2 \omega t)$’,

fontsize=20)
plt.xlabel(’time (s)’)
plt.ylabel(’volts (mV)’)
plt.show()

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

v
o
lt

s
(m

V
)

∞∑
i=0
xi

Asin(2ωt)

αi >βi

7.5 Typesetting With XeLaTeX/LuaLaTeX

Using the pgf backend, matplotlib can export figures as pgf drawing commands that can be processed
with pdflatex, xelatex or lualatex. XeLaTeX and LuaLaTeX have full unicode support and can use any
font that is installed in the operating system, making use of advanced typographic features of Open-

54 Chapter 7. Working with text

Matplotlib, Release 1.3.1

Type, AAT and Graphite. Pgf pictures created by plt.savefig(’figure.pgf’) can be embedded as
raw commands in LaTeX documents. Figures can also be directly compiled and saved to PDF with
plt.savefig(’figure.pdf’) by either switching to the backend

matplotlib.use(’pgf’)

or registering it for handling pdf output

from matplotlib.backends.backend_pgf import FigureCanvasPgf
matplotlib.backend_bases.register_backend(’pdf’, FigureCanvasPgf)

The second method allows you to keep using regular interactive backends and to save xelatex, lualatex or
pdflatex compiled PDF files from the graphical user interface.

Matplotlib’s pgf support requires a recent LaTeX installation that includes the TikZ/PGF packages (such as
TeXLive), preferably with XeLaTeX or LuaLaTeX installed. If either pdftocairo or ghostscript is present on
your system, figures can optionally be saved to PNG images as well. The executables for all applications
must be located on your PATH.

Rc parameters that control the behavior of the pgf backend:

Parameter Documentation
pgf.preamble Lines to be included in the LaTeX preamble
pgf.rcfonts Setup fonts from rc params using the fontspec package
pgf.texsystem Either “xelatex” (default), “lualatex” or “pdflatex”

Note: TeX defines a set of special characters, such as:

$ % & ~ _ ^ \ { }

Generally, these characters must be escaped correctly. For convenience, some characters (_,^,%) are auto-
matically escaped outside of math environments.

7.5.1 Font specification

The fonts used for obtaining the size of text elements or when compiling figures to PDF are usually defined
in the matplotlib rc parameters. You can also use the LaTeX default Computer Modern fonts by clearing
the lists for font.serif, font.sans-serif or font.monospace. Please note that the glyph coverage of
these fonts is very limited. If you want to keep the Computer Modern font face but require extended unicode
support, consider installing the Computer Modern Unicode fonts CMU Serif, CMU Sans Serif, etc.

When saving to .pgf, the font configuration matplotlib used for the layout of the figure is included in the
header of the text file.

-*- coding: utf-8 -*-

import matplotlib as mpl
mpl.use("pgf")
pgf_with_rc_fonts = {

"font.family": "serif",
"font.serif": [], # use latex default serif font
"font.sans-serif": ["DejaVu Sans"], # use a specific sans-serif font

7.5. Typesetting With XeLaTeX/LuaLaTeX 55

http://www.tug.org
http://www.tug.org/texlive/
http://sourceforge.net/projects/cm-unicode/

Matplotlib, Release 1.3.1

}
mpl.rcParams.update(pgf_with_rc_fonts)

import matplotlib.pyplot as plt
plt.figure(figsize=(4.5,2.5))
plt.plot(range(5))
plt.text(0.5, 3., "serif")
plt.text(0.5, 2., "monospace", family="monospace")
plt.text(2.5, 2., "sans-serif", family="sans-serif")
plt.text(2.5, 1., "comic sans", family="Comic Sans MS")
plt.xlabel(u"µ is not $\\mu$")
plt.tight_layout(.5)

..

0.0

.

0.5

.

1.0

.

1.5

.

2.0

.

2.5

.

3.0

.

3.5

.

4.0

.
µ is not µ

.

0.0

.

0.5

.

1.0

.

1.5

.

2.0

.

2.5

.

3.0

.

3.5

.

4.0

.

serif

.

monospace

.

sans-serif

.

comic sans

7.5.2 Custom preamble

Full customization is possible by adding your own commands to the preamble. Use the pgf.preamble pa-
rameter if you want to configure the math fonts, using unicode-math for example, or for loading additional
packages. Also, if you want to do the font configuration yourself instead of using the fonts specified in the
rc parameters, make sure to disable pgf.rcfonts.

-*- coding: utf-8 -*-

import matplotlib as mpl
mpl.use("pgf")
pgf_with_custom_preamble = {

"font.family": "serif", # use serif/main font for text elements
"text.usetex": True, # use inline math for ticks
"pgf.rcfonts": False, # don’t setup fonts from rc parameters
"pgf.preamble": [

r"\usepackage{units}", # load additional packages
r"\usepackage{metalogo}",
r"\usepackage{unicode-math}", # unicode math setup
r"\setmathfont{xits-math.otf}",
r"\setmainfont{DejaVu Serif}", # serif font via preamble
]

56 Chapter 7. Working with text

Matplotlib, Release 1.3.1

}
mpl.rcParams.update(pgf_with_custom_preamble)

..

0.0
.

0.5
.

1.0
.

1.5
.

2.0
.

2.5
.

3.0
.

3.5
.

4.0
.

unicode text: я, ψ, €, ü, 10 °/µm
.

0.0

.

0.5

.

1.0

.

1.5

.

2.0

.

2.5

.

3.0

.

3.5

.

4.0

.

X Ǝ
LA T
EX

.

unicode math: 𝜆 =
∞

𝑖්
𝜇2

𝑖

7.5.3 Choosing the TeX system

The TeX system to be used by matplotlib is chosen by the pgf.texsystem parameter. Possible values are
’xelatex’ (default), ’lualatex’ and ’pdflatex’. Please note that when selecting pdflatex the fonts and
unicode handling must be configured in the preamble.

-*- coding: utf-8 -*-

import matplotlib as mpl
mpl.use("pgf")
pgf_with_pdflatex = {

"pgf.texsystem": "pdflatex",
"pgf.preamble": [

r"\usepackage[utf8x]{inputenc}",
r"\usepackage[T1]{fontenc}",
r"\usepackage{cmbright}",
]

}
mpl.rcParams.update(pgf_with_pdflatex)

import matplotlib.pyplot as plt
plt.figure(figsize=(4.5,2.5))
plt.plot(range(5))
plt.text(0.5, 3., "serif", family="serif")
plt.text(0.5, 2., "monospace", family="monospace")
plt.text(2.5, 2., "sans-serif", family="sans-serif")
plt.xlabel(u"µ is not $\\mu$")
plt.tight_layout(.5)

7.5. Typesetting With XeLaTeX/LuaLaTeX 57

Matplotlib, Release 1.3.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

µ is not µ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

serif

monospace sans-serif

7.5.4 Troubleshooting

• Please note that the TeX packages found in some Linux distributions and MiKTeX installations are
dramatically outdated. Make sure to update your package catalog and upgrade or install a recent TeX
distribution.

• On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting
environment variables in windows for details.

• A limitation on Windows causes the backend to keep file handles that have been opened by your appli-
cation open. As a result, it may not be possible to delete the corresponding files until the application
closes (see #1324).

• Sometimes the font rendering in figures that are saved to png images is very bad. This happens when
the pdftocairo tool is not available and ghostscript is used for the pdf to png conversion.

• Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

• The pgf.preamble rc setting provides lots of flexibility, and lots of ways to cause problems. When
experiencing problems, try to minimalize or disable the custom preamble.

• Configuring an unicode-math environment can be a bit tricky. The TeXLive distribution for ex-
ample provides a set of math fonts which are usually not installed system-wide. XeTeX, un-
like LuaLatex, cannot find these fonts by their name, which is why you might have to specify
\setmathfont{xits-math.otf} instead of \setmathfont{XITS Math} or alternatively make
the fonts available to your OS. See this tex.stackexchange.com question for more details.

• If the font configuration used by matplotlib differs from the font setting in yout LaTeX document, the
alignment of text elements in imported figures may be off. Check the header of your .pgf file if you
are unsure about the fonts matplotlib used for the layout.

• If you still need help, please see Getting help

58 Chapter 7. Working with text

https://github.com/matplotlib/matplotlib/issues/1324
http://tex.stackexchange.com/questions/43642

Matplotlib, Release 1.3.1

7.6 Text rendering With LaTeX

Matplotlib has the option to use LaTeX to manage all text layout. This option is available with the following
backends:

• Agg

• PS

• PDF

The LaTeX option is activated by setting text.usetex : True in your rc settings. Text handling with
matplotlib’s LaTeX support is slower than matplotlib’s very capable mathtext, but is more flexible, since
different LaTeX packages (font packages, math packages, etc.) can be used. The results can be striking,
especially when you take care to use the same fonts in your figures as in the main document.

Matplotlib’s LaTeX support requires a working LaTeX installation, dvipng (which may be included with
your LaTeX installation), and Ghostscript (GPL Ghostscript 8.60 or later is recommended). The executables
for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc settings. Here is an example
matplotlibrc file:

font.family : serif
font.serif : Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans serif
font.cursive : Zapf Chancery
font.monospace : Courier, Computer Modern Typewriter

text.usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

from matplotlib import rc
rc(’font’,**{’family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
for Palatino and other serif fonts use:
#rc(’font’,**{’family’:’serif’,’serif’:[’Palatino’]})
rc(’text’, usetex=True)

Here is the standard example, tex_demo.py:

"""
Demo of TeX rendering.

You can use TeX to render all of your matplotlib text if the rc
parameter text.usetex is set. This works currently on the agg and ps
backends, and requires that you have tex and the other dependencies
described at http://matplotlib.sf.net/matplotlib.texmanager.html
properly installed on your system. The first time you run a script

7.6. Text rendering With LaTeX 59

http://www.tug.org
http://sourceforge.net/projects/dvipng
http://www.cs.wisc.edu/~ghost/
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 1.3.1

you will see a lot of output from tex and associated tools. The next
time, the run may be silent, as a lot of the information is cached in
~/.tex.cache

"""
import numpy as np
import matplotlib.pyplot as plt

Example data
t = np.arange(0.0, 1.0 + 0.01, 0.01)
s = np.cos(4 * np.pi * t) + 2

plt.rc(’text’, usetex=True)
plt.rc(’font’, family=’serif’)
plt.plot(t, s)

plt.xlabel(r’\textbf{time} (s)’)
plt.ylabel(r’\textit{voltage} (mV)’,fontsize=16)
plt.title(r"\TeX\ is Number "

r"$\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!",
fontsize=16, color=’gray’)

Make room for the ridiculously large title.
plt.subplots_adjust(top=0.8)

plt.savefig(’tex_demo’)
plt.show()

60 Chapter 7. Working with text

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

1.0

1.5

2.0

2.5

3.0

vo
lt

ag
e

(m
V

)
TEX is Number

∞∑

n=1

−eiπ
2n

!

Note that display math mode ($$ e=mc^2 $$) is not supported, but adding the command \displaystyle,
as in tex_demo.py, will produce the same results.

Note: Certain characters require special escaping in TeX, such as:

$ % & ~ _ ^ \ { } \(\) \[\]

Therefore, these characters will behave differently depending on the rcParam text.usetex flag.

7.6.1 usetex with unicode

It is also possible to use unicode strings with the LaTeX text manager, here is an example taken from
tex_unicode_demo.py:

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
This demo is tex_demo.py modified to have unicode. See that file for
more information.
"""
from __future__ import unicode_literals
import matplotlib as mpl
mpl.rcParams[’text.usetex’]=True
mpl.rcParams[’text.latex.unicode’]=True

7.6. Text rendering With LaTeX 61

Matplotlib, Release 1.3.1

from numpy import arange, cos, pi
from matplotlib.pyplot import (figure, axes, plot, xlabel, ylabel, title,

grid, savefig, show)

figure(1, figsize=(6,4))
ax = axes([0.1, 0.1, 0.8, 0.7])
t = arange(0.0, 1.0+0.01, 0.01)
s = cos(2*2*pi*t)+2
plot(t, s)

xlabel(r’\textbf{time (s)}’)
ylabel(r’\textit{Velocity (\u00B0/sec)}’, fontsize=16)
title(r"\TeX\ is Number $\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!",

fontsize=16, color=’r’)
grid(True)
show()

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

(°
/s

ec
)

TEX is Number
∞∑

n=1

−eiπ
2n

!

7.6.2 Postscript options

In order to produce encapsulated postscript files that can be embedded in a new LaTeX document, the default
behavior of matplotlib is to distill the output, which removes some postscript operators used by LaTeX that
are illegal in an eps file. This step produces results which may be unacceptable to some users, because
the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard postscript, and
the text is not searchable. One workaround is to to set ps.distiller.res to a higher value (perhaps
6000) in your rc settings, which will produce larger files but may look better and scale reasonably. A better
workaround, which requires Poppler or Xpdf, can be activated by changing the ps.usedistiller rc setting

62 Chapter 7. Working with text

http://poppler.freedesktop.org/
http://www.foolabs.com/xpdf

Matplotlib, Release 1.3.1

to xpdf. This alternative produces postscript without rasterizing text, so it scales properly, can be edited in
Adobe Illustrator, and searched text in pdf documents.

7.6.3 Possible hangups

• On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting
environment variables in windows for details.

• Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

• The fonts look terrible on screen. You are probably running Mac OS, and there is some funny business
with older versions of dvipng on the mac. Set text.dvipnghack : True in your matplotlibrc file.

• On Ubuntu and Gentoo, the base texlive install does not ship with the type1cm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

• Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows
latex to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends.
In the future, a latex installation may be the only external dependency.

7.6.4 Troubleshooting

• Try deleting your .matplotlib/tex.cache directory. If you don’t know where to find
.matplotlib, see .matplotlib directory location.

• Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

• Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

• Most problems reported on the mailing list have been cleared up by upgrading Ghostscript. If possible,
please try upgrading to the latest release before reporting problems to the list.

• The text.latex.preamble rc setting is not officially supported. This option provides lots of flexi-
bility, and lots of ways to cause problems. Please disable this option before reporting problems to the
mailing list.

• If you still need help, please see Getting help

7.7 Annotating text

For a more detailed introduction to annotations, see Annotating Axes.

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate()method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated

7.7. Annotating text 63

http://www.cs.wisc.edu/~ghost/

Matplotlib, Release 1.3.1

represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)

ax.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor=’black’, shrink=0.05),
)

ax.set_ylim(-2,2)
plt.show()

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose – you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is ‘data’)

64 Chapter 7. Working with text

Matplotlib, Release 1.3.1

argument coordinate system
‘figure points’ points from the lower left corner of the figure
‘figure pixels’ pixels from the lower left corner of the figure
‘figure fraction’ 0,0 is lower left of figure and 1,1 is upper right
‘axes points’ points from lower left corner of axes
‘axes pixels’ pixels from lower left corner of axes
‘axes fraction’ 0,0 is lower left of axes and 1,1 is upper right
‘data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate(’local max’, xy=(3, 1), xycoords=’data’,
xytext=(0.8, 0.95), textcoords=’axes fraction’,
arrowprops=dict(facecolor=’black’, shrink=0.05),
horizontalalignment=’right’, verticalalignment=’top’,
)

For physical coordinate systems (points or pixels) the origin is the (bottom, left) of the figure or axes. If
the value is negative, however, the origin is from the (right, top) of the figure or axes, analogous to negative
indexing of sequences.

Optionally, you can specify arrow properties which draws an arrow from the text to the annotated point by
giving a dictionary of arrow properties in the optional keyword argument arrowprops.

arrowprops key description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
headwidth the width of the base of the arrow head in points
shrink move the tip and base some percent away from the annotated point and text
**kwargs any key for matplotlib.patches.Polygon, e.g., facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to ‘data’). For a polar
axes, this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate
system. matplotlib.text.Text keyword args like horizontalalignment, verticalalignment and
fontsize are passed from the ‘~matplotlib.Axes.annotate‘ to the ‘‘Text instance

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
r = np.arange(0,1,0.001)
theta = 2*2*np.pi*r
line, = ax.plot(theta, r, color=’#ee8d18’, lw=3)

ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], ’o’)
ax.annotate(’a polar annotation’,

xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords=’figure fraction’,
arrowprops=dict(facecolor=’black’, shrink=0.05),

7.7. Annotating text 65

Matplotlib, Release 1.3.1

horizontalalignment=’left’,
verticalalignment=’bottom’,
)

plt.show()

0°

45°

90°

135°

180°

225°

270°

315°

0.2
0.4

0.6
0.8

1.0

a polar annotation

For more on all the wild and wonderful things you can do with annotations, including fancy arrows, see
Annotating Axes and pylab_examples-annotation_demo.

66 Chapter 7. Working with text

CHAPTER

EIGHT

IMAGE TUTORIAL

8.1 Startup commands

At the very least, you’ll need to have access to the imshow() function. There are a couple of ways to do it.
The easy way for an interactive environment:

$ipython -pylab

The imshow function is now directly accessible (it’s in your namespace). See also Pyplot tutorial.

The more expressive, easier to understand later method (use this in your scripts to make it easier for others
(including your future self) to read) is to use the matplotlib API (see Artist tutorial) where you use explicit
namespaces and control object creation, etc...

In [1]: import matplotlib.pyplot as plt
In [2]: import matplotlib.image as mpimg
In [3]: import numpy as np

Examples below will use the latter method, for clarity. In these examples, if you use the -pylab method, you
can skip the “mpimg.” and “plt.” prefixes.

8.2 Importing image data into Numpy arrays

Plotting image data is supported by the Python Image Library (PIL). Natively, matplotlib only supports PNG
images. The commands shown below fall back on PIL if the native read fails.

The image used in this example is a PNG file, but keep that PIL requirement in mind for your own data.

Here’s the image we’re going to play with:

67

http://bytebaker.com/2008/07/30/python-namespaces/
http://www.pythonware.com/products/pil/

Matplotlib, Release 1.3.1

It’s a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get your data, the other
kinds of image that you’ll most likely encounter are RGBA images, which allow for transparency, or single-
channel grayscale (luminosity) images. You can right click on it and choose “Save image as” to download
it to your computer for the rest of this tutorial.

And here we go...

In [4]: img=mpimg.imread(’stinkbug.png’)
Out[4]:
array([[[0.40784314, 0.40784314, 0.40784314],

[0.40784314, 0.40784314, 0.40784314],
[0.40784314, 0.40784314, 0.40784314],
...,
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098]],

[[0.41176471, 0.41176471, 0.41176471],
[0.41176471, 0.41176471, 0.41176471],
[0.41176471, 0.41176471, 0.41176471],
...,
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098]],

68 Chapter 8. Image tutorial

Matplotlib, Release 1.3.1

[[0.41960785, 0.41960785, 0.41960785],
[0.41568628, 0.41568628, 0.41568628],
[0.41568628, 0.41568628, 0.41568628],
...,
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, 0.43137255, 0.43137255]],

...,
[[0.43921569, 0.43921569, 0.43921569],
[0.43529412, 0.43529412, 0.43529412],
[0.43137255, 0.43137255, 0.43137255],
...,
[0.45490196, 0.45490196, 0.45490196],
[0.4509804 , 0.4509804 , 0.4509804],
[0.4509804 , 0.4509804 , 0.4509804]],

[[0.44313726, 0.44313726, 0.44313726],
[0.44313726, 0.44313726, 0.44313726],
[0.43921569, 0.43921569, 0.43921569],
...,
[0.4509804 , 0.4509804 , 0.4509804],
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883]],

[[0.44313726, 0.44313726, 0.44313726],
[0.4509804 , 0.4509804 , 0.4509804],
[0.4509804 , 0.4509804 , 0.4509804],
...,
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883],
[0.44313726, 0.44313726, 0.44313726]]], dtype=float32)

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each channel to floating point data
between 0.0 and 1.0. As a side note, the only datatype that PIL can work with is uint8. Matplotlib plotting
can handle float32 and uint8, but image reading/writing for any format other than PNG is limited to uint8
data. Why 8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why can they
only render 8 bits/channel? Because that’s about all the human eye can see. More here (from a photography
standpoint): Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since it’s a black and white
image, R, G, and B are all similar. An RGBA (where A is alpha, or transparency), has 4 values per inner list,
and a simple luminance image just has one value (and is thus only a 2-D array, not a 3-D array). For RGB
and RGBA images, matplotlib supports float32 and uint8 data types. For grayscale, matplotlib supports only
float32. If your array data does not meet one of these descriptions, you need to rescale it.

8.3 Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it). Let’s render it. In
Matplotlib, this is performed using the imshow() function. Here we’ll grab the plot object. This object

8.3. Plotting numpy arrays as images 69

http://www.luminous-landscape.com/tutorials/bit-depth.shtml

Matplotlib, Release 1.3.1

gives you an easy way to manipulate the plot from the prompt.

In [5]: imgplot = plt.imshow(img)

0 100 200 300 400 500

0

50

100

150

200

250

300

350

You can also plot any numpy array - just remember that the datatype must be float32 (and range from 0.0 to
1.0) or uint8.

8.3.1 Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data more easily. This is
especially useful when making presentations of your data using projectors - their contrast is typically quite
poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We currently have an RGB
image. Since R, G, and B are all similar (see for yourself above or in your data), we can just pick one
channel of our data:

In [6]: lum_img = img[:,:,0]

This is array slicing. You can read more in the Numpy tutorial.

In [7]: imgplot = plt.imshow(lum_img)

70 Chapter 8. Image tutorial

http://www.scipy.org/Tentative_NumPy_Tutorial

Matplotlib, Release 1.3.1

0 100 200 300 400 500

0

50

100

150

200

250

300

350

Now, with a luminosity image, the default colormap (aka lookup table, LUT), is applied. The default is
called jet. There are plenty of others to choose from. Let’s set some others using the set_cmap() method
on our image plot object:

In [8]: imgplot.set_cmap(’hot’)

8.3. Plotting numpy arrays as images 71

Matplotlib, Release 1.3.1

0 100 200 300 400 500

0

50

100

150

200

250

300

350

In [9]: imgplot.set_cmap(’spectral’)

72 Chapter 8. Image tutorial

Matplotlib, Release 1.3.1

0 100 200 300 400 500

0

50

100

150

200

250

300

350

There are many other colormap schemes available. See the list and images of the colormaps.

8.3.2 Color scale reference

It’s helpful to have an idea of what value a color represents. We can do that by adding color bars. It’s as
easy as one line:

In [10]: plt.colorbar()

8.3. Plotting numpy arrays as images 73

http://matplotlib.org/examples/color/colormaps_reference.html

Matplotlib, Release 1.3.1

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

This adds a colorbar to your existing figure. This won’t automatically change if you change you switch to a
different colormap - you have to re-create your plot, and add in the colorbar again.

8.3.3 Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast in a particular region
while sacrificing the detail in colors that don’t vary much, or don’t matter. A good tool to find interesting
regions is the histogram. To create a histogram of our image data, we use the hist() function.

In[10]: plt.hist(lum_img.flatten(), 256, range=(0.0,1.0), fc=’k’, ec=’k’)

74 Chapter 8. Image tutorial

Matplotlib, Release 1.3.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

Most often, the “interesting” part of the image is around the peak, and you can get extra contrast by clipping
the regions above and/or below the peak. In our histogram, it looks like there’s not much useful information
in the high end (not many white things in the image). Let’s adjust the upper limit, so that we effectively
“zoom in on” part of the histogram. We do this by calling the set_clim()method of the image plot object.

In[11]: imgplot.set_clim(0.0,0.7)

8.3. Plotting numpy arrays as images 75

Matplotlib, Release 1.3.1

0 100 200 300 400 500

0
50

100
150
200
250
300
350

Before

0.1 0.3 0.5 0.7

0 100 200 300 400 500

0
50

100
150
200
250
300
350

After

0.1 0.3 0.5 0.7

8.3.4 Array Interpolation schemes

Interpolation calculates what the color or value of a pixel “should” be, according to different mathematical
schemes. One common place that this happens is when you resize an image. The number of pixels change,
but you want the same information. Since pixels are discrete, there’s missing space. Interpolation is how
you fill that space. This is why your images sometimes come out looking pixelated when you blow them
up. The effect is more pronounced when the difference between the original image and the expanded image
is greater. Let’s take our image and shrink it. We’re effectively discarding pixels, only keeping a select few.
Now when we plot it, that data gets blown up to the size on your screen. The old pixels aren’t there anymore,
and the computer has to draw in pixels to fill that space.

In [8]: import Image
In [9]: img = Image.open(’stinkbug.png’) # Open image as PIL image object
In [10]: rsize = img.resize((img.size[0]/10,img.size[1]/10)) # Use PIL to resize
In [11]: rsizeArr = np.asarray(rsize) # Get array back
In [12]: imgplot = plt.imshow(rsizeArr)

Here we have the default interpolation, bilinear, since we did not give imshow() any interpolation argument.

Let’s try some others:

In [10]: imgplot.set_interpolation(’nearest’)

76 Chapter 8. Image tutorial

Matplotlib, Release 1.3.1

In [10]: imgplot.set_interpolation(’bicubic’)

Bicubic interpolation is often used when blowing up photos - people tend to prefer blurry over pixelated.

8.3. Plotting numpy arrays as images 77

Matplotlib, Release 1.3.1

78 Chapter 8. Image tutorial

CHAPTER

NINE

ARTIST TUTORIAL

There are three layers to the matplotlib API. The matplotlib.backend_bases.FigureCanvas is the area
onto which the figure is drawn, the matplotlib.backend_bases.Renderer is the object which knows
how to draw on the FigureCanvas, and the matplotlib.artist.Artist is the object that knows how to
use a renderer to paint onto the canvas. The FigureCanvas and Renderer handle all the details of talking
to user interface toolkits like wxPython or drawing languages like PostScript®, and the Artist handles all
the high level constructs like representing and laying out the figure, text, and lines. The typical user will
spend 95% of his time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the standard graph-
ical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AxesImage, etc., and the
containers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure
instance, use the Figure to create one or more Axes or Subplot instances, and use the Axes instance
helper methods to create the primitives. In the example below, we create a Figure instance using
matplotlib.pyplot.figure(), which is a convenience method for instantiating Figure instances and
connecting them with your user interface or drawing toolkit FigureCanvas. As we will discuss below,
this is not necessary – you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas in-
stances, instantiate your Figures directly and connect them yourselves – but since we are focusing here on
the Artist API we’ll let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot

The Axes is probably the most important class in the matplotlib API, and the one you will be working with
most of the time. This is because the Axes is the plotting area into which most of the objects go, and the
Axes has many special helper methods (plot(), text(), hist(), imshow()) to create the most common
graphics primitives (Line2D, Text, Rectangle, Image, respectively). These helper methods will take your
data (e.g., numpy arrays and strings) and create primitive Artist instances as needed (e.g., Line2D), add
them to the relevant containers, and draw them when requested. Most of you are probably familiar with the
Subplot, which is just a special case of an Axes that lives on a regular rows by columns grid of Subplot
instances. If you want to create an Axes at an arbitrary location, simply use the add_axes() method which
takes a list of [left, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

Continuing with our example:

79

http://www.wxpython.org

Matplotlib, Release 1.3.1

import numpy as np
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax.plot(t, s, color=’blue’, lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Subplot
is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and adds it to the
Axes.lines list. In the interactive ipython session below, you can see that the Axes.lines list is length
one and contains the same line that was returned by the line, = ax.plot... call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick labels and axis
labels:

xtext = ax.set_xlabel(’my xdata’) # returns a Text instance
ytext = ax.set_ylabel(’my xdata’)

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each Axes
instance contains an XAxis and a YAxis instance, which handle the layout and drawing of the ticks, tick
labels and axis labels.

Try creating the figure below.

80 Chapter 9. Artist tutorial

http://ipython.org/

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

v
o
lt

s

a sine wave

4 3 2 1 0 1 2 3 4
time (s)

0
10
20
30
40
50
60
70

9.1 Customizing your objects

Every element in the figure is represented by a matplotlib Artist, and each has an extensive list of properties
to configure its appearance. The figure itself contains a Rectangle exactly the size of the figure, which you
can use to set the background color and transparency of the figures. Likewise, each Axes bounding box (the
standard white box with black edges in the typical matplotlib plot, has a Rectangle instance that determines
the color, transparency, and other properties of the Axes. These instances are stored as member variables
Figure.patch and Axes.patch (“Patch” is a name inherited from MATLAB, and is a 2D “patch” of color
on the figure, e.g., rectangles, circles and polygons). Every matplotlib Artist has the following properties

9.1. Customizing your objects 81

Matplotlib, Release 1.3.1

Property Description
alpha The transparency - a scalar from 0-1
animated A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None
clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path The path the artist is clipped to
contains A picking function to test whether the artist contains the pick point
figure The figure instance the artist lives in, possibly None
label A text label (e.g., for auto-labeling)
picker A python object that controls object picking
transform The transformation
visible A boolean whether the artist should be drawn
zorder A number which determines the drawing order

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Python-
istas and we plan to support direct access via properties or traits but it hasn’t been done yet). For example,
to multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5*a)

If you want to set a number of properties at once, you can also use the setmethod with keyword arguments.
For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist properties is to use
the matplotlib.artist.getp() function (simply getp() in pylab), which lists the properties and their
values. This works for classes derived from Artist as well, e.g., Figure and Rectangle. Here are the
Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True
axes = None
clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)
fill = 1
hatch = None
height = 1
label =
linewidth or lw = 1.0
picker = None
transform = <Affine object at 0x134cca84>
verts = ((0, 0), (0, 1), (1, 1), (1, 0))

82 Chapter 9. Artist tutorial

Matplotlib, Release 1.3.1

visible = True
width = 1
window_extent = <Bbox object at 0x134acbcc>
x = 0
y = 0
zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
“help” or the artists for a listing of properties for a given object.

9.2 Object containers

Now that we know how to inspect and set the properties of a given object we want to configure, we need to
now how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a Line2D) although the containers also have some properties as well – for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like the
xscale to control whether the xaxis is ‘linear’ or ‘log’. In this section we’ll review where the various
container objects store the Artists that you want to get at.

9.3 Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in the
figure. The background of the figure is a Rectanglewhich is stored in Figure.patch. As you add subplots
(add_subplot()) and axes (add_axes()) to the figure these will be appended to the Figure.axes. These
are also returned by the methods that create them:

In [156]: fig = plt.figure()

In [157]: ax1 = fig.add_subplot(211)

In [158]: ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: ax1
Out[159]: <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print fig.axes
[<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>]

Because the figure maintains the concept of the “current axes” (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove axes directly from the axes list, but
rather use the add_subplot() and add_axes() methods to insert, and the delaxes() method to delete.
You are free however, to iterate over the list of axes or index into it to get access to Axes instances you want
to customize. Here is an example which turns all the axes grids on:

for ax in fig.axes:
ax.grid(True)

9.2. Object containers 83

Matplotlib, Release 1.3.1

The figure also has its own text, lines, patches and images, which you can use to add primitives directly. The
default coordinate system for the Figure will simply be in pixels (which is not usually what you want) but
you can control this by setting the transform property of the Artist you are adding to the figure.

More useful is “figure coordinates” where (0, 0) is the bottom-left of the figure and (1, 1) is the top-right of
the figure which you can obtain by setting the Artist transform to fig.transFigure:

In [191]: fig = plt.figure()

In [192]: l1 = matplotlib.lines.Line2D([0, 1], [0, 1],
transform=fig.transFigure, figure=fig)

In [193]: l2 = matplotlib.lines.Line2D([0, 1], [1, 0],
transform=fig.transFigure, figure=fig)

In [194]: fig.lines.extend([l1, l2])

In [195]: fig.canvas.draw()

Here is a summary of the Artists the figure contains

84 Chapter 9. Artist tutorial

Matplotlib, Release 1.3.1

Figure attribute Description
axes A list of Axes instances (includes Subplot)
patch The Rectangle background
images A list of FigureImages patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)
texts A list Figure Text instances

9.4 Axes container

The matplotlib.axes.Axes is the center of the matplotlib universe – it contains the vast majority of all
the Artists used in a figure with many helper methods to create and add these Artists to itself, as well
as helper methods to access and customize the Artists it contains. Like the Figure, it contains a Patch
patch which is a Rectangle for Cartesian coordinates and a Circle for polar coordinates; this patch
determines the shape, background and border of the plotting region:

ax = fig.add_subplot(111)
rect = ax.patch # a Rectangle instance
rect.set_facecolor(’green’)

When you call a plotting method, e.g., the canonical plot() and pass in arrays or lists of values, the method
will create a matplotlib.lines.Line2D() instance, update the line with all the Line2D properties passed
as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, ’-’, color=’blue’, linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print ax.lines
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like bar() creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, facecolor=’yellow’)

In [234]: rectangles
Out[234]: <a list of 50 Patch objects>

In [235]: print len(ax.patches)

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Artist, as well as the default Axes transformation (unless a transformation is
set). It also inspects the data contained in the Artist to update the data structures controlling auto-scaling,
so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects

9.4. Axes container 85

Matplotlib, Release 1.3.1

yourself and add them directly to the Axes using helper methods like add_line() and add_patch().
Here is an annotated interactive session illustrating what is going on:

In [261]: fig = plt.figure()

In [262]: ax = fig.add_subplot(111)

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1,1), width=5, height=12)

by default the axes instance is None
In [264]: print rect.get_axes()
None

and the transformation instance is set to the "identity transform"
In [265]: print rect.get_transform()
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance
In [267]: print rect.get_axes()
Axes(0.125,0.1;0.775x0.8)

and the transformation has been set too
In [268]: print rect.get_transform()
<Affine object at 0x15009ca4>

the default axes transformation is ax.transData
In [269]: print ax.transData
<Affine object at 0x15009ca4>

notice that the xlimits of the Axes have not been changed
In [270]: print ax.get_xlim()
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print ax.dataLim.bounds
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print ax.get_xlim()
(1.0, 6.0)

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their respec-
tive containers. The table below summarizes a small sampling of them, the kinds of Artist they create,

86 Chapter 9. Artist tutorial

Matplotlib, Release 1.3.1

and where they store them

Helper method Artist Container
ax.annotate - text annotations Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches
ax.errorbar - error bar plots Line2D and Rectangle ax.lines and ax.patches
ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data AxesImage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Axis instances so you often do not need to work with them
directly unless you want to. For example, you can set the font size of the XAxis ticklabels using the Axes
helper method:

for label in ax.get_xticklabels():
label.set_color(’orange’)

Below is a summary of the Artists that the Axes contains

Axes attribute Description
artists A list of Artist instances
patch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage
legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances
texts A list of Text instances
xaxis matplotlib.axis.XAxis instance
yaxis matplotlib.axis.YAxis instance

9.5 Axis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and
lower ticks separately for the x-axis. The Axis also stores the data and view intervals used in auto-scaling,
panning and zooming, as well as the Locator and Formatter instances which control where the ticks are
placed and how they are represented as strings.

Each Axis object contains a label attribute (this is what pylab modifies in calls to xlabel() and
ylabel()) as well as a list of major and minor ticks. The ticks are XTick and YTick instances, which

9.5. Axis containers 87

Matplotlib, Release 1.3.1

contain the actual line and text primitives that render the ticks and ticklabels. Because the ticks are dynam-
ically created as needed (e.g., when panning and zooming), you should access the lists of major and minor
ticks through their accessor methods get_major_ticks() and get_minor_ticks(). Although the ticks
contain all the primitives and will be covered below, the Axis methods contain accessor methods to return
the tick lines, tick labels, tick locations etc.:

In [285]: axis = ax.xaxis

In [286]: axis.get_ticklocs()
Out[286]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

In [287]: axis.get_ticklabels()
Out[287]: <a list of 10 Text major ticklabel objects>

note there are twice as many ticklines as labels because by
default there are tick lines at the top and bottom but only tick
labels below the xaxis; this can be customized
In [288]: axis.get_ticklines()
Out[288]: <a list of 20 Line2D ticklines objects>

by default you get the major ticks back
In [291]: axis.get_ticklines()
Out[291]: <a list of 20 Line2D ticklines objects>

but you can also ask for the minor ticks
In [292]: axis.get_ticklines(minor=True)
Out[292]: <a list of 0 Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major_formatter)

Accessor method Description
get_scale The scale of the axis, eg ‘log’ or ‘linear’
get_view_interval The interval instance of the axis view limits
get_data_interval The interval instance of the axis data limits
get_gridlines A list of grid lines for the Axis
get_label The axis label - a Text instance
get_ticklabels A list of Text instances - keyword minor=True|False
get_ticklines A list of Line2D instances - keyword minor=True|False
get_ticklocs A list of Tick locations - keyword minor=True|False
get_major_locator The matplotlib.ticker.Locator instance for major ticks
get_major_formatter The matplotlib.ticker.Formatter instance for major ticks
get_minor_locator The matplotlib.ticker.Locator instance for minor ticks
get_minor_formatter The matplotlib.ticker.Formatter instance for minor ticks
get_major_ticks A list of Tick instances for major ticks
get_minor_ticks A list of Tick instances for minor ticks
grid Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the axes and tick properties

import numpy as np
import matplotlib.pyplot as plt

88 Chapter 9. Artist tutorial

Matplotlib, Release 1.3.1

plt.figure creates a matplotlib.figure.Figure instance
fig = plt.figure()
rect = fig.patch # a rectangle instance
rect.set_facecolor(’lightgoldenrodyellow’)

ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = ax1.patch
rect.set_facecolor(’lightslategray’)

for label in ax1.xaxis.get_ticklabels():
label is a Text instance
label.set_color(’red’)
label.set_rotation(45)
label.set_fontsize(16)

for line in ax1.yaxis.get_ticklines():
line is a Line2D instance
line.set_color(’green’)
line.set_markersize(25)
line.set_markeredgewidth(3)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

9.5. Axis containers 89

Matplotlib, Release 1.3.1

9.6 Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes to
the Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances for
the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick. In addition, there
are boolean variables that determine whether the upper labels and ticks are on for the x-axis and whether the
right labels and ticks are on for the y-axis.

Tick attribute Description
tick1line Line2D instance
tick2line Line2D instance
gridline Line2D instance
label1 Text instance
label2 Text instance
gridOn boolean which determines whether to draw the tickline
tick1On boolean which determines whether to draw the 1st tickline
tick2On boolean which determines whether to draw the 2nd tickline
label1On boolean which determines whether to draw tick label
label2On boolean which determines whether to draw tick label

Here is an example which sets the formatter for the right side ticks with dollar signs and colors them green
on the right side of the yaxis

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(100*np.random.rand(20))

formatter = ticker.FormatStrFormatter(’$%1.2f’)
ax.yaxis.set_major_formatter(formatter)

for tick in ax.yaxis.get_major_ticks():
tick.label1On = False
tick.label2On = True
tick.label2.set_color(’green’)

90 Chapter 9. Artist tutorial

Matplotlib, Release 1.3.1

0 5 10 15 20
$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

$80.00

$90.00

$100.00

9.6. Tick containers 91

Matplotlib, Release 1.3.1

92 Chapter 9. Artist tutorial

CHAPTER

TEN

CUSTOMIZING LOCATION OF SUBPLOT USING GRIDSPEC

GridSpec specifies the geometry of the grid that a subplot will be placed. The number of
rows and number of columns of the grid need to be set. Optionally, the subplot layout
parameters (e.g., left, right, etc.) can be tuned.

SubplotSpec specifies the location of the subplot in the given GridSpec.

subplot2grid a helper function that is similar to “pyplot.subplot” but uses 0-based indexing
and let subplot to occupy multiple cells.

10.1 Basic Example of using subplot2grid

To use subplot2grid, you provide geometry of the grid and the location of the subplot in the grid. For a
simple single-cell subplot:

ax = plt.subplot2grid((2,2),(0, 0))

is identical to

ax = plt.subplot(2,2,1)

Note that, unlike matplotlib’s subplot, the index starts from 0 in gridspec.

To create a subplot that spans multiple cells,

ax2 = plt.subplot2grid((3,3), (1, 0), colspan=2)
ax3 = plt.subplot2grid((3,3), (1, 2), rowspan=2)

For example, the following commands

ax1 = plt.subplot2grid((3,3), (0,0), colspan=3)
ax2 = plt.subplot2grid((3,3), (1,0), colspan=2)
ax3 = plt.subplot2grid((3,3), (1, 2), rowspan=2)
ax4 = plt.subplot2grid((3,3), (2, 0))
ax5 = plt.subplot2grid((3,3), (2, 1))

creates

93

Matplotlib, Release 1.3.1

ax1

ax2

ax3

ax4 ax5

subplot2grid

10.2 GridSpec and SubplotSpec

You can create GridSpec explicitly and use them to create a Subplot.

For example,

ax = plt.subplot2grid((2,2),(0, 0))

is equal to

import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 2)
ax = plt.subplot(gs[0, 0])

A gridspec instance provides array-like (2d or 1d) indexing that returns the SubplotSpec instance. For,
SubplotSpec that spans multiple cells, use slice.

ax2 = plt.subplot(gs[1,:-1])
ax3 = plt.subplot(gs[1:, -1])

The above example becomes

gs = gridspec.GridSpec(3, 3)
ax1 = plt.subplot(gs[0, :])

94 Chapter 10. Customizing Location of Subplot Using GridSpec

Matplotlib, Release 1.3.1

ax2 = plt.subplot(gs[1,:-1])
ax3 = plt.subplot(gs[1:, -1])
ax4 = plt.subplot(gs[-1,0])
ax5 = plt.subplot(gs[-1,-2])

ax1

ax2

ax3

ax4 ax5

GridSpec

10.3 Adjust GridSpec layout

When a GridSpec is explicitly used, you can adjust the layout parameters of subplots that are created from
the gridspec.

gs1 = gridspec.GridSpec(3, 3)
gs1.update(left=0.05, right=0.48, wspace=0.05)

This is similar to subplots_adjust, but it only affects the subplots that are created from the given GridSpec.

The code below

gs1 = gridspec.GridSpec(3, 3)
gs1.update(left=0.05, right=0.48, wspace=0.05)
ax1 = plt.subplot(gs1[:-1, :])
ax2 = plt.subplot(gs1[-1, :-1])
ax3 = plt.subplot(gs1[-1, -1])

gs2 = gridspec.GridSpec(3, 3)

10.3. Adjust GridSpec layout 95

Matplotlib, Release 1.3.1

gs2.update(left=0.55, right=0.98, hspace=0.05)
ax4 = plt.subplot(gs2[:, :-1])
ax5 = plt.subplot(gs2[:-1, -1])
ax6 = plt.subplot(gs2[-1, -1])

creates

ax1

ax2 ax3

ax4

ax5

ax6

GirdSpec w/ different subplotpars

10.4 GridSpec using SubplotSpec

You can create GridSpec from the SubplotSpec, in which case its layout parameters are set to that of the
location of the given SubplotSpec.

gs0 = gridspec.GridSpec(1, 2)

gs00 = gridspec.GridSpecFromSubplotSpec(3, 3, subplot_spec=gs0[0])
gs01 = gridspec.GridSpecFromSubplotSpec(3, 3, subplot_spec=gs0[1])

96 Chapter 10. Customizing Location of Subplot Using GridSpec

Matplotlib, Release 1.3.1

ax1

ax2 ax3

ax4

ax5

ax6

GirdSpec Inside GridSpec

10.5 A Complex Nested GridSpec using SubplotSpec

Here’s a more sophisticated example of nested gridspec where we put a box around each cell of the outer
4x4 grid, by hiding appropriate spines in each of the inner 3x3 grids.

10.5. A Complex Nested GridSpec using SubplotSpec 97

Matplotlib, Release 1.3.1

10.6 GridSpec with Varying Cell Sizes

By default, GridSpec creates cells of equal sizes. You can adjust relative heights and widths of rows and
columns. Note that absolute values are meaningless, only their relative ratios matter.

gs = gridspec.GridSpec(2, 2,
width_ratios=[1,2],
height_ratios=[4,1]
)

ax1 = plt.subplot(gs[0])

98 Chapter 10. Customizing Location of Subplot Using GridSpec

Matplotlib, Release 1.3.1

ax2 = plt.subplot(gs[1])
ax3 = plt.subplot(gs[2])
ax4 = plt.subplot(gs[3])

ax1 ax2

ax3 ax4

10.6. GridSpec with Varying Cell Sizes 99

Matplotlib, Release 1.3.1

100 Chapter 10. Customizing Location of Subplot Using GridSpec

CHAPTER

ELEVEN

TIGHT LAYOUT GUIDE

tight_layout automatically adjusts subplot params so that the subplot(s) fits in to the figure area. This is an
experimental feature and may not work for some cases. It only checks the extents of ticklabels, axis labels,
and titles.

11.1 Simple Example

In matplotlib, the location of axes (including subplots) are specified in normalized figure coordinates. It can
happen that your axis labels or titles (or sometimes even ticklabels) go outside the figure area, and are thus
clipped.

plt.rcParams[’savefig.facecolor’] = "0.8"

def example_plot(ax, fontsize=12):
ax.plot([1, 2])
ax.locator_params(nbins=3)
ax.set_xlabel(’x-label’, fontsize=fontsize)
ax.set_ylabel(’y-label’, fontsize=fontsize)
ax.set_title(’Title’, fontsize=fontsize)

plt.close(’all’)
fig, ax = plt.subplots()
example_plot(ax, fontsize=24)

101

Matplotlib, Release 1.3.1

0.0 0.5 1.0

x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

To prevent this, the location of axes needs to be adjusted. For subplots, this can be done by adjusting the
subplot params (Move the edge of an axes to make room for tick labels). Matplotlib v1.1 introduces a new
command tight_layout() that does this automatically for you.

plt.tight_layout()

102 Chapter 11. Tight Layout guide

Matplotlib, Release 1.3.1

0.0 0.5 1.0

x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

When you have multiple subplots, often you see labels of different axes overlapping each other.

plt.close(’all’)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

11.1. Simple Example 103

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

tight_layout() will also adjust spacing between subplots to minimize the overlaps.

plt.tight_layout()

104 Chapter 11. Tight Layout guide

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

tight_layout() can take keyword arguments of pad, w_pad and h_pad. These control the extra padding
around the figure border and between subplots. The pads are specified in fraction of fontsize.

plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

11.1. Simple Example 105

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

tight_layout() will work even if the sizes of subplots are different as far as their grid specification is
compatible. In the example below, ax1 and ax2 are subplots of a 2x2 grid, while ax3 is of a 1x2 grid.

plt.close(’all’)
fig = plt.figure()

ax1 = plt.subplot(221)
ax2 = plt.subplot(223)
ax3 = plt.subplot(122)

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)

plt.tight_layout()

106 Chapter 11. Tight Layout guide

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

It works with subplots created with subplot2grid(). In general, subplots created from the gridspec (Cus-
tomizing Location of Subplot Using GridSpec) will work.

plt.close(’all’)
fig = plt.figure()

ax1 = plt.subplot2grid((3, 3), (0, 0))
ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

plt.tight_layout()

11.1. Simple Example 107

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

Although not thoroughly tested, it seems to work for subplots with aspect != “auto” (e.g., axes with images).

arr = np.arange(100).reshape((10,10))

plt.close(’all’)
fig = plt.figure(figsize=(5,4))

ax = plt.subplot(111)
im = ax.imshow(arr, interpolation="none")

plt.tight_layout()

108 Chapter 11. Tight Layout guide

Matplotlib, Release 1.3.1

0 2 4 6 8

0

2

4

6

8

11.1.1 Caveats

• tight_layout() only considers ticklabels, axis labels, and titles. Thus, other artists may be clipped
and also may overlap.

• It assumes that the extra space needed for ticklabels, axis labels, and titles is independent of original
location of axes. This is often true, but there are rare cases where it is not.

• pad=0 clips some of the texts by a few pixels. This may be a bug or a limitation of the current
algorithm and it is not clear why it happens. Meanwhile, use of pad at least larger than 0.3 is recom-
mended.

11.1.2 Use with GridSpec

GridSpec has its own tight_layout() method (the pyplot api tight_layout() also works).

plt.close(’all’)
fig = plt.figure()

import matplotlib.gridspec as gridspec

gs1 = gridspec.GridSpec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot(ax1)

11.1. Simple Example 109

Matplotlib, Release 1.3.1

example_plot(ax2)

gs1.tight_layout(fig)

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

You may provide an optional rect parameter, which specifies the bounding box that the subplots will be fit
inside. The coordinates must be in normalized figure coordinates and the default is (0, 0, 1, 1).

gs1.tight_layout(fig, rect=[0, 0, 0.5, 1])

110 Chapter 11. Tight Layout guide

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

For example, this can be used for a figure with multiple gridspecs.

gs2 = gridspec.GridSpec(3, 1)

for ss in gs2:
ax = fig.add_subplot(ss)
example_plot(ax)
ax.set_title("")
ax.set_xlabel("")

ax.set_xlabel("x-label", fontsize=12)

gs2.tight_layout(fig, rect=[0.5, 0, 1, 1], h_pad=0.5)

11.1. Simple Example 111

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
1.0

1.5

2.0

y
-l

a
b
e
l

0.0 0.5 1.0
1.0

1.5

2.0

y
-l

a
b
e
l

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

We may try to match the top and bottom of two grids

top = min(gs1.top, gs2.top)
bottom = max(gs1.bottom, gs2.bottom)

gs1.update(top=top, bottom=bottom)
gs2.update(top=top, bottom=bottom)

While this should be mostly good enough, adjusting top and bottom may require adjustment of hspace also.
To update hspace & vspace, we call tight_layout() again with updated rect argument. Note that the rect
argument specifies the area including the ticklabels, etc. Thus, we will increase the bottom (which is 0 for
the normal case) by the difference between the bottom from above and the bottom of each gridspec. Same
thing for the top.

top = min(gs1.top, gs2.top)
bottom = max(gs1.bottom, gs2.bottom)

gs1.tight_layout(fig, rect=[None, 0 + (bottom-gs1.bottom),
0.5, 1 - (gs1.top-top)])

gs2.tight_layout(fig, rect=[0.5, 0 + (bottom-gs2.bottom),
None, 1 - (gs2.top-top)],

h_pad=0.5)

112 Chapter 11. Tight Layout guide

Matplotlib, Release 1.3.1

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

Title

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

Title

0.0 0.5 1.0
1.0

1.5

2.0

y
-l

a
b
e
l

0.0 0.5 1.0
1.0

1.5

2.0

y
-l

a
b
e
l

0.0 0.5 1.0
x-label

1.0

1.5

2.0
y
-l

a
b
e
l

11.1.3 Use with AxesGrid1

While limited, the axes_grid1 toolkit is also supported.

plt.close(’all’)
fig = plt.figure()

from mpl_toolkits.axes_grid1 import Grid
grid = Grid(fig, rect=111, nrows_ncols=(2,2),

axes_pad=0.25, label_mode=’L’,
)

for ax in grid:
example_plot(ax)
ax.title.set_visible(False)

plt.tight_layout()

11.1. Simple Example 113

Matplotlib, Release 1.3.1

1.0

1.5

2.0
y
-l

a
b
e
l

0.0 0.5 1.0
x-label

1.0

1.5

2.0

y
-l

a
b
e
l

0.0 0.5 1.0
x-label

11.1.4 Colorbar

If you create a colorbar with the colorbar() command, the created colorbar is an instance of Axes, not
Subplot, so tight_layout does not work. With Matplotlib v1.1, you may create a colorbar as a subplot using
the gridspec.

plt.close(’all’)
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")

plt.colorbar(im, use_gridspec=True)

plt.tight_layout()

114 Chapter 11. Tight Layout guide

Matplotlib, Release 1.3.1

0 2 4 6 8

0

2

4

6

8

0

10

20

30

40

50

60

70

80

90

Another option is to use AxesGrid1 toolkit to explicitly create an axes for colorbar.

plt.close(’all’)
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")

from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "5%", pad="3%")
plt.colorbar(im, cax=cax)

plt.tight_layout()

11.1. Simple Example 115

Matplotlib, Release 1.3.1

0 2 4 6 8

0

2

4

6

8

0

10

20

30

40

50

60

70

80

90

116 Chapter 11. Tight Layout guide

CHAPTER

TWELVE

LEGEND GUIDE

Do not proceed unless you already have read legend() and matplotlib.legend.Legend!

12.1 What to be displayed

The legend command has a following call signature:

legend(*args, **kwargs)

If len(args) is 2, the first argument should be a list of artist to be labeled, and the second argument should a
list of string labels. If len(args) is 0, it automatically generate the legend from label properties of the child
artists by calling get_legend_handles_labels() method. For example, ax.legend() is equivalent to:

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)

The get_legend_handles_labels() method returns a tuple of two lists, i.e., list of artists and list of
labels (python string). However, it does not return all of its child artists. It returns artists that are currently
supported by matplotlib.

For matplotlib v1.0 and earlier, the supported artists are as follows.

• Line2D

• Patch

• LineCollection

• RegularPolyCollection

• CircleCollection

And, get_legend_handles_labels() returns all artists in ax.lines, ax.patches and artists in ax.collection
which are instance of LineCollection or RegularPolyCollection. The label attributes (returned by
get_label() method) of collected artists are used as text labels. If label attribute is empty string or starts with
“_”, those artists will be ignored.

Therefore, plots drawn by some pyplot commands are not supported by legend. For example,
fill_between() creates PolyCollection that is not supported. Also support is limited for some com-
mands that create multiple artists. For example, errorbar() creates multiples Line2D instances.

117

Matplotlib, Release 1.3.1

Unfortunately, there is no easy workaround when you need legend for an artist not supported by matplotlib
(You may use one of the supported artist as a proxy. See below)

In newer version of matplotlib (v1.1 and later), the matplotlib internals are revised to support

• complex plots that creates multiple artists (e.g., bar, errorbar, etc)

• custom legend handles

See below for details of new functionality.

12.1.1 Adjusting the Order of Legend items

When you want to customize the list of artists to be displayed in the legend, or their order of appearance.
There are a two options. First, you can keep lists of artists and labels, and explicitly use these for the first
two argument of the legend call.:

p1, = plot([1,2,3])
p2, = plot([3,2,1])
p3, = plot([2,3,1])
legend([p2, p1], ["line 2", "line 1"])

Or you may use get_legend_handles_labels() to retrieve list of artist and labels and manipulate them
before feeding them to legend call.:

ax = subplot(1,1,1)
p1, = ax.plot([1,2,3], label="line 1")
p2, = ax.plot([3,2,1], label="line 2")
p3, = ax.plot([2,3,1], label="line 3")

handles, labels = ax.get_legend_handles_labels()

reverse the order
ax.legend(handles[::-1], labels[::-1])

or sort them by labels
import operator
hl = sorted(zip(handles, labels),

key=operator.itemgetter(1))
handles2, labels2 = zip(*hl)

ax.legend(handles2, labels2)

12.1.2 Using Proxy Artist

When you want to display legend for an artist not supported by matplotlib, you may use another artist as a
proxy. For example, you may create a proxy artist without adding it to the axes (so the proxy artist will not
be drawn in the main axes) and feed it to the legend function.:

p = Rectangle((0, 0), 1, 1, fc="r")
legend([p], ["Red Rectangle"])

118 Chapter 12. Legend guide

Matplotlib, Release 1.3.1

12.2 Multicolumn Legend

By specifying the keyword argument ncol, you can have a multi-column legend. Also, mode=”expand”
horizontally expand the legend to fill the axes area. See legend_demo3.py for example.

12.3 Legend location

The location of the legend can be specified by the keyword argument loc, either by string or a integer number.

String Number
upper right 1
upper left 2
lower left 3
lower right 4
right 5
center left 6
center right 7
lower center 8
upper center 9
center 10

By default, the legend will anchor to the bbox of the axes (for legend) or the bbox of the figure (figle-
gend). You can specify your own bbox using bbox_to_anchor argument. bbox_to_anchor can be an in-
stance of BboxBase, a tuple of 4 floats (x, y, width, height of the bbox), or a tuple of 2 floats (x, y with
width=height=0). Unless bbox_transform argument is given, the coordinates (even for the bbox instance)
are considered as normalized axes coordinates.

For example, if you want your axes legend located at the figure corner (instead of the axes corner):

l = legend(bbox_to_anchor=(0, 0, 1, 1), bbox_transform=gcf().transFigure)

Also, you can place above or outer right-hand side of the axes,

from matplotlib.pyplot import *

subplot(211)
plot([1,2,3], label="test1")
plot([3,2,1], label="test2")
legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

ncol=2, mode="expand", borderaxespad=0.)

subplot(223)
plot([1,2,3], label="test1")
plot([3,2,1], label="test2")
legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

show()

12.2. Multicolumn Legend 119

http://matplotlib.org/examples/pylab_examples/legend_demo3.html

Matplotlib, Release 1.3.1

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
test1 test2

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
test1
test2

12.4 Multiple Legend

Sometime, you want to split the legend into multiple ones.:

p1, = plot([1,2,3])
p2, = plot([3,2,1])
legend([p1], ["Test1"], loc=1)
legend([p2], ["Test2"], loc=4)

However, the above code only shows the second legend. When the legend command is called, a new legend
instance is created and old ones are removed from the axes. Thus, you need to manually add the removed
legend.

from matplotlib.pyplot import *

p1, = plot([1,2,3], label="test1")
p2, = plot([3,2,1], label="test2")

l1 = legend([p1], ["Label 1"], loc=1)
l2 = legend([p2], ["Label 2"], loc=4) # this removes l1 from the axes.
gca().add_artist(l1) # add l1 as a separate artist to the axes

show()

120 Chapter 12. Legend guide

Matplotlib, Release 1.3.1

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0

Label 1

Label 2

12.5 Legend of Complex Plots

In matplotlib v1.1 and later, the legend is improved to support more plot commands and ease the customiza-
tion.

12.5.1 Artist Container

The Artist Container is simple class (derived from tuple) that contains multiple artists. This is introduced
primarily to support legends for complex plot commands that create multiple artists.

Axes instances now have a “containers” attribute (which is a list, and this is only intended to be used for
generating a legend). The items in this attribute are also returned by get_legend_handles_labels().

For example, “bar” command creates a series of Rectangle patches. Previously, it returned a list of these
patches. With the current change, it creates a container object of these rectangle patches (and these patches
are added to Axes.patches attribute as before) and return it instead. As the container class is derived from a
tuple, it should be backward-compatible. Furthermore, the container object is added to the Axes.containers
attributes so that legend command can properly create a legend for the bar. Thus, you may do

b1 = bar([0, 1, 2], [0.2, 0.3, 0.1], width=0.4,
label="Bar 1", align="center")

legend()

12.5. Legend of Complex Plots 121

Matplotlib, Release 1.3.1

or

b1 = bar([0, 1, 2], [0.2, 0.3, 0.1], width=0.4, align="center")
legend([b1], ["Bar 1"])

At this time of writing, however, only “bar”, “errorbar”, and “stem” are supported (hopefully the list will
increase). Here is an example.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Bar 1
Bar 2

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

test 1
test 2
test 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

stem test

12.5.2 Legend Handler

One of the changes is that drawing of legend handles has been delegated to legend handlers. For example,
Line2D instances are handled by HandlerLine2D. The mapping between the artists and their corresponding
handlers are defined in a handler_map of the legend. The handler_map is a dictionary of key-handler pair,
where key can be an artist instance or its class. And the handler is a Handler instance.

Let’s consider the following sample code,

legend([p_1, p_2,..., p_i, ...], ["Test 1", "Test 2", ..., "Test i",...])

For each p_i, matplotlib

1. check if p_i is in the handler_map

2. if not, iterate over type(p_i).mro() until a matching key is found in the handler_map

122 Chapter 12. Legend guide

Matplotlib, Release 1.3.1

Unless specified, the default handler_map is used. Below is a partial list of key-handler pairs included in the
default handler map.

• Line2D : legend_handler.HandlerLine2D()

• Patch : legend_handler.HandlerPatch()

• LineCollection : legend_handler.HandlerLineCollection()

• ...

The legend() command takes an optional argument of “handler_map”. When provided, the default handler
map will be updated (using dict.update method) with the provided one.

p1, = plot(x, "ro", label="test1")
p2, = plot(y, "b+", ms=10, label="test2")

my_handler = HandlerLine2D(numpoints=1)

legend(handler_map={Line2D:my_handler})

The above example will use my_handler for any Line2D instances (p1 and p2).

legend(handler_map={p1:HandlerLine2D(numpoints=1)})

In the above example, only p1 will be handled by my_handler, while others will be handled by default
handlers.

The current default handler_map has handlers for errorbar and bar plots. Also, it includes an entry for tuple
which is mapped to HandlerTuple. It simply plots over all the handles for items in the given tuple. For
example,

z = np.random.randn(10)

p1a, = plt.plot(z, "ro", ms=10, mfc="r", mew=2, mec="r") # red filled circle
p1b, = plt.plot(z[:5], "w+", ms=10, mec="w", mew=2) # white cross

plt.legend([p1a, (p1a, p1b)], ["Attr A", "Attr A+B"])

12.5. Legend of Complex Plots 123

Matplotlib, Release 1.3.1

0 1 2 3 4 5 6 7 8 9
2.0

1.5

1.0

0.5

0.0

0.5

1.0

Attr A
Attr A+B

12.5.3 Implement a Custom Handler

Handler can be any callable object with following signature.

def __call__(self, legend, orig_handle,
fontsize,
handlebox):

Where legend is the legend itself, orig_handle is the original plot (p_i in the above example), fontsize is
the fontsize in pixels, and handlebox is a OffsetBox instance. Within the call, you create relevant artists
(using relevant properties from the legend and/or orig_handle) and add them into the handlebox. The artists
needs to be scaled according to the fontsize (note that the size is in pixel, i.e., this is dpi-scaled value). See
legend_handler for more details.

124 Chapter 12. Legend guide

CHAPTER

THIRTEEN

EVENT HANDLING AND PICKING

matplotlib works with a number of user interface toolkits (wxpython, tkinter, qt4, gtk, and macosx) and in
order to support features like interactive panning and zooming of figures, it is helpful to the developers to
have an API for interacting with the figure via key presses and mouse movements that is “GUI neutral”
so we don’t have to repeat a lot of code across the different user interfaces. Although the event handling
API is GUI neutral, it is based on the GTK model, which was the first user interface matplotlib supported.
The events that are triggered are also a bit richer vis-a-vis matplotlib than standard GUI events, including
information like which matplotlib.axes.Axes the event occurred in. The events also understand the
matplotlib coordinate system, and report event locations in both pixel and data coordinates.

13.1 Event connections

To receive events, you need to write a callback function and then connect your function to the event manager,
which is part of the FigureCanvasBase. Here is a simple example that prints the location of the mouse
click and which button was pressed:

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(np.random.rand(10))

def onclick(event):
print ’button=%d, x=%d, y=%d, xdata=%f, ydata=%f’%(

event.button, event.x, event.y, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’button_press_event’, onclick)

The FigureCanvasmethod mpl_connect() returns a connection id which is simply an integer. When you
want to disconnect the callback, just call:

fig.canvas.mpl_disconnect(cid)

Note: The canvas retains only weak references to the callbacks. Therefore if a callback is a method of
a class instance, you need to retain a reference to that instance. Otherwise the instance will be garbage-
collected and the callback will vanish.

Here are the events that you can connect to, the class instances that are sent back to you when the event
occurs, and the event descriptions

125

Matplotlib, Release 1.3.1

Event name Class and description
‘button_press_event’ MouseEvent - mouse button is pressed
‘button_release_event’ MouseEvent - mouse button is released
‘draw_event’ DrawEvent - canvas draw
‘key_press_event’ KeyEvent - key is pressed
‘key_release_event’ KeyEvent - key is released
‘motion_notify_event’ MouseEvent - mouse motion
‘pick_event’ PickEvent - an object in the canvas is selected
‘resize_event’ ResizeEvent - figure canvas is resized
‘scroll_event’ MouseEvent - mouse scroll wheel is rolled
‘figure_enter_event’ LocationEvent - mouse enters a new figure
‘figure_leave_event’ LocationEvent - mouse leaves a figure
‘axes_enter_event’ LocationEvent - mouse enters a new axes
‘axes_leave_event’ LocationEvent - mouse leaves an axes

13.2 Event attributes

All matplotlib events inherit from the base class matplotlib.backend_bases.Event, which store the
attributes:

name the event name

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

The most common events that are the bread and butter of event handling are key press/release events and
mouse press/release and movement events. The KeyEvent and MouseEvent classes that handle these events
are both derived from the LocationEvent, which has the following attributes

x x position - pixels from left of canvas

y y position - pixels from bottom of canvas

inaxes the Axes instance if mouse is over axes

xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

Let’s look a simple example of a canvas, where a simple line segment is created every time a mouse is
pressed:

from matplotlib import pyplot as plt

class LineBuilder:
def __init__(self, line):

self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect(’button_press_event’, self)

def __call__(self, event):

126 Chapter 13. Event handling and picking

Matplotlib, Release 1.3.1

print ’click’, event
if event.inaxes!=self.line.axes: return
self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)
self.line.figure.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click to build line segments’)
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

plt.show()

The MouseEvent that we just used is a LocationEvent, so we have access to the data and pixel coordinates
in event.x and event.xdata. In addition to the LocationEvent attributes, it has

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, any character, ‘shift’, ‘win’, or ‘control’

13.2.1 Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangle instance but will move its x,y location
when dragged. Hint: you will need to store the original xy location of the rectangle which is stored as
rect.xy and connect to the press, motion and release mouse events. When the mouse is pressed, check to
see if the click occurs over your rectangle (see matplotlib.patches.Rectangle.contains()) and if it
does, store the rectangle xy and the location of the mouse click in data coords. In the motion event callback,
compute the deltax and deltay of the mouse movement, and add those deltas to the origin of the rectangle
you stored. The redraw the figure. On the button release event, just reset all the button press data you stored
as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect
self.press = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

’motion_notify_event’, self.on_motion)

13.2. Event attributes 127

Matplotlib, Release 1.3.1

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return

contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if self.press is None: return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
#print ’x0=%f, xpress=%f, event.xdata=%f, dx=%f, x0+dx=%f’%(x0, xpress, event.xdata, dx, x0+dx)
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

self.rect.figure.canvas.draw()

def on_release(self, event):
’on release we reset the press data’
self.press = None
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

Extra credit: use the animation blit techniques discussed in the animations recipe to make the animated
drawing faster and smoother.

Extra credit solution:

draggable rectangle with the animation blit techniques; see
http://www.scipy.org/Cookbook/Matplotlib/Animations
import numpy as np

128 Chapter 13. Event handling and picking

http://www.scipy.org/Cookbook/Matplotlib/Animations

Matplotlib, Release 1.3.1

import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time
def __init__(self, rect):

self.rect = rect
self.press = None
self.background = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

’motion_notify_event’, self.on_motion)

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata
DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pixel buffer
canvas = self.rect.figure.canvas
axes = self.rect.axes
self.rect.set_animated(True)
canvas.draw()
self.background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

and blit just the redrawn area
canvas.blit(axes.bbox)

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if DraggableRectangle.lock is not self:

return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

13.2. Event attributes 129

Matplotlib, Release 1.3.1

canvas = self.rect.figure.canvas
axes = self.rect.axes
restore the background region
canvas.restore_region(self.background)

redraw just the current rectangle
axes.draw_artist(self.rect)

blit just the redrawn area
canvas.blit(axes.bbox)

def on_release(self, event):
’on release we reset the press data’
if DraggableRectangle.lock is not self:

return

self.press = None
DraggableRectangle.lock = None

turn off the rect animation property and reset the background
self.rect.set_animated(False)
self.background = None

redraw the full figure
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

13.3 Mouse enter and leave

If you want to be notified when the mouse enters or leaves a figure or axes, you can connect to the figure/axes
enter/leave events. Here is a simple example that changes the colors of the axes and figure background that
the mouse is over:

"""
Illustrate the figure and axes enter and leave events by changing the

130 Chapter 13. Event handling and picking

Matplotlib, Release 1.3.1

frame colors on enter and leave
"""
import matplotlib.pyplot as plt

def enter_axes(event):
print ’enter_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’yellow’)
event.canvas.draw()

def leave_axes(event):
print ’leave_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’white’)
event.canvas.draw()

def enter_figure(event):
print ’enter_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor(’red’)
event.canvas.draw()

def leave_figure(event):
print ’leave_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor(’grey’)
event.canvas.draw()

fig1 = plt.figure()
fig1.suptitle(’mouse hover over figure or axes to trigger events’)
ax1 = fig1.add_subplot(211)
ax2 = fig1.add_subplot(212)

fig1.canvas.mpl_connect(’figure_enter_event’, enter_figure)
fig1.canvas.mpl_connect(’figure_leave_event’, leave_figure)
fig1.canvas.mpl_connect(’axes_enter_event’, enter_axes)
fig1.canvas.mpl_connect(’axes_leave_event’, leave_axes)

fig2 = plt.figure()
fig2.suptitle(’mouse hover over figure or axes to trigger events’)
ax1 = fig2.add_subplot(211)
ax2 = fig2.add_subplot(212)

fig2.canvas.mpl_connect(’figure_enter_event’, enter_figure)
fig2.canvas.mpl_connect(’figure_leave_event’, leave_figure)
fig2.canvas.mpl_connect(’axes_enter_event’, enter_axes)
fig2.canvas.mpl_connect(’axes_leave_event’, leave_axes)

plt.show()

13.4 Object picking

You can enable picking by setting the picker property of an Artist (eg a matplotlib Line2D, Text, Patch,
Polygon, AxesImage, etc...)

13.4. Object picking 131

Matplotlib, Release 1.3.1

There are a variety of meanings of the picker property:

None picking is disabled for this artist (default)

boolean if True then picking will be enabled and the artist will fire a pick event if the mouse
event is over the artist

float if picker is a number it is interpreted as an epsilon tolerance in points and the the artist
will fire off an event if its data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, eg the indices of the data within epsilon of the pick event.

function if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event. The signature is hit, props = picker(artist,
mouseevent) to determine the hit test. If the mouse event is over the artist, return
hit=True and props is a dictionary of properties you want added to the PickEvent at-
tributes

After you have enabled an artist for picking by setting the picker property, you need to connect to the figure
canvas pick_event to get pick callbacks on mouse press events. e.g.:

def pick_handler(event):
mouseevent = event.mouseevent
artist = event.artist
now do something with this...

The PickEvent which is passed to your callback is always fired with two attributes:

mouseevent the mouse event that generate the pick event. The mouse event in turn has at-
tributes like x and y (the coords in display space, eg pixels from left, bottom) and xdata,
ydata (the coords in data space). Additionally, you can get information about which but-
tons were pressed, which keys were pressed, which Axes the mouse is over, etc. See
matplotlib.backend_bases.MouseEvent for details.

artist the Artist that generated the pick event.

Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the
indices into the data that meet the picker criteria (eg all the points in the line that are within the specified
epsilon tolerance)

13.4.1 Simple picking example

In the example below, we set the line picker property to a scalar, so it represents a tolerance in points (72
points per inch). The onpick callback function will be called when the pick event it within the tolerance
distance from the line, and has the indices of the data vertices that are within the pick distance tolerance.
Our onpick callback function simply prints the data that are under the pick location. Different matplotlib
Artists can attach different data to the PickEvent. For example, Line2D attaches the ind property, which are
the indices into the line data under the pick point. See pick() for details on the PickEvent properties of
the line. Here is the code:

import numpy as np
import matplotlib.pyplot as plt

132 Chapter 13. Event handling and picking

Matplotlib, Release 1.3.1

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on points’)

line, = ax.plot(np.random.rand(100), ’o’, picker=5) # 5 points tolerance

def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print ’onpick points:’, zip(xdata[ind], ydata[ind])

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

13.4.2 Picking exercise

Create a data set of 100 arrays of 1000 Gaussian random numbers and compute the sample mean and
standard deviation of each of them (hint: numpy arrays have a mean and std method) and make a xy marker
plot of the 100 means vs the 100 standard deviations. Connect the line created by the plot command to the
pick event, and plot the original time series of the data that generated the clicked on points. If more than one
point is within the tolerance of the clicked on point, you can use multiple subplots to plot the multiple time
series.

Exercise solution:

"""
compute the mean and stddev of 100 data sets and plot mean vs stddev.
When you click on one of the mu, sigma points, plot the raw data from
the dataset that generated the mean and stddev
"""
import numpy as np
import matplotlib.pyplot as plt

X = np.random.rand(100, 1000)
xs = np.mean(X, axis=1)
ys = np.std(X, axis=1)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on point to plot time series’)
line, = ax.plot(xs, ys, ’o’, picker=5) # 5 points tolerance

def onpick(event):

if event.artist!=line: return True

N = len(event.ind)

13.4. Object picking 133

Matplotlib, Release 1.3.1

if not N: return True

figi = plt.figure()
for subplotnum, dataind in enumerate(event.ind):

ax = figi.add_subplot(N,1,subplotnum+1)
ax.plot(X[dataind])
ax.text(0.05, 0.9, ’mu=%1.3f\nsigma=%1.3f’%(xs[dataind], ys[dataind]),

transform=ax.transAxes, va=’top’)
ax.set_ylim(-0.5, 1.5)

figi.show()
return True

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

134 Chapter 13. Event handling and picking

CHAPTER

FOURTEEN

TRANSFORMATIONS TUTORIAL

Like any graphics packages, matplotlib is built on top of a transformation framework to easily move be-
tween coordinate systems, the userland data coordinate system, the axes coordinate system, the figure
coordinate system, and the display coordinate system. In 95% of your plotting, you won’t need to think
about this, as it happens under the hood, but as you push the limits of custom figure generation, it helps
to have an understanding of these objects so you can reuse the existing transformations matplotlib makes
available to you, or create your own (see matplotlib.transforms). The table below summarizes the ex-
isting coordinate systems, the transformation object you should use to work in that coordinate system, and
the description of that system. In the Transformation Object column, ax is a Axes instance, and fig is
a Figure instance.

Coor-
dinate

Transforma-
tion
Object

Description

data ax.transDataThe userland data coordinate system, controlled by the xlim and ylim
axes ax.transAxesThe coordinate system of the Axes; (0,0) is bottom left of the axes, and (1,1) is

top right of the axes
figure fig.transFigureThe coordinate system of the Figure; (0,0) is bottom left of the figure, and

(1,1) is top right of the figure
displayNone This is the pixel coordinate system of the display; (0,0) is the bottom left of the

display, and (width, height) is the top right of the display in pixels

All of the transformation objects in the table above take inputs in their coordinate system, and transform
the input to the display coordinate system. That is why the display coordinate system has None for the
Transformation Object column – it already is in display coordinates. The transformations also know
how to invert themselves, to go from display back to the native coordinate system. This is particularly
useful when processing events from the user interface, which typically occur in display space, and you want
to know where the mouse click or key-press occurred in your data coordinate system.

14.1 Data coordinates

Let’s start with the most commonly used coordinate, the data coordinate system. Whenever you add data to
the axes, matplotlib updates the datalimits, most commonly updated with the set_xlim() and set_ylim()
methods. For example, in the figure below, the data limits stretch from 0 to 10 on the x-axis, and -1 to 1 on
the y-axis.

135

Matplotlib, Release 1.3.1

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)

plt.show()

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

You can use the ax.transData instance to transform from your data to your display coordinate system,
either a single point or a sequence of points as shown below:

In [14]: type(ax.transData)
Out[14]: <class ’ matplotlib.transforms.CompositeGenericTransform’>

In [15]: ax.transData.transform((5, 0))
Out[15]: array([335.175, 247.])

In [16]: ax.transData.transform([(5, 0), (1,2)])
Out[16]:
array([[335.175, 247.],

136 Chapter 14. Transformations Tutorial

Matplotlib, Release 1.3.1

[132.435, 642.2]])

You can use the inverted() method to create a transform which will take you from display to data coordi-
nates:

In [41]: inv = ax.transData.inverted()

In [42]: type(inv)
Out[42]: <class ’ matplotlib.transforms.CompositeGenericTransform’>

In [43]: inv.transform((335.175, 247.))
Out[43]: array([5., 0.])

If your are typing along with this tutorial, the exact values of the display coordinates may differ if you have
a different window size or dpi setting. Likewise, in the figure below, the display labeled points are probably
not the same as in the ipython session because the documentation figure size defaults are different.

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

data = (5.0, 0.0)

display = (225.5, 180.0)

Note: If you run the source code in the example above in a GUI backend, you may also find that the two
arrows for the data and display annotations do not point to exactly the same point. This is because the
display point was computed before the figure was displayed, and the GUI backend may slightly resize the
figure when it is created. The effect is more pronounced if you resize the figure yourself. This is one good
reason why you rarely want to work in display space, but you can connect to the ’on_draw’ Event to
update figure coordinates on figure draws; see Event handling and picking.

14.1. Data coordinates 137

Matplotlib, Release 1.3.1

When you change the x or y limits of your axes, the data limits are updated so the transformation yields a
new display point. Note that when we just change the ylim, only the y-display coordinate is altered, and
when we change the xlim too, both are altered. More on this later when we talk about the Bbox.

In [54]: ax.transData.transform((5, 0))
Out[54]: array([335.175, 247.])

In [55]: ax.set_ylim(-1,2)
Out[55]: (-1, 2)

In [56]: ax.transData.transform((5, 0))
Out[56]: array([335.175 , 181.13333333])

In [57]: ax.set_xlim(10,20)
Out[57]: (10, 20)

In [58]: ax.transData.transform((5, 0))
Out[58]: array([-171.675 , 181.13333333])

14.2 Axes coordinates

After the data coordinate system, axes is probably the second most useful coordinate system. Here the
point (0,0) is the bottom left of your axes or subplot, (0.5, 0.5) is the center, and (1.0, 1.0) is the top right.
You can also refer to points outside the range, so (-0.1, 1.1) is to the left and above your axes. This coordinate
system is extremely useful when placing text in your axes, because you often want a text bubble in a fixed,
location, e.g., the upper left of the axes pane, and have that location remain fixed when you pan or zoom.
Here is a simple example that creates four panels and labels them ‘A’, ‘B’, ‘C’, ‘D’ as you often see in
journals.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
for i, label in enumerate((’A’, ’B’, ’C’, ’D’)):

ax = fig.add_subplot(2,2,i+1)
ax.text(0.05, 0.95, label, transform=ax.transAxes,
fontsize=16, fontweight=’bold’, va=’top’)

plt.show()

138 Chapter 14. Transformations Tutorial

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
B

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
C

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
D

You can also make lines or patches in the axes coordinate system, but this is less useful in my experience
than using ax.transAxes for placing text. Nonetheless, here is a silly example which plots some random
dots in data space, and overlays a semi-transparent Circle centered in the middle of the axes with a radius
one quarter of the axes – if your axes does not preserve aspect ratio (see set_aspect()), this will look like
an ellipse. Use the pan/zoom tool to move around, or manually change the data xlim and ylim, and you
will see the data move, but the circle will remain fixed because it is not in data coordinates and will always
remain at the center of the axes.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
fig = plt.figure()
ax = fig.add_subplot(111)
x, y = 10*np.random.rand(2, 1000)
ax.plot(x, y, ’go’) # plot some data in data coordinates

circ = patches.Circle((0.5, 0.5), 0.25, transform=ax.transAxes,
facecolor=’yellow’, alpha=0.5)

ax.add_patch(circ)

plt.show()

14.2. Axes coordinates 139

Matplotlib, Release 1.3.1

0 2 4 6 8 10
0

2

4

6

8

10

14.3 Blended transformations

Drawing in blended coordinate spaces which mix axes with data coordinates is extremely useful, for
example to create a horizontal span which highlights some region of the y-data but spans across the x-axis
regardless of the data limits, pan or zoom level, etc. In fact these blended lines and spans are so useful, we
have built in functions to make them easy to plot (see axhline(), axvline(), axhspan(), axvspan())
but for didactic purposes we will implement the horizontal span here using a blended transformation. This
trick only works for separable transformations, like you see in normal Cartesian coordinate systems, but not
on inseparable transformations like the PolarTransform.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

x = np.random.randn(1000)

ax.hist(x, 30)
ax.set_title(r’$\sigma=1 \/ \dots \/ \sigma=2$’, fontsize=16)

140 Chapter 14. Transformations Tutorial

Matplotlib, Release 1.3.1

the x coords of this transformation are data, and the
y coord are axes
trans = transforms.blended_transform_factory(

ax.transData, ax.transAxes)

highlight the 1..2 stddev region with a span.
We want x to be in data coordinates and y to
span from 0..1 in axes coords
rect = patches.Rectangle((1,0), width=1, height=1,

transform=trans, color=’yellow’,
alpha=0.5)

ax.add_patch(rect)

plt.show()

4 3 2 1 0 1 2 3 4
0

20

40

60

80

100

120
σ=1 ṡ σ=2

Note: The blended transformations where x is in data coords and y in axes coordinates
is so useful that we have helper methods to return the versions mpl uses internally for draw-
ing ticks, ticklabels, etc. The methods are matplotlib.axes.Axes.get_xaxis_transform()
and matplotlib.axes.Axes.get_yaxis_transform(). So in the example above, the call to
blended_transform_factory() can be replaced by get_xaxis_transform:

trans = ax.get_xaxis_transform()

14.3. Blended transformations 141

Matplotlib, Release 1.3.1

14.4 Using offset transforms to create a shadow effect

One use of transformations is to create a new transformation that is offset from another transformation, eg to
place one object shifted a bit relative to another object. Typically you want the shift to be in some physical
dimension, like points or inches rather than in data coordinates, so that the shift effect is constant at different
zoom levels and dpi settings.

One use for an offset is to create a shadow effect, where you draw one object identical to the first just to the
right of it, and just below it, adjusting the zorder to make sure the shadow is drawn first and then the object
it is shadowing above it. The transforms module has a helper transformation ScaledTranslation. It is
instantiated with:

trans = ScaledTranslation(xt, yt, scale_trans)

where xt and yt are the translation offsets, and scale_trans is a transformation which scales xt
and yt at transformation time before applying the offsets. A typical use case is to use the figure
fig.dpi_scale_trans transformation for the scale_trans argument, to first scale xt and yt speci-
fied in points to display space before doing the final offset. The dpi and inches offset is a common-enough
use case that we have a special helper function to create it in matplotlib.transforms.offset_copy(),
which returns a new transform with an added offset. But in the example below, we’ll create the offset
transform ourselves. Note the use of the plus operator in:

offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)

shadow_transform = ax.transData + offset

showing that can chain transformations using the addition operator. This code says: first apply the data
transformation ax.transData and then translate the data by dx and dy points. In typography, a‘point
<http://en.wikipedia.org/wiki/Point_%28typography%29>‘_ is 1/72 inches, and by specifying your offsets
in points, your figure will look the same regardless of the dpi resolution it is saved in.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

make a simple sine wave
x = np.arange(0., 2., 0.01)
y = np.sin(2*np.pi*x)
line, = ax.plot(x, y, lw=3, color=’blue’)

shift the object over 2 points, and down 2 points
dx, dy = 2/72., -2/72.
offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)

shadow_transform = ax.transData + offset

now plot the same data with our offset transform;
use the zorder to make sure we are below the line

142 Chapter 14. Transformations Tutorial

http://en.wikipedia.org/wiki/Point_%28typography%29

Matplotlib, Release 1.3.1

ax.plot(x, y, lw=3, color=’gray’,
transform=shadow_transform,
zorder=0.5*line.get_zorder())

ax.set_title(’creating a shadow effect with an offset transform’)
plt.show()

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
creating a shadow effect with an offset transform

14.5 The transformation pipeline

The ax.transData transform we have been working with in this tutorial is a composite of three different
transformations that comprise the transformation pipeline from data -> display coordinates. Michael
Droettboom implemented the transformations framework, taking care to provide a clean API that segre-
gated the nonlinear projections and scales that happen in polar and logarithmic plots, from the linear affine
transformations that happen when you pan and zoom. There is an efficiency here, because you can pan and
zoom in your axes which affects the affine transformation, but you may not need to compute the potentially
expensive nonlinear scales or projections on simple navigation events. It is also possible to multiply affine
transformation matrices together, and then apply them to coordinates in one step. This is not true of all
possible transformations.

Here is how the ax.transData instance is defined in the basic separable axis Axes class:

14.5. The transformation pipeline 143

Matplotlib, Release 1.3.1

self.transData = self.transScale + (self.transLimits + self.transAxes)

We’ve been introduced to the transAxes instance above in Axes coordinates, which maps the (0,0), (1,1)
corners of the axes or subplot bounding box to display space, so let’s look at these other two pieces.

self.transLimits is the transformation that takes you from data to axes coordinates; i.e., it maps your
view xlim and ylim to the unit space of the axes (and transAxes then takes that unit space to display space).
We can see this in action here

In [80]: ax = subplot(111)

In [81]: ax.set_xlim(0, 10)
Out[81]: (0, 10)

In [82]: ax.set_ylim(-1,1)
Out[82]: (-1, 1)

In [84]: ax.transLimits.transform((0,-1))
Out[84]: array([0., 0.])

In [85]: ax.transLimits.transform((10,-1))
Out[85]: array([1., 0.])

In [86]: ax.transLimits.transform((10,1))
Out[86]: array([1., 1.])

In [87]: ax.transLimits.transform((5,0))
Out[87]: array([0.5, 0.5])

and we can use this same inverted transformation to go from the unit axes coordinates back to data coor-
dinates.

In [90]: inv.transform((0.25, 0.25))
Out[90]: array([2.5, -0.5])

The final piece is the self.transScale attribute, which is responsible for the optional non-linear scaling
of the data, e.g., for logarithmic axes. When an Axes is initially setup, this is just set to the identity trans-
form, since the basic matplotlib axes has linear scale, but when you call a logarithmic scaling function like
semilogx() or explicitly set the scale to logarithmic with set_xscale(), then the ax.transScale at-
tribute is set to handle the nonlinear projection. The scales transforms are properties of the respective xaxis
and yaxis Axis instances. For example, when you call ax.set_xscale(’log’), the xaxis updates its
scale to a matplotlib.scale.LogScale instance.

For non-separable axes the PolarAxes, there is one more piece to consider, the projection transformation.
The transData matplotlib.projections.polar.PolarAxes is similar to that for the typical separable
matplotlib Axes, with one additional piece transProjection:

self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)

transProjection handles the projection from the space, e.g., latitude and longitude for map data, or
radius and theta for polar data, to a separable Cartesian coordinate system. There are several projection
examples in the matplotlib.projections package, and the best way to learn more is to open the source

144 Chapter 14. Transformations Tutorial

Matplotlib, Release 1.3.1

for those packages and see how to make your own, since matplotlib supports extensible axes and projections.
Michael Droettboom has provided a nice tutorial example of creating a hammer projection axes; see api-
custom_projection_example.

14.5. The transformation pipeline 145

Matplotlib, Release 1.3.1

146 Chapter 14. Transformations Tutorial

CHAPTER

FIFTEEN

PATH TUTORIAL

The object underlying all of the matplotlib.patch objects is the Path, which supports the standard set of
moveto, lineto, curveto commands to draw simple and compound outlines consisting of line segments and
splines. The Path is instantiated with a (N,2) array of (x,y) vertices, and a N-length array of path codes. For
example to draw the unit rectangle from (0,0) to (1,1), we could use this code

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # left, bottom
(0., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom
(0., 0.), # ignored
]

codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]

path = Path(verts, codes)

fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor=’orange’, lw=2)
ax.add_patch(patch)
ax.set_xlim(-2,2)
ax.set_ylim(-2,2)
plt.show()

147

Matplotlib, Release 1.3.1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

The following path codes are recognized

Code Vertices Description
STOP 1 (ignored) A marker for the end of the entire path (currently not required and

ignored)
MOVETO 1 Pick up the pen and move to the given vertex.
LINETO 1 Draw a line from the current position to the given vertex.
CURVE3 2 (1 control point, 1

endpoint)
Draw a quadratic Bézier curve from the current position, with the
given control point, to the given end point.

CURVE4 3 (2 control points,
1 endpoint)

Draw a cubic Bézier curve from the current position, with the given
control points, to the given end point.

CLOSEPOLY1 (point itself is
ignored)

Draw a line segment to the start point of the current polyline.

15.1 Bézier example

Some of the path components require multiple vertices to specify them: for example CURVE 3 is a bézier
curve with one control point and one end point, and CURVE4 has three vertices for the two control points
and the end point. The example below shows a CURVE4 Bézier spline – the bézier curve will be contained
in the convex hull of the start point, the two control points, and the end point

148 Chapter 15. Path Tutorial

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Matplotlib, Release 1.3.1

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # P0
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3
]

codes = [Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
]

path = Path(verts, codes)

fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor=’none’, lw=2)
ax.add_patch(patch)

xs, ys = zip(*verts)
ax.plot(xs, ys, ’x--’, lw=2, color=’black’, ms=10)

ax.text(-0.05, -0.05, ’P0’)
ax.text(0.15, 1.05, ’P1’)
ax.text(1.05, 0.85, ’P2’)
ax.text(0.85, -0.05, ’P3’)

ax.set_xlim(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
plt.show()

15.1. Bézier example 149

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P0

P1

P2

P3

15.2 Compound paths

All of the simple patch primitives in matplotlib, Rectangle, Circle, Polygon, etc, are implemented with
simple path. Plotting functions like hist() and bar(), which create a number of primitives, eg a bunch of
Rectangles, can usually be implemented more efficiently using a compound path. The reason bar creates
a list of rectangles and not a compound path is largely historical: the Path code is comparatively new and
bar predates it. While we could change it now, it would break old code, so here we will cover how to create
compound paths, replacing the functionality in bar, in case you need to do so in your own code for efficiency
reasons, eg you are creating an animated bar plot.

We will make the histogram chart by creating a series of rectangles for each histogram bar: the rectangle
width is the bin width and the rectangle height is the number of datapoints in that bin. First we’ll create
some random normally distributed data and compute the histogram. Because numpy returns the bin edges
and not centers, the length of bins is 1 greater than the length of n in the example below:

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

We’ll now extract the corners of the rectangles. Each of the left, bottom, etc, arrays below is len(n),
where n is the array of counts for each histogram bar:

150 Chapter 15. Path Tutorial

Matplotlib, Release 1.3.1

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n

Now we have to construct our compound path, which will consist of a series of MOVETO, LINETO and
CLOSEPOLY for each rectangle. For each rectangle, we need 5 vertices: 1 for the MOVETO, 3 for the LINETO,
and 1 for the CLOSEPOLY. As indicated in the table above, the vertex for the closepoly is ignored but we still
need it to keep the codes aligned with the vertices:

nverts = nrects*(1+3+1)
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5,0] = left
verts[0::5,1] = bottom
verts[1::5,0] = left
verts[1::5,1] = top
verts[2::5,0] = right
verts[2::5,1] = top
verts[3::5,0] = right
verts[3::5,1] = bottom

All that remains is to create the path, attach it to a PathPatch, and add it to our axes:

barpath = path.Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor=’green’,
edgecolor=’yellow’, alpha=0.5)

ax.add_patch(patch)

Here is the result

15.2. Compound paths 151

Matplotlib, Release 1.3.1

3 2 1 0 1 2
0

5

10

15

20

25

30

35

152 Chapter 15. Path Tutorial

CHAPTER

SIXTEEN

ANNOTATING AXES

Do not proceed unless you already have read Annotating text, text() and annotate()!

16.1 Annotating with Text with Box

Let’s start with a simple example.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

Sample A

Sample B

Dire
ct

io
n

The text() function in the pyplot module (or text method of the Axes class) takes bbox keyword argument,
and when given, a box around the text is drawn.

153

Matplotlib, Release 1.3.1

bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2)
t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45,

size=15,
bbox=bbox_props)

The patch object associated with the text can be accessed by:

bb = t.get_bbox_patch()

The return value is an instance of FancyBboxPatch and the patch properties like facecolor, edgewidth, etc.
can be accessed and modified as usual. To change the shape of the box, use set_boxstyle method.

bb.set_boxstyle("rarrow", pad=0.6)

The arguments are the name of the box style with its attributes as keyword arguments. Currently, following
box styles are implemented.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

154 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

square

sawtooth

roundtooth

rarrow

larrow

round4

round

Note that the attributes arguments can be specified within the style name with separating comma (this form
can be used as “boxstyle” value of bbox argument when initializing the text instance)

bb.set_boxstyle("rarrow,pad=0.6")

16.2 Annotating with Arrow

The annotate() function in the pyplot module (or annotate method of the Axes class) is used to draw an
arrow connecting two points on the plot.

ax.annotate("Annotation",
xy=(x1, y1), xycoords=’data’,
xytext=(x2, y2), textcoords=’offset points’,
)

This annotates a point at xy in the given coordinate (xycoords) with the text at xytext given in
textcoords. Often, the annotated point is specified in the data coordinate and the annotating text in offset
points. See annotate() for available coordinate systems.

An arrow connecting two point (xy & xytext) can be optionally drawn by specifying the arrowprops
argument. To draw only an arrow, use empty string as the first argument.

16.2. Annotating with Arrow 155

Matplotlib, Release 1.3.1

ax.annotate("",
xy=(0.2, 0.2), xycoords=’data’,
xytext=(0.8, 0.8), textcoords=’data’,
arrowprops=dict(arrowstyle="->",

connectionstyle="arc3"),
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

The arrow drawing takes a few steps.

1. a connecting path between two points are created. This is controlled by connectionstyle key value.

2. If patch object is given (patchA & patchB), the path is clipped to avoid the patch.

3. The path is further shrunk by given amount of pixels (shirnkA & shrinkB)

4. The path is transmuted to arrow patch, which is controlled by the arrowstyle key value.

connect clip shrink mutate

The creation of the connecting path between two points is controlled by connectionstyle key and fol-
lowing styles are available.

156 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

Name Attrs
angle angleA=90,angleB=0,rad=0.0
angle3 angleA=90,angleB=0
arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
arc3 rad=0.0
bar armA=0.0,armB=0.0,fraction=0.3,angle=None

Note that “3” in angle3 and arc3 is meant to indicate that the resulting path is a quadratic spline segment
(three control points). As will be discussed below, some arrow style option only can be used when the
connecting path is a quadratic spline.

The behavior of each connection style is (limitedly) demonstrated in the example below. (Warning : The
behavior of the bar style is currently not well defined, it may be changed in the future).

angle3,
angleA=90,
angleB=0

arc3,rad=0. angle,
angleA=-90,
angleB=180,
rad=0

arc,
angleA=-90,
angleB=0,
armA=30,
armB=30,
rad=0

bar,
fraction=0.3

angle3,
angleA=0,
angleB=90

arc3,rad=0.3 angle,
angleA=-90,
angleB=180,
rad=5

arc,
angleA=-90,
angleB=0,
armA=30,
armB=30,
rad=5

bar,
fraction=-0.3

arc3,rad=-0.3 angle,
angleA=-90,
angleB=10,
rad=0

arc,
angleA=-90,
angleB=0,
armA=0,
armB=40,
rad=0

bar,
angle=180,
fraction=-0.2

The connecting path (after clipping and shrinking) is then mutated to an arrow patch, according to the given
arrowstyle.

16.2. Annotating with Arrow 157

Matplotlib, Release 1.3.1

Name Attrs
- None
-> head_length=0.4,head_width=0.2
-[widthB=1.0,lengthB=0.2,angleB=None
|-| widthA=1.0,widthB=1.0
-|> head_length=0.4,head_width=0.2
<- head_length=0.4,head_width=0.2
<-> head_length=0.4,head_width=0.2
<|- head_length=0.4,head_width=0.2
<|-|> head_length=0.4,head_width=0.2
fancy head_length=0.4,head_width=0.4,tail_width=0.4
simple head_length=0.5,head_width=0.5,tail_width=0.2
wedge tail_width=0.3,shrink_factor=0.5

-

->

-[

-|>

<-

<->

<|-

<|-|>

]-

]-[

fancy

simple

wedge

|-|

Some arrowstyles only work with connection style that generates a quadratic-spline segment. They are
fancy, simple, and wedge. For these arrow styles, you must use “angle3” or “arc3” connection style.

If the annotation string is given, the patchA is set to the bbox patch of the text by default.

158 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

As in the text command, a box around the text can be drawn using the bbox argument.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

By default, the starting point is set to the center of the text extent. This can be adjusted with relpos key
value. The values are normalized to the extent of the text. For example, (0,0) means lower-left corner and
(1,1) means top-right.

16.2. Annotating with Arrow 159

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

TestTest

16.3 Placing Artist at the anchored location of the Axes

There are class of artist that can be placed at the anchored location of the Axes. A common example is
the legend. This type of artists can be created by using the OffsetBox class. A few predefined classes are
available in mpl_toolkits.axes_grid.anchored_artists.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredText
at = AnchoredText("Figure 1a",

prop=dict(size=8), frameon=True,
loc=2,
)

at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1a

160 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

The loc keyword has same meaning as in the legend command.

A simple application is when the size of the artist (or collection of artists) is known in pixel size during the
time of creation. For example, If you want to draw a circle with fixed size of 20 pixel x 20 pixel (radius =

10 pixel), you can utilize AnchoredDrawingArea. The instance is created with a size of the drawing area
(in pixel). And user can add arbitrary artist to the drawing area. Note that the extents of the artists that are
added to the drawing area has nothing to do with the placement of the drawing area itself. The initial size
only matters.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredDrawingArea

ada = AnchoredDrawingArea(20, 20, 0, 0,
loc=1, pad=0., frameon=False)

p1 = Circle((10, 10), 10)
ada.drawing_area.add_artist(p1)
p2 = Circle((30, 10), 5, fc="r")
ada.drawing_area.add_artist(p2)

The artists that are added to the drawing area should not have transform set (they will be overridden) and
the dimension of those artists are interpreted as a pixel coordinate, i.e., the radius of the circles in above
example are 10 pixel and 5 pixel, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sometimes, you want to your artists scale with data coordinate (or other coordinate than canvas pixel).
You can use AnchoredAuxTransformBox class. This is similar to AnchoredDrawingArea except that the
extent of the artist is determined during the drawing time respecting the specified transform.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredAuxTransformBox

box = AnchoredAuxTransformBox(ax.transData, loc=2)
el = Ellipse((0,0), width=0.1, height=0.4, angle=30) # in data coordinates!
box.drawing_area.add_artist(el)

The ellipse in the above example will have width and height corresponds to 0.1 and 0.4 in data coordinate
and will be automatically scaled when the view limits of the axes change.

16.3. Placing Artist at the anchored location of the Axes 161

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

As in the legend, the bbox_to_anchor argument can be set. Using the HPacker and VPacker, you can have
an arrangement(?) of artist as in the legend (as a matter of fact, this is how the legend is created).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 Test :

Note that unlike the legend, the bbox_transform is set to IdentityTransform by default.

16.4 Using Complex Coordinate with Annotation

The Annotation in matplotlib support several types of coordinate as described in Annotating text. For an
advanced user who wants more control, it supports a few other options.

1. Transform instance. For example,

ax.annotate("Test", xy=(0.5, 0.5), xycoords=ax.transAxes)

is identical to

162 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

ax.annotate("Test", xy=(0.5, 0.5), xycoords="axes fraction")

With this, you can annotate a point in other axes.

ax1, ax2 = subplot(121), subplot(122)
ax2.annotate("Test", xy=(0.5, 0.5), xycoords=ax1.transData,

xytext=(0.5, 0.5), textcoords=ax2.transData,
arrowprops=dict(arrowstyle="->"))

2. Artist instance. The xy value (or xytext) is interpreted as a fractional coordinate of the bbox (return
value of get_window_extent) of the artist.

an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",
va="center", ha="center",
bbox=dict(boxstyle="round", fc="w"))

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1, # (1,0.5) of the an1’s bbox
xytext=(30,0), textcoords="offset points",
va="center", ha="left",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test 1 Test 2

Note that it is your responsibility that the extent of the coordinate artist (an1 in above example) is
determined before an2 gets drawn. In most cases, it means that an2 needs to be drawn later than an1.

3. A callable object that returns an instance of either BboxBase or Transform. If a transform is returned,
it is same as 1 and if bbox is returned, it is same as 2. The callable object should take a single argument
of renderer instance. For example, following two commands give identical results

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1,
xytext=(30,0), textcoords="offset points")

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1.get_window_extent,
xytext=(30,0), textcoords="offset points")

4. A tuple of two coordinate specification. The first item is for x-coordinate and the second is for y-
coordinate. For example,

annotate("Test", xy=(0.5, 1), xycoords=("data", "axes fraction"))

0.5 is in data coordinate, and 1 is in normalized axes coordinate. You may use an artist or transform
as with a tuple. For example,

16.4. Using Complex Coordinate with Annotation 163

Matplotlib, Release 1.3.1

import matplotlib.pyplot as plt

plt.figure(figsize=(3,2))
ax=plt.axes([0.1, 0.1, 0.8, 0.7])
an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",

va="center", ha="center",
bbox=dict(boxstyle="round", fc="w"))

an2 = ax.annotate("Test 2", xy=(0.5, 1.), xycoords=an1,
xytext=(0.5,1.1), textcoords=(an1, "axes fraction"),
va="bottom", ha="center",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))

plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test 1

Test 2

5. Sometimes, you want your annotation with some “offset points”, but not from the annotated point but
from other point. OffsetFrom is a helper class for such case.

import matplotlib.pyplot as plt

plt.figure(figsize=(3,2))
ax=plt.axes([0.1, 0.1, 0.8, 0.7])
an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",

va="center", ha="center",
bbox=dict(boxstyle="round", fc="w"))

from matplotlib.text import OffsetFrom
offset_from = OffsetFrom(an1, (0.5, 0))
an2 = ax.annotate("Test 2", xy=(0.1, 0.1), xycoords="data",

xytext=(0, -10), textcoords=offset_from,
xytext is offset points from "xy=(0.5, 0), xycoords=an1"
va="top", ha="center",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))

plt.show()

164 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test 1

Test 2

You may take a look at this example pylab_examples-annotation_demo3.

16.5 Using ConnectorPatch

The ConnectorPatch is like an annotation without a text. While the annotate function is recommended in
most of situation, the ConnectorPatch is useful when you want to connect points in different axes.

from matplotlib.patches import ConnectionPatch
xy = (0.2, 0.2)
con = ConnectionPatch(xyA=xy, xyB=xy, coordsA="data", coordsB="data",

axesA=ax1, axesB=ax2)
ax2.add_artist(con)

The above code connects point xy in data coordinate of ax1 to point xy int data coordinate of ax2. Here is
a simple example.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

While the ConnectorPatch instance can be added to any axes, but you may want it to be added to the axes in
the latter (?) of the axes drawing order to prevent overlap (?) by other axes.

16.5. Using ConnectorPatch 165

Matplotlib, Release 1.3.1

16.5.1 Advanced Topics

16.6 Zoom effect between Axes

mpl_toolkits.axes_grid.inset_locator defines some patch classes useful for interconnect two axes. Under-
standing the code requires some knowledge of how mpl’s transform works. But, utilizing it will be straight
forward.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
2.0 2.2 2.4 2.6 2.8 3.0

0.0

0.2

0.4

0.6

0.8

1.0

16.7 Define Custom BoxStyle

You can use a custom box style. The value for the boxstyle can be a callable object in following forms.:

def __call__(self, x0, y0, width, height, mutation_size,
aspect_ratio=1.):

"""
Given the location and size of the box, return the path of
the box around it.

- *x0*, *y0*, *width*, *height* : location and size of the box

166 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

- *mutation_size* : a reference scale for the mutation.
- *aspect_ratio* : aspect-ration for the mutation.

"""
path = ...
return path

Here is a complete example.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

However, it is recommended that you derive from the matplotlib.patches.BoxStyle._Base as demonstrated
below.

from matplotlib.path import Path
from matplotlib.patches import BoxStyle
import matplotlib.pyplot as plt

we may derive from matplotlib.patches.BoxStyle._Base class.
You need to overide transmute method in this case.

class MyStyle(BoxStyle._Base):
"""
A simple box.
"""

def __init__(self, pad=0.3):
"""
The arguments need to be floating numbers and need to have
default values.

pad
amount of padding

"""

self.pad = pad
super(MyStyle, self).__init__()

16.7. Define Custom BoxStyle 167

Matplotlib, Release 1.3.1

def transmute(self, x0, y0, width, height, mutation_size):
"""
Given the location and size of the box, return the path of
the box around it.

- *x0*, *y0*, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.

Often, the *mutation_size* is the font size of the text.
You don’t need to worry about the rotation as it is
automatically taken care of.
"""

padding
pad = mutation_size * self.pad

width and height with padding added.
width, height = width + 2.*pad, \

height + 2.*pad,

boundary of the padded box
x0, y0 = x0-pad, y0-pad,
x1, y1 = x0+width, y0 + height

cp = [(x0, y0),
(x1, y0), (x1, y1), (x0, y1),
(x0-pad, (y0+y1)/2.), (x0, y0),
(x0, y0)]

com = [Path.MOVETO,
Path.LINETO, Path.LINETO, Path.LINETO,
Path.LINETO, Path.LINETO,
Path.CLOSEPOLY]

path = Path(cp, com)

return path

register the custom style
BoxStyle._style_list["angled"] = MyStyle

plt.figure(1, figsize=(3,3))
ax = plt.subplot(111)
ax.text(0.5, 0.5, "Test", size=30, va="center", ha="center", rotation=30,

bbox=dict(boxstyle="angled,pad=0.5", alpha=0.2))

del BoxStyle._style_list["angled"]

plt.show()

168 Chapter 16. Annotating Axes

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

Similarly, you can define custom ConnectionStyle and custom ArrowStyle. See the source code of
lib/matplotlib/patches.py and check how each style class is defined.

16.7. Define Custom BoxStyle 169

Matplotlib, Release 1.3.1

170 Chapter 16. Annotating Axes

CHAPTER

SEVENTEEN

OUR FAVORITE RECIPES

Here is a collection of short tutorials, examples and code snippets that illustrate some of the useful idioms
and tricks to make snazzier figures and overcome some matplotlib warts.

17.1 Sharing axis limits and views

It’s common to make two or more plots which share an axis, eg two subplots with time as a common axis.
When you pan and zoom around on one, you want the other to move around with you. To facilitate this,
matplotlib Axes support a sharex and sharey attribute. When you create a subplot() or axes() instance,
you can pass in a keyword indicating what axes you want to share with

In [96]: t = np.arange(0, 10, 0.01)

In [97]: ax1 = plt.subplot(211)

In [98]: ax1.plot(t, np.sin(2*np.pi*t))
Out[98]: [<matplotlib.lines.Line2D object at 0x98719ec>]

In [99]: ax2 = plt.subplot(212, sharex=ax1)

In [100]: ax2.plot(t, np.sin(4*np.pi*t))
Out[100]: [<matplotlib.lines.Line2D object at 0xb7d8fec>]

17.2 Easily creating subplots

In early versions of matplotlib, if you wanted to use the pythonic API and create a figure instance and from
that create a grid of subplots, possibly with shared axes, it involved a fair amount of boilerplate code. e.g.

old style
fig = plt.figure()
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222, sharex=ax1, sharey=ax1)
ax3 = fig.add_subplot(223, sharex=ax1, sharey=ax1)
ax3 = fig.add_subplot(224, sharex=ax1, sharey=ax1)

171

Matplotlib, Release 1.3.1

Fernando Perez has provided a nice top level method to create in subplots() (note the “s” at the end)
everything at once, and turn off x and y sharing for the whole bunch. You can either unpack the axes
individually:

new style method 1; unpack the axes
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True, sharey=True)
ax1.plot(x)

or get them back as a numrows x numcolumns object array which supports numpy indexing:

new style method 2; use an axes array
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
axs[0,0].plot(x)

17.3 Fixing common date annoyances

matplotlib allows you to natively plots python datetime instances, and for the most part does a good job
picking tick locations and string formats. There are a couple of things it does not handle so gracefully, and
here are some tricks to help you work around them. We’ll load up some sample date data which contains
datetime.date objects in a numpy record array:

In [63]: datafile = cbook.get_sample_data(’goog.npy’)

In [64]: r = np.load(datafile).view(np.recarray)

In [65]: r.dtype
Out[65]: dtype([(’date’, ’|O4’), (’’, ’|V4’), (’open’, ’<f8’),

(’high’, ’<f8’), (’low’, ’<f8’), (’close’, ’<f8’),
(’volume’, ’<i8’), (’adj_close’, ’<f8’)])

In [66]: r.date
Out[66]:
array([2004-08-19, 2004-08-20, 2004-08-23, ..., 2008-10-10, 2008-10-13,

2008-10-14], dtype=object)

The dtype of the numpy record array for the field date is |O4 which means it is a 4-byte python object
pointer; in this case the objects are datetime.date instances, which we can see when we print some samples
in the ipython terminal window.

If you plot the data,

In [67]: plot(r.date, r.close)
Out[67]: [<matplotlib.lines.Line2D object at 0x92a6b6c>]

you will see that the x tick labels are all squashed together.

172 Chapter 17. Our Favorite Recipes

Matplotlib, Release 1.3.1

Dec 2004Jun 2005Dec 2005Jun 2006Dec 2006Jun 2007Dec 2007Jun 2008
100

200

300

400

500

600

700

800
Default date handling can cause overlapping labels

Another annoyance is that if you hover the mouse over a the window and look in the lower right corner of
the matplotlib toolbar (Interactive navigation) at the x and y coordinates, you see that the x locations are
formatted the same way the tick labels are, eg “Dec 2004”. What we’d like is for the location in the toolbar
to have a higher degree of precision, eg giving us the exact date out mouse is hovering over. To fix the first
problem, we can use matplotlib.figure.Figure.autofmt_xdate() and to fix the second problem we
can use the ax.fmt_xdata attribute which can be set to any function that takes a scalar and returns a string.
matplotlib has a number of date formatters built in, so we’ll use one of those.

plt.close(’all’)
fig, ax = plt.subplots(1)
ax.plot(r.date, r.close)

rotate and align the tick labels so they look better
fig.autofmt_xdate()

use a more precise date string for the x axis locations in the
toolbar
import matplotlib.dates as mdates
ax.fmt_xdata = mdates.DateFormatter(’%Y-%m-%d’)
plt.title(’fig.autofmt_xdate fixes the labels’)

17.3. Fixing common date annoyances 173

Matplotlib, Release 1.3.1

Dec 2
004

Jun 2005

Dec 2
005

Jun 2006

Dec 2
006

Jun 2007

Dec 2
007

Jun 2008
100

200

300

400

500

600

700

800
fig.autofmt_xdate fixes the labels

Now when you hover your mouse over the plotted data, you’ll see date format strings like 2004-12-01 in the
toolbar.

17.4 Fill Between and Alpha

The fill_between() function generates a shaded region between a min and max boundary that is useful
for illustrating ranges. It has a very handy where argument to combine filling with logical ranges, eg to just
fill in a curve over some threshold value.

At its most basic level, fill_between can be use to enhance a graphs visual appearance. Let’s compare
two graphs of a financial times with a simple line plot on the left and a filled line on the right.

import matplotlib.pyplot as plt
import numpy as np

import matplotlib.cbook as cbook

load up some sample financial data
datafile = cbook.get_sample_data(’goog.npy’)
r = np.load(datafile).view(np.recarray)

create two subplots with the shared x and y axes
fig, (ax1, ax2) = plt.subplots(1,2, sharex=True, sharey=True)

174 Chapter 17. Our Favorite Recipes

Matplotlib, Release 1.3.1

pricemin = r.close.min()

ax1.plot(r.date, r.close, lw=2)
ax2.fill_between(r.date, pricemin, r.close, facecolor=’blue’, alpha=0.5)

for ax in ax1, ax2:
ax.grid(True)

ax1.set_ylabel(’price’)
for label in ax2.get_yticklabels():

label.set_visible(False)

fig.suptitle(’Google (GOOG) daily closing price’)
fig.autofmt_xdate()

Dec 2
004

Jun 2005

Dec 2
005

Jun 2006

Dec 2
006

Jun 2007

Dec 2
007

Jun 2008
100

200

300

400

500

600

700

800

p
ri

ce

Dec 2
004

Jun 2005

Dec 2
005

Jun 2006

Dec 2
006

Jun 2007

Dec 2
007

Jun 2008

Google (GOOG) daily closing price

The alpha channel is not necessary here, but it can be used to soften colors for more visually appealing
plots. In other examples, as we’ll see below, the alpha channel is functionally useful as the shaded regions
can overlap and alpha allows you to see both. Note that the postscript format does not support alpha (this is
a postscript limitation, not a matplotlib limitation), so when using alpha save your figures in PNG, PDF or
SVG.

Our next example computes two populations of random walkers with a different mean and standard deviation
of the normal distributions from which the steps are drawn. We use shared regions to plot +/- one standard
deviation of the mean position of the population. Here the alpha channel is useful, not just aesthetic.

17.4. Fill Between and Alpha 175

Matplotlib, Release 1.3.1

import matplotlib.pyplot as plt
import numpy as np

Nsteps, Nwalkers = 100, 250
t = np.arange(Nsteps)

an (Nsteps x Nwalkers) array of random walk steps
S1 = 0.002 + 0.01*np.random.randn(Nsteps, Nwalkers)
S2 = 0.004 + 0.02*np.random.randn(Nsteps, Nwalkers)

an (Nsteps x Nwalkers) array of random walker positions
X1 = S1.cumsum(axis=0)
X2 = S2.cumsum(axis=0)

Nsteps length arrays empirical means and standard deviations of both
populations over time
mu1 = X1.mean(axis=1)
sigma1 = X1.std(axis=1)
mu2 = X2.mean(axis=1)
sigma2 = X2.std(axis=1)

plot it!
fig, ax = plt.subplots(1)
ax.plot(t, mu1, lw=2, label=’mean population 1’, color=’blue’)
ax.plot(t, mu1, lw=2, label=’mean population 2’, color=’yellow’)
ax.fill_between(t, mu1+sigma1, mu1-sigma1, facecolor=’blue’, alpha=0.5)
ax.fill_between(t, mu2+sigma2, mu2-sigma2, facecolor=’yellow’, alpha=0.5)
ax.set_title(’random walkers empirical μ and $\pm \sigma$ interval’)
ax.legend(loc=’upper left’)
ax.set_xlabel(’num steps’)
ax.set_ylabel(’position’)
ax.grid()

176 Chapter 17. Our Favorite Recipes

Matplotlib, Release 1.3.1

0 20 40 60 80 100
num steps

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p
o
si

ti
o
n

random walkers empirical µ and ±σ interval

mean population 1
mean population 2

The where keyword argument is very handy for highlighting certain regions of the graph. where takes a
boolean mask the same length as the x, ymin and ymax arguments, and only fills in the region where the
boolean mask is True. In the example below, we simulate a single random walker and compute the analytic
mean and standard deviation of the population positions. The population mean is shown as the black dashed
line, and the plus/minus one sigma deviation from the mean is shown as the yellow filled region. We use
the where mask X>upper_bound to find the region where the walker is above the one sigma boundary, and
shade that region blue.

np.random.seed(1234)

Nsteps = 500
t = np.arange(Nsteps)

mu = 0.002
sigma = 0.01

the steps and position
S = mu + sigma*np.random.randn(Nsteps)
X = S.cumsum()

the 1 sigma upper and lower analytic population bounds
lower_bound = mu*t - sigma*np.sqrt(t)
upper_bound = mu*t + sigma*np.sqrt(t)

fig, ax = plt.subplots(1)

17.4. Fill Between and Alpha 177

Matplotlib, Release 1.3.1

ax.plot(t, X, lw=2, label=’walker position’, color=’blue’)
ax.plot(t, mu*t, lw=1, label=’population mean’, color=’black’, ls=’--’)
ax.fill_between(t, lower_bound, upper_bound, facecolor=’yellow’, alpha=0.5,

label=’1 sigma range’)
ax.legend(loc=’upper left’)

here we use the where argument to only fill the region where the
walker is above the population 1 sigma boundary
ax.fill_between(t, upper_bound, X, where=X>upper_bound, facecolor=’blue’, alpha=0.5)
ax.set_xlabel(’num steps’)
ax.set_ylabel(’position’)
ax.grid()

0 100 200 300 400 500
num steps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

p
o
si

ti
o
n

walker position
population mean

Another handy use of filled regions is to highlight horizontal or vertical spans of an axes – for that matplotlib
has some helper functions axhspan() and axvspan() and example pylab_examples-axhspan_demo.

17.5 Transparent, fancy legends

Sometimes you know what your data looks like before you plot it, and may know for instance that there
won’t be much data in the upper right hand corner. Then you can safely create a legend that doesn’t overlay
your data:

178 Chapter 17. Our Favorite Recipes

Matplotlib, Release 1.3.1

ax.legend(loc=’upper right’)

Other times you don’t know where your data is, and loc=’best’ will try and place the legend:

ax.legend(loc=’best’)

but still, your legend may overlap your data, and in these cases it’s nice to make the legend frame transparent.

np.random.seed(1234)
fig, ax = plt.subplots(1)
ax.plot(np.random.randn(300), ’o-’, label=’normal distribution’)
ax.plot(np.random.rand(300), ’s-’, label=’uniform distribution’)
ax.set_ylim(-3, 3)
leg = ax.legend(loc=’best’, fancybox=True)
leg.get_frame().set_alpha(0.5)

ax.set_title(’fancy, transparent legends’)

0 50 100 150 200 250 300
3

2

1

0

1

2

3
fancy, transparent legends

normal distribution
uniform distribution

17.6 Placing text boxes

When decorating axes with text boxes, two useful tricks are to place the text in axes coordinates (see Trans-
formations Tutorial), so the text doesn’t move around with changes in x or y limits. You can also use the
bbox property of text to surround the text with a Patch instance – the bbox keyword argument takes a

17.6. Placing text boxes 179

Matplotlib, Release 1.3.1

dictionary with keys that are Patch properties.

np.random.seed(1234)
fig, ax = plt.subplots(1)
x = 30*np.random.randn(10000)
mu = x.mean()
median = np.median(x)
sigma = x.std()
textstr = ’$\mu=%.2f$\n$\mathrm{median}=%.2f$\n$\sigma=%.2f$’%(mu, median, sigma)

ax.hist(x, 50)
these are matplotlib.patch.Patch properties
props = dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.5)

place a text box in upper left in axes coords
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=14,

verticalalignment=’top’, bbox=props)

150 100 50 0 50 100
0

100

200

300

400

500

600

µ=0.48
median =0.54
σ=29.86

180 Chapter 17. Our Favorite Recipes

CHAPTER

EIGHTEEN

SCREENSHOTS

Here you’ll find a host of example plots with the code that generated them.

18.1 Simple Plot

Here’s a very basic plot() with text labels:

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

v
o
lt

a
g
e
 (

m
V

)

About as simple as it gets, folks

181

Matplotlib, Release 1.3.1

18.2 Subplot demo

Multiple axes (i.e. subplots) are created with the subplot() command:

0 1 2 3 4 5
0.5

0.0

0.5

1.0

D
a
m

p
e
d
 o

sc
ill

a
ti

o
n

A tale of 2 subplots

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

U
n
d
a
m

p
e
d

18.3 Histograms

The hist() command automatically generates histograms and returns the bin counts or probabilities:

182 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty
Histogram of IQ: µ=100, σ=15

18.4 Path demo

You can add arbitrary paths in matplotlib using the matplotlib.path module:

18.4. Path demo 183

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3 4
3

2

1

0

1

2

3

4

18.5 mplot3d

The mplot3d toolkit (see mplot3d tutorial and mplot3d-examples-index) has support for simple 3d graphs
including surface, wireframe, scatter, and bar charts.

184 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

6 4 2 0 2 4 6 6
4

2
0

2
4

6
-1.01
-0.79
-0.56
-0.34
-0.11
0.11
0.34
0.56
0.79
1.01

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for the mplot3d toolkit. This toolkit
is included with all standard matplotlib installs.

18.6 Streamplot

The streamplot() function plots the streamlines of a vector field. In addition to simply plotting the
streamlines, it allows you to map the colors and/or line widths of streamlines to a separate parameter, such
as the speed or local intensity of the vector field.

18.6. Streamplot 185

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

12

10

8

6

4

2

0

2

186 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

This feature complements the quiver() function for plotting vector fields. Thanks to Tom Flannaghan and
Tony Yu for adding the streamplot function.

18.7 Ellipses

In support of the Phoenix mission to Mars (which used matplotlib to display ground tracking of spacecraft),
Michael Droettboom built on work by Charlie Moad to provide an extremely accurate 8-spline approxima-
tion to elliptical arcs (see Arc), which are insensitive to zoom level.

18.7. Ellipses 187

http://www.jpl.nasa.gov/news/phoenix/main.php

Matplotlib, Release 1.3.1

0 2 4 6 8 10
0

2

4

6

8

10

18.8 Bar charts

Bar charts are simple to create using the bar() command, which includes customizations such as error bars:

188 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

A B C D E
Group

0

5

10

15

20

25

30

35

40
S
co

re
s

Scores by group and gender

Men
Women

It’s also simple to create stacked bars (bar_stacked.py), candlestick bars (finance_demo.py), and horizontal
bar charts (barh_demo.py).

18.9 Pie charts

The pie() command allows you to easily create pie charts. Optional features include auto-labeling the
percentage of area, exploding one or more wedges from the center of the pie, and a shadow effect. Take a
close look at the attached code, which generates this figure in just a few lines of code.

18.9. Pie charts 189

Matplotlib, Release 1.3.1

Frogs

15.0%

Hogs

30.0%

Dogs

45.0%

Logs

10.0%

18.10 Table demo

The table() command adds a text table to an axes.

190 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

Freeze Wind Flood Quake Hail
100 year 431.5 1049.4 799.6 2149.8 917.9
50 year 292.2 717.8 456.4 1368.5 865.6
20 year 213.8 636.0 305.7 1175.2 796.0
10 year 124.6 555.4 153.2 677.2 192.5
5 year 66.4 174.3 75.1 577.9 32.0

0

500

1000

1500

2000

Lo
ss

 i
n
 $

1
0

0
0
's

Loss by Disaster

18.11 Scatter demo

The scatter() command makes a scatter plot with (optional) size and color arguments. This example plots
changes in Google’s stock price, with marker sizes reflecting the trading volume and colors varying with
time. Here, the alpha attribute is used to make semitransparent circle markers.

18.11. Scatter demo 191

Matplotlib, Release 1.3.1

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25

∆i

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25
∆
i
+

1
Volume and percent change

18.12 Slider demo

Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allowing
you to write cross GUI figures and widgets. See matplotlib.widgets and the widget examples.

192 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
10

5

0

5

10

Freq 3.00
Amp 5.00

Reset

red
blue
green

18.13 Fill demo

The fill() command lets you plot filled curves and polygons:

18.13. Fill demo 193

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Thanks to Andrew Straw for adding this function.

18.14 Date demo

You can plot date data with major and minor ticks and custom tick formatters for both.

194 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

2004
2005

2006
2007

2008
2009

100

200

300

400

500

600

700

800

See matplotlib.ticker and matplotlib.dates for details and usage.

18.15 Financial charts

You can make sophisticated financial plots by combining the various plot functions, layout commands,
and labeling tools provided by matplotlib. The following example emulates one of the financial plots in
ChartDirector:

18.15. Financial charts 195

http://www.advsofteng.com/gallery_finance.html

Matplotlib, Release 1.3.1

30

70
>70 = overbought

<30 = oversold

RSI (14)

SPY daily

90

120

150

10-Oct-2013 O:165.80 H:166.20 L:164.53 C:165.60, V:168.2M Chg:-0.20

MA (20)

MA (200)

2007
2008

2009
2010

2011
2012

2013

10
5
0
5 MACD (12, 26, 9)

18.16 Basemap demo

Jeff Whitaker’s Basemap (Not distributed with matplotlib) add-on toolkit makes it possible to plot data
on many different map projections. This example shows how to plot contours, markers and text on an
orthographic projection, with NASA’s “blue marble” satellite image as a background.

196 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

Sorry, could not import Basemap

18.17 Log plots

The semilogx(), semilogy() and loglog() functions simplify the creation of logarithmic plots.

18.17. Log plots 197

Matplotlib, Release 1.3.1

0 5 10 15 20
10-2

10-1

100 semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102 loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105Errorbars go negative

Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions log-scaling infrastructure.

18.18 Polar plots

The polar() command generates polar plots.

198 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5
2.0

A line plot on a polar axis

18.19 Legends

The legend() command automatically generates figure legends, with MATLAB-compatible legend place-
ment commands.

18.19. Legends 199

Matplotlib, Release 1.3.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

Model length
Data length
Total message length

Thanks to Charles Twardy for input on the legend command.

18.20 Mathtext_examples

Below is a sampling of the many TeX expressions now supported by matplotlib’s internal mathtext engine.
The mathtext module provides TeX style mathematical expressions using freetype2 and the BaKoMa com-
puter modern or STIX fonts. See the matplotlib.mathtext module for additional details.

200 Chapter 18. Screenshots

http://freetype.sourceforge.net/index2.html
http://www.stixfonts.org

Matplotlib, Release 1.3.1

W
3β
δ1ρ1σ2

=U
3β
δ1ρ1

+ 1
8π2

∫ α2

α2

dα ′2

[
U

2β
δ1ρ1
−α ′2 U 1β

ρ1σ2

U 0β
ρ1σ2

]
Subscripts and superscripts:

αi >βi , α
j
i+1 =sin(2πfj ti)e

−5ti/τ ,

Fractions, binomials and stacked numbers:

3
4
,
(
3
4

)
, 3

4
,
(

5−1
x

4

)
,

Radicals:√
2 , 3

√
x,

Fonts:

Roman , Italic , Typewriter or CALLIGRAPHY

Accents:

á, ā, ă, ȧ, ä, à, â, ã,~a, x̂yz, x̃yz,

Greek, Hebrew:

α, β, χ, δ, λ, µ, ∆, Γ, Ω, Φ, Π, Υ, ∇, ℵ, , , ,

Delimiters, functions and Symbols:∐
,

∫
,

∮
,
∏
,
∑

, log, sin, ≈, ⊕, , ,∞, , <, ,

Matplotlib's math rendering engine

Matplotlib’s mathtext infrastructure is an independent implementation and does not require TeX or any
external packages installed on your computer. See the tutorial at Writing mathematical expressions.

18.21 Native TeX rendering

Although matplotlib’s internal math rendering engine is quite powerful, sometimes you need TeX. Mat-
plotlib supports external TeX rendering of strings with the usetex option.

18.21. Native TeX rendering 201

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

1.0

1.5

2.0

2.5

3.0

vo
lt

ag
e

(m
V

)
TEX is Number

∞∑

n=1

−eiπ
2n

!

18.22 EEG demo

You can embed matplotlib into pygtk, wx, Tk, FLTK, or Qt applications. Here is a screenshot of an EEG
viewer called pbrain, which is part of the NeuroImaging in Python suite NIPY.

202 Chapter 18. Screenshots

http://nipy.sourceforge.net/nipy/stable/index.html

Matplotlib, Release 1.3.1

The lower axes uses specgram() to plot the spectrogram of one of the EEG channels.

For examples of how to embed matplotlib in different toolkits, see:

• user_interfaces-embedding_in_gtk2

• user_interfaces-embedding_in_wx2

• user_interfaces-mpl_with_glade

• user_interfaces-embedding_in_qt

• user_interfaces-embedding_in_tk

18.23 XKCD-style sketch plots

matplotlib supports plotting in the style of xkcd.

18.23. XKCD-style sketch plots 203

Matplotlib, Release 1.3.1

204 Chapter 18. Screenshots

Matplotlib, Release 1.3.1

18.23. XKCD-style sketch plots 205

Matplotlib, Release 1.3.1

206 Chapter 18. Screenshots

CHAPTER

NINETEEN

WHAT’S NEW IN MATPLOTLIB

This page just covers the highlights – for the full story, see the CHANGELOG

For a list of all of the issues and pull requests since the last revision, see the github-stats.

Note: Matplotlib version 1.1 is the last major release compatible with Python versions 2.4 to 2.7. matplotlib
1.2 and later require versions 2.6, 2.7, and 3.1 and higher.

207

http://matplotlib.org/_static/CHANGELOG

Matplotlib, Release 1.3.1

Table of Contents

• What’s new in matplotlib
– new in matplotlib-1.3

* New in 1.3.1

* New plotting features

* Drawing

* Text

* Configuration (rcParams)

* Backends

* Documentation and examples

* Infrastructure
– new in matplotlib 1.2.2

* Improved collections

* Multiple images on same axes are correctly transparent
– new in matplotlib-1.2

* Python 3.x support

* PGF/TikZ backend

* Locator interface

* Tri-Surface Plots

* Control the lengths of colorbar extensions

* Figures are picklable

* Set default bounding box in matplotlibrc

* New Boxplot Functionality

* New RC parameter functionality

* Streamplot

* New hist functionality

* Updated shipped dependencies

* Face-centred colors in tripcolor plots

* Hatching patterns in filled contour plots, with legends

* Known issues in the matplotlib-1.2 release
– new in matplotlib-1.1

* Sankey Diagrams

* Animation

* Tight Layout

* PyQT4, PySide, and IPython

* Legend

* mplot3d

* Numerix support removed

* Markers

* Other improvements
– new in matplotlib-1.0

* HTML5/Canvas backend

* Sophisticated subplot grid layout

* Easy pythonic subplots

* Contour fixes and and triplot

* multiple calls to show supported

* mplot3d graphs can be embedded in arbitrary axes

* tick_params

* Lots of performance and feature enhancements

* Much improved software carpentry

* Bugfix marathon
– new in matplotlib-0.99

* New documentation

* mplot3d

* axes grid toolkit

* Axis spine placement
– new in 0.98.4

* Legend enhancements

* Fancy annotations and arrows

* Native OS X backend

* psd amplitude scaling

* Fill between

* Lots more

208 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

19.1 new in matplotlib-1.3

19.1.1 New in 1.3.1

1.3.1 is a bugfix release, primarily dealing with improved setup and handling of dependencies, and correcting
and enhancing the documentation.

The following changes were made in 1.3.1 since 1.3.0.

Enhancements

• Added a context manager for creating multi-page pdfs (see
matplotlib.backends.backend_pdf.PdfPages).

• The WebAgg backend should now have lower latency over heterogeneous Internet connections.

Bug fixes

• Histogram plots now contain the endline.

• Fixes to the Molleweide projection.

• Handling recent fonts from Microsoft and Macintosh-style fonts with non-ascii metadata is improved.

• Hatching of fill between plots now works correctly in the PDF backend.

• Tight bounding box support now works in the PGF backend.

• Transparent figures now display correctly in the Qt4Agg backend.

• Drawing lines from one subplot to another now works.

• Unit handling on masked arrays has been improved.

Setup and dependencies

• Now works with any version of pyparsing 1.5.6 or later, without displaying hundreds of warnings.

• Now works with 64-bit versions of Ghostscript on MS-Windows.

• When installing from source into an environment without Numpy, Numpy will first be downloaded
and built and then used to build matplotlib.

• Externally installed backends are now always imported using a fully-qualified path to the module.

• Works with newer version of wxPython.

• Can now build with a PyCXX installed globally on the system from source.

• Better detection of Gtk3 dependencies.

19.1. new in matplotlib-1.3 209

Matplotlib, Release 1.3.1

Testing

• Tests should now work in non-English locales.

• PEP8 conformance tests now report on locations of issues.

19.1.2 New plotting features

xkcd-style sketch plotting

To give your plots a sense of authority that they may be missing, Michael Droettboom (inspired by the
work of many others in PR #1329) has added an xkcd-style sketch plotting mode. To use it, simply call
matplotlib.pyplot.xkcd() before creating your plot. For really fine control, it is also possible to modify
each artist’s sketch parameters individually with matplotlib.artist.Artist.set_sketch_params().

210 Chapter 19. What’s new in matplotlib

http://github.com/matplotlib/matplotlib/pull/1329/
http://xkcd.com/

Matplotlib, Release 1.3.1

New eventplot plot type

Todd Jennings added a eventplot() function to create multiple rows or columns of identical line segments

19.1. new in matplotlib-1.3 211

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
20

15

10

5

0

5

10

15

20 15 10 5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18
10

0

10

20

30

40

50

60

10 0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

As part of this feature, there is a new EventCollection class that allows for plotting and manipulating
rows or columns of identical line segments.

Triangular grid interpolation

Geoffroy Billotey and Ian Thomas added classes to perform interpolation within triangular grids:
(LinearTriInterpolator and CubicTriInterpolator) and a utility class to find the triangles in which
points lie (TrapezoidMapTriFinder). A helper class to perform mesh refinement and smooth contouring
was also added (UniformTriRefiner). Finally, a class implementing some basic tools for triangular mesh
improvement was added (TriAnalyzer).

212 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
High-resolution tricontouring

Baselines for stackplot

Till Stensitzki added non-zero baselines to stackplot(). They may be symmetric or weighted.

19.1. new in matplotlib-1.3 213

Matplotlib, Release 1.3.1

0 20 40 60 80 100
3

2

1

0

1

2

3

4

Rectangular colorbar extensions

Andrew Dawson added a new keyword argument extendrect to colorbar() to optionally make colorbar
extensions rectangular instead of triangular.

More robust boxplots

Paul Hobson provided a fix to the boxplot() method that prevent whiskers from being drawn inside the
box for oddly distributed data sets.

Calling subplot() without arguments

A call to subplot() without any arguments now acts the same as subplot(111) or subplot(1,1,1) –
it creates one axes for the whole figure. This was already the behavior for both axes() and subplots(),
and now this consistency is shared with subplot().

214 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

19.1.3 Drawing

Independent alpha values for face and edge colors

Wes Campaigne modified how Patch objects are drawn such that (for backends supporting transparency)
you can set different alpha values for faces and edges, by specifying their colors in RGBA format. Note that
if you set the alpha attribute for the patch object (e.g. using set_alpha() or the alpha keyword argument),
that value will override the alpha components set in both the face and edge colors.

Path effects on lines

Thanks to Jae-Joon Lee, path effects now also work on plot lines.

0.5 0.0 0.5 1.0 1.5

0.5

0.0

0.5

1.0

1.5
0 1 2 3 4

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Line 1

Easier creation of colormap and normalizer for levels with colors

Phil Elson added the matplotlib.colors.from_levels_and_colors() function to easily cre-
ate a colormap and normalizer for representation of discrete colors for plot types such as
matplotlib.pyplot.pcolormesh(), with a similar interface to that of contourf().

Full control of the background color

Wes Campaigne and Phil Elson fixed the Agg backend such that PNGs are now saved with the correct
background color when fig.patch.get_alpha() is not 1.

Improved bbox_inches="tight" functionality

Passing bbox_inches="tight" through to plt.save() now takes into account all artists on a figure - this
was previously not the case and led to several corner cases which did not function as expected.

19.1. new in matplotlib-1.3 215

Matplotlib, Release 1.3.1

Initialize a rotated rectangle

Damon McDougall extended the Rectangle constructor to accept an angle kwarg, specifying the rotation
of a rectangle in degrees.

19.1.4 Text

Anchored text support

The svg and pgf backends are now able to save text alignment information to their output formats. This
allows to edit text elements in saved figures, using Inkscape for example, while preserving their intended
position. For svg please note that you’ll have to disable the default text-to-path conversion (mpl.rc(’svg’,
fonttype=’none’)).

Better vertical text alignment and multi-line text

The vertical alignment of text is now consistent across backends. You may see small differences in text
placement, particularly with rotated text.

If you are using a custom backend, note that the draw_text renderer method is now passed the location of
the baseline, not the location of the bottom of the text bounding box.

Multi-line text will now leave enough room for the height of very tall or very low text, such as superscripts
and subscripts.

Left and right side axes titles

Andrew Dawson added the ability to add axes titles flush with the left and right sides of the top of the axes
using a new keyword argument loc to title().

Improved manual contour plot label positioning

Brian Mattern modified the manual contour plot label positioning code to interpolate along line segments
and find the actual closest point on a contour to the requested position. Previously, the closest path vertex
was used, which, in the case of straight contours was sometimes quite distant from the requested location.
Much more precise label positioning is now possible.

19.1.5 Configuration (rcParams)

Quickly find rcParams

Phil Elson made it easier to search for rcParameters by passing a valid regular expression to
matplotlib.RcParams.find_all(). matplotlib.RcParams now also has a pretty repr and str rep-
resentation so that search results are printed prettily:

216 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

>>> import matplotlib
>>> print(matplotlib.rcParams.find_all(’\.size’))
RcParams({’font.size’: 12,

’xtick.major.size’: 4,
’xtick.minor.size’: 2,
’ytick.major.size’: 4,
’ytick.minor.size’: 2})

axes.xmargin and axes.ymargin added to rcParams

rcParam values (axes.xmargin and axes.ymargin) were added to configure the default margins used.
Previously they were hard-coded to default to 0, default value of both rcParam values is 0.

Changes to font rcParams

The font.* rcParams now affect only text objects created after the rcParam has been set, and will not
retroactively affect already existing text objects. This brings their behavior in line with most other rcParams.

savefig.jpeg_quality added to rcParams

rcParam value savefig.jpeg_quality was added so that the user can configure the default quality used
when a figure is written as a JPEG. The default quality is 95; previously, the default quality was 75. This
change minimizes the artifacting inherent in JPEG images, particularly with images that have sharp changes
in color as plots often do.

19.1.6 Backends

WebAgg backend

Michael Droettboom, Phil Elson and others have developed a new backend, WebAgg, to display figures in a
web browser. It works with animations as well as being fully interactive.

19.1. new in matplotlib-1.3 217

Matplotlib, Release 1.3.1

Future versions of matplotlib will integrate this backend with the IPython notebook for a fully web browser
based plotting frontend.

Remember save directory

Martin Spacek made the save figure dialog remember the last directory saved to. The default is configurable
with the new savefig.directory rcParam in matplotlibrc.

19.1.7 Documentation and examples

Numpydoc docstrings

Nelle Varoquaux has started an ongoing project to convert matplotlib’s docstrings to numpydoc format. See
MEP10 for more information.

218 Chapter 19. What’s new in matplotlib

https://github.com/matplotlib/matplotlib/wiki/Mep10

Matplotlib, Release 1.3.1

Example reorganization

Tony Yu has begun work reorganizing the examples into more meaningful categories. The new gallery page
is the fruit of this ongoing work. See MEP12 for more information.

Examples now use subplots()

For the sake of brevity and clarity, most of the examples now use the newer subplots(), which creates a
figure and one (or multiple) axes object(s) in one call. The old way involved a call to figure(), followed
by one (or multiple) subplot() calls.

19.1.8 Infrastructure

Housecleaning

A number of features that were deprecated in 1.2 or earlier, or have not been in a working state for a long
time have been removed. Highlights include removing the Qt version 3 backends, and the FltkAgg and Emf
backends. See Changes in 1.3.x for a complete list.

New setup script

matplotlib 1.3 includes an entirely rewritten setup script. We now ship fewer dependencies with the tarballs
and installers themselves. Notably, pytz, dateutil, pyparsing and six are no longer included with
matplotlib. You can either install them manually first, or let pip install them as dependencies along with
matplotlib. It is now possible to not include certain subcomponents, such as the unit test data, in the install.
See setup.cfg.template for more information.

XDG base directory support

On Linux, matplotlib now uses the XDG base directory specification to find the matplotlibrc
configuration file. matplotlibrc should now be kept in config/matplotlib, rather than matplotlib.
If your configuration is found in the old location, it will still be used, but a warning will be displayed.

Catch opening too many figures using pyplot

Figures created through pyplot.figure are retained until they are explicitly closed. It is therefore common
for new users of matplotlib to run out of memory when creating a large series of figures in a loop without
closing them.

matplotlib will now display a RuntimeWarning when too many figures have been opened at once. By
default, this is displayed for 20 or more figures, but the exact number may be controlled using the
figure.max_num_figures rcParam.

19.1. new in matplotlib-1.3 219

https://github.com/matplotlib/matplotlib/wiki/MEP12

Matplotlib, Release 1.3.1

19.2 new in matplotlib 1.2.2

19.2.1 Improved collections

The individual items of a collection may now have different alpha values and be rendered correctly. This
also fixes a bug where collections were always filled in the PDF backend.

19.2.2 Multiple images on same axes are correctly transparent

When putting multiple images onto the same axes, the background color of the axes will now show through
correctly.

19.3 new in matplotlib-1.2

19.3.1 Python 3.x support

Matplotlib 1.2 is the first version to support Python 3.x, specifically Python 3.1 and 3.2. To make this happen
in a reasonable way, we also had to drop support for Python versions earlier than 2.6.

This work was done by Michael Droettboom, the Cape Town Python Users’ Group, many others and sup-
ported financially in part by the SAGE project.

The following GUI backends work under Python 3.x: Gtk3Cairo, Qt4Agg, TkAgg and MacOSX. The other
GUI backends do not yet have adequate bindings for Python 3.x, but continue to work on Python 2.6 and
2.7, particularly the Qt and QtAgg backends (which have been deprecated). The non-GUI backends, such
as PDF, PS and SVG, work on both Python 2.x and 3.x.

Features that depend on the Python Imaging Library, such as JPEG handling, do not work, since the version
of PIL for Python 3.x is not sufficiently mature.

19.3.2 PGF/TikZ backend

Peter Würtz wrote a backend that allows matplotlib to export figures as drawing commands for LaTeX. These
can be processed by PdfLaTeX, XeLaTeX or LuaLaTeX using the PGF/TikZ package. Usage examples and
documentation are found in Typesetting With XeLaTeX/LuaLaTeX.

220 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

..

0.0
.

0.5
.

1.0
.

1.5
.

2.0
.

2.5
.

3.0
.

3.5
.

4.0
.

unicode text: я, ψ, €, ü, 10 °/µm
.

0.0

.

0.5

.

1.0

.

1.5

.

2.0

.

2.5

.

3.0

.

3.5

.

4.0

.

X Ǝ
LA T
EX

.

unicode math: 𝜆 =
∞

𝑖්
𝜇2

𝑖

19.3.3 Locator interface

Philip Elson exposed the intelligence behind the tick Locator classes with a simple interface. For instance,
to get no more than 5 sensible steps which span the values 10 and 19.5:

>>> import matplotlib.ticker as mticker
>>> locator = mticker.MaxNLocator(nbins=5)
>>> print(locator.tick_values(10, 19.5))
[10. 12. 14. 16. 18. 20.]

19.3.4 Tri-Surface Plots

Damon McDougall added a new plotting method for the mplot3d toolkit called plot_trisurf().

19.3. new in matplotlib-1.2 221

Matplotlib, Release 1.3.1

1.0
0.5

0.0
0.5

1.0 1.0

0.5
0.0

0.5
1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

19.3.5 Control the lengths of colorbar extensions

Andrew Dawson added a new keyword argument extendfrac to colorbar() to control the length of mini-
mum and maximum colorbar extensions.

222 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

0 1 2 3 4 5 6
0
1
2
3
4
5
6

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Default length colorbar extensions

0 1 2 3 4 5 6
0
1
2
3
4
5
6

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Custom length colorbar extensions

19.3.6 Figures are picklable

Philip Elson added an experimental feature to make figures picklable for quick and easy short-term storage
of plots. Pickle files are not designed for long term storage, are unsupported when restoring a pickle saved
in another matplotlib version and are insecure when restoring a pickle from an untrusted source. Having
said this, they are useful for short term storage for later modification inside matplotlib.

19.3.7 Set default bounding box in matplotlibrc

Two new defaults are available in the matplotlibrc configuration file: savefig.bbox, which can be set to
‘standard’ or ‘tight’, and savefig.pad_inches, which controls the bounding box padding.

19.3.8 New Boxplot Functionality

Users can now incorporate their own methods for computing the median and its confidence intervals into
the boxplot() method. For every column of data passed to boxplot, the user can specify an accompanying
median and confidence interval.

19.3. new in matplotlib-1.2 223

Matplotlib, Release 1.3.1

1 2 3 4
treatment

4

3

2

1

0

1

2

3

4

5
re

sp
o
n
se

19.3.9 New RC parameter functionality

Matthew Emmett added a function and a context manager to help manage RC parameters: rc_file() and
rc_context. To load RC parameters from a file:

>>> mpl.rc_file(’mpl.rc’)

To temporarily use RC parameters:

>>> with mpl.rc_context(fname=’mpl.rc’, rc={’text.usetex’: True}):
>>> ...

19.3.10 Streamplot

Tom Flannaghan and Tony Yu have added a new streamplot() function to plot the streamlines of a vector
field. This has been a long-requested feature and complements the existing quiver() function for plotting
vector fields. In addition to simply plotting the streamlines of the vector field, streamplot() allows users
to map the colors and/or line widths of the streamlines to a separate parameter, such as the speed or local
intensity of the vector field.

224 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

12

10

8

6

4

2

0

2

19.3. new in matplotlib-1.2 225

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

19.3.11 New hist functionality

Nic Eggert added a new stacked kwarg to hist() that allows creation of stacked histograms using any of
the histogram types. Previously, this functionality was only available by using the barstacked histogram
type. Now, when stacked=True is passed to the function, any of the histogram types can be stacked. The
barstacked histogram type retains its previous functionality for backwards compatibility.

19.3.12 Updated shipped dependencies

The following dependencies that ship with matplotlib and are optionally installed alongside it have been
updated:

• pytz 2012d

• dateutil 1.5 on Python 2.x, and 2.1 on Python 3.x

19.3.13 Face-centred colors in tripcolor plots

Ian Thomas extended tripcolor() to allow one color value to be specified for each triangular face rather
than for each point in a triangulation.

226 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation, flat shading

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

19.3. new in matplotlib-1.2 227

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation, gouraud shading

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

228 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

tripcolor of user-specified triangulation

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

19.3.14 Hatching patterns in filled contour plots, with legends

Phil Elson added support for hatching to contourf(), together with the ability to use a legend to identify
contoured ranges.

19.3. new in matplotlib-1.2 229

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

230 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5

−2.4<x −1.6

−1.6<x −0.8

−0.8<x 0.0

0.0<x 0.8

0.8<x 1.6

1.6<x 2.4

19.3.15 Known issues in the matplotlib-1.2 release

• When using the Qt4Agg backend with IPython 0.11 or later, the save dialog will not display. This
should be fixed in a future version of IPython.

19.4 new in matplotlib-1.1

19.4.1 Sankey Diagrams

Kevin Davies has extended Yannick Copin’s original Sankey example into a module (sankey) and provided
new examples (api-sankey_demo_basics, api-sankey_demo_links, api-sankey_demo_rankine).

19.4. new in matplotlib-1.1 231

Matplotlib, Release 1.3.1

Pump 1
Shaft power
0.017 MW 10.2 MW

Open
heater

10.2 MW

Pump 2
Shaft power
0.642 MW

43.7 MW

Closed
heater

44.3 MW

35.1 MW

Trap

10.8 MW

Steam
generator

Heat rate
232 MW

68.6 MW

181 MW

Turbine 1

260 MW

Reheat

Turbine 2

Shaft power
44.6 MW

22.7 MW Shaft power
101 MW

Condenser

142 MW

Heat rate
132 MW

Rankine Power Cycle: Example 8.6 from Moran and Shapiro
"Fundamentals of Engineering Thermodynamics", 6th ed., 2008

19.4.2 Animation

Ryan May has written a backend-independent framework for creating animated figures. The animation
module is intended to replace the backend-specific examples formerly in the examples-index listings. Exam-
ples using the new framework are in animation-examples-index; see the entrancing double pendulum which
uses matplotlib.animation.Animation.save() to create the movie below.

232 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

This should be considered as a beta release of the framework; please try it and provide feedback.

19.4.3 Tight Layout

A frequent issue raised by users of matplotlib is the lack of a layout engine to nicely space out elements of
the plots. While matplotlib still adheres to the philosophy of giving users complete control over the place-
ment of plot elements, Jae-Joon Lee created the tight_layout module and introduced a new command
tight_layout() to address the most common layout issues.

0.0 0.2 0.4 0.6 0.8 1.0
x-label

0.0
0.2
0.4
0.6
0.8
1.0

y
-l

a
b
e
l

before tight_layout

0.05 0.00 0.05
x-label

0.05

0.00

0.05

y
-l

a
b
e
l

before tight_layout

0.0 0.2 0.4 0.6 0.8 1.0
x-label

0.0
0.2
0.4
0.6
0.8
1.0

y
-l

a
b
e
l

after tight_layout

0.05 0.00 0.05
x-label

0.05

0.00

0.05

y
-l

a
b
e
l

after tight_layout

The usage of this functionality can be as simple as

plt.tight_layout()

and it will adjust the spacing between subplots so that the axis labels do not overlap with neighboring
subplots. A Tight Layout guide has been created to show how to use this new tool.

19.4. new in matplotlib-1.1 233

Matplotlib, Release 1.3.1

19.4.4 PyQT4, PySide, and IPython

Gerald Storer made the Qt4 backend compatible with PySide as well as PyQT4. At present, however, PySide
does not support the PyOS_InputHook mechanism for handling gui events while waiting for text input, so
it cannot be used with the new version 0.11 of IPython. Until this feature appears in PySide, IPython users
should use the PyQT4 wrapper for QT4, which remains the matplotlib default.

An rcParam entry, “backend.qt4”, has been added to allow users to select PyQt4, PyQt4v2, or PySide. The
latter two use the Version 2 Qt API. In most cases, users can ignore this rcParam variable; it is available to
aid in testing, and to provide control for users who are embedding matplotlib in a PyQt4 or PySide app.

19.4.5 Legend

Jae-Joon Lee has improved plot legends. First, legends for complex plots such as stem() plots will now
display correctly. Second, the ‘best’ placement of a legend has been improved in the presence of NANs.

See Legend of Complex Plots for more detailed explanation and examples.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Bar 1
Bar 2

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

test 1
test 2
test 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

stem test

19.4.6 mplot3d

In continuing the efforts to make 3D plotting in matplotlib just as easy as 2D plotting, Ben Root has made
several improvements to the mplot3d module.

234 Chapter 19. What’s new in matplotlib

http://ipython.org

Matplotlib, Release 1.3.1

• Axes3D has been improved to bring the class towards feature-parity with regular Axes objects

• Documentation for mplot3d was significantly expanded

• Axis labels and orientation improved

• Most 3D plotting functions now support empty inputs

• Ticker offset display added:

X-Label

+1e5
0

5
10

15
20

Y-
La

bel+
1e5

0
2

4
6

8
10

12
14

Z
-L

a
b
e
l

0.0

0.5

1.0

1.5

2.0

• contourf() gains zdir and offset kwargs. You can now do this:

19.4. new in matplotlib-1.1 235

Matplotlib, Release 1.3.1

X

40 30 20 100 10 20 30 40

Y

40
30

20
10

0
10

20
30

40

Z

100

50

0

50

100

19.4.7 Numerix support removed

After more than two years of deprecation warnings, Numerix support has now been completely removed
from matplotlib.

19.4.8 Markers

The list of available markers for plot() and scatter() has now been merged. While they were mostly
similar, some markers existed for one function, but not the other. This merge did result in a conflict for
the ‘d’ diamond marker. Now, ‘d’ will be interpreted to always mean “thin” diamond while ‘D’ will mean
“regular” diamond.

Thanks to Michael Droettboom for this effort.

19.4.9 Other improvements

• Unit support for polar axes and arrow()

• PolarAxes gains getters and setters for “theta_direction”, and “theta_offset” to allow for theta to go
in either the clock-wise or counter-clockwise direction and to specify where zero degrees should be
placed. set_theta_zero_location() is an added convenience function.

236 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

• Fixed error in argument handling for tri-functions such as tripcolor()

• axes.labelweight parameter added to rcParams.

• For imshow(), interpolation=’nearest’ will now always perform an interpolation. A “none” option
has been added to indicate no interpolation at all.

• An error in the Hammer projection has been fixed.

• clabel for contour() now accepts a callable. Thanks to Daniel Hyams for the original patch.

• Jae-Joon Lee added the HBox and VBox classes.

• Christoph Gohlke reduced memory usage in imshow().

• scatter() now accepts empty inputs.

• The behavior for ‘symlog’ scale has been fixed, but this may result in some minor changes to existing
plots. This work was refined by ssyr.

• Peter Butterworth added named figure support to figure().

• Michiel de Hoon has modified the MacOSX backend to make its interactive behavior consistent with
the other backends.

• Pim Schellart added a new colormap called “cubehelix”. Sameer Grover also added a colormap called
“coolwarm”. See it and all other colormaps here.

• Many bug fixes and documentation improvements.

19.5 new in matplotlib-1.0

19.5.1 HTML5/Canvas backend

Simon Ratcliffe and Ludwig Schwardt have released an HTML5/Canvas backend for matplotlib. The back-
end is almost feature complete, and they have done a lot of work comparing their html5 rendered images
with our core renderer Agg. The backend features client/server interactive navigation of matplotlib figures
in an html5 compliant browser.

19.5.2 Sophisticated subplot grid layout

Jae-Joon Lee has written gridspec, a new module for doing complex subplot layouts, featuring row and
column spans and more. See Customizing Location of Subplot Using GridSpec for a tutorial overview.

19.5. new in matplotlib-1.0 237

http://code.google.com/p/mplh5canvas/

Matplotlib, Release 1.3.1

ax1

ax2

ax3

ax4 ax5

subplot2grid

19.5.3 Easy pythonic subplots

Fernando Perez got tired of all the boilerplate code needed to create a figure and multiple subplots when
using the matplotlib API, and wrote a subplots() helper function. Basic usage allows you to create the
figure and an array of subplots with numpy indexing (starts with 0). e.g.:

fig, axarr = plt.subplots(2, 2)
axarr[0,0].plot([1,2,3]) # upper, left

See pylab_examples-subplots_demo for several code examples.

19.5.4 Contour fixes and and triplot

Ian Thomas has fixed a long-standing bug that has vexed our most talented developers for years.
contourf() now handles interior masked regions, and the boundaries of line and filled contours coincide.

Additionally, he has contributed a new module tri and helper function triplot() for creating and plotting
unstructured triangular grids.

238 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
triplot of Delaunay triangulation

19.5. new in matplotlib-1.0 239

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

triplot of user-specified triangulation

19.5.5 multiple calls to show supported

A long standing request is to support multiple calls to show(). This has been difficult because it is hard
to get consistent behavior across operating systems, user interface toolkits and versions. Eric Firing has
done a lot of work on rationalizing show across backends, with the desired behavior to make show raise all
newly created figures and block execution until they are closed. Repeated calls to show should raise newly
created figures since the last call. Eric has done a lot of testing on the user interface toolkits and versions
and platforms he has access to, but it is not possible to test them all, so please report problems to the mailing
list and bug tracker.

19.5.6 mplot3d graphs can be embedded in arbitrary axes

You can now place an mplot3d graph into an arbitrary axes location, supporting mixing of 2D and 3D graphs
in the same figure, and/or multiple 3D graphs in a single figure, using the “projection” keyword argument to
add_axes or add_subplot. Thanks Ben Root.

240 Chapter 19. What’s new in matplotlib

http://sourceforge.net/mailarchive/forum.php?forum_name=matplotlib-users
http://sourceforge.net/mailarchive/forum.php?forum_name=matplotlib-users
http://sourceforge.net/tracker/?group_id=80706&atid=560720

Matplotlib, Release 1.3.1

6420246 6
4
2
0
2
4
6
1.0

0.5

0.0

0.5

1.0

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

302010010203030
20
10
0
10
20
30

80
60
40
20
0
20
40
60
80
100

19.5.7 tick_params

Eric Firing wrote tick_params, a convenience method for changing the appearance of ticks and tick labels.
See pyplot function tick_params() and associated Axes method tick_params().

19.5.8 Lots of performance and feature enhancements

• Faster magnification of large images, and the ability to zoom in to a single pixel

• Local installs of documentation work better

• Improved “widgets” – mouse grabbing is supported

• More accurate snapping of lines to pixel boundaries

• More consistent handling of color, particularly the alpha channel, throughout the API

19.5.9 Much improved software carpentry

The matplotlib trunk is probably in as good a shape as it has ever been, thanks to improved software carpen-
try. We now have a buildbot which runs a suite of nose regression tests on every svn commit, auto-generating
a set of images and comparing them against a set of known-goods, sending emails to developers on failures

19.5. new in matplotlib-1.0 241

http://software-carpentry.org/
http://software-carpentry.org/
http://buildbot.net/trac
http://code.google.com/p/python-nose/

Matplotlib, Release 1.3.1

with a pixel-by-pixel image comparison. Releases and release bugfixes happen in branches, allowing ac-
tive new feature development to happen in the trunk while keeping the release branches stable. Thanks to
Andrew Straw, Michael Droettboom and other matplotlib developers for the heavy lifting.

19.5.10 Bugfix marathon

Eric Firing went on a bug fixing and closing marathon, closing over 100 bugs on the bug tracker with help
from Jae-Joon Lee, Michael Droettboom, Christoph Gohlke and Michiel de Hoon.

19.6 new in matplotlib-0.99

19.6.1 New documentation

Jae-Joon Lee has written two new guides Legend guide and Annotating Axes. Michael Sarahan has written
Image tutorial. John Hunter has written two new tutorials on working with paths and transformations: Path
Tutorial and Transformations Tutorial.

19.6.2 mplot3d

Reinier Heeres has ported John Porter’s mplot3d over to the new matplotlib transformations framework, and
it is now available as a toolkit mpl_toolkits.mplot3d (which now comes standard with all mpl installs). See
mplot3d-examples-index and mplot3d tutorial

242 Chapter 19. What’s new in matplotlib

http://mpl.code.astraw.com/overview.html
http://sourceforge.net/tracker/?group_id=80706&atid=560720

Matplotlib, Release 1.3.1

6
4

2
0

2
4

6 6
4

2
0

2
4

6
1.0

0.5

0.0

0.5

1.0

19.6.3 axes grid toolkit

Jae-Joon Lee has added a new toolkit to ease displaying multiple images in matplotlib, as well as some
support for curvilinear grids to support the world coordinate system. The toolkit is included standard with
all new mpl installs. See axes_grid-examples-index and The Matplotlib AxesGrid Toolkit User’s Guide.

19.6. new in matplotlib-0.99 243

Matplotlib, Release 1.3.1

2

4

6

8

10

0 2 4 6 8

19.6.4 Axis spine placement

Andrew Straw has added the ability to place “axis spines” – the lines that denote the data limits – in various
arbitrary locations. No longer are your axis lines constrained to be a simple rectangle around the figure –
you can turn on or off left, bottom, right and top, as well as “detach” the spine to offset it away from the
data. See pylab_examples-spine_placement_demo and matplotlib.spines.Spine.

244 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 1 2 3 4 5 6 7

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 1 2 3 4 5 6 7

19.7 new in 0.98.4

It’s been four months since the last matplotlib release, and there are a lot of new features and bug-fixes.

Thanks to Charlie Moad for testing and preparing the source release, including binaries for OS X and
Windows for python 2.4 and 2.5 (2.6 and 3.0 will not be available until numpy is available on those re-
leases). Thanks to the many developers who contributed to this release, with contributions from Jae-Joon
Lee, Michael Droettboom, Ryan May, Eric Firing, Manuel Metz, Jouni K. Seppänen, Jeff Whitaker, Darren
Dale, David Kaplan, Michiel de Hoon and many others who submitted patches

19.7.1 Legend enhancements

Jae-Joon has rewritten the legend class, and added support for multiple columns and rows, as well as fancy
box drawing. See legend() and matplotlib.legend.Legend.

19.7. new in 0.98.4 245

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n=1
n=2

n=3
n=4

19.7.2 Fancy annotations and arrows

Jae-Joon has added lots of support to annotations for drawing fancy boxes and connectors in annotations.
See annotate() and BoxStyle, ArrowStyle, and ConnectionStyle.

246 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

square

sawtooth

roundtooth

rarrow

larrow

round4

round

<|-

<|-|>

]-

]-[

fancy

simple

wedge

|-|

19.7.3 Native OS X backend

Michiel de Hoon has provided a native Mac OSX backend that is almost completely implemented in C. The
backend can therefore use Quartz directly and, depending on the application, can be orders of magnitude
faster than the existing backends. In addition, no third-party libraries are needed other than Python and
NumPy. The backend is interactive from the usual terminal application on Mac using regular Python. It
hasn’t been tested with ipython yet, but in principle it should to work there as well. Set ‘backend : macosx’
in your matplotlibrc file, or run your script with:

> python myfile.py -dmacosx

19.7.4 psd amplitude scaling

Ryan May did a lot of work to rationalize the amplitude scaling of psd() and friends. See pylab_examples-
psd_demo2. and pylab_examples-psd_demo3. The changes should increase MATLAB compatibility and

19.7. new in 0.98.4 247

Matplotlib, Release 1.3.1

increase scaling options.

19.7.5 Fill between

Added a fill_between() function to make it easier to do shaded region plots in the presence of masked
data. You can pass an x array and a ylower and yupper array to fill between, and an optional where argument
which is a logical mask where you want to do the filling.

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

19.7.6 Lots more

Here are the 0.98.4 notes from the CHANGELOG:

Added mdehoon’s native macosx backend from sf patch 2179017 - JDH

Removed the prints in the set_*style commands. Return the list of
pretty-printed strings instead - JDH

Some of the changes Michael made to improve the output of the
property tables in the rest docs broke of made difficult to use
some of the interactive doc helpers, eg setp and getp. Having all
the rest markup in the ipython shell also confused the docstrings.
I added a new rc param docstring.harcopy, to format the docstrings
differently for hardcopy and other use. The ArtistInspector

248 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

could use a little refactoring now since there is duplication of
effort between the rest out put and the non-rest output - JDH

Updated spectral methods (psd, csd, etc.) to scale one-sided
densities by a factor of 2 and, optionally, scale all densities by
the sampling frequency. This gives better MATLAB
compatibility. -RM

Fixed alignment of ticks in colorbars. -MGD

drop the deprecated "new" keyword of np.histogram() for numpy 1.2
or later. -JJL

Fixed a bug in svg backend that new_figure_manager() ignores
keywords arguments such as figsize, etc. -JJL

Fixed a bug that the handlelength of the new legend class set too
short when numpoints=1 -JJL

Added support for data with units (e.g., dates) to
Axes.fill_between. -RM

Added fancybox keyword to legend. Also applied some changes for
better look, including baseline adjustment of the multiline texts
so that it is center aligned. -JJL

The transmuter classes in the patches.py are reorganized as
subclasses of the Style classes. A few more box and arrow styles
are added. -JJL

Fixed a bug in the new legend class that didn’t allowed a tuple of
coordinate values as loc. -JJL

Improve checks for external dependencies, using subprocess
(instead of deprecated popen*) and distutils (for version
checking) - DSD

Reimplementation of the legend which supports baseline alignment,
multi-column, and expand mode. - JJL

Fixed histogram autoscaling bug when bins or range are given
explicitly (fixes Debian bug 503148) - MM

Added rcParam axes.unicode_minus which allows plain hyphen for
minus when False - JDH

Added scatterpoints support in Legend. patch by Erik Tollerud -
JJL

Fix crash in log ticking. - MGD

Added static helper method BrokenHBarCollection.span_where and
Axes/pyplot method fill_between. See

19.7. new in 0.98.4 249

Matplotlib, Release 1.3.1

examples/pylab/fill_between.py - JDH

Add x_isdata and y_isdata attributes to Artist instances, and use
them to determine whether either or both coordinates are used when
updating dataLim. This is used to fix autoscaling problems that
had been triggered by axhline, axhspan, axvline, axvspan. - EF

Update the psd(), csd(), cohere(), and specgram() methods of Axes
and the csd() cohere(), and specgram() functions in mlab to be in
sync with the changes to psd(). In fact, under the hood, these
all call the same core to do computations. - RM

Add ’pad_to’ and ’sides’ parameters to mlab.psd() to allow
controlling of zero padding and returning of negative frequency
components, respectively. These are added in a way that does not
change the API. - RM

Fix handling of c kwarg by scatter; generalize is_string_like to
accept numpy and numpy.ma string array scalars. - RM and EF

Fix a possible EINTR problem in dviread, which might help when
saving pdf files from the qt backend. - JKS

Fix bug with zoom to rectangle and twin axes - MGD

Added Jae Joon’s fancy arrow, box and annotation enhancements --
see examples/pylab_examples/annotation_demo2.py

Autoscaling is now supported with shared axes - EF

Fixed exception in dviread that happened with Minion - JKS

set_xlim, ylim now return a copy of the viewlim array to avoid
modify inplace surprises

Added image thumbnail generating function
matplotlib.image.thumbnail. See examples/misc/image_thumbnail.py
- JDH

Applied scatleg patch based on ideas and work by Erik Tollerud and
Jae-Joon Lee. - MM

Fixed bug in pdf backend: if you pass a file object for output
instead of a filename, e.g., in a wep app, we now flush the object
at the end. - JKS

Add path simplification support to paths with gaps. - EF

Fix problem with AFM files that don’t specify the font’s full name
or family name. - JKS

Added ’scilimits’ kwarg to Axes.ticklabel_format() method, for
easy access to the set_powerlimits method of the major

250 Chapter 19. What’s new in matplotlib

Matplotlib, Release 1.3.1

ScalarFormatter. - EF

Experimental new kwarg borderpad to replace pad in legend, based
on suggestion by Jae-Joon Lee. - EF

Allow spy to ignore zero values in sparse arrays, based on patch
by Tony Yu. Also fixed plot to handle empty data arrays, and
fixed handling of markers in figlegend. - EF

Introduce drawstyles for lines. Transparently split linestyles
like ’steps--’ into drawstyle ’steps’ and linestyle ’--’. Legends
always use drawstyle ’default’. - MM

Fixed quiver and quiverkey bugs (failure to scale properly when
resizing) and added additional methods for determining the arrow
angles - EF

Fix polar interpolation to handle negative values of theta - MGD

Reorganized cbook and mlab methods related to numerical
calculations that have little to do with the goals of those two
modules into a separate module numerical_methods.py Also, added
ability to select points and stop point selection with keyboard in
ginput and manual contour labeling code. Finally, fixed contour
labeling bug. - DMK

Fix backtick in Postscript output. - MGD

[2089958] Path simplification for vector output backends
Leverage the simplification code exposed through path_to_polygons
to simplify certain well-behaved paths in the vector backends
(PDF, PS and SVG). "path.simplify" must be set to True in
matplotlibrc for this to work. - MGD

Add "filled" kwarg to Path.intersects_path and
Path.intersects_bbox. - MGD

Changed full arrows slightly to avoid an xpdf rendering problem
reported by Friedrich Hagedorn. - JKS

Fix conversion of quadratic to cubic Bezier curves in PDF and PS
backends. Patch by Jae-Joon Lee. - JKS

Added 5-point star marker to plot command q- EF

Fix hatching in PS backend - MGD

Fix log with base 2 - MGD

Added support for bilinear interpolation in
NonUniformImage; patch by Gregory Lielens. - EF

Added support for multiple histograms with data of

19.7. new in 0.98.4 251

Matplotlib, Release 1.3.1

different length - MM

Fix step plots with log scale - MGD

Fix masked arrays with markers in non-Agg backends - MGD

Fix clip_on kwarg so it actually works correctly - MGD

Fix locale problems in SVG backend - MGD

fix quiver so masked values are not plotted - JSW

improve interactive pan/zoom in qt4 backend on windows - DSD

Fix more bugs in NaN/inf handling. In particular, path
simplification (which does not handle NaNs or infs) will be turned
off automatically when infs or NaNs are present. Also masked
arrays are now converted to arrays with NaNs for consistent
handling of masks and NaNs - MGD and EF

Added support for arbitrary rasterization resolutions to the SVG
backend. - MW

252 Chapter 19. What’s new in matplotlib

CHAPTER

TWENTY

GITHUB STATS

GitHub stats for 2012/11/08 - 2013/05/29 (tag: v1.2.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

The following 85 authors contributed 1428 commits.

• Adam Ginsburg

• Adrian Price-Whelan

• Alejandro Dubrovsky

• Amit Aronovitch

• Andrew Dawson

• Anton Akhmerov

• Antony Lee

• Ben Root

• Binglin Chang

• Bradley M. Froehle

• Brian Mattern

• Cameron Bates

• Carl Michal

• Chris Beaumont

• Christoph Gohlke

• Cimarron Mittelsteadt

• Damon McDougall

• Daniel Hyams

• David Trémouilles

• Eric Firing

• Francesco Montesano

253

Matplotlib, Release 1.3.1

• Geoffroy Billotey

• Ian Thomas

• Jae-Joon Lee

• Jake Vanderplas

• James R. Evans

• Jan-Philip Gehrcke

• Jeff Bingham

• Jeffrey Bingham

• Jens H. Nielsen

• Jens Hedegaard Nielsen

• Joe Kington

• Julien Schueller

• Julien Woillez

• Kevin Davies

• Leo Singer

• Lodato Luciano

• Martin Spacek

• Martin Teichmann

• Martin Ueding

• Matt Giuca

• Maximilian Albert

• Michael Droettboom

• Michael Welter

• Michiel de Hoon

• Min RK

• MinRK

• Nelle Varoquaux

• Nic Eggert

• Pascal Bugnion

• Paul Hobson

• Paul Ivanov

• Pauli Virtanen

254 Chapter 20. Github stats

Matplotlib, Release 1.3.1

• Peter Würtz

• Phil Elson

• Pierre Haessig

• Piti Ongmongkolkul

• Ryan Dale

• Ryan May

• Sandro Tosi

• Sebastian Pinnau

• Sergey Koposov

• Takeshi Kanmae

• Thomas A Caswell

• Thomas Kluyver

• Thomas Robitaille

• Till Stensitzki

• Tobias Megies

• Todd Jennings

• Tomas Kazmar

• Tony S Yu

• Víctor Terrón

• Wes Campaigne

• aseagram

• burrbull

• dhyams

• drevicko

• endolith

• gitj

• jschueller

• krischer

• montefra

• pelson

• pwuertz

• torfbolt

255

Matplotlib, Release 1.3.1

We closed a total of 924 issues, 326 pull requests and 598 regular issues; this is the full list (generated with
the script tools/github_stats.py):

Pull Requests (326):

• PR #2082: Data limits (on 1.3.x)

• PR #2070: incorrect bbox of text

• PR #2080: Fixed failing test on python3.

• PR #2079: added some comments

• PR #2077: changed URL to the current CSV API for yahoo finance

• PR #2076: Build the _windowing extension

• PR #2066: [DOC] Mathtext and matshow examples

• PR #2024: Update homepage image

• PR #2074: backend gtk and gtk3: destroy figure save dialog after use; closes #2073

• PR #2050: Added the from_levels_and_colors function.

• PR #454: Use a subdirectory of $XDG_CONFIG_HOME instead of ~/.matplotlibrc on Linux

• PR #1813: GTK segfault with GTK3 and mpl_toolkits

• PR #2069: BUG: pass kwargs to TimedAnimation

• PR #2063: Let _pcolorargs check C for consistency with X and Y; closes #1688

• PR #2065: mlab.FIFOBuffer: remove fossil line referring to nonexistent method

• PR #1975: MixedModeRenderer non-72-dpi fixes & Pgf mixed rendering

• PR #2004: Make wx and wxagg work with wx 2.9.x on Mac.

• PR #2044: Svg rasterize (rebased)

• PR #2056: backend_gtk: don’t hide FileChooserDialog; closes #1530

• PR #2053: sphinxext.ipython_directive broken

• PR #2017: qt4_editor formlayout now works with colour tuples (fixes Issue #1690)

• PR #2057: pep8 fixes in animation.py

• PR #2055: Deprecated the set_colorbar method on a scalar mappable.

• PR #1945: PEP8 testing

• PR #2042: Ensure that PY_ARRAY_UNIQUE_SYMBOL is uniquely defined for each extension

• PR #2041: Fix a number of issues in the doc build

• PR #2049: Fix parallel testing by using the multi-process safe cbook.mkdirs

• PR #2047: Fixed typos in legend docs.

• PR #2048: Tweak image path

256 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/pull/2082/
http://github.com/matplotlib/matplotlib/pull/2070/
http://github.com/matplotlib/matplotlib/pull/2080/
http://github.com/matplotlib/matplotlib/pull/2079/
http://github.com/matplotlib/matplotlib/pull/2077/
http://github.com/matplotlib/matplotlib/pull/2076/
http://github.com/matplotlib/matplotlib/pull/2066/
http://github.com/matplotlib/matplotlib/pull/2024/
http://github.com/matplotlib/matplotlib/pull/2074/
http://github.com/matplotlib/matplotlib/pull/2050/
http://github.com/matplotlib/matplotlib/pull/454/
http://github.com/matplotlib/matplotlib/pull/1813/
http://github.com/matplotlib/matplotlib/pull/2069/
http://github.com/matplotlib/matplotlib/pull/2063/
http://github.com/matplotlib/matplotlib/pull/2065/
http://github.com/matplotlib/matplotlib/pull/1975/
http://github.com/matplotlib/matplotlib/pull/2004/
http://github.com/matplotlib/matplotlib/pull/2044/
http://github.com/matplotlib/matplotlib/pull/2056/
http://github.com/matplotlib/matplotlib/pull/2053/
http://github.com/matplotlib/matplotlib/pull/2017/
http://github.com/matplotlib/matplotlib/pull/2057/
http://github.com/matplotlib/matplotlib/pull/2055/
http://github.com/matplotlib/matplotlib/pull/1945/
http://github.com/matplotlib/matplotlib/pull/2042/
http://github.com/matplotlib/matplotlib/pull/2041/
http://github.com/matplotlib/matplotlib/pull/2049/
http://github.com/matplotlib/matplotlib/pull/2047/
http://github.com/matplotlib/matplotlib/pull/2048/

Matplotlib, Release 1.3.1

• PR #1889: Fixed handling of bar(.., bottom=None, log=True)

• PR #2036: Fix missing ticks on inverted log axis

• PR #2038: Added parameters to the xkcd function. Fixed deprecation warning on Path.

• PR #2028: Add a what’s new entry for the WebAgg backend

• PR #2002: Added support for providing 1 or 2 extra colours to the contour routines to easily specify
the under and over colors.

• PR #2011: Added the “cleared” method to Path, and updated the path module’s documentation.

• PR #2033: fix pstoeps function in backend_ps.py

• PR #2026: Deprecations and housecleaning

• PR #2032: ‘annotate’ ignores path_effects argument.

• PR #2030: Image pep8

• PR #2029: Type correction: float -> double

• PR #1753: Resolving Issue #1737 - MacOSX backend unicode problems in python 3.3

• PR #1925: Supported datetimes with microseconds, and those with long time series (>160 years).

• PR #1951: parallelize_tests

• PR #2020: Fixed call to path.Path.contains_point from pnpoly.

• PR #2019: Build: avoid win32-incompatible functions

• PR #1919: Issue warning if too many figures are open

• PR #1993: PS backend fails to savefig() pcolormesh with gouraud shading

• PR #2005: Fail to export properly to svg and pdf with interactive paths

• PR #2016: Crash when using character with umlaut

• PR #2015: Wrong text baseline with usetex.

• PR #2012: texmanager doesn’t handle list of names for font.family

• PR #2010: Allow Paths to be marked as readonly

• PR #2003: Fixed hatch clipping.

• PR #2006: ValueError: stretch is invalid

• PR #956: Shared axes colorbars & finer location control

• PR #1329: Add a “sketch” path filter

• PR #1999: Setting dashes to (0,0) results in infinite loop for agg backends

• PR #1092: Better handling of scalars to plt.subplot(). Fixes #880

• PR #1950: Tidy up the matplotlib.__init__ documentation.

• PR #1770: strange output from wx and wxagg when trying to render to JPEG or TIFF

257

http://github.com/matplotlib/matplotlib/pull/1889/
http://github.com/matplotlib/matplotlib/pull/2036/
http://github.com/matplotlib/matplotlib/pull/2038/
http://github.com/matplotlib/matplotlib/pull/2028/
http://github.com/matplotlib/matplotlib/pull/2002/
http://github.com/matplotlib/matplotlib/pull/2011/
http://github.com/matplotlib/matplotlib/pull/2033/
http://github.com/matplotlib/matplotlib/pull/2026/
http://github.com/matplotlib/matplotlib/pull/2032/
http://github.com/matplotlib/matplotlib/pull/2030/
http://github.com/matplotlib/matplotlib/pull/2029/
http://github.com/matplotlib/matplotlib/pull/1753/
http://github.com/matplotlib/matplotlib/pull/1925/
http://github.com/matplotlib/matplotlib/pull/1951/
http://github.com/matplotlib/matplotlib/pull/2020/
http://github.com/matplotlib/matplotlib/pull/2019/
http://github.com/matplotlib/matplotlib/pull/1919/
http://github.com/matplotlib/matplotlib/pull/1993/
http://github.com/matplotlib/matplotlib/pull/2005/
http://github.com/matplotlib/matplotlib/pull/2016/
http://github.com/matplotlib/matplotlib/pull/2015/
http://github.com/matplotlib/matplotlib/pull/2012/
http://github.com/matplotlib/matplotlib/pull/2010/
http://github.com/matplotlib/matplotlib/pull/2003/
http://github.com/matplotlib/matplotlib/pull/2006/
http://github.com/matplotlib/matplotlib/pull/956/
http://github.com/matplotlib/matplotlib/pull/1329/
http://github.com/matplotlib/matplotlib/pull/1999/
http://github.com/matplotlib/matplotlib/pull/1092/
http://github.com/matplotlib/matplotlib/pull/1950/
http://github.com/matplotlib/matplotlib/pull/1770/

Matplotlib, Release 1.3.1

• PR #1998: Wx backend broken

• PR #1917: Make axis.set_scale private

• PR #1927: Workaround for Python 3 with pyparsing <= 2.0.0

• PR #1885: text is not properly clipped in 1.2.1

• PR #1955: Honouring the alpha attribute when creating composite images.

• PR #1136: Configuring automatic use of tight_layout

• PR #1953: New doc build failure

• PR #1896: Doc build is full of lots of irrelevant warnings

• PR #1902: Default quit keymap - support for cmd+w on OSX

• PR #1954: Supporting different alphas for face and edge colours

• PR #1964: Fixes issue #1960. Account for right/top spine data offset on transform ...

• PR #1988: Added bar plot pickle support.

• PR #1989: Log scale pickle

• PR #1990: Fixed tight_layout pickle support.

• PR #1991: bugfix for matplotlib/ticker.py (python 3.3)

• PR #1833: Change hist behavior when normed and stacked to something more sensible

• PR #1985: horizontal histogramm doesn’t work in 1.2 branch

• PR #1984: colors.rgb_to_hsv does not work properly with array of int dtype

• PR #1982: Fix bug in SpanSelector, introduced in commit #dd325759

• PR #1978: Setting font type using rcParams does not work under Python 3.*

• PR #1976: Replace usage of Lena image in the gallery.

• PR #1977: Fix backend_driver.py

• PR #1972: SubplotBase._make_twin_axes always creates a new subplot instance

• PR #1787: Path.contains_points() incorrect return

• PR #1973: Collection’s contains method doesn’t honour offset_position attribute

• PR #1956: imsave should preserve alpha channel

• PR #1967: svg double hyphen in plot title –

• PR #1929: Fixed failing bbox_inches=’tight’ case when a contour collection is empty

• PR #1968: Rotated text element misalignment in Agg

• PR #1868: Fixed background colour of PNGs saved with a non-zero opacity.

• PR #1965: Make the travis output quieter on v1.2.x

• PR #1946: re-arrange mplDeprecation imports

258 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/pull/1998/
http://github.com/matplotlib/matplotlib/pull/1917/
http://github.com/matplotlib/matplotlib/pull/1927/
http://github.com/matplotlib/matplotlib/pull/1885/
http://github.com/matplotlib/matplotlib/pull/1955/
http://github.com/matplotlib/matplotlib/pull/1136/
http://github.com/matplotlib/matplotlib/pull/1953/
http://github.com/matplotlib/matplotlib/pull/1896/
http://github.com/matplotlib/matplotlib/pull/1902/
http://github.com/matplotlib/matplotlib/pull/1954/
http://github.com/matplotlib/matplotlib/pull/1964/
http://github.com/matplotlib/matplotlib/pull/1988/
http://github.com/matplotlib/matplotlib/pull/1989/
http://github.com/matplotlib/matplotlib/pull/1990/
http://github.com/matplotlib/matplotlib/pull/1991/
http://github.com/matplotlib/matplotlib/pull/1833/
http://github.com/matplotlib/matplotlib/pull/1985/
http://github.com/matplotlib/matplotlib/pull/1984/
http://github.com/matplotlib/matplotlib/pull/1982/
http://github.com/matplotlib/matplotlib/pull/1978/
http://github.com/matplotlib/matplotlib/pull/1976/
http://github.com/matplotlib/matplotlib/pull/1977/
http://github.com/matplotlib/matplotlib/pull/1972/
http://github.com/matplotlib/matplotlib/pull/1787/
http://github.com/matplotlib/matplotlib/pull/1973/
http://github.com/matplotlib/matplotlib/pull/1956/
http://github.com/matplotlib/matplotlib/pull/1967/
http://github.com/matplotlib/matplotlib/pull/1929/
http://github.com/matplotlib/matplotlib/pull/1968/
http://github.com/matplotlib/matplotlib/pull/1868/
http://github.com/matplotlib/matplotlib/pull/1965/
http://github.com/matplotlib/matplotlib/pull/1946/

Matplotlib, Release 1.3.1

• PR #1949: Build failes under ubuntu 13.04

• PR #1918: Tidied up some of the documentation.

• PR #1924: MEP 12: Gallery cleanup and reorganization (rebase)

• PR #1884: incorrect linkage if system PyCXX is found

• PR #1936: add pkgconfig to homebrew install instruction

• PR #1941: Use freetype-config if pkg-config is not installed

• PR #1940: Cleanup and what’s new item added for jpeg quality rcParam feature.

• PR #1771: Jpeg quality 95 by default with rendering with PIL

• PR #1935: 1836 latex docs fail

• PR #1932: DOC - two modules link appeared in the documentation

• PR #1810: Cairo + plot_date = misaligned x-axis labels

• PR #1905: Prevent Qt4 from stopping the interpreter

• PR #1861: Added a find_all method to the RcParams dictionary.

• PR #1921: Fix filename decoding when calling fc-match

• PR #1757: DOC improves documentation on the pyplot module and the bar method

• PR #1858: backend_pgf: clip paths within the backend (fixes #1857)

• PR #1913: Fix for issue #1812

• PR #1916: Normalize all ‘e.g.’ instances. Addresses issue #1423.

• PR #1908: added rcParam for x and y margin

• PR #1903: Switching b and c in _transformation_converter to fix issue #1886

• PR #1897: Doc build failure - unicode error in generate_example_rst

• PR #1915: Corrected a wrong numpy record name in documentation.

• PR #1914: Fix texmanager.dvipng_hack_alpha() to correctly use Popen.

• PR #1906: Spectral plot unit tests

• PR #1824: Support environments without a home dir or writable file system

• PR #1878: Webagg changes

• PR #1894: Exporting figure as pdf using savefig() messes up axis background in OS X

• PR #1887: Clarify documentation for FuncAnimation

• PR #1890: Restored inkscape installing on travis-ci.

• PR #1874: Building Matplotlib on Ubuntu

• PR #1186: Make default arrow head width sensible

• PR #1875: [EHN] Add frameon and savefig.frameon to rcParams

259

http://github.com/matplotlib/matplotlib/pull/1949/
http://github.com/matplotlib/matplotlib/pull/1918/
http://github.com/matplotlib/matplotlib/pull/1924/
http://github.com/matplotlib/matplotlib/pull/1884/
http://github.com/matplotlib/matplotlib/pull/1936/
http://github.com/matplotlib/matplotlib/pull/1941/
http://github.com/matplotlib/matplotlib/pull/1940/
http://github.com/matplotlib/matplotlib/pull/1771/
http://github.com/matplotlib/matplotlib/pull/1935/
http://github.com/matplotlib/matplotlib/pull/1932/
http://github.com/matplotlib/matplotlib/pull/1810/
http://github.com/matplotlib/matplotlib/pull/1905/
http://github.com/matplotlib/matplotlib/pull/1861/
http://github.com/matplotlib/matplotlib/pull/1921/
http://github.com/matplotlib/matplotlib/pull/1757/
http://github.com/matplotlib/matplotlib/pull/1858/
http://github.com/matplotlib/matplotlib/pull/1913/
http://github.com/matplotlib/matplotlib/pull/1916/
http://github.com/matplotlib/matplotlib/pull/1908/
http://github.com/matplotlib/matplotlib/pull/1903/
http://github.com/matplotlib/matplotlib/pull/1897/
http://github.com/matplotlib/matplotlib/pull/1915/
http://github.com/matplotlib/matplotlib/pull/1914/
http://github.com/matplotlib/matplotlib/pull/1906/
http://github.com/matplotlib/matplotlib/pull/1824/
http://github.com/matplotlib/matplotlib/pull/1878/
http://github.com/matplotlib/matplotlib/pull/1894/
http://github.com/matplotlib/matplotlib/pull/1887/
http://github.com/matplotlib/matplotlib/pull/1890/
http://github.com/matplotlib/matplotlib/pull/1874/
http://github.com/matplotlib/matplotlib/pull/1186/
http://github.com/matplotlib/matplotlib/pull/1875/

Matplotlib, Release 1.3.1

• PR #1865: Fix manual contour label positions on sparse contours

• PR #1210: Add dateutil kwargs to csv2rec

• PR #1383: More fixes for doc building with python 3

• PR #1864: fix legend w/ ‘expand’ mode which fails for a single item.

• PR #1448: ‘bbox_inches="tight"‘ support for all figure artists.

• PR #1869: Installed inkscape on the travis-ci vm.

• PR #1870: Testing documentation isn’t clear about which files to copy

• PR #1866: fix the pyplot version of rc_context

• PR #1860: Bug with PatchCollection in PDF output

• PR #1862: Matplotlib savefig() closes BytesIO object when saving in postscript format

• PR #1841: Fixes issue #1259 - Added modifier key handling for macosx backend

• PR #1816: Avoid macosx backend slowdown; issue 1563

• PR #1796: axes.grid lines using lines.marker settings?

• PR #1846: Fix the clippath renderering so that it uses no-clip unsigned chars

• PR #1853: fill_betweenx signature fixed

• PR #1854: BF - prevent a TypeError for lists of vertices

• PR #1843: test_backend_pgf: TypeError

• PR #1848: add flushing of stdout to update on key event

• PR #1802: Step linestyle

• PR #1127: Change spectral to nipy_spectral, update docs, leave aliases

• PR #1804: MEP10 - documentation improvements on set_xlabel and text of axes.py

• PR #1764: Make loc come after fontdict in set_title. Closes #1759

• PR #1825: Work around missing subprocess members on Google App Engine

• PR #1826: backend_ps: Do not write to a temporary file unless using an external distiller

• PR #1827: MEP10 - documentation improvements on many common plots: scatter plots, ...

• PR #1834: finance: Fixed making directories for explicit cachename

• PR #1832: BF - correct return type for Axes.get_title

• PR #1803: Markers module: PEP8 fixes and MEP10 documentation fixes

• PR #1795: MEP10 - refactored hlines and vlines documentation

• PR #1822: Improved triinterp_demo pylab example

• PR #1811: MultiCursor with additionnal optionnal horizontal bar

• PR #1817: Improved test_triinterp_colinear

260 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/pull/1865/
http://github.com/matplotlib/matplotlib/pull/1210/
http://github.com/matplotlib/matplotlib/pull/1383/
http://github.com/matplotlib/matplotlib/pull/1864/
http://github.com/matplotlib/matplotlib/pull/1448/
http://github.com/matplotlib/matplotlib/pull/1869/
http://github.com/matplotlib/matplotlib/pull/1870/
http://github.com/matplotlib/matplotlib/pull/1866/
http://github.com/matplotlib/matplotlib/pull/1860/
http://github.com/matplotlib/matplotlib/pull/1862/
http://github.com/matplotlib/matplotlib/pull/1841/
http://github.com/matplotlib/matplotlib/pull/1816/
http://github.com/matplotlib/matplotlib/pull/1796/
http://github.com/matplotlib/matplotlib/pull/1846/
http://github.com/matplotlib/matplotlib/pull/1853/
http://github.com/matplotlib/matplotlib/pull/1854/
http://github.com/matplotlib/matplotlib/pull/1843/
http://github.com/matplotlib/matplotlib/pull/1848/
http://github.com/matplotlib/matplotlib/pull/1802/
http://github.com/matplotlib/matplotlib/pull/1127/
http://github.com/matplotlib/matplotlib/pull/1804/
http://github.com/matplotlib/matplotlib/pull/1764/
http://github.com/matplotlib/matplotlib/pull/1825/
http://github.com/matplotlib/matplotlib/pull/1826/
http://github.com/matplotlib/matplotlib/pull/1827/
http://github.com/matplotlib/matplotlib/pull/1834/
http://github.com/matplotlib/matplotlib/pull/1832/
http://github.com/matplotlib/matplotlib/pull/1803/
http://github.com/matplotlib/matplotlib/pull/1795/
http://github.com/matplotlib/matplotlib/pull/1822/
http://github.com/matplotlib/matplotlib/pull/1811/
http://github.com/matplotlib/matplotlib/pull/1817/

Matplotlib, Release 1.3.1

• PR #1799: Corrupt/invalid PDF and EPS files when saving a logscaled plot made with negative values

• PR #1800: Agg snapping fixes (for the last time...?) :)

• PR #1786: Cubic interpolation for triangular grids

• PR #1808: DOC: typo, break lines >80 char, add link to cmaps list

• PR #1801: Add .directory files to .gitignore

• PR #1724: Re-write stacked step histogram

• PR #1790: Fixes problem raised in #1431 (‘get_transform‘ should not affect
‘is_transform_set‘)

• PR #1779: Bug in postscript backend in Python 3

• PR #1797: PEP8 on colors module

• PR #1291: Fix image comparison

• PR #1791: Symbol not found: _CGAffineTransformIdentity on MacOS 10.6

• PR #1794: Fix for #1792

• PR #1454: Retool the setup.py infrastructure

• PR #1785: Fix test_bbox_inches_tight

• PR #1784: Attempt to fix Travis “permission denied” error for Python 3

• PR #1775: Issue #1763

• PR #1615: Offset is empty with usetex when offset is equal to 1

• PR #1778: Fix clip_path_to_rect, add convenience method on Path object for it

• PR #1669: Add EventCollection and eventplot

• PR #1725: Fix compiler warnings

• PR #1756: Remove broken printing_in_wx.py example.

• PR #1762: Make cbook safe to import while removing duplicate is_string_like;

• PR #1252: Properly passing on horiz-/vertOn to Cursor()

• PR #1686: Fix lost ticks

• PR #1640: Fix bugs in legend positioning with loc=’best’

• PR #1687: Update lib/matplotlib/backends/backend_cairo.py

• PR #1760: Improved the subplot function documentation and fixed the autogeneration from boiler-
plate.

• PR #1716: PEP8 fixes on the figure module

• PR #1643: Clean up code in cbook

• PR #1755: Update examples/pylab_examples/histogram_demo_extended.py

• PR #1497: Fix for empty collection check in axes.add_collection

261

http://github.com/matplotlib/matplotlib/pull/1799/
http://github.com/matplotlib/matplotlib/pull/1800/
http://github.com/matplotlib/matplotlib/pull/1786/
http://github.com/matplotlib/matplotlib/pull/1808/
http://github.com/matplotlib/matplotlib/pull/1801/
http://github.com/matplotlib/matplotlib/pull/1724/
http://github.com/matplotlib/matplotlib/pull/1790/
http://github.com/matplotlib/matplotlib/pull/1779/
http://github.com/matplotlib/matplotlib/pull/1797/
http://github.com/matplotlib/matplotlib/pull/1291/
http://github.com/matplotlib/matplotlib/pull/1791/
http://github.com/matplotlib/matplotlib/pull/1794/
http://github.com/matplotlib/matplotlib/pull/1454/
http://github.com/matplotlib/matplotlib/pull/1785/
http://github.com/matplotlib/matplotlib/pull/1784/
http://github.com/matplotlib/matplotlib/pull/1775/
http://github.com/matplotlib/matplotlib/pull/1615/
http://github.com/matplotlib/matplotlib/pull/1778/
http://github.com/matplotlib/matplotlib/pull/1669/
http://github.com/matplotlib/matplotlib/pull/1725/
http://github.com/matplotlib/matplotlib/pull/1756/
http://github.com/matplotlib/matplotlib/pull/1762/
http://github.com/matplotlib/matplotlib/pull/1252/
http://github.com/matplotlib/matplotlib/pull/1686/
http://github.com/matplotlib/matplotlib/pull/1640/
http://github.com/matplotlib/matplotlib/pull/1687/
http://github.com/matplotlib/matplotlib/pull/1760/
http://github.com/matplotlib/matplotlib/pull/1716/
http://github.com/matplotlib/matplotlib/pull/1643/
http://github.com/matplotlib/matplotlib/pull/1755/
http://github.com/matplotlib/matplotlib/pull/1497/

Matplotlib, Release 1.3.1

• PR #1685: Add default savefig directory

• PR #1698: Fix bug updating WeakKeyDictionary during iteration

• PR #1743: slight tweak to the documentation of errorbar

• PR #1748: Typo in “Annotation” docstring.

• PR #1750: Name missmatch in filetypes.rgba and print_rgb of backend_bases.py

• PR #1722: Fix sign of infstr in exceltools.rec2exel

• PR #1726: stackplot_test_baseline has different results on 32-bit and 64-bit platforms

• PR #1577: PEP8 fixes on the line module

• PR #1728: Macosx backend: tweak to coordinates position

• PR #1718: Fix set dashes for line collections

• PR #1721: rcParams.keys() is not Python 3 compatible

• PR #1699: Enable to switch off the removal of comments in csv2rec.

• PR #1710: Mixing Arial with mathtext on Windows 8 fails

• PR #1705: Qt closeevent fixes for v1.2.x

• PR #1671: Feature stack base

• PR #1684: Fix hist for log=True and histtype=’step’

• PR #1708: Fix breaking doc build

• PR #1644: NF - Left and right side axes titles

• PR #1666: Fix USE_FONTCONFIG=True mode

• PR #1691: Fix svg flipping (again)

• PR #1695: Alpha kwarg fix

• PR #1696: Fixed doc dependency on numpy_ext.numpydoc

• PR #1665: MEP10: adding numpydoc and activating autosummary

• PR #1660: Explain that matplotlib must be built before the HTML documentation

• PR #1694: fixes Issue #1693

• PR #1682: Fixed the expected output from test_arrow_patches.test_fancyarrow.

• PR #1663: Fix suptitle

• PR #1675: fix “alpha” kwarg in errorbar plot

• PR #1678: added QtGui.QMainWindow.closeEvent() to make sure the close event

• PR #1674: Fix SVG flip when svg.image_noscale is True

• PR #1680: Ignore lib/dateutil

• PR #1626: Add framealpha argument for legend

262 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/pull/1685/
http://github.com/matplotlib/matplotlib/pull/1698/
http://github.com/matplotlib/matplotlib/pull/1743/
http://github.com/matplotlib/matplotlib/pull/1748/
http://github.com/matplotlib/matplotlib/pull/1750/
http://github.com/matplotlib/matplotlib/pull/1722/
http://github.com/matplotlib/matplotlib/pull/1726/
http://github.com/matplotlib/matplotlib/pull/1577/
http://github.com/matplotlib/matplotlib/pull/1728/
http://github.com/matplotlib/matplotlib/pull/1718/
http://github.com/matplotlib/matplotlib/pull/1721/
http://github.com/matplotlib/matplotlib/pull/1699/
http://github.com/matplotlib/matplotlib/pull/1710/
http://github.com/matplotlib/matplotlib/pull/1705/
http://github.com/matplotlib/matplotlib/pull/1671/
http://github.com/matplotlib/matplotlib/pull/1684/
http://github.com/matplotlib/matplotlib/pull/1708/
http://github.com/matplotlib/matplotlib/pull/1644/
http://github.com/matplotlib/matplotlib/pull/1666/
http://github.com/matplotlib/matplotlib/pull/1691/
http://github.com/matplotlib/matplotlib/pull/1695/
http://github.com/matplotlib/matplotlib/pull/1696/
http://github.com/matplotlib/matplotlib/pull/1665/
http://github.com/matplotlib/matplotlib/pull/1660/
http://github.com/matplotlib/matplotlib/pull/1694/
http://github.com/matplotlib/matplotlib/pull/1682/
http://github.com/matplotlib/matplotlib/pull/1663/
http://github.com/matplotlib/matplotlib/pull/1675/
http://github.com/matplotlib/matplotlib/pull/1678/
http://github.com/matplotlib/matplotlib/pull/1674/
http://github.com/matplotlib/matplotlib/pull/1680/
http://github.com/matplotlib/matplotlib/pull/1626/

Matplotlib, Release 1.3.1

• PR #1642: remove import new from cbook.py

• PR #1534: Make rc_context available via pyplot interface

• PR #1672: Nuke Travis python 3.1 testing

• PR #1670: Deprecate mpl

• PR #1635: Recompute Wedge path after change of attributes.

• PR #1498: use QMainWindow.closeEvent for close events

• PR #1617: Legend: Also calc the bbox of the legend when the frame is not drawn. (1.2.x)

• PR #1585: Fix Qt canvas resize_event

• PR #1611: change handling of legend labels which are None

• PR #1657: Add EventCollection and eventplot

• PR #1641: PEP8 fixes on the rcsetup module

• PR #1650: _png.read_png crashes on Python 3 with urllib.request object

• PR #1568: removed deprecated methods from the axes module.

• PR #1589: Fix shifted ylabels (Issue #1571)

• PR #1634: add scatterpoints to rcParam

• PR #1654: added explicit ‘zorder’ kwarg to Colection and LineCollection.

• PR #1653: Fix #570 - Reversing a 3d axis should now work properly.

• PR #1651: WebAgg: pylab compatibility

• PR #1505: Issue 1504: changed how draw handles alpha in markerfacecolor

• PR #1655: add get_segments method to collections.LineCollection

• PR #1652: Ignore kdevelop4 project files

• PR #1613: Using a stricter check to see if Python was installed as a framework.

• PR #1599: Ada Lovelace and Grace Murray Hopper images in place of Lena

• PR #1582: Linear tri interpolator

• PR #1637: change cbook to relative import

• PR #1618: Mplot3d/crashfixes

• PR #1636: hexbin log scale is broken in matplotlib 1.2.0

• PR #1624: implemented inverse transform for Mollweide axes

• PR #1630: A disconnected callback cannot be reconnected

• PR #1139: Make Axes.stem take at least one argument.

• PR #1426: WebAgg backend

• PR #1606: Document the C/C++ code guidelines

263

http://github.com/matplotlib/matplotlib/pull/1642/
http://github.com/matplotlib/matplotlib/pull/1534/
http://github.com/matplotlib/matplotlib/pull/1672/
http://github.com/matplotlib/matplotlib/pull/1670/
http://github.com/matplotlib/matplotlib/pull/1635/
http://github.com/matplotlib/matplotlib/pull/1498/
http://github.com/matplotlib/matplotlib/pull/1617/
http://github.com/matplotlib/matplotlib/pull/1585/
http://github.com/matplotlib/matplotlib/pull/1611/
http://github.com/matplotlib/matplotlib/pull/1657/
http://github.com/matplotlib/matplotlib/pull/1641/
http://github.com/matplotlib/matplotlib/pull/1650/
http://github.com/matplotlib/matplotlib/pull/1568/
http://github.com/matplotlib/matplotlib/pull/1589/
http://github.com/matplotlib/matplotlib/pull/1634/
http://github.com/matplotlib/matplotlib/pull/1654/
http://github.com/matplotlib/matplotlib/pull/1653/
http://github.com/matplotlib/matplotlib/pull/1651/
http://github.com/matplotlib/matplotlib/pull/1505/
http://github.com/matplotlib/matplotlib/pull/1655/
http://github.com/matplotlib/matplotlib/pull/1652/
http://github.com/matplotlib/matplotlib/pull/1613/
http://github.com/matplotlib/matplotlib/pull/1599/
http://github.com/matplotlib/matplotlib/pull/1582/
http://github.com/matplotlib/matplotlib/pull/1637/
http://github.com/matplotlib/matplotlib/pull/1618/
http://github.com/matplotlib/matplotlib/pull/1636/
http://github.com/matplotlib/matplotlib/pull/1624/
http://github.com/matplotlib/matplotlib/pull/1630/
http://github.com/matplotlib/matplotlib/pull/1139/
http://github.com/matplotlib/matplotlib/pull/1426/
http://github.com/matplotlib/matplotlib/pull/1606/

Matplotlib, Release 1.3.1

• PR #1628: Fix errorbar zorder v1.2

• PR #1620: Fix bug in _AnnotationBase

• PR #1587: Mac OS X 10.5 needs an autoreleasepool here to avoid memory leaks. Newer...

• PR #1597: new MatplotlibDeprecationWarning class (against master)

• PR #1596: new MatplotlibDeprecationWarning class (against 1.2.x)

• PR #1532: CXX/Python2/cxx_extensions.cxx:1320: Assertion ‘ob_refcnt == 0’

• PR #1604: Make font_manager ignore KeyErrors for bad fonts

• PR #1605: Change printed -> pretty-printed

• PR #1557: inverting an axis shouldn’t affect the autoscaling setting

• PR #1603: ylim=0.0 is not well handled in polar plots

• PR #1583: Crash with text.usetex=True and plt.annotate

• PR #1602: Fixed typos in docs (squashed version of #1600)

• PR #1592: Fix a syntax error in examples (movie_demo.py)

• PR #1590: Positional argument specifiers are required by Python 2.6

• PR #1579: Updated custom_projection_example.py to work with v1.2 and newer

• PR #1578: Fixed blitting in Gtk3Agg backend

• PR #1573: fix issue #1572 caused by PR #1081

• PR #1562: Mac OS X Backend: Removing clip that is no longer needed

• PR #1574: Improvements to Sankey class

• PR #1536: ENH: add AVConv movie writer for animations

• PR #1570: PEP8 fixes on the tests of the dates module

• PR #1569: FIX Removes code that does work from the axes module

• PR #1531: fix rendering slowdown with big invisible lines (issue #1256)

• PR #1398: PEP8 fixes on dates.py

• PR #1564: PEP8-compliance on axes.py (patch 4 / 4)

• PR #1559: Workaround for QT cursor bug in dock areas

• PR #1560: Remove python2.5 support from texmanager.py

• PR #1555: Geo projections getting clobbered by 2to3 when used when python3

• PR #1477: alternate fix for issue #997

• PR #1522: PEP8-compliance on axes.py (patch 3 / 4)

• PR #1550: PEP8 fixes on the module texmanager

• PR #1289: Autoscaling and limits in mplot3d.

264 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/pull/1628/
http://github.com/matplotlib/matplotlib/pull/1620/
http://github.com/matplotlib/matplotlib/pull/1587/
http://github.com/matplotlib/matplotlib/pull/1597/
http://github.com/matplotlib/matplotlib/pull/1596/
http://github.com/matplotlib/matplotlib/pull/1532/
http://github.com/matplotlib/matplotlib/pull/1604/
http://github.com/matplotlib/matplotlib/pull/1605/
http://github.com/matplotlib/matplotlib/pull/1557/
http://github.com/matplotlib/matplotlib/pull/1603/
http://github.com/matplotlib/matplotlib/pull/1583/
http://github.com/matplotlib/matplotlib/pull/1602/
http://github.com/matplotlib/matplotlib/pull/1592/
http://github.com/matplotlib/matplotlib/pull/1590/
http://github.com/matplotlib/matplotlib/pull/1579/
http://github.com/matplotlib/matplotlib/pull/1578/
http://github.com/matplotlib/matplotlib/pull/1573/
http://github.com/matplotlib/matplotlib/pull/1562/
http://github.com/matplotlib/matplotlib/pull/1574/
http://github.com/matplotlib/matplotlib/pull/1536/
http://github.com/matplotlib/matplotlib/pull/1570/
http://github.com/matplotlib/matplotlib/pull/1569/
http://github.com/matplotlib/matplotlib/pull/1531/
http://github.com/matplotlib/matplotlib/pull/1398/
http://github.com/matplotlib/matplotlib/pull/1564/
http://github.com/matplotlib/matplotlib/pull/1559/
http://github.com/matplotlib/matplotlib/pull/1560/
http://github.com/matplotlib/matplotlib/pull/1555/
http://github.com/matplotlib/matplotlib/pull/1477/
http://github.com/matplotlib/matplotlib/pull/1522/
http://github.com/matplotlib/matplotlib/pull/1550/
http://github.com/matplotlib/matplotlib/pull/1289/

Matplotlib, Release 1.3.1

• PR #1551: PEP8 fixes on the spines module

• PR #1537: Fix savefig.extension == “auto”

• PR #1297: pyplot.plotfile. gridon option added with default from rcParam.

• PR #1538: Remove unnecessary clip from Cairo backend; squashed commit

• PR #1544: str.format() doesn’t work on python 2.6

• PR #1549: Add citation page to website

• PR #1514: Fix streamplot when color argument has NaNs

• PR #1081: Propagate mpl.text.Text instances to the backends and fix documentation

• PR #1533: ENH: raise a more informative error

• PR #1540: Changed mailinglist archive link.

• PR #1493: check ret == False in Timer._on_timer

• PR #1523: DOC: github ribbon does not cover up index link

• PR #1515: set_cmap should not require an active image

• PR #1489: Documentation update for specgram

• PR #1527: fix 2 html color names

• PR #1524: Make README.txt consistent reStructuredText

• PR #1525: pgf: documentation enhancements

• PR #1510: pgf: documentation enhancements

• PR #1512: Reorganize the developer docs

• PR #1518: PEP8 compliance on the delaunay module

• PR #1357: PEP8 fixes on text.py

• PR #1469: PEP8-compliance on axes.py (patch 2 / 4)

• PR #1470: Add test and test-coverage to Makefile

• PR #1442: Add savefig_kwargs to Animation.save() method

• PR #1503: DOC: ‘inout’ option for tick_params direction

• PR #1494: Added sphinx documentation for Triangulation

• PR #1480: Remove dead code in patches

• PR #1496: Correct scatter docstring

• PR #1472: FIX extra comma in Sankey.add

• PR #1471: Improved checking logic of _check_xyz in contour.py

• PR #1491: Reintroduce examples.directory rc parameter

• PR #1405: Add angle kwarg to patches.Rectangle

265

http://github.com/matplotlib/matplotlib/pull/1551/
http://github.com/matplotlib/matplotlib/pull/1537/
http://github.com/matplotlib/matplotlib/pull/1297/
http://github.com/matplotlib/matplotlib/pull/1538/
http://github.com/matplotlib/matplotlib/pull/1544/
http://github.com/matplotlib/matplotlib/pull/1549/
http://github.com/matplotlib/matplotlib/pull/1514/
http://github.com/matplotlib/matplotlib/pull/1081/
http://github.com/matplotlib/matplotlib/pull/1533/
http://github.com/matplotlib/matplotlib/pull/1540/
http://github.com/matplotlib/matplotlib/pull/1493/
http://github.com/matplotlib/matplotlib/pull/1523/
http://github.com/matplotlib/matplotlib/pull/1515/
http://github.com/matplotlib/matplotlib/pull/1489/
http://github.com/matplotlib/matplotlib/pull/1527/
http://github.com/matplotlib/matplotlib/pull/1524/
http://github.com/matplotlib/matplotlib/pull/1525/
http://github.com/matplotlib/matplotlib/pull/1510/
http://github.com/matplotlib/matplotlib/pull/1512/
http://github.com/matplotlib/matplotlib/pull/1518/
http://github.com/matplotlib/matplotlib/pull/1357/
http://github.com/matplotlib/matplotlib/pull/1469/
http://github.com/matplotlib/matplotlib/pull/1470/
http://github.com/matplotlib/matplotlib/pull/1442/
http://github.com/matplotlib/matplotlib/pull/1503/
http://github.com/matplotlib/matplotlib/pull/1494/
http://github.com/matplotlib/matplotlib/pull/1480/
http://github.com/matplotlib/matplotlib/pull/1496/
http://github.com/matplotlib/matplotlib/pull/1472/
http://github.com/matplotlib/matplotlib/pull/1471/
http://github.com/matplotlib/matplotlib/pull/1491/
http://github.com/matplotlib/matplotlib/pull/1405/

Matplotlib, Release 1.3.1

• PR #1278: Make arrow docstring mention data transform

• PR #1355: Add sym-log normalization.

• PR #1474: use an imagemap for the “fork me on github” ribbon

• PR #1485: Fix leak of gc’s in gtkagg backend

• PR #1374: PEP8 fixes on widgets.py

• PR #1379: PEP8 fixes on quiver.py

• PR #1399: PEP8 fixes on patches

• PR #1395: PEP8 fixes on contour.py

• PR #1464: PEP8-compliance on axes.py (patch 1 / 4)

• PR #1400: PEP8 fixes on offsetbox.py

• PR #1463: Document the Gtk3 backends

Issues (598):

• #2075: Test failure in matplotlib.tests.test_colors.test_cmap_and_norm_from_levels_and_colors2

• #2061: hist(..., histtype=’step’) does not set ylim properly.

• #2081: AutoDateLocator interval bug

• #2082: Data limits (on 1.3.x)

• #854: Bug in Axes.relim when the first line is y_isdata=False and possible fix

• #2070: incorrect bbox of text

• #1063: PyQt: fill_between => Singular matrix

• #2072: PEP8 conformance tests complain about missing files

• #2080: Fixed failing test on python3.

• #2079: added some comments

• #1876: [WIP] Steppath and Line2D

• #296: 2D imagemap for 3D scatter plot

• #667: hexbin lacks a weights argument

• #2077: changed URL to the current CSV API for yahoo finance

• #602: axisartist incompatible with autofmt_xdate

• #609: Large values in histograms not showing

• #654: autofmt_xdate cropping graph wrongly

• #615: Cannot set label text size or family using axisartist

• #343: Response Spectra Tripartite Plot

• #325: EMF backend does not support bitmaps

266 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/pull/1278/
http://github.com/matplotlib/matplotlib/pull/1355/
http://github.com/matplotlib/matplotlib/pull/1474/
http://github.com/matplotlib/matplotlib/pull/1485/
http://github.com/matplotlib/matplotlib/pull/1374/
http://github.com/matplotlib/matplotlib/pull/1379/
http://github.com/matplotlib/matplotlib/pull/1399/
http://github.com/matplotlib/matplotlib/pull/1395/
http://github.com/matplotlib/matplotlib/pull/1464/
http://github.com/matplotlib/matplotlib/pull/1400/
http://github.com/matplotlib/matplotlib/pull/1463/
http://github.com/matplotlib/matplotlib/issues/2075/
http://github.com/matplotlib/matplotlib/issues/2061/
http://github.com/matplotlib/matplotlib/issues/2081/
http://github.com/matplotlib/matplotlib/issues/2082/
http://github.com/matplotlib/matplotlib/issues/854/
http://github.com/matplotlib/matplotlib/issues/2070/
http://github.com/matplotlib/matplotlib/issues/1063/
http://github.com/matplotlib/matplotlib/issues/2072/
http://github.com/matplotlib/matplotlib/issues/2080/
http://github.com/matplotlib/matplotlib/issues/2079/
http://github.com/matplotlib/matplotlib/issues/1876/
http://github.com/matplotlib/matplotlib/issues/296/
http://github.com/matplotlib/matplotlib/issues/667/
http://github.com/matplotlib/matplotlib/issues/2077/
http://github.com/matplotlib/matplotlib/issues/602/
http://github.com/matplotlib/matplotlib/issues/609/
http://github.com/matplotlib/matplotlib/issues/654/
http://github.com/matplotlib/matplotlib/issues/615/
http://github.com/matplotlib/matplotlib/issues/343/
http://github.com/matplotlib/matplotlib/issues/325/

Matplotlib, Release 1.3.1

• #281: scatter and plot should have the same kwards

• #318: ability to unshare axis

• #227: Set cap and join styles for patches

• #222: Support for amsmath in TexManager

• #214: add quote charater support to csv related functions.

• #161: one pixel error with gtkagg and blitting

• #157: Sphinx plot extension source/build directory issues

• #2076: Build the _windowing extension

• #2066: [DOC] Mathtext and matshow examples

• #2024: Update homepage image

• #2074: backend gtk and gtk3: destroy figure save dialog after use; closes #2073

• #2073: Gtk file save dialog doesn’t go ahead when clicking “Save” or “Cancel”

• #2037: PGF backend doesn’t fire draw_event when not being used as the “primary” backend

• #2050: Added the from_levels_and_colors function.

• #454: Use a subdirectory of $XDG_CONFIG_HOME instead of ~/.matplotlibrc on Linux

• #2043: Use subplots in examples (rebase)

• #1813: GTK segfault with GTK3 and mpl_toolkits

• #2069: BUG: pass kwargs to TimedAnimation

• #2063: Let _pcolorargs check C for consistency with X and Y; closes #1688

• #1688: _pcolorargs should check consistency of argument shapes

• #2065: mlab.FIFOBuffer: remove fossil line referring to nonexistent method

• #2067: Font issue while trying to save PS/EPS/SVG but not PDF

• #1975: MixedModeRenderer non-72-dpi fixes & Pgf mixed rendering

• #1821: WxAgg hangs in interactive mode

• #162: twinx and plot_date

• #1609: test_pcolormesh hangs

• #1598: Use sublots in examples

• #1185: Svg rasterize resolution fix

• #2004: Make wx and wxagg work with wx 2.9.x on Mac.

• #1530: saving a figure triggers (very) excessive IO activity

• #2044: Svg rasterize (rebased)

• #2056: backend_gtk: don’t hide FileChooserDialog; closes #1530

267

http://github.com/matplotlib/matplotlib/issues/281/
http://github.com/matplotlib/matplotlib/issues/318/
http://github.com/matplotlib/matplotlib/issues/227/
http://github.com/matplotlib/matplotlib/issues/222/
http://github.com/matplotlib/matplotlib/issues/214/
http://github.com/matplotlib/matplotlib/issues/161/
http://github.com/matplotlib/matplotlib/issues/157/
http://github.com/matplotlib/matplotlib/issues/2076/
http://github.com/matplotlib/matplotlib/issues/2066/
http://github.com/matplotlib/matplotlib/issues/2024/
http://github.com/matplotlib/matplotlib/issues/2074/
http://github.com/matplotlib/matplotlib/issues/2073/
http://github.com/matplotlib/matplotlib/issues/2037/
http://github.com/matplotlib/matplotlib/issues/2050/
http://github.com/matplotlib/matplotlib/issues/454/
http://github.com/matplotlib/matplotlib/issues/2043/
http://github.com/matplotlib/matplotlib/issues/1813/
http://github.com/matplotlib/matplotlib/issues/2069/
http://github.com/matplotlib/matplotlib/issues/2063/
http://github.com/matplotlib/matplotlib/issues/1688/
http://github.com/matplotlib/matplotlib/issues/2065/
http://github.com/matplotlib/matplotlib/issues/2067/
http://github.com/matplotlib/matplotlib/issues/1975/
http://github.com/matplotlib/matplotlib/issues/1821/
http://github.com/matplotlib/matplotlib/issues/162/
http://github.com/matplotlib/matplotlib/issues/1609/
http://github.com/matplotlib/matplotlib/issues/1598/
http://github.com/matplotlib/matplotlib/issues/1185/
http://github.com/matplotlib/matplotlib/issues/2004/
http://github.com/matplotlib/matplotlib/issues/1530/
http://github.com/matplotlib/matplotlib/issues/2044/
http://github.com/matplotlib/matplotlib/issues/2056/

Matplotlib, Release 1.3.1

• #1926: Unable to pickle histogram figure

• #1690: Edit figure parameters: TypeError: argument 1 has unexpected type ‘list’

• #2053: sphinxext.ipython_directive broken

• #1997: eps files stump evince

• #2017: qt4_editor formlayout now works with colour tuples (fixes Issue #1690)

• #2057: pep8 fixes in animation.py

• #2055: Deprecated the set_colorbar method on a scalar mappable.

• #2058: mplot3d: backend_pdf.py problem with last release not present in 1.2.1rc1

• #1391: AutoDateLocator should handle sub-second intervals

• #308: Emf backend should support math text

• #1945: PEP8 testing

• #740: plt.pcolormesh and shape mismatch

• #1734: Y-axis labels are impossible to align by baseline

• #2039: PY_ARRAY_UNIQUE_SYMBOL not unique enough

• #2042: Ensure that PY_ARRAY_UNIQUE_SYMBOL is uniquely defined for each extension

• #2041: Fix a number of issues in the doc build

• #1223: dpi= for bitmaps not handled correctly

• #2049: Fix parallel testing by using the multi-process safe cbook.mkdirs

• #1324: backend_pgf: open file handles on Windows

• #2047: Fixed typos in legend docs.

• #2048: Tweak image path

• #1904: Legend kwarg scatteroffsets vs. scatteryoffsets

• #1807: Regression: odd rendering of zordered areas on twinx axes in 1.2 (release) versus 1.1

• #1882: Possible regression in 1.2.1 vs 1.2.0 re bar plot with log=True

• #2031: Update screenshots page

• #1889: Fixed handling of bar(.., bottom=None, log=True)

• #2036: Fix missing ticks on inverted log axis

• #2040: Cannot align subplot yaxis labels with PGF backend

• #2038: Added parameters to the xkcd function. Fixed deprecation warning on Path.

• #2028: Add a what’s new entry for the WebAgg backend

• #2009: Deprecate C++ functions in _path.cpp that are imported in path.py

• #1961: All included backends should work or be removed

268 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1926/
http://github.com/matplotlib/matplotlib/issues/1690/
http://github.com/matplotlib/matplotlib/issues/2053/
http://github.com/matplotlib/matplotlib/issues/1997/
http://github.com/matplotlib/matplotlib/issues/2017/
http://github.com/matplotlib/matplotlib/issues/2057/
http://github.com/matplotlib/matplotlib/issues/2055/
http://github.com/matplotlib/matplotlib/issues/2058/
http://github.com/matplotlib/matplotlib/issues/1391/
http://github.com/matplotlib/matplotlib/issues/308/
http://github.com/matplotlib/matplotlib/issues/1945/
http://github.com/matplotlib/matplotlib/issues/740/
http://github.com/matplotlib/matplotlib/issues/1734/
http://github.com/matplotlib/matplotlib/issues/2039/
http://github.com/matplotlib/matplotlib/issues/2042/
http://github.com/matplotlib/matplotlib/issues/2041/
http://github.com/matplotlib/matplotlib/issues/1223/
http://github.com/matplotlib/matplotlib/issues/2049/
http://github.com/matplotlib/matplotlib/issues/1324/
http://github.com/matplotlib/matplotlib/issues/2047/
http://github.com/matplotlib/matplotlib/issues/2048/
http://github.com/matplotlib/matplotlib/issues/1904/
http://github.com/matplotlib/matplotlib/issues/1807/
http://github.com/matplotlib/matplotlib/issues/1882/
http://github.com/matplotlib/matplotlib/issues/2031/
http://github.com/matplotlib/matplotlib/issues/1889/
http://github.com/matplotlib/matplotlib/issues/2036/
http://github.com/matplotlib/matplotlib/issues/2040/
http://github.com/matplotlib/matplotlib/issues/2038/
http://github.com/matplotlib/matplotlib/issues/2028/
http://github.com/matplotlib/matplotlib/issues/2009/
http://github.com/matplotlib/matplotlib/issues/1961/

Matplotlib, Release 1.3.1

• #1966: Remove deprecated code we threatened to remove for 1.3.x

• #2002: Added support for providing 1 or 2 extra colours to the contour routines to easily specify the
under and over colors.

• #2011: Added the “cleared” method to Path, and updated the path module’s documentation.

• #2033: fix pstoeps function in backend_ps.py

• #2026: Deprecations and housecleaning

• #2032: ‘annotate’ ignores path_effects argument.

• #2030: Image pep8

• #1720: Can’t pickle RendererAgg in tight_layout figures

• #2029: Type correction: float -> double

• #1737: MacOSX backend unicode problems in python 3.3

• #1753: Resolving Issue #1737 - MacOSX backend unicode problems in python 3.3

• #1925: Supported datetimes with microseconds, and those with long time series (>160 years).

• #2023: imshow’s “nearest” and “none” interpolations produce smoothed images

• #1951: parallelize_tests

• #2020: Fixed call to path.Path.contains_point from pnpoly.

• #2019: Build: avoid win32-incompatible functions

• #2018: can’t create single legend line with different point types

• #1919: Issue warning if too many figures are open

• #1993: PS backend fails to savefig() pcolormesh with gouraud shading

• #2005: Fail to export properly to svg and pdf with interactive paths

• #2016: Crash when using character with umlaut

• #2015: Wrong text baseline with usetex.

• #2012: texmanager doesn’t handle list of names for font.family

• #2010: Allow Paths to be marked as readonly

• #2003: Fixed hatch clipping.

• #2006: ValueError: stretch is invalid

• #2014: Possible error in animate.py after commit cc617006f7f0a18396cecf4a9f1e222f1ee5204e

• #2013: Histogram output in PDF is mashed

• #1934: Specifying dictionary argument with dict() or braces matters in set_bbox

• #2000: Plots show up completely white

• #1994: Make wx and wxagg work with wx 2.9.x on Mac.

269

http://github.com/matplotlib/matplotlib/issues/1966/
http://github.com/matplotlib/matplotlib/issues/2002/
http://github.com/matplotlib/matplotlib/issues/2011/
http://github.com/matplotlib/matplotlib/issues/2033/
http://github.com/matplotlib/matplotlib/issues/2026/
http://github.com/matplotlib/matplotlib/issues/2032/
http://github.com/matplotlib/matplotlib/issues/2030/
http://github.com/matplotlib/matplotlib/issues/1720/
http://github.com/matplotlib/matplotlib/issues/2029/
http://github.com/matplotlib/matplotlib/issues/1737/
http://github.com/matplotlib/matplotlib/issues/1753/
http://github.com/matplotlib/matplotlib/issues/1925/
http://github.com/matplotlib/matplotlib/issues/2023/
http://github.com/matplotlib/matplotlib/issues/1951/
http://github.com/matplotlib/matplotlib/issues/2020/
http://github.com/matplotlib/matplotlib/issues/2019/
http://github.com/matplotlib/matplotlib/issues/2018/
http://github.com/matplotlib/matplotlib/issues/1919/
http://github.com/matplotlib/matplotlib/issues/1993/
http://github.com/matplotlib/matplotlib/issues/2005/
http://github.com/matplotlib/matplotlib/issues/2016/
http://github.com/matplotlib/matplotlib/issues/2015/
http://github.com/matplotlib/matplotlib/issues/2012/
http://github.com/matplotlib/matplotlib/issues/2010/
http://github.com/matplotlib/matplotlib/issues/2003/
http://github.com/matplotlib/matplotlib/issues/2006/
http://github.com/matplotlib/matplotlib/issues/2014/
http://github.com/matplotlib/matplotlib/issues/2013/
http://github.com/matplotlib/matplotlib/issues/1934/
http://github.com/matplotlib/matplotlib/issues/2000/
http://github.com/matplotlib/matplotlib/issues/1994/

Matplotlib, Release 1.3.1

• #956: Shared axes colorbars & finer location control

• #1329: Add a “sketch” path filter

• #1999: Setting dashes to (0,0) results in infinite loop for agg backends

• #2001: Fixed hatch clipping.

• #1199: New boxplot features

• #1898: Hatch clipping

• #1092: Better handling of scalars to plt.subplot(). Fixes #880

• #1950: Tidy up the matplotlib.__init__ documentation.

• #1855: BUG: fixed weird case where boxplot whiskers went inside box

• #1831: Unimplemented comparison method for Line3DCollection

• #1909: patheffects for Line2d object : rebase of #1015

• #1770: strange output from wx and wxagg when trying to render to JPEG or TIFF

• #1998: Wx backend broken

• #1871: set_scale and set_xscale

• #1917: Make axis.set_scale private

• #1927: Workaround for Python 3 with pyparsing <= 2.0.0

• #1885: text is not properly clipped in 1.2.1

• #1955: Honouring the alpha attribute when creating composite images.

• #1290: Debundle pyparsing

• #1040: Make ‘rstride’, ‘cstride’ default values smarter.

• #1016: Object oriented way of setting rc parameters, enabling elegant Pythonic syntax.

• #1136: Configuring automatic use of tight_layout

• #1856: Raise exception when user tries to use set_xlim or set_ylim on a geographic projection

• #1953: New doc build failure

• #1896: Doc build is full of lots of irrelevant warnings

• #1974: wx backend changes for wxPython Phoenix

• #1900: Fix building when Gtk doesn’t support version check

• #1902: Default quit keymap - support for cmd+w on OSX

• #1899: Different alphas for lines and fills.

• #1954: Supporting different alphas for face and edge colours

• #1938: Updated patch to not override alpha on edgecolor if set to none

• #1964: Fixes issue #1960. Account for right/top spine data offset on transform ...

270 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/956/
http://github.com/matplotlib/matplotlib/issues/1329/
http://github.com/matplotlib/matplotlib/issues/1999/
http://github.com/matplotlib/matplotlib/issues/2001/
http://github.com/matplotlib/matplotlib/issues/1199/
http://github.com/matplotlib/matplotlib/issues/1898/
http://github.com/matplotlib/matplotlib/issues/1092/
http://github.com/matplotlib/matplotlib/issues/1950/
http://github.com/matplotlib/matplotlib/issues/1855/
http://github.com/matplotlib/matplotlib/issues/1831/
http://github.com/matplotlib/matplotlib/issues/1909/
http://github.com/matplotlib/matplotlib/issues/1770/
http://github.com/matplotlib/matplotlib/issues/1998/
http://github.com/matplotlib/matplotlib/issues/1871/
http://github.com/matplotlib/matplotlib/issues/1917/
http://github.com/matplotlib/matplotlib/issues/1927/
http://github.com/matplotlib/matplotlib/issues/1885/
http://github.com/matplotlib/matplotlib/issues/1955/
http://github.com/matplotlib/matplotlib/issues/1290/
http://github.com/matplotlib/matplotlib/issues/1040/
http://github.com/matplotlib/matplotlib/issues/1016/
http://github.com/matplotlib/matplotlib/issues/1136/
http://github.com/matplotlib/matplotlib/issues/1856/
http://github.com/matplotlib/matplotlib/issues/1953/
http://github.com/matplotlib/matplotlib/issues/1896/
http://github.com/matplotlib/matplotlib/issues/1974/
http://github.com/matplotlib/matplotlib/issues/1900/
http://github.com/matplotlib/matplotlib/issues/1902/
http://github.com/matplotlib/matplotlib/issues/1899/
http://github.com/matplotlib/matplotlib/issues/1954/
http://github.com/matplotlib/matplotlib/issues/1938/
http://github.com/matplotlib/matplotlib/issues/1964/

Matplotlib, Release 1.3.1

• #1539: Pickling of log axes

• #1828: AttributeError with big float Value(s)

• #1971: Fix initialization problem with useblit on SpanSelector instance creatio...

• #1988: Added bar plot pickle support.

• #1989: Log scale pickle

• #1990: Fixed tight_layout pickle support.

• #1991: bugfix for matplotlib/ticker.py (python 3.3)

• #1833: Change hist behavior when normed and stacked to something more sensible

• #1979: developper’s guide: what is the best workflow to test modifications

• #1985: horizontal histogramm doesn’t work in 1.2 branch

• #1984: colors.rgb_to_hsv does not work properly with array of int dtype

• #1982: Fix bug in SpanSelector, introduced in commit #dd325759

• #1978: Setting font type using rcParams does not work under Python 3.*

• #1970: Build: allow local static png dependency

• #1976: Replace usage of Lena image in the gallery.

• #1977: Fix backend_driver.py

• #1944: ValueError exception in drag_zoom (tk backend)

• #1957: matplotlib 1.2 / pylab_examples example code: multiple_yaxis_with_spines.py

• #1972: SubplotBase._make_twin_axes always creates a new subplot instance

• #1787: Path.contains_points() incorrect return

• #1973: Collection’s contains method doesn’t honour offset_position attribute

• #1956: imsave should preserve alpha channel

• #1967: svg double hyphen in plot title –

• #1969: SubplotBase._make_twin_axes always creates a new subplot instance.

• #1837: html documentation: modules table and prev-next links

• #1892: possible 1.2.1 regression in ax.axhline

• #1929: Fixed failing bbox_inches=’tight’ case when a contour collection is empty

• #1968: Rotated text element misalignment in Agg

• #1868: Fixed background colour of PNGs saved with a non-zero opacity.

• #1965: Make the travis output quieter on v1.2.x

• #1946: re-arrange mplDeprecation imports

• #1948: Unable to import pylab (matplotlib._png)

271

http://github.com/matplotlib/matplotlib/issues/1539/
http://github.com/matplotlib/matplotlib/issues/1828/
http://github.com/matplotlib/matplotlib/issues/1971/
http://github.com/matplotlib/matplotlib/issues/1988/
http://github.com/matplotlib/matplotlib/issues/1989/
http://github.com/matplotlib/matplotlib/issues/1990/
http://github.com/matplotlib/matplotlib/issues/1991/
http://github.com/matplotlib/matplotlib/issues/1833/
http://github.com/matplotlib/matplotlib/issues/1979/
http://github.com/matplotlib/matplotlib/issues/1985/
http://github.com/matplotlib/matplotlib/issues/1984/
http://github.com/matplotlib/matplotlib/issues/1982/
http://github.com/matplotlib/matplotlib/issues/1978/
http://github.com/matplotlib/matplotlib/issues/1970/
http://github.com/matplotlib/matplotlib/issues/1976/
http://github.com/matplotlib/matplotlib/issues/1977/
http://github.com/matplotlib/matplotlib/issues/1944/
http://github.com/matplotlib/matplotlib/issues/1957/
http://github.com/matplotlib/matplotlib/issues/1972/
http://github.com/matplotlib/matplotlib/issues/1787/
http://github.com/matplotlib/matplotlib/issues/1973/
http://github.com/matplotlib/matplotlib/issues/1956/
http://github.com/matplotlib/matplotlib/issues/1967/
http://github.com/matplotlib/matplotlib/issues/1969/
http://github.com/matplotlib/matplotlib/issues/1837/
http://github.com/matplotlib/matplotlib/issues/1892/
http://github.com/matplotlib/matplotlib/issues/1929/
http://github.com/matplotlib/matplotlib/issues/1968/
http://github.com/matplotlib/matplotlib/issues/1868/
http://github.com/matplotlib/matplotlib/issues/1965/
http://github.com/matplotlib/matplotlib/issues/1946/
http://github.com/matplotlib/matplotlib/issues/1948/

Matplotlib, Release 1.3.1

• #1949: Build failes under ubuntu 13.04

• #1918: Tidied up some of the documentation.

• #1924: MEP 12: Gallery cleanup and reorganization (rebase)

• #1884: incorrect linkage if system PyCXX is found

• #1936: add pkgconfig to homebrew install instruction

• #1941: Use freetype-config if pkg-config is not installed

• #1940: Cleanup and what’s new item added for jpeg quality rcParam feature.

• #1937: All text only partially displayed

• #1771: Jpeg quality 95 by default with rendering with PIL

• #1836: LaTeX docs build blows up

• #1935: 1836 latex docs fail

• #1932: DOC - two modules link appeared in the documentation

• #1930: FIX Latex documentation now builds properly

• #1928: Fixed polygon3d rendering bug issue #178

• #1810: Cairo + plot_date = misaligned x-axis labels

• #1623: MEP 12: Gallery cleanup and reorganization

• #1905: Prevent Qt4 from stopping the interpreter

• #1923: fix Travis failures on 2.6 and 2.7

• #1922: Commit 2415c6200ebdba75a0571d71a4569f18153fff57 introduces syntax error

• #1861: Added a find_all method to the RcParams dictionary.

• #1879: Decode subprocess output to utf-8 or regex will fail

• #1921: Fix filename decoding when calling fc-match

• #1859: Fixed a bug in offsetbox

• #1757: DOC improves documentation on the pyplot module and the bar method

• #1767: bytes regex matching issue in font_manager.py around 1283 (line number)

• #1857: pgf backend doesn’t work well with very large numbers

• #1858: backend_pgf: clip paths within the backend (fixes #1857)

• #1812: Error when setting arrowstyle

• #1913: Fix for issue #1812

• #1423: Normalize e.g. instances, or reduce them?

• #1916: Normalize all ‘e.g.’ instances. Addresses issue #1423.

• #1766: add rcParam to set the margin

272 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1949/
http://github.com/matplotlib/matplotlib/issues/1918/
http://github.com/matplotlib/matplotlib/issues/1924/
http://github.com/matplotlib/matplotlib/issues/1884/
http://github.com/matplotlib/matplotlib/issues/1936/
http://github.com/matplotlib/matplotlib/issues/1941/
http://github.com/matplotlib/matplotlib/issues/1940/
http://github.com/matplotlib/matplotlib/issues/1937/
http://github.com/matplotlib/matplotlib/issues/1771/
http://github.com/matplotlib/matplotlib/issues/1836/
http://github.com/matplotlib/matplotlib/issues/1935/
http://github.com/matplotlib/matplotlib/issues/1932/
http://github.com/matplotlib/matplotlib/issues/1930/
http://github.com/matplotlib/matplotlib/issues/1928/
http://github.com/matplotlib/matplotlib/issues/1810/
http://github.com/matplotlib/matplotlib/issues/1623/
http://github.com/matplotlib/matplotlib/issues/1905/
http://github.com/matplotlib/matplotlib/issues/1923/
http://github.com/matplotlib/matplotlib/issues/1922/
http://github.com/matplotlib/matplotlib/issues/1861/
http://github.com/matplotlib/matplotlib/issues/1879/
http://github.com/matplotlib/matplotlib/issues/1921/
http://github.com/matplotlib/matplotlib/issues/1859/
http://github.com/matplotlib/matplotlib/issues/1757/
http://github.com/matplotlib/matplotlib/issues/1767/
http://github.com/matplotlib/matplotlib/issues/1857/
http://github.com/matplotlib/matplotlib/issues/1858/
http://github.com/matplotlib/matplotlib/issues/1812/
http://github.com/matplotlib/matplotlib/issues/1913/
http://github.com/matplotlib/matplotlib/issues/1423/
http://github.com/matplotlib/matplotlib/issues/1916/
http://github.com/matplotlib/matplotlib/issues/1766/

Matplotlib, Release 1.3.1

• #1908: added rcParam for x and y margin

• #691: Inner colorbar & Outer colorbar

• #1886: MacOSX backend incorrectly displays plot/scatter under Affine2D transform

• #1903: Switching b and c in _transformation_converter to fix issue #1886

• #1897: Doc build failure - unicode error in generate_example_rst

• #1915: Corrected a wrong numpy record name in documentation.

• #1911: dvipng_hack_alpha version check is broken

• #1914: Fix texmanager.dvipng_hack_alpha() to correctly use Popen.

• #1823: Cannot import matplotlib on Google App Engine dev appserver

• #1906: Spectral plot unit tests

• #1824: Support environments without a home dir or writable file system

• #1015: patheffects for Line2d object

• #1878: Webagg changes

• #1818: Updated some of the documentation information.

• #1894: Exporting figure as pdf using savefig() messes up axis background in OS X

• #1887: Clarify documentation for FuncAnimation

• #1893: bar plot sets axhline(0) for log plots, mpl 1.2.1 disapproves

• #1890: Restored inkscape installing on travis-ci.

• #1310: Drops last tick label for some ranges

• #1874: Building Matplotlib on Ubuntu

• #1186: Make default arrow head width sensible

• #1875: [EHN] Add frameon and savefig.frameon to rcParams

• #1865: Fix manual contour label positions on sparse contours

• #208: csv2rec imports dates incorrectly and has no option

• #1356: Docs don’t build with Python3 (make.py except)

• #1210: Add dateutil kwargs to csv2rec

• #1383: More fixes for doc building with python 3

• #1864: fix legend w/ ‘expand’ mode which fails for a single item.

• #1763: Matplotlib 1.2.0 no longer respects the “bottom” argument for horizontal histograms

• #1448: ‘bbox_inches="tight"‘ support for all figure artists.

• #1869: Installed inkscape on the travis-ci vm.

• #1008: Saving animation with coloured background

273

http://github.com/matplotlib/matplotlib/issues/1908/
http://github.com/matplotlib/matplotlib/issues/691/
http://github.com/matplotlib/matplotlib/issues/1886/
http://github.com/matplotlib/matplotlib/issues/1903/
http://github.com/matplotlib/matplotlib/issues/1897/
http://github.com/matplotlib/matplotlib/issues/1915/
http://github.com/matplotlib/matplotlib/issues/1911/
http://github.com/matplotlib/matplotlib/issues/1914/
http://github.com/matplotlib/matplotlib/issues/1823/
http://github.com/matplotlib/matplotlib/issues/1906/
http://github.com/matplotlib/matplotlib/issues/1824/
http://github.com/matplotlib/matplotlib/issues/1015/
http://github.com/matplotlib/matplotlib/issues/1878/
http://github.com/matplotlib/matplotlib/issues/1818/
http://github.com/matplotlib/matplotlib/issues/1894/
http://github.com/matplotlib/matplotlib/issues/1887/
http://github.com/matplotlib/matplotlib/issues/1893/
http://github.com/matplotlib/matplotlib/issues/1890/
http://github.com/matplotlib/matplotlib/issues/1310/
http://github.com/matplotlib/matplotlib/issues/1874/
http://github.com/matplotlib/matplotlib/issues/1186/
http://github.com/matplotlib/matplotlib/issues/1875/
http://github.com/matplotlib/matplotlib/issues/1865/
http://github.com/matplotlib/matplotlib/issues/208/
http://github.com/matplotlib/matplotlib/issues/1356/
http://github.com/matplotlib/matplotlib/issues/1210/
http://github.com/matplotlib/matplotlib/issues/1383/
http://github.com/matplotlib/matplotlib/issues/1864/
http://github.com/matplotlib/matplotlib/issues/1763/
http://github.com/matplotlib/matplotlib/issues/1448/
http://github.com/matplotlib/matplotlib/issues/1869/
http://github.com/matplotlib/matplotlib/issues/1008/

Matplotlib, Release 1.3.1

• #1870: Testing documentation isn’t clear about which files to copy

• #1528: Fonts rendered are 25% larger than requested on SVG backend

• #1256: rendering slowdown with big invisible lines

• #1287: compare_images computes RMS incorrectly

• #1866: fix the pyplot version of rc_context

• #1631: histstack looks bad with alpha.

• #1867: QT backend changes locale

• #1860: Bug with PatchCollection in PDF output

• #1862: Matplotlib savefig() closes BytesIO object when saving in postscript format

• #1259: MacOS backend modifier keys

• #1841: Fixes issue #1259 - Added modifier key handling for macosx backend

• #1563: macosx backend slowdown with 1.2.0

• #1816: Avoid macosx backend slowdown; issue 1563

• #1729: request for plotting variable bin size with imshow

• #1839: matplotlib 1.2.0 doesn’t compile with Solaris Studio 12.3 CC

• #1796: axes.grid lines using lines.marker settings?

• #1846: Fix the clippath renderering so that it uses no-clip unsigned chars

• #1844: 1.2.0 regression: custom scale not working

• #1768: Build fails on travisCI

• #1851: Fix for the custom scale example

• #1853: fill_betweenx signature fixed

• #1854: BF - prevent a TypeError for lists of vertices

• #1840: BF - prevent a TypeError for lists of vertices in set_marker

• #1842: test_backend_pgf errors

• #1850: fill_betweenx signature fixed

• #1843: test_backend_pgf: TypeError

• #1830: Keyboard shortcuts work when toolbar not displayed

• #1848: add flushing of stdout to update on key event

• #1802: Step linestyle

• #879: Two colormaps named “spectral”

• #1127: Change spectral to nipy_spectral, update docs, leave aliases

• #1804: MEP10 - documentation improvements on set_xlabel and text of axes.py

274 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1870/
http://github.com/matplotlib/matplotlib/issues/1528/
http://github.com/matplotlib/matplotlib/issues/1256/
http://github.com/matplotlib/matplotlib/issues/1287/
http://github.com/matplotlib/matplotlib/issues/1866/
http://github.com/matplotlib/matplotlib/issues/1631/
http://github.com/matplotlib/matplotlib/issues/1867/
http://github.com/matplotlib/matplotlib/issues/1860/
http://github.com/matplotlib/matplotlib/issues/1862/
http://github.com/matplotlib/matplotlib/issues/1259/
http://github.com/matplotlib/matplotlib/issues/1841/
http://github.com/matplotlib/matplotlib/issues/1563/
http://github.com/matplotlib/matplotlib/issues/1816/
http://github.com/matplotlib/matplotlib/issues/1729/
http://github.com/matplotlib/matplotlib/issues/1839/
http://github.com/matplotlib/matplotlib/issues/1796/
http://github.com/matplotlib/matplotlib/issues/1846/
http://github.com/matplotlib/matplotlib/issues/1844/
http://github.com/matplotlib/matplotlib/issues/1768/
http://github.com/matplotlib/matplotlib/issues/1851/
http://github.com/matplotlib/matplotlib/issues/1853/
http://github.com/matplotlib/matplotlib/issues/1854/
http://github.com/matplotlib/matplotlib/issues/1840/
http://github.com/matplotlib/matplotlib/issues/1842/
http://github.com/matplotlib/matplotlib/issues/1850/
http://github.com/matplotlib/matplotlib/issues/1843/
http://github.com/matplotlib/matplotlib/issues/1830/
http://github.com/matplotlib/matplotlib/issues/1848/
http://github.com/matplotlib/matplotlib/issues/1802/
http://github.com/matplotlib/matplotlib/issues/879/
http://github.com/matplotlib/matplotlib/issues/1127/
http://github.com/matplotlib/matplotlib/issues/1804/

Matplotlib, Release 1.3.1

• #1764: Make loc come after fontdict in set_title. Closes #1759

• #1759: Axes3d error on set_title

• #800: Still another Agg snapping issue.

• #1727: ‘stepfilled’ histogram is not filled properly when setting yscale(‘log’)

• #1612: setupegg is broken on windows

• #1591: Image being snapped erroneously

• #1845: Agg clip rendering fix

• #1838: plot_surface and transposed arrays

• #1825: Work around missing subprocess members on Google App Engine

• #1826: backend_ps: Do not write to a temporary file unless using an external distiller

• #1827: MEP10 - documentation improvements on many common plots: scatter plots, ...

• #1834: finance: Fixed making directories for explicit cachename

• #1714: qt4_editor broken: TransformNode instances can not be copied

• #1832: BF - correct return type for Axes.get_title

• #324: ability to change curves, axes, labels attributes via UI

• #1803: Markers module: PEP8 fixes and MEP10 documentation fixes

• #1795: MEP10 - refactored hlines and vlines documentation

• #1819: Option for disregarding matplotlibrc, for reproducible batch production of plots

• #1822: Improved triinterp_demo pylab example

• #1820: griddata: Allow for easy switching between interpolation mechanisms

• #1811: MultiCursor with additionnal optionnal horizontal bar

• #1817: Improved test_triinterp_colinear

• #1799: Corrupt/invalid PDF and EPS files when saving a logscaled plot made with negative values

• #1800: Agg snapping fixes (for the last time...?) :)

• #1521: Triangular grid interpolation and refinement

• #1786: Cubic interpolation for triangular grids

• #1808: DOC: typo, break lines >80 char, add link to cmaps list

• #1798: MEP10 - documentation improvements on set_xlabel and text of axes.py

• #1801: Add .directory files to .gitignore

• #1765: Unable to Generate Docs

• #1744: bottom keyword doesn’t work for non-stacked histograms

• #1679: matplotlib-1.2.0: regression in histogram with barstacked drawing?

275

http://github.com/matplotlib/matplotlib/issues/1764/
http://github.com/matplotlib/matplotlib/issues/1759/
http://github.com/matplotlib/matplotlib/issues/800/
http://github.com/matplotlib/matplotlib/issues/1727/
http://github.com/matplotlib/matplotlib/issues/1612/
http://github.com/matplotlib/matplotlib/issues/1591/
http://github.com/matplotlib/matplotlib/issues/1845/
http://github.com/matplotlib/matplotlib/issues/1838/
http://github.com/matplotlib/matplotlib/issues/1825/
http://github.com/matplotlib/matplotlib/issues/1826/
http://github.com/matplotlib/matplotlib/issues/1827/
http://github.com/matplotlib/matplotlib/issues/1834/
http://github.com/matplotlib/matplotlib/issues/1714/
http://github.com/matplotlib/matplotlib/issues/1832/
http://github.com/matplotlib/matplotlib/issues/324/
http://github.com/matplotlib/matplotlib/issues/1803/
http://github.com/matplotlib/matplotlib/issues/1795/
http://github.com/matplotlib/matplotlib/issues/1819/
http://github.com/matplotlib/matplotlib/issues/1822/
http://github.com/matplotlib/matplotlib/issues/1820/
http://github.com/matplotlib/matplotlib/issues/1811/
http://github.com/matplotlib/matplotlib/issues/1817/
http://github.com/matplotlib/matplotlib/issues/1799/
http://github.com/matplotlib/matplotlib/issues/1800/
http://github.com/matplotlib/matplotlib/issues/1521/
http://github.com/matplotlib/matplotlib/issues/1786/
http://github.com/matplotlib/matplotlib/issues/1808/
http://github.com/matplotlib/matplotlib/issues/1798/
http://github.com/matplotlib/matplotlib/issues/1801/
http://github.com/matplotlib/matplotlib/issues/1765/
http://github.com/matplotlib/matplotlib/issues/1744/
http://github.com/matplotlib/matplotlib/issues/1679/

Matplotlib, Release 1.3.1

• #1724: Re-write stacked step histogram

• #1790: Fixes problem raised in #1431 (‘get_transform‘ should not affect ‘is_transform_set‘)

• #1779: Bug in postscript backend in Python 3

• #1797: PEP8 on colors module

• #1291: Fix image comparison

• #1788: Lower minimum pyparsing version to 1.5.2

• #1789: imshow() subplots with shared axes generate unwanted white spaces

• #1793: font_manager unittest errors

• #1791: Symbol not found: _CGAffineTransformIdentity on MacOS 10.6

• #1772: Python 3.3 build failure

• #1794: Fix for #1792

• #1781: Issues with installing matplotlib on Travis with Python 3

• #1792: Matplotlib fails to install pyparsing with Python 2

• #1454: Retool the setup.py infrastructure

• #1776: Documentation style suggestion

• #1785: Fix test_bbox_inches_tight

• #1784: Attempt to fix Travis “permission denied” error for Python 3

• #1775: Issue #1763

• #1615: Offset is empty with usetex when offset is equal to 1

• #1782: fix copy-to-clipboard in example

• #1778: Fix clip_path_to_rect, add convenience method on Path object for it

• #1777: PyList_SetItem return value bug in clip_path_to_rect (_path.cpp).

• #1773: emf backend doesn’t work with StringIO

• #1669: Add EventCollection and eventplot

• #1774: ignore singleton dimensions in ndarrays passed to imshow

• #1619: Arrow with “simple” style is not robust. Code fix included.

• #1725: Fix compiler warnings

• #1756: Remove broken printing_in_wx.py example.

• #1094: Feature request - make it simpler to use full OO interface

• #1457: Better object-oriented interface for users

• #1762: Make cbook safe to import while removing duplicate is_string_like;

• #1019: Repeated is_string_like function

276 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1724/
http://github.com/matplotlib/matplotlib/issues/1790/
http://github.com/matplotlib/matplotlib/issues/1779/
http://github.com/matplotlib/matplotlib/issues/1797/
http://github.com/matplotlib/matplotlib/issues/1291/
http://github.com/matplotlib/matplotlib/issues/1788/
http://github.com/matplotlib/matplotlib/issues/1789/
http://github.com/matplotlib/matplotlib/issues/1793/
http://github.com/matplotlib/matplotlib/issues/1791/
http://github.com/matplotlib/matplotlib/issues/1772/
http://github.com/matplotlib/matplotlib/issues/1794/
http://github.com/matplotlib/matplotlib/issues/1781/
http://github.com/matplotlib/matplotlib/issues/1792/
http://github.com/matplotlib/matplotlib/issues/1454/
http://github.com/matplotlib/matplotlib/issues/1776/
http://github.com/matplotlib/matplotlib/issues/1785/
http://github.com/matplotlib/matplotlib/issues/1784/
http://github.com/matplotlib/matplotlib/issues/1775/
http://github.com/matplotlib/matplotlib/issues/1615/
http://github.com/matplotlib/matplotlib/issues/1782/
http://github.com/matplotlib/matplotlib/issues/1778/
http://github.com/matplotlib/matplotlib/issues/1777/
http://github.com/matplotlib/matplotlib/issues/1773/
http://github.com/matplotlib/matplotlib/issues/1669/
http://github.com/matplotlib/matplotlib/issues/1774/
http://github.com/matplotlib/matplotlib/issues/1619/
http://github.com/matplotlib/matplotlib/issues/1725/
http://github.com/matplotlib/matplotlib/issues/1756/
http://github.com/matplotlib/matplotlib/issues/1094/
http://github.com/matplotlib/matplotlib/issues/1457/
http://github.com/matplotlib/matplotlib/issues/1762/
http://github.com/matplotlib/matplotlib/issues/1019/

Matplotlib, Release 1.3.1

• #1761: plot_wireframe does not accept vmin, vmax

• #300: subplot args desription confusing

• #1252: Properly passing on horiz-/vertOn to Cursor()

• #1632: Fix build on Ubuntu 12.10

• #1686: Fix lost ticks

• #1640: Fix bugs in legend positioning with loc=’best’

• #1687: Update lib/matplotlib/backends/backend_cairo.py

• #1760: Improved the subplot function documentation and fixed the autogeneration from boilerplate.

• #1647: WIP: Deprecation of the cbook module

• #1662: is_string_like existed both in matplotlib and matplotlib.cbook

• #1716: PEP8 fixes on the figure module

• #1643: Clean up code in cbook

• #953: subplot docstring improvement (re #300)

• #1112: Bad kwargs to savefig

• #1755: Update examples/pylab_examples/histogram_demo_extended.py

• #1754: Fixed a typo in histogram example code

• #1490: empty scatter messes up the limits

• #1497: Fix for empty collection check in axes.add_collection

• #1685: Add default savefig directory

• #1698: Fix bug updating WeakKeyDictionary during iteration

• #1743: slight tweak to the documentation of errorbar

• #1748: Typo in “Annotation” docstring.

• #1750: Name missmatch in filetypes.rgba and print_rgb of backend_bases.py

• #1749: Incompatibility with latest stable Numpy build (v1.7)

• #1722: Fix sign of infstr in exceltools.rec2exel

• #1126: Qt4 save dialog not functional on CentOS-5

• #1740: alpha is not set correctly when using eps format

• #1741: pcolormesh memory leak

• #1726: stackplot_test_baseline has different results on 32-bit and 64-bit platforms

• #1577: PEP8 fixes on the line module

• #1728: Macosx backend: tweak to coordinates position

• #1701: dash setting in LineCollection is broken

277

http://github.com/matplotlib/matplotlib/issues/1761/
http://github.com/matplotlib/matplotlib/issues/300/
http://github.com/matplotlib/matplotlib/issues/1252/
http://github.com/matplotlib/matplotlib/issues/1632/
http://github.com/matplotlib/matplotlib/issues/1686/
http://github.com/matplotlib/matplotlib/issues/1640/
http://github.com/matplotlib/matplotlib/issues/1687/
http://github.com/matplotlib/matplotlib/issues/1760/
http://github.com/matplotlib/matplotlib/issues/1647/
http://github.com/matplotlib/matplotlib/issues/1662/
http://github.com/matplotlib/matplotlib/issues/1716/
http://github.com/matplotlib/matplotlib/issues/1643/
http://github.com/matplotlib/matplotlib/issues/953/
http://github.com/matplotlib/matplotlib/issues/1112/
http://github.com/matplotlib/matplotlib/issues/1755/
http://github.com/matplotlib/matplotlib/issues/1754/
http://github.com/matplotlib/matplotlib/issues/1490/
http://github.com/matplotlib/matplotlib/issues/1497/
http://github.com/matplotlib/matplotlib/issues/1685/
http://github.com/matplotlib/matplotlib/issues/1698/
http://github.com/matplotlib/matplotlib/issues/1743/
http://github.com/matplotlib/matplotlib/issues/1748/
http://github.com/matplotlib/matplotlib/issues/1750/
http://github.com/matplotlib/matplotlib/issues/1749/
http://github.com/matplotlib/matplotlib/issues/1722/
http://github.com/matplotlib/matplotlib/issues/1126/
http://github.com/matplotlib/matplotlib/issues/1740/
http://github.com/matplotlib/matplotlib/issues/1741/
http://github.com/matplotlib/matplotlib/issues/1726/
http://github.com/matplotlib/matplotlib/issues/1577/
http://github.com/matplotlib/matplotlib/issues/1728/
http://github.com/matplotlib/matplotlib/issues/1701/

Matplotlib, Release 1.3.1

• #1704: Contour does not pass a list of linestyles to LineCollection

• #1718: Fix set dashes for line collections

• #1721: rcParams.keys() is not Python 3 compatible

• #1723: Re-write stacked histogram (fixes bugs)

• #1706: Fix bugs in stacked histograms

• #1401: RuntimeError: dictionary changed size during iteration from colors.py, 3.3 but not 3.2

• #1699: Enable to switch off the removal of comments in csv2rec.

• #1710: Mixing Arial with mathtext on Windows 8 fails

• #1683: Remove figure from Gcf when it is closed

• #1705: Qt closeevent fixes for v1.2.x

• #1504: markerfacecolor/markeredgecolor alpha issue

• #1671: Feature stack base

• #1075: fix hist limit issue for step* for both linear and log scale

• #1659: super hacky fix to issue #1310

• #196: Axes.hist(...log=True) mishandles y-axis minimum value

• #1029: Implemented fix to issue 196 on github for log=True and histtype=’step’

• #1684: Fix hist for log=True and histtype=’step’

• #1707: Docs build failure

• #1708: Fix breaking doc build

• #289: reproducible research: sys.argv[0] in plot footer

• #1633: Add rcParam option for number of scatterplot symbols

• #1113: Bug in ax.arrow()

• #987: angle/rotate keyword for rectangle

• #775: TypeError in Axes.get_legend_handles_labels

• #331: stem function ability to take one argument

• #1644: NF - Left and right side axes titles

• #1666: Fix USE_FONTCONFIG=True mode

• #1697: Fix bug updating WeakKeyDictionary during iteration

• #1691: Fix svg flipping (again)

• #1695: Alpha kwarg fix

• #1696: Fixed doc dependency on numpy_ext.numpydoc

• #1665: MEP10: adding numpydoc and activating autosummary

278 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1704/
http://github.com/matplotlib/matplotlib/issues/1718/
http://github.com/matplotlib/matplotlib/issues/1721/
http://github.com/matplotlib/matplotlib/issues/1723/
http://github.com/matplotlib/matplotlib/issues/1706/
http://github.com/matplotlib/matplotlib/issues/1401/
http://github.com/matplotlib/matplotlib/issues/1699/
http://github.com/matplotlib/matplotlib/issues/1710/
http://github.com/matplotlib/matplotlib/issues/1683/
http://github.com/matplotlib/matplotlib/issues/1705/
http://github.com/matplotlib/matplotlib/issues/1504/
http://github.com/matplotlib/matplotlib/issues/1671/
http://github.com/matplotlib/matplotlib/issues/1075/
http://github.com/matplotlib/matplotlib/issues/1659/
http://github.com/matplotlib/matplotlib/issues/196/
http://github.com/matplotlib/matplotlib/issues/1029/
http://github.com/matplotlib/matplotlib/issues/1684/
http://github.com/matplotlib/matplotlib/issues/1707/
http://github.com/matplotlib/matplotlib/issues/1708/
http://github.com/matplotlib/matplotlib/issues/289/
http://github.com/matplotlib/matplotlib/issues/1633/
http://github.com/matplotlib/matplotlib/issues/1113/
http://github.com/matplotlib/matplotlib/issues/987/
http://github.com/matplotlib/matplotlib/issues/775/
http://github.com/matplotlib/matplotlib/issues/331/
http://github.com/matplotlib/matplotlib/issues/1644/
http://github.com/matplotlib/matplotlib/issues/1666/
http://github.com/matplotlib/matplotlib/issues/1697/
http://github.com/matplotlib/matplotlib/issues/1691/
http://github.com/matplotlib/matplotlib/issues/1695/
http://github.com/matplotlib/matplotlib/issues/1696/
http://github.com/matplotlib/matplotlib/issues/1665/

Matplotlib, Release 1.3.1

• #1660: Explain that matplotlib must be built before the HTML documentation

• #1693: saving to *.eps broken on master

• #1694: fixes Issue #1693

• #1689: SVG flip issue

• #1681: Fancy arrow tests are failing

• #1682: Fixed the expected output from test_arrow_patches.test_fancyarrow.

• #1262: Using figure.suptitle puts another suptitle on top of any existing one.

• #1663: Fix suptitle

• #1675: fix “alpha” kwarg in errorbar plot

• #1610: plotting legends none

• #1676: Qt close events don’t cascade properly.

• #1678: added QtGui.QMainWindow.closeEvent() to make sure the close event

• #1673: Images saved as SVG get upside down when svg.image_noscale is True.

• #1674: Fix SVG flip when svg.image_noscale is True

• #1680: Ignore lib/dateutil

• #1677: add changelog for #1626

• #1626: Add framealpha argument for legend

• #1608: Incorrect ylabel placement in twinx

• #1642: remove import new from cbook.py

• #1534: Make rc_context available via pyplot interface

• #1672: Nuke Travis python 3.1 testing

• #1535: Deprecate mpl.py (was Remove mpl.py)

• #1670: Deprecate mpl

• #1517: ENH: Add baseline feature to stackplot.

• #1635: Recompute Wedge path after change of attributes.

• #1488: Continue propagating resize event up the chain

• #1498: use QMainWindow.closeEvent for close events

• #1617: Legend: Also calc the bbox of the legend when the frame is not drawn. (1.2.x)

• #1585: Fix Qt canvas resize_event

• #1629: Update x,y.z values for an existing Line3D object

• #1611: change handling of legend labels which are None

• #1657: Add EventCollection and eventplot

279

http://github.com/matplotlib/matplotlib/issues/1660/
http://github.com/matplotlib/matplotlib/issues/1693/
http://github.com/matplotlib/matplotlib/issues/1694/
http://github.com/matplotlib/matplotlib/issues/1689/
http://github.com/matplotlib/matplotlib/issues/1681/
http://github.com/matplotlib/matplotlib/issues/1682/
http://github.com/matplotlib/matplotlib/issues/1262/
http://github.com/matplotlib/matplotlib/issues/1663/
http://github.com/matplotlib/matplotlib/issues/1675/
http://github.com/matplotlib/matplotlib/issues/1610/
http://github.com/matplotlib/matplotlib/issues/1676/
http://github.com/matplotlib/matplotlib/issues/1678/
http://github.com/matplotlib/matplotlib/issues/1673/
http://github.com/matplotlib/matplotlib/issues/1674/
http://github.com/matplotlib/matplotlib/issues/1680/
http://github.com/matplotlib/matplotlib/issues/1677/
http://github.com/matplotlib/matplotlib/issues/1626/
http://github.com/matplotlib/matplotlib/issues/1608/
http://github.com/matplotlib/matplotlib/issues/1642/
http://github.com/matplotlib/matplotlib/issues/1534/
http://github.com/matplotlib/matplotlib/issues/1672/
http://github.com/matplotlib/matplotlib/issues/1535/
http://github.com/matplotlib/matplotlib/issues/1670/
http://github.com/matplotlib/matplotlib/issues/1517/
http://github.com/matplotlib/matplotlib/issues/1635/
http://github.com/matplotlib/matplotlib/issues/1488/
http://github.com/matplotlib/matplotlib/issues/1498/
http://github.com/matplotlib/matplotlib/issues/1617/
http://github.com/matplotlib/matplotlib/issues/1585/
http://github.com/matplotlib/matplotlib/issues/1629/
http://github.com/matplotlib/matplotlib/issues/1611/
http://github.com/matplotlib/matplotlib/issues/1657/

Matplotlib, Release 1.3.1

• #1641: PEP8 fixes on the rcsetup module

• #1650: _png.read_png crashes on Python 3 with urllib.request object

• #1568: removed deprecated methods from the axes module.

• #1571: Y-labels shifted

• #1589: Fix shifted ylabels (Issue #1571)

• #1276: Fix overwriting suptitle

• #1661: Fix travis install failure on py31

• #1634: add scatterpoints to rcParam

• #1654: added explicit ‘zorder’ kwarg to Colection and LineCollection.

• #570: mplot3d reverse axis behavior

• #1653: Fix #570 - Reversing a 3d axis should now work properly.

• #1651: WebAgg: pylab compatibility

• #1638: web_backend is not installed

• #1505: Issue 1504: changed how draw handles alpha in markerfacecolor

• #1655: add get_segments method to collections.LineCollection

• #1649: add get_segments method to collections.LineCollection

• #1593: NameError: global name ‘iterable’ is not defined

• #1652: Ignore kdevelop4 project files

• #665: Mac OSX backend keyboard focus stays in terminal

• #1613: Using a stricter check to see if Python was installed as a framework.

• #1581: Provide an alternative to lena.png for two examples that use it.

• #1599: Ada Lovelace and Grace Murray Hopper images in place of Lena

• #1582: Linear tri interpolator

• #1637: change cbook to relative import

• #1645: add get_segments method to collections.LineCollection - updated

• #1639: Rename web_static to web_backend in setup.py

• #1618: Mplot3d/crashfixes

• #1636: hexbin log scale is broken in matplotlib 1.2.0

• #1624: implemented inverse transform for Mollweide axes

• #1630: A disconnected callback cannot be reconnected

• #1139: Make Axes.stem take at least one argument.

• #1426: WebAgg backend

280 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1641/
http://github.com/matplotlib/matplotlib/issues/1650/
http://github.com/matplotlib/matplotlib/issues/1568/
http://github.com/matplotlib/matplotlib/issues/1571/
http://github.com/matplotlib/matplotlib/issues/1589/
http://github.com/matplotlib/matplotlib/issues/1276/
http://github.com/matplotlib/matplotlib/issues/1661/
http://github.com/matplotlib/matplotlib/issues/1634/
http://github.com/matplotlib/matplotlib/issues/1654/
http://github.com/matplotlib/matplotlib/issues/570/
http://github.com/matplotlib/matplotlib/issues/1653/
http://github.com/matplotlib/matplotlib/issues/1651/
http://github.com/matplotlib/matplotlib/issues/1638/
http://github.com/matplotlib/matplotlib/issues/1505/
http://github.com/matplotlib/matplotlib/issues/1655/
http://github.com/matplotlib/matplotlib/issues/1649/
http://github.com/matplotlib/matplotlib/issues/1593/
http://github.com/matplotlib/matplotlib/issues/1652/
http://github.com/matplotlib/matplotlib/issues/665/
http://github.com/matplotlib/matplotlib/issues/1613/
http://github.com/matplotlib/matplotlib/issues/1581/
http://github.com/matplotlib/matplotlib/issues/1599/
http://github.com/matplotlib/matplotlib/issues/1582/
http://github.com/matplotlib/matplotlib/issues/1637/
http://github.com/matplotlib/matplotlib/issues/1645/
http://github.com/matplotlib/matplotlib/issues/1639/
http://github.com/matplotlib/matplotlib/issues/1618/
http://github.com/matplotlib/matplotlib/issues/1636/
http://github.com/matplotlib/matplotlib/issues/1624/
http://github.com/matplotlib/matplotlib/issues/1630/
http://github.com/matplotlib/matplotlib/issues/1139/
http://github.com/matplotlib/matplotlib/issues/1426/

Matplotlib, Release 1.3.1

• #1606: Document the C/C++ code guidelines

• #1622: zorder is not respected by all parts of errorbar

• #1628: Fix errorbar zorder v1.2

• #1625: saving pgf to a stream is not supported

• #1588: Annotations appear in incorrect locations

• #1620: Fix bug in _AnnotationBase

• #1621: Package for python 3.3 on OS X

• #1616: Legend: Also calc the bbox of the legend when the frame is not drawn.

• #1587: Mac OS X 10.5 needs an autoreleasepool here to avoid memory leaks. Newer...

• #1597: new MatplotlibDeprecationWarning class (against master)

• #1596: new MatplotlibDeprecationWarning class (against 1.2.x)

• #1532: CXX/Python2/cxx_extensions.cxx:1320: Assertion ‘ob_refcnt == 0’

• #1601: invalid/misconfigured fonts cause the font manager to fail

• #1604: Make font_manager ignore KeyErrors for bad fonts

• #1605: Change printed -> pretty-printed

• #1553: invert_xaxis() accidentially disables autoscaling

• #1557: inverting an axis shouldn’t affect the autoscaling setting

• #1603: ylim=0.0 is not well handled in polar plots

• #1583: Crash with text.usetex=True and plt.annotate

• #1584: triplot(x, y, simplex) should not modify the simplex array as a side effect.

• #1576: BUG: tri: prevent Triangulation from modifying specified input

• #1602: Fixed typos in docs (squashed version of #1600)

• #1600: Fixed typos in matplotlibrc and docs

• #1592: Fix a syntax error in examples (movie_demo.py)

• #1572: axes_grid demo broken

• #201: Drawing rubberband box outside of view crash backend_macosx

• #1038: osx backend does not allow font changes

• #1590: Positional argument specifiers are required by Python 2.6

• #1579: Updated custom_projection_example.py to work with v1.2 and newer

• #1578: Fixed blitting in Gtk3Agg backend

• #1580: lena.png is indecent and needs to be removed

• #1573: fix issue #1572 caused by PR #1081

281

http://github.com/matplotlib/matplotlib/issues/1606/
http://github.com/matplotlib/matplotlib/issues/1622/
http://github.com/matplotlib/matplotlib/issues/1628/
http://github.com/matplotlib/matplotlib/issues/1625/
http://github.com/matplotlib/matplotlib/issues/1588/
http://github.com/matplotlib/matplotlib/issues/1620/
http://github.com/matplotlib/matplotlib/issues/1621/
http://github.com/matplotlib/matplotlib/issues/1616/
http://github.com/matplotlib/matplotlib/issues/1587/
http://github.com/matplotlib/matplotlib/issues/1597/
http://github.com/matplotlib/matplotlib/issues/1596/
http://github.com/matplotlib/matplotlib/issues/1532/
http://github.com/matplotlib/matplotlib/issues/1601/
http://github.com/matplotlib/matplotlib/issues/1604/
http://github.com/matplotlib/matplotlib/issues/1605/
http://github.com/matplotlib/matplotlib/issues/1553/
http://github.com/matplotlib/matplotlib/issues/1557/
http://github.com/matplotlib/matplotlib/issues/1603/
http://github.com/matplotlib/matplotlib/issues/1583/
http://github.com/matplotlib/matplotlib/issues/1584/
http://github.com/matplotlib/matplotlib/issues/1576/
http://github.com/matplotlib/matplotlib/issues/1602/
http://github.com/matplotlib/matplotlib/issues/1600/
http://github.com/matplotlib/matplotlib/issues/1592/
http://github.com/matplotlib/matplotlib/issues/1572/
http://github.com/matplotlib/matplotlib/issues/201/
http://github.com/matplotlib/matplotlib/issues/1038/
http://github.com/matplotlib/matplotlib/issues/1590/
http://github.com/matplotlib/matplotlib/issues/1579/
http://github.com/matplotlib/matplotlib/issues/1578/
http://github.com/matplotlib/matplotlib/issues/1580/
http://github.com/matplotlib/matplotlib/issues/1573/

Matplotlib, Release 1.3.1

• #1562: Mac OS X Backend: Removing clip that is no longer needed

• #1506: DOC: make example cursor show up in the docs

• #1565: new MatplotlibDeprecationWarning class

• #776: ticks based on number of subplots

• #1462: use plt.subplots() in examples as much as possible

• #1407: Sankey5

• #1574: Improvements to Sankey class

• #1536: ENH: add AVConv movie writer for animations

• #1570: PEP8 fixes on the tests of the dates module

• #1465: Undefined elements in axes module

• #1569: FIX Removes code that does work from the axes module

• #1250: Fix Travis tests

• #1566: pylab overwrites user variable(s)

• #1531: fix rendering slowdown with big invisible lines (issue #1256)

• #1398: PEP8 fixes on dates.py

• #1564: PEP8-compliance on axes.py (patch 4 / 4)

• #1559: Workaround for QT cursor bug in dock areas

• #1552: Remove python 2.5 stuff from texmanager.py

• #1560: Remove python2.5 support from texmanager.py

• #1555: Geo projections getting clobbered by 2to3 when used when python3

• #997: Delaunay interpolator: support grid whose width or height is 1

• #1477: alternate fix for issue #997

• #1556: Invert axis autoscale fix

• #1554: Geo projections getting clobbered by 2to3 when used when python3

• #1522: PEP8-compliance on axes.py (patch 3 / 4)

• #1548: Broken i386 + Python 3 build

• #1550: PEP8 fixes on the module texmanager

• #783: mplot3d: scatter (and others) incorrectly auto-scale axes after set_[xyz]lim()

• #1289: Autoscaling and limits in mplot3d.

• #1551: PEP8 fixes on the spines module

• #1537: Fix savefig.extension == “auto”

• #1297: pyplot.plotfile. gridon option added with default from rcParam.

282 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1562/
http://github.com/matplotlib/matplotlib/issues/1506/
http://github.com/matplotlib/matplotlib/issues/1565/
http://github.com/matplotlib/matplotlib/issues/776/
http://github.com/matplotlib/matplotlib/issues/1462/
http://github.com/matplotlib/matplotlib/issues/1407/
http://github.com/matplotlib/matplotlib/issues/1574/
http://github.com/matplotlib/matplotlib/issues/1536/
http://github.com/matplotlib/matplotlib/issues/1570/
http://github.com/matplotlib/matplotlib/issues/1465/
http://github.com/matplotlib/matplotlib/issues/1569/
http://github.com/matplotlib/matplotlib/issues/1250/
http://github.com/matplotlib/matplotlib/issues/1566/
http://github.com/matplotlib/matplotlib/issues/1531/
http://github.com/matplotlib/matplotlib/issues/1398/
http://github.com/matplotlib/matplotlib/issues/1564/
http://github.com/matplotlib/matplotlib/issues/1559/
http://github.com/matplotlib/matplotlib/issues/1552/
http://github.com/matplotlib/matplotlib/issues/1560/
http://github.com/matplotlib/matplotlib/issues/1555/
http://github.com/matplotlib/matplotlib/issues/997/
http://github.com/matplotlib/matplotlib/issues/1477/
http://github.com/matplotlib/matplotlib/issues/1556/
http://github.com/matplotlib/matplotlib/issues/1554/
http://github.com/matplotlib/matplotlib/issues/1522/
http://github.com/matplotlib/matplotlib/issues/1548/
http://github.com/matplotlib/matplotlib/issues/1550/
http://github.com/matplotlib/matplotlib/issues/783/
http://github.com/matplotlib/matplotlib/issues/1289/
http://github.com/matplotlib/matplotlib/issues/1551/
http://github.com/matplotlib/matplotlib/issues/1537/
http://github.com/matplotlib/matplotlib/issues/1297/

Matplotlib, Release 1.3.1

• #1526: Remove unnecessary clip cairo

• #1538: Remove unnecessary clip from Cairo backend; squashed commit

• #1544: str.format() doesn’t work on python 2.6

• #1549: Add citation page to website

• #1514: Fix streamplot when color argument has NaNs

• #1487: MaxNLocator for log-scale

• #1081: Propagate mpl.text.Text instances to the backends and fix documentation

• #1533: ENH: raise a more informative error

• #955: Strange resize behaviour with ImageGrid

• #1003: Fix for issue #955

• #1546: Quiver crashes if given matrices

• #1542: Wrong __version__numpy__

• #1540: Changed mailinglist archive link.

• #1507: python setup.py build (in parallel)

• #1492: MacOSX backend blocks in IPython QtConsole

• #1493: check ret == False in Timer._on_timer

• #1523: DOC: github ribbon does not cover up index link

• #1515: set_cmap should not require an active image

• #1500: comment on http://matplotlib.org/users/pgf.html#pgf-tutorial - minor issue with xits font

• #1489: Documentation update for specgram

• #1527: fix 2 html color names

• #1524: Make README.txt consistent reStructuredText

• #1525: pgf: documentation enhancements

• #1510: pgf: documentation enhancements

• #1512: Reorganize the developer docs

• #1518: PEP8 compliance on the delaunay module

• #1357: PEP8 fixes on text.py

• #1469: PEP8-compliance on axes.py (patch 2 / 4)

• #1470: Add test and test-coverage to Makefile

• #1513: Problems with image sizes

• #1509: pgf: draw_image() doesn’t store path to png files in the pgf source

• #1516: set_xticklabels changes font when text.usetex is enabled

283

http://github.com/matplotlib/matplotlib/issues/1526/
http://github.com/matplotlib/matplotlib/issues/1538/
http://github.com/matplotlib/matplotlib/issues/1544/
http://github.com/matplotlib/matplotlib/issues/1549/
http://github.com/matplotlib/matplotlib/issues/1514/
http://github.com/matplotlib/matplotlib/issues/1487/
http://github.com/matplotlib/matplotlib/issues/1081/
http://github.com/matplotlib/matplotlib/issues/1533/
http://github.com/matplotlib/matplotlib/issues/955/
http://github.com/matplotlib/matplotlib/issues/1003/
http://github.com/matplotlib/matplotlib/issues/1546/
http://github.com/matplotlib/matplotlib/issues/1542/
http://github.com/matplotlib/matplotlib/issues/1540/
http://github.com/matplotlib/matplotlib/issues/1507/
http://github.com/matplotlib/matplotlib/issues/1492/
http://github.com/matplotlib/matplotlib/issues/1493/
http://github.com/matplotlib/matplotlib/issues/1523/
http://github.com/matplotlib/matplotlib/issues/1515/
http://github.com/matplotlib/matplotlib/issues/1500/
http://matplotlib.org/users/pgf.html#pgf-tutorial
http://github.com/matplotlib/matplotlib/issues/1489/
http://github.com/matplotlib/matplotlib/issues/1527/
http://github.com/matplotlib/matplotlib/issues/1524/
http://github.com/matplotlib/matplotlib/issues/1525/
http://github.com/matplotlib/matplotlib/issues/1510/
http://github.com/matplotlib/matplotlib/issues/1512/
http://github.com/matplotlib/matplotlib/issues/1518/
http://github.com/matplotlib/matplotlib/issues/1357/
http://github.com/matplotlib/matplotlib/issues/1469/
http://github.com/matplotlib/matplotlib/issues/1470/
http://github.com/matplotlib/matplotlib/issues/1513/
http://github.com/matplotlib/matplotlib/issues/1509/
http://github.com/matplotlib/matplotlib/issues/1516/

Matplotlib, Release 1.3.1

• #1442: Add savefig_kwargs to Animation.save() method

• #1511: Reorganize developer docs

• #1503: DOC: ‘inout’ option for tick_params direction

• #1494: Added sphinx documentation for Triangulation

• #1480: Remove dead code in patches

• #1496: Correct scatter docstring

• #1495: scatter docstring, minor

• #1472: FIX extra comma in Sankey.add

• #1471: Improved checking logic of _check_xyz in contour.py

• #998: fix for issue #997

• #1479: Reintroduce examples.directory rc parameter

• #1491: Reintroduce examples.directory rc parameter

• #1405: Add angle kwarg to patches.Rectangle

• #1278: Make arrow docstring mention data transform

• #1475: make plt.subplot() act as plt.subplot(111)

• #1355: Add sym-log normalization.

• #1474: use an imagemap for the “fork me on github” ribbon

• #632: ENH: More included norms, especially a symlog like norm

• #1466: Too many open files

• #1485: Fix leak of gc’s in gtkagg backend

• #1484: V1.2.x Fix leak of gc’s in gtkagg backend.

• #1374: PEP8 fixes on widgets.py

• #1379: PEP8 fixes on quiver.py

• #1399: PEP8 fixes on patches

• #1478: Reintroduce examples.directory rcParams to customize cbook.get_sample_data() lookup lo-
cation

• #1468: use an imagemap for the “fork me on github” ribbon

• #1395: PEP8 fixes on contour.py

• #1473: offsets.shape(-1,2)

• #1467: matplotlib 1.2.0 Binary installer for 32-bit Windows for python 2.7 is missing

• #1419: bbox_extra_artists doesn’t work for a table

• #1432: lengend overlaps graph

284 Chapter 20. Github stats

http://github.com/matplotlib/matplotlib/issues/1442/
http://github.com/matplotlib/matplotlib/issues/1511/
http://github.com/matplotlib/matplotlib/issues/1503/
http://github.com/matplotlib/matplotlib/issues/1494/
http://github.com/matplotlib/matplotlib/issues/1480/
http://github.com/matplotlib/matplotlib/issues/1496/
http://github.com/matplotlib/matplotlib/issues/1495/
http://github.com/matplotlib/matplotlib/issues/1472/
http://github.com/matplotlib/matplotlib/issues/1471/
http://github.com/matplotlib/matplotlib/issues/998/
http://github.com/matplotlib/matplotlib/issues/1479/
http://github.com/matplotlib/matplotlib/issues/1491/
http://github.com/matplotlib/matplotlib/issues/1405/
http://github.com/matplotlib/matplotlib/issues/1278/
http://github.com/matplotlib/matplotlib/issues/1475/
http://github.com/matplotlib/matplotlib/issues/1355/
http://github.com/matplotlib/matplotlib/issues/1474/
http://github.com/matplotlib/matplotlib/issues/632/
http://github.com/matplotlib/matplotlib/issues/1466/
http://github.com/matplotlib/matplotlib/issues/1485/
http://github.com/matplotlib/matplotlib/issues/1484/
http://github.com/matplotlib/matplotlib/issues/1374/
http://github.com/matplotlib/matplotlib/issues/1379/
http://github.com/matplotlib/matplotlib/issues/1399/
http://github.com/matplotlib/matplotlib/issues/1478/
http://github.com/matplotlib/matplotlib/issues/1468/
http://github.com/matplotlib/matplotlib/issues/1395/
http://github.com/matplotlib/matplotlib/issues/1473/
http://github.com/matplotlib/matplotlib/issues/1467/
http://github.com/matplotlib/matplotlib/issues/1419/
http://github.com/matplotlib/matplotlib/issues/1432/

Matplotlib, Release 1.3.1

• #1464: PEP8-compliance on axes.py (patch 1 / 4)

• #1400: PEP8 fixes on offsetbox.py

• #1463: Document the Gtk3 backends

• #1417: Pep8 on the axes module

285

http://github.com/matplotlib/matplotlib/issues/1464/
http://github.com/matplotlib/matplotlib/issues/1400/
http://github.com/matplotlib/matplotlib/issues/1463/
http://github.com/matplotlib/matplotlib/issues/1417/

Matplotlib, Release 1.3.1

286 Chapter 20. Github stats

CHAPTER

TWENTYONE

LICENSE

Matplotlib only uses BSD compatible code, and its license is based on the PSF license. See the Open
Source Initiative licenses page for details on individual licenses. Non-BSD compatible licenses (eg LGPL)
are acceptable in matplotlib toolkits. For a discussion of the motivations behind the licencing choice, see
Licenses.

21.1 Copyright Policy

John Hunter began matplotlib around 2003. Since shortly before his passing in 2012, Michael Droettboom
has been the lead maintainer of matplotlib, but, as has always been the case, matplotlib is the work of many.

Prior to July of 2013, and the 1.3.0 release, the copyright of the source code was held by John Hunter. As
of July 2013, and the 1.3.0 release, matplotlib has moved to a shared copyright model.

matplotlib uses a shared copyright model. Each contributor maintains copyright over their contributions to
matplotlib. But, it is important to note that these contributions are typically only changes to the repositories.
Thus, the matplotlib source code, in its entirety, is not the copyright of any single person or institution.
Instead, it is the collective copyright of the entire matplotlib Development Team. If individual contributors
want to maintain a record of what changes/contributions they have specific copyright on, they should indicate
their copyright in the commit message of the change, when they commit the change to one of the matplotlib
repositories.

The Matplotlib Development Team is the set of all contributors to the matplotlib project. A full list can be
obtained from the git version control logs.

21.2 License agreement for matplotlib 1.3.1

1. This LICENSE AGREEMENT is between the Matplotlib Development Team (“MDT”), and the Indi-
vidual or Organization (“Licensee”) accessing and otherwise using matplotlib software in source or binary
form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, MDT hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib 1.3.1 alone or in any derivative version, provided,
however, that MDT’s License Agreement and MDT’s notice of copyright, i.e., “Copyright (c) 2012-2013

287

http://www.python.org/psf/license
http://www.opensource.org/licenses

Matplotlib, Release 1.3.1

Matplotlib Development Team; All Rights Reserved” are retained in matplotlib 1.3.1 alone or in any deriva-
tive version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates matplotlib 1.3.1 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to matplotlib 1.3.1.

4. MDT is making matplotlib 1.3.1 available to Licensee on an “AS IS” basis. MDT MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, MDT MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
MATPLOTLIB 1.3.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. MDT SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB 1.3.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING MATPLOTLIB 1.3.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between MDT and Licensee. This License Agreement does not grant permission to use MDT
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using matplotlib 1.3.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

21.3 License agreement for matplotlib versions prior to 1.3.0

1. This LICENSE AGREEMENT is between John D. Hunter (“JDH”), and the Individual or Organization
(“Licensee”) accessing and otherwise using matplotlib software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, JDH hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib 1.3.1 alone or in any derivative version, provided,
however, that JDH’s License Agreement and JDH’s notice of copyright, i.e., “Copyright (c) 2002-2009 John
D. Hunter; All Rights Reserved” are retained in matplotlib 1.3.1 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates matplotlib 1.3.1 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to matplotlib 1.3.1.

4. JDH is making matplotlib 1.3.1 available to Licensee on an “AS IS” basis. JDH MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, JDH MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
MATPLOTLIB 1.3.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

288 Chapter 21. License

Matplotlib, Release 1.3.1

5. JDH SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB 1.3.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING MATPLOTLIB 1.3.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between JDH and Licensee. This License Agreement does not grant permission to use JDH
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using matplotlib 1.3.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

21.3. License agreement for matplotlib versions prior to 1.3.0 289

Matplotlib, Release 1.3.1

290 Chapter 21. License

CHAPTER

TWENTYTWO

CREDITS

matplotlib was written by John Hunter and is now developed and maintained by a number of active devel-
opers. The current lead developer of matplotlib is Michael Droettboom.

Special thanks to those who have made valuable contributions (roughly in order of first contribution by date).
Any list like this is bound to be incomplete and can’t capture the thousands and thousands of contributions
over the years from these and others:

Jeremy O’Donoghue wrote the wx backend

Andrew Straw Provided much of the log scaling architecture, the fill command, PIL support for imshow,
and provided many examples. He also wrote the support for dropped axis spines and the buildbot unit
testing infrastructure which triggers the JPL/James Evans platform specific builds and regression test
image comparisons from svn matplotlib across platforms on svn commits.

Charles Twardy provided the impetus code for the legend class and has made countless bug reports and
suggestions for improvement.

Gary Ruben made many enhancements to errorbar to support x and y errorbar plots, and added a number
of new marker types to plot.

John Gill wrote the table class and examples, helped with support for auto-legend placement, and added
support for legending scatter plots.

David Moore wrote the paint backend (no longer used)

Todd Miller supported by STSCI contributed the TkAgg backend and the numerix module, which allows
matplotlib to work with either numeric or numarray. He also ported image support to the postscript
backend, with much pain and suffering.

Paul Barrett supported by STSCI overhauled font management to provide an improved, free-standing,
platform independent font manager with a WC3 compliant font finder and cache mechanism and
ported truetype and mathtext to PS.

Perry Greenfield supported by STSCI overhauled and modernized the goals and priorities page, imple-
mented an improved colormap framework, and has provided many suggestions and a lot of insight to
the overall design and organization of matplotlib.

Jared Wahlstrand wrote the initial SVG backend.

Steve Chaplin served as the GTK maintainer and wrote the Cairo and GTKCairo backends.

Jim Benson provided the patch to handle vertical mathttext.

291

http://www.ohloh.net/projects/matplotlib/contributors
http://mpl-buildbot.code.astraw.com/
http://www.stsci.edu
http://www.stsci.edu
http://www.stsci.edu

Matplotlib, Release 1.3.1

Gregory Lielens provided the FltkAgg backend and several patches for the frontend, including contribu-
tions to toolbar2, and support for log ticking with alternate bases and major and minor log ticking.

Darren Dale

did the work to do mathtext exponential labeling for log plots, added improved support for scalar
formatting, and did the lions share of the psfrag LaTeX support for postscript. He has made
substantial contributions to extending and maintaining the PS and Qt backends, and wrote the
site.cfg and matplotlib.conf build and runtime configuration support. He setup the infrastructure
for the sphinx documentation that powers the mpl docs.

Paul Mcguire provided the pyparsing module on which mathtext relies, and made a number of optimiza-
tions to the matplotlib mathtext grammar.

Fernando Perez has provided numerous bug reports and patches for cleaning up backend imports and
expanding pylab functionality, and provided matplotlib support in the pylab mode for ipython. He
also provided the matshow() command, and wrote TConfig, which is the basis for the experimental
traited mpl configuration.

Andrew Dalke of Dalke Scientific Software contributed the strftime formatting code to handle years earlier
than 1900.

Jochen Voss served as PS backend maintainer and has contributed several bugfixes.

Nadia Dencheva

supported by STSCI provided the contouring and contour labeling code.

Baptiste Carvello provided the key ideas in a patch for proper shared axes support that underlies ganged
plots and multiscale plots.

Jeffrey Whitaker at NOAA wrote the Basemap (Not distributed with matplotlib) toolkit

Sigve Tjoraand, Ted Drain, James Evans and colleagues at the JPL collaborated on the QtAgg backend
and sponsored development of a number of features including custom unit types, datetime support,
scale free ellipses, broken bar plots and more. The JPL team wrote the unit testing image comparison
infrastructure for regression test image comparisons.

James Amundson did the initial work porting the qt backend to qt4

Eric Firing has contributed significantly to contouring, masked array, pcolor, image and quiver support,
in addition to ongoing support and enhancements in performance, design and code quality in most
aspects of matplotlib.

Daishi Harada added support for “Dashed Text”. See dashpointlabel.py and TextWithDash.

Nicolas Young added support for byte images to imshow, which are more efficient in CPU and memory,
and added support for irregularly sampled images.

The brainvisa Orsay team and Fernando Perez added Qt support to ipython in pylab mode.

Charlie Moad contributed work to matplotlib’s Cocoa support and has done a lot of work on the OSX and
win32 binary releases.

Jouni K. Seppänen wrote the PDF backend and contributed numerous fixes to the code, to tex support and
to the get_sample_data handler

292 Chapter 22. Credits

http://www.ctan.org/tex-archive/help/Catalogue/entries/psfrag.html?action=/tex-archive/macros/latex/contrib/supported/psfrag
http://ipython.org
http://www.dalkescientific.com/
http://www.stsci.edu
http://www.boulder.noaa.gov
http://www.jpl.nasa.gov
https://github.com/matplotlib/matplotlib/tree/master/test
http://brainvisa.info
http://ipython.org

Matplotlib, Release 1.3.1

Paul Kienzle improved the picking infrastructure for interactive plots, and with Alex Mont contributed fast
rendering code for quadrilateral meshes.

Michael Droettboom supported by STSCI wrote the enhanced mathtext support, implementing Knuth’s
box layout algorithms, saving to file-like objects across backends, and is responsible for numerous
bug-fixes, much better font and unicode support, and feature and performance enhancements across
the matplotlib code base. He also rewrote the transformation infrastructure to support custom projec-
tions and scales.

John Porter, Jonathon Taylor and Reinier Heeres John Porter wrote the mplot3d module for basic 3D
plotting in matplotlib, and Jonathon Taylor and Reinier Heeres ported it to the refactored transform
trunk.

Jae-Joon Lee Implemented fancy arrows and boxes, rewrote the legend support to handle multiple columns
and fancy text boxes, wrote the axes grid toolkit, and has made numerous contributions to the code
and documentation

Paul Ivanov Has worked on getting matplotlib integrated better with other tools, such as Sage and IPython,
and getting the test infrastructure faster, lighter and meaner. Listen to his podcast.

Tony Yu Has been involved in matplotlib since the early days, and recently has contributed stream plotting
among many other improvements. He is the author of mpltools.

Michiel de Hoon Wrote and maintains the macosx backend.

Ian Thomas Contributed, among other things, the triangulation (tricolor and tripcontour) methods.

Benjamin Root Has significantly improved the capabilities of the 3D plotting. He has improved mat-
plotlib’s documentation and code quality throughout, and does invaluable triaging of pull requests
and bugs.

Phil Elson Fixed some deep-seated bugs in the transforms framework, and has been laser-focused on im-
proving polish throughout matplotlib, tackling things that have been considered to large and daunting
for a long time.

Damon McDougall Added triangulated 3D surfaces and stack plots to matplotlib.

293

http://www.stsci.edu

Matplotlib, Release 1.3.1

294 Chapter 22. Credits

Part II

The Matplotlib FAQ

295

CHAPTER

TWENTYTHREE

INSTALLATION

Contents

• Installation
– Report a compilation problem
– matplotlib compiled fine, but nothing shows up when I use it
– How to completely remove matplotlib

* Easy Install

* Windows installer

* Source install
– How to Install

* Source install from git
– Linux Notes
– OS-X Notes

* Which python for OS X?

* Installing OSX binaries

* Building and installing from source on OSX with EPD
– Windows Notes

* Binary installers for Windows

23.1 Report a compilation problem

See Getting help.

23.2 matplotlib compiled fine, but nothing shows up when I use it

The first thing to try is a clean install and see if that helps. If not, the best way to test your install is
by running a script, rather than working interactively from a python shell or an integrated development
environment such as IDLE which add additional complexities. Open up a UNIX shell or a DOS command
prompt and cd into a directory containing a minimal example in a file. Something like simple_plot.py
for example:

297

Matplotlib, Release 1.3.1

from pylab import *
plot([1,2,3])
show()

and run it with:

python simple_plot.py --verbose-helpful

This will give you additional information about which backends matplotlib is loading, version information,
and more. At this point you might want to make sure you understand matplotlib’s configuration process,
governed by the matplotlibrc configuration file which contains instructions within and the concept of the
matplotlib backend.

If you are still having trouble, see Getting help.

23.3 How to completely remove matplotlib

Occasionally, problems with matplotlib can be solved with a clean installation of the package.

The process for removing an installation of matplotlib depends on how matplotlib was originally installed
on your system. Follow the steps below that goes with your original installation method to cleanly remove
matplotlib from your system.

23.3.1 Easy Install

1. Delete the caches from your .matplotlib configuration directory.

2. Run:

easy_install -m matplotlib

3. Delete any .egg files or directories from your installation directory.

23.3.2 Windows installer

1. Delete the caches from your .matplotlib configuration directory.

2. Use Start→ Control Panel to start the Add and Remove Software utility.

23.3.3 Source install

Unfortunately:

python setup.py clean

does not properly clean the build directory, and does nothing to the install directory. To cleanly rebuild:

1. Delete the caches from your .matplotlib configuration directory.

298 Chapter 23. Installation

Matplotlib, Release 1.3.1

2. Delete the build directory in the source tree.

3. Delete any matplotlib directories or eggs from your installation directory.

23.4 How to Install

23.4.1 Source install from git

Clone the main source using one of:

git clone git@github.com:matplotlib/matplotlib.git

or:

git clone git://github.com/matplotlib/matplotlib.git

and build and install as usual with:

> cd matplotlib
> python setup.py install

Note: If you are on debian/ubuntu, you can get all the dependencies required to build matplotlib with:

sudo apt-get build-dep python-matplotlib

If you are on Fedora/RedHat, you can get all the dependencies required to build matplotlib by first installing
yum-builddep and then running:

su -c "yum-builddep python-matplotlib"

This does not build matplotlib, but it does get all of the build dependencies, which will make building from
source easier.

If you want to be able to follow the development branch as it changes just replace the last step with (make
sure you have setuptools installed):

> python setup.py develop

This creates links in the right places and installs the command line script to the appropriate places.

Note: Mac OSX users please see the Building on OSX guide.

Then, if you want to update your matplotlib at any time, just do:

> git pull

When you run git pull, if the output shows that only Python files have been updated, you are all set. If C
files have changed, you need to run the python setupegg.py develop command again to compile them.

There is more information on using git in the developer docs.

23.4. How to Install 299

Matplotlib, Release 1.3.1

23.5 Linux Notes

Because most Linux distributions use some sort of package manager, we do not provide a pre-built binary
for the Linux platform. Instead, we recommend that you use the “Add Software” method for your system to
install matplotlib. This will guarantee that everything that is needed for matplotlib will be installed as well.

If, for some reason, you can not use the package manager, Linux usually comes with at least a basic build
system. Follow the instructions found above for how to build and install matplotlib.

23.6 OS-X Notes

23.6.1 Which python for OS X?

Apple ships with its own python, and many users have had trouble with it. There are several alternative
versions of python that can be used. If it is feasible, we recommend that you use the enthought python
distribution EPD for OS X (which comes with matplotlib and much more). Also available is MacPython or
the official OS X version from python.org.

Note: Before installing any of the binary packages, be sure that all of the packages were compiled for
the same version of python. Often, the download site for NumPy and matplotlib will display a supposed
‘current’ version of the package, but you may need to choose a different package from the full list that was
built for your combination of python and OSX.

23.6.2 Installing OSX binaries

If you want to install matplotlib from one of the binary installers we build, you have two choices: a
mpkg installer, which is a typical Installer.app, or a binary OSX egg, which you can install via setuptools’
easy_install.

The mkpg installer will have a “zip” extension, and will have a name like
matplotlib-1.2.0-py2.7-macosx10.5_mpkg.zip. The name of the installer depends on which
versions of python, matplotlib, and OSX it was built for. You need to unzip this file using either the
“unzip” command, or simply double clicking on the it. Then when you double-click on the resulting mpkd,
which will have a name like matplotlib-1.2.0-py2.7-macosx10.5.mpkg, it will run the Installer.app,
prompt you for a password if you need system-wide installation privileges, and install to a directory like
/Library/Python/2.7/site-packages/ (exact path depends on your python version). This directory
may not be in your python ‘path’ variable, so you should test your installation with:

> python -c ’import matplotlib; print matplotlib.__version__, matplotlib.__file__’

If you get an error like:

Traceback (most recent call last):
File "<string>", line 1, in <module>

ImportError: No module named matplotlib

then you will need to set your PYTHONPATH, eg:

300 Chapter 23. Installation

http://www.enthought.com/products/epd.php
http://wiki.python.org/moin/MacPython/Leopard
http://www.python.org/download/

Matplotlib, Release 1.3.1

export PYTHONPATH=/Library/Python/2.7/site-packages:$PYTHONPATH

See also ref:environment-variables.

23.6.3 Building and installing from source on OSX with EPD

If you have the EPD installed (Which python for OS X?), it might turn out to be rather tricky to install a
new version of matplotlib from source on the Mac OS 10.5 . Here’s a procedure that seems to work, at least
sometimes:

0. Remove the ~/.matplotlib folder (“rm -rf ~/.matplotlib”).

1. Edit the file (make a backup before you start, just in case):
/Library/Frameworks/Python.framework/Versions/Current/lib/python2.5/config/Makefile,
removing all occurrences of the string -arch ppc, changing the line MACOSX_DEPLOYMENT_TARGET=10.3
to MACOSX_DEPLOYMENT_TARGET=10.5 and changing the occurrences of MacOSX10.4u.sdk into
MacOSX10.5.sdk

2. In /Library/Frameworks/Python.framework/Versions/Current/lib/pythonX.Y/site-packages/easy-install.pth,
(where X.Y is the version of Python you are building against) Comment out the line containing the
name of the directory in which the previous version of MPL was installed (Looks something like
./matplotlib-0.98.5.2n2-py2.5-macosx-10.3-fat.egg).

3. Save the following as a shell script, for example ./install-matplotlib-epd-osx.sh:

NAME=matplotlib
VERSION=v1.1.x
PREFIX=$HOME
#branch="release"
branch="master"
git clone git://github.com/matplotlib/matplotlib.git
cd matplotlib
if [$branch = "release"]

then
echo getting the maintenance branch
git checkout -b $VERSION origin/$VERSION

fi
export CFLAGS="-Os -arch i386"
export LDFLAGS="-Os -arch i386"
export PKG_CONFIG_PATH="/usr/x11/lib/pkgconfig"
export ARCHFLAGS="-arch i386"
python setup.py build
use --prefix if you don’t want it installed in the default location:
python setup.py install #--prefix=$PREFIX
cd ..

Run this script (for example sh ./install-matplotlib-epd-osx.sh) in the directory in which you
want the source code to be placed, or simply type the commands in the terminal command line. This script
sets some local variable (CFLAGS, LDFLAGS, PKG_CONFIG_PATH, ARCHFLAGS), removes previous
installations, checks out the source from github, builds and installs it. The backend should to be set to
MacOSX.

23.6. OS-X Notes 301

Matplotlib, Release 1.3.1

23.7 Windows Notes

23.7.1 Binary installers for Windows

If you have already installed python, you can use one of the matplotlib binary installers for windows – you
can get these from the download site. Choose the files that match your version of python (eg py2.7 if you
installed Python 2.7) which have the exe extension. If you haven’t already installed python, you can get the
official version from the python web site.

There are also two packaged distributions of python that come preloaded with matplotlib and many other
tools like ipython, numpy, scipy, vtk and user interface toolkits. These packages are quite large because they
come with so much, but you get everything with a single click installer.

• The Enthought Python Distribution EPD

• python (x, y)

302 Chapter 23. Installation

http://matplotlib.org/downloads.html
http://python.org/download/
http://www.enthought.com/products/epd.php
http://www.pythonxy.com

CHAPTER

TWENTYFOUR

USAGE

Contents

• Usage
– General Concepts
– Matplotlib, pylab, and pyplot: how are they related?
– Coding Styles
– What is a backend?
– What is interactive mode?

* Interactive example

* Non-interactive example

* Summary

24.1 General Concepts

matplotlib has an extensive codebase that can be daunting to many new users. However, most of mat-
plotlib can be understood with a fairly simple conceptual framework and knowledge of a few important
points.

Plotting requires action on a range of levels, from the most general (e.g., ‘contour this 2-D array’) to the
most specific (e.g., ‘color this screen pixel red’). The purpose of a plotting package is to assist you in
visualizing your data as easily as possible, with all the necessary control – that is, by using relatively high-
level commands most of the time, and still have the ability to use the low-level commands when needed.

Therefore, everything in matplotlib is organized in a hierarchy. At the top of the hierarchy is the matplotlib
“state-machine environment” which is provided by the matplotlib.pyplot module. At this level, simple
functions are used to add plot elements (lines, images, text, etc.) to the current axes in the current figure.

Note: Pyplot’s state-machine environment behaves similarly to MATLAB and should be most familiar to
users with MATLAB experience.

The next level down in the hierarchy is the first level of the object-oriented interface, in which pyplot is used
only for a few functions such as figure creation, and the user explicitly creates and keeps track of the figure
and axes objects. At this level, the user uses pyplot to create figures, and through those figures, one or more
axes objects can be created. These axes objects are then used for most plotting actions.

303

Matplotlib, Release 1.3.1

For even more control – which is essential for things like embedding matplotlib plots in GUI applications –
the pyplot level may be dropped completely, leaving a purely object-oriented approach.

24.2 Matplotlib, pylab, and pyplot: how are they related?

Matplotlib is the whole package; pylab is a module in matplotlib that gets installed alongside matplotlib;
and matplotlib.pyplot is a module in matplotlib.

Pyplot provides the state-machine interface to the underlying plotting library in matplotlib. This means that
figures and axes are implicitly and automatically created to achieve the desired plot. For example, calling
plot from pyplot will automatically create the necessary figure and axes to achieve the desired plot. Setting
a title will then automatically set that title to the current axes object:

import matplotlib.pyplot as plt

plt.plot(range(10), range(10))
plt.title("Simple Plot")
plt.show()

Pylab combines the pyplot functionality (for plotting) with the numpy functionality (for mathematics and for
working with arrays) in a single namespace, making that namespace (or environment) even more MATLAB-
like. For example, one can call the sin and cos functions just like you could in MATLAB, as well as having
all the features of pyplot.

The pyplot interface is generally preferred for non-interactive plotting (i.e., scripting). The pylab interface
is convenient for interactive calculations and plotting, as it minimizes typing. Note that this is what you get
if you use the ipython shell with the -pylab option, which imports everything from pylab and makes plotting
fully interactive.

24.3 Coding Styles

When viewing this documentation and examples, you will find different coding styles and usage patterns.
These styles are perfectly valid and have their pros and cons. Just about all of the examples can be converted
into another style and achieve the same results. The only caveat is to avoid mixing the coding styles for your
own code.

Note: Developers for matplotlib have to follow a specific style and guidelines. See The Matplotlib Devel-
opers’ Guide.

Of the different styles, there are two that are officially supported. Therefore, these are the preferred ways to
use matplotlib.

For the preferred pyplot style, the imports at the top of your scripts will typically be:

import matplotlib.pyplot as plt
import numpy as np

304 Chapter 24. Usage

Matplotlib, Release 1.3.1

Then one calls, for example, np.arange, np.zeros, np.pi, plt.figure, plt.plot, plt.show, etc. So, a simple
example in this style would be:

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
plt.plot(x, y)
plt.show()

Note that this example used pyplot’s state-machine to automatically and implicitly create a figure and an
axes. For full control of your plots and more advanced usage, use the pyplot interface for creating figures,
and then use the object methods for the rest:

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
plt.show()

Next, the same example using a pure MATLAB-style:

from pylab import *
x = arange(0, 10, 0.2)
y = sin(x)
plot(x, y)
show()

So, why all the extra typing as one moves away from the pure MATLAB-style? For very simple things like
this example, the only advantage is academic: the wordier styles are more explicit, more clear as to where
things come from and what is going on. For more complicated applications, this explicitness and clarity
becomes increasingly valuable, and the richer and more complete object-oriented interface will likely make
the program easier to write and maintain.

24.4 What is a backend?

A lot of documentation on the website and in the mailing lists refers to the “backend” and many new
users are confused by this term. matplotlib targets many different use cases and output formats. Some
people use matplotlib interactively from the python shell and have plotting windows pop up when they type
commands. Some people embed matplotlib into graphical user interfaces like wxpython or pygtk to build
rich applications. Others use matplotlib in batch scripts to generate postscript images from some numerical
simulations, and still others in web application servers to dynamically serve up graphs.

To support all of these use cases, matplotlib can target different outputs, and each of these capabilities is
called a backend; the “frontend” is the user facing code, ie the plotting code, whereas the “backend” does
all the hard work behind-the-scenes to make the figure. There are two types of backends: user interface
backends (for use in pygtk, wxpython, tkinter, qt4, or macosx; also referred to as “interactive backends”)

24.4. What is a backend? 305

Matplotlib, Release 1.3.1

and hardcopy backends to make image files (PNG, SVG, PDF, PS; also referred to as “non-interactive
backends”).

There are a two primary ways to configure your backend. One is to set the backend parameter in your
matplotlibrc file (see Customizing matplotlib):

backend : WXAgg # use wxpython with antigrain (agg) rendering

The other is to use the matplotlib use() directive:

import matplotlib
matplotlib.use(’PS’) # generate postscript output by default

If you use the use directive, this must be done before importing matplotlib.pyplot or
matplotlib.pylab.

Note: Backend name specifications are not case-sensitive; e.g., ‘GTKAgg’ and ‘gtkagg’ are equivalent.

With a typical installation of matplotlib, such as from a binary installer or a linux distribution package, a
good default backend will already be set, allowing both interactive work and plotting from scripts, with
output to the screen and/or to a file, so at least initially you will not need to use either of the two methods
given above.

If, however, you want to write graphical user interfaces, or a web application server (Matplotlib in a web
application server), or need a better understanding of what is going on, read on. To make things a little
more customizable for graphical user interfaces, matplotlib separates the concept of the renderer (the thing
that actually does the drawing) from the canvas (the place where the drawing goes). The canonical renderer
for user interfaces is Agg which uses the Anti-Grain Geometry C++ library to make a raster (pixel) image
of the figure. All of the user interfaces except macosx can be used with agg rendering, eg WXAgg, GTKAgg,
QT4Agg, TkAgg. In addition, some of the user interfaces support other rendering engines. For example, with
GTK, you can also select GDK rendering (backend GTK) or Cairo rendering (backend GTKCairo).

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like “draw a line from this point to this point” and hence are scale free,
and raster backends generate a pixel representation of the line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backed for each; these are non-
interactive backends, capable of writing to a file):

Renderer Filetypes Description
AGG png raster graphics – high quality images using the Anti-Grain Geometry engine
PS ps eps vector graphics – Postscript output
PDF pdf vector graphics – Portable Document Format
SVG svg vector graphics – Scalable Vector Graphics
Cairo png ps pdf svg ... vector graphics – Cairo graphics
GDK png jpg tiff ... raster graphics – the Gimp Drawing Kit

And here are the user interfaces and renderer combinations supported; these are interactive backends, capa-
ble of displaying to the screen and of using appropriate renderers from the table above to write to a file:

306 Chapter 24. Usage

http://www.antigrain.com/
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://www.antigrain.com/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Cairo_(graphics)
http://en.wikipedia.org/wiki/GDK

Matplotlib, Release 1.3.1

Backend Description
GTK-
Agg

Agg rendering to a GTK 2.x canvas (requires PyGTK)

GTK3Agg Agg rendering to a GTK 3.x canvas (requires PyGObject)
GTK GDK rendering to a GTK 2.x canvas (not recommended) (requires PyGTK)
GTK-
Cairo

Cairo rendering to a GTK 2.x canvas (requires PyGTK and pycairo)

GTK3CairoCairo rendering to a GTK 3.x canvas (requires PyGObject and pycairo)
WXAgg Agg rendering to to a wxWidgets canvas (requires wxPython)
WX Native wxWidgets drawing to a wxWidgets Canvas (not recommended) (requires wxPython)
TkAgg Agg rendering to a Tk canvas (requires TkInter)
Qt4Agg Agg rendering to a Qt4 canvas (requires PyQt4)
macosx Cocoa rendering in OSX windows (presently lacks blocking show() behavior when

matplotlib is in non-interactive mode)

24.5 What is interactive mode?

Use of an interactive backend (see What is a backend?) permits–but does not by itself require or ensure–
plotting to the screen. Whether and when plotting to the screen occurs, and whether a script or shell session
continues after a plot is drawn on the screen, depends on the functions and methods that are called, and
on a state variable that determines whether matplotlib is in “interactive mode”. The default Boolean value
is set by the matplotlibrc file, and may be customized like any other configuration parameter (see Cus-
tomizing matplotlib). It may also be set via matplotlib.interactive(), and its value may be queried
via matplotlib.is_interactive(). Turning interactive mode on and off in the middle of a stream of
plotting commands, whether in a script or in a shell, is rarely needed and potentially confusing, so in the
following we will assume all plotting is done with interactive mode either on or off.

Note: Major changes related to interactivity, and in particular the role and behavior of show(), were made
in the transition to matplotlib version 1.0, and bugs were fixed in 1.0.1. Here we describe the version 1.0.1
behavior for the primary interactive backends, with the partial exception of macosx.

Interactive mode may also be turned on via matplotlib.pyplot.ion(), and turned off via
matplotlib.pyplot.ioff().

Note: Interactive mode works with suitable backends in ipython and in the ordinary python shell, but it
does not work in the IDLE IDE.

24.5.1 Interactive example

From an ordinary python prompt, or after invoking ipython with no options, try this:

import matplotlib.pyplot as plt
plt.ion()
plt.plot([1.6, 2.7])

24.5. What is interactive mode? 307

http://www.pygtk.org
https://live.gnome.org/PyGObject
http://www.pygtk.org
http://www.pygtk.org
http://www.cairographics.org/pycairo/
https://live.gnome.org/PyGObject
http://www.cairographics.org/pycairo/
http://www.wxpython.org/
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
http://www.riverbankcomputing.co.uk/software/pyqt/intro

Matplotlib, Release 1.3.1

Assuming you are running version 1.0.1 or higher, and you have an interactive backend installed and selected
by default, you should see a plot, and your terminal prompt should also be active; you can type additional
commands such as:

plt.title("interactive test")
plt.xlabel("index")

and you will see the plot being updated after each line. This is because you are in interactive mode and you
are using pyplot functions. Now try an alternative method of modifying the plot. Get a reference to the Axes
instance, and call a method of that instance:

ax = plt.gca()
ax.plot([3.1, 2.2])

Nothing changed, because the Axes methods do not include an automatic call to draw_if_interactive();
that call is added by the pyplot functions. If you are using methods, then when you want to update the plot
on the screen, you need to call draw():

plt.draw()

Now you should see the new line added to the plot.

24.5.2 Non-interactive example

Start a fresh session as in the previous example, but now turn interactive mode off:

import matplotlib.pyplot as plt
plt.ioff()
plt.plot([1.6, 2.7])

Nothing happened–or at least nothing has shown up on the screen (unless you are using macosx backend,
which is anomalous). To make the plot appear, you need to do this:

plt.show()

Now you see the plot, but your terminal command line is unresponsive; the show() command blocks the
input of additional commands until you manually kill the plot window.

What good is this–being forced to use a blocking function? Suppose you need a script that plots the contents
of a file to the screen. You want to look at that plot, and then end the script. Without some blocking
command such as show(), the script would flash up the plot and then end immediately, leaving nothing on
the screen.

In addition, non-interactive mode delays all drawing until show() is called; this is more efficient than re-
drawing the plot each time a line in the script adds a new feature.

Prior to version 1.0, show() generally could not be called more than once in a single script (although some-
times one could get away with it); for version 1.0.1 and above, this restriction is lifted, so one can write a
script like this:

import numpy as np
import matplotlib.pyplot as plt
plt.ioff()

308 Chapter 24. Usage

Matplotlib, Release 1.3.1

for i in range(3):
plt.plot(np.random.rand(10))
plt.show()

which makes three plots, one at a time.

24.5.3 Summary

In interactive mode, pyplot functions automatically draw to the screen.

When plotting interactively, if using object method calls in addition to pyplot functions, then call draw()
whenever you want to refresh the plot.

Use non-interactive mode in scripts in which you want to generate one or more figures and display them
before ending or generating a new set of figures. In that case, use show() to display the figure(s) and to
block execution until you have manually destroyed them.

24.5. What is interactive mode? 309

Matplotlib, Release 1.3.1

310 Chapter 24. Usage

CHAPTER

TWENTYFIVE

HOW-TO

Contents

• How-To
– Plotting: howto

* Find all objects in a figure of a certain type

* Save transparent figures

* Save multiple plots to one pdf file

* Move the edge of an axes to make room for tick labels

* Automatically make room for tick labels

* Configure the tick linewidths

* Align my ylabels across multiple subplots

* Skip dates where there is no data

* Test whether a point is inside a polygon

* Control the depth of plot elements

* Make the aspect ratio for plots equal

* Make a movie

* Multiple y-axis scales

* Generate images without having a window appear

* Use show()
– Contributing: howto

* Submit a patch

* Contribute to matplotlib documentation
– Matplotlib in a web application server

* matplotlib with apache

* matplotlib with django

* matplotlib with zope

* Clickable images for HTML
– Search examples
– Cite Matplotlib

311

Matplotlib, Release 1.3.1

25.1 Plotting: howto

25.1.1 Find all objects in a figure of a certain type

Every matplotlib artist (see Artist tutorial) has a method called findobj() that can be used to recursively
search the artist for any artists it may contain that meet some criteria (eg match all Line2D instances or
match some arbitrary filter function). For example, the following snippet finds every object in the figure
which has a set_color property and makes the object blue:

def myfunc(x):
return hasattr(x, ’set_color’)

for o in fig.findobj(myfunc):
o.set_color(’blue’)

You can also filter on class instances:

import matplotlib.text as text
for o in fig.findobj(text.Text):

o.set_fontstyle(’italic’)

25.1.2 Save transparent figures

The savefig() command has a keyword argument transparent which, if ‘True’, will make the figure and
axes backgrounds transparent when saving, but will not affect the displayed image on the screen.

If you need finer grained control, eg you do not want full transparency or you want to affect the screen
displayed version as well, you can set the alpha properties directly. The figure has a Rectangle instance
called patch and the axes has a Rectangle instance called patch. You can set any property on them directly
(facecolor, edgecolor, linewidth, linestyle, alpha). e.g.:

fig = plt.figure()
fig.patch.set_alpha(0.5)
ax = fig.add_subplot(111)
ax.patch.set_alpha(0.5)

If you need all the figure elements to be transparent, there is currently no global alpha setting, but you can
set the alpha channel on individual elements, e.g.:

ax.plot(x, y, alpha=0.5)
ax.set_xlabel(’volts’, alpha=0.5)

25.1.3 Save multiple plots to one pdf file

Many image file formats can only have one image per file, but some formats support multi-page files.
Currently only the pdf backend has support for this. To make a multi-page pdf file, first initialize the file:

from matplotlib.backends.backend_pdf import PdfPages
pp = PdfPages(’multipage.pdf’)

312 Chapter 25. How-To

Matplotlib, Release 1.3.1

You can give the PdfPages object to savefig(), but you have to specify the format:

plt.savefig(pp, format=’pdf’)

An easier way is to call PdfPages.savefig:

pp.savefig()

Finally, the multipage pdf object has to be closed:

pp.close()

25.1.4 Move the edge of an axes to make room for tick labels

For subplots, you can control the default spacing on the left, right, bottom, and top as
well as the horizontal and vertical spacing between multiple rows and columns using the
matplotlib.figure.Figure.subplots_adjust() method (in pyplot it is subplots_adjust()). For
example, to move the bottom of the subplots up to make room for some rotated x tick labels:

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

You can control the defaults for these parameters in your matplotlibrc file; see Customizing matplotlib.
For example, to make the above setting permanent, you would set:

figure.subplot.bottom : 0.2 # the bottom of the subplots of the figure

The other parameters you can configure are, with their defaults

left = 0.125 the left side of the subplots of the figure

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

If you want additional control, you can create an Axes using the axes() command (or equivalently the
figure add_axes() method), which allows you to specify the location explicitly:

ax = fig.add_axes([left, bottom, width, height])

where all values are in fractional (0 to 1) coordinates. See pylab_examples-axes_demo for an example of
placing axes manually.

25.1.5 Automatically make room for tick labels

Note: This is now easier to handle than ever before. Calling tight_layout() can fix many common

25.1. Plotting: howto 313

Matplotlib, Release 1.3.1

layout issues. See the Tight Layout guide.

The information below is kept here in case it is useful for other purposes.

In most use cases, it is enough to simply change the subplots adjust parameters as described in Move the
edge of an axes to make room for tick labels. But in some cases, you don’t know ahead of time what your
tick labels will be, or how large they will be (data and labels outside your control may be being fed into your
graphing application), and you may need to automatically adjust your subplot parameters based on the size
of the tick labels. Any Text instance can report its extent in window coordinates (a negative x coordinate is
outside the window), but there is a rub.

The RendererBase instance, which is used to calculate the text size, is not known until the figure is
drawn (draw()). After the window is drawn and the text instance knows its renderer, you can call
get_window_extent(). One way to solve this chicken and egg problem is to wait until the figure is
draw by connecting (mpl_connect()) to the “on_draw” signal (DrawEvent) and get the window extent
there, and then do something with it, eg move the left of the canvas over; see Event handling and picking.

Here is an example that gets a bounding box in relative figure coordinates (0..1) of each of the labels and
uses it to move the left of the subplots over so that the tick labels fit in the figure

import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))
ax.set_yticks((2,5,7))
labels = ax.set_yticklabels((’really, really, really’, ’long’, ’labels’))

def on_draw(event):
bboxes = []
for label in labels:

bbox = label.get_window_extent()
the figure transform goes from relative coords->pixels and we
want the inverse of that
bboxi = bbox.inverse_transformed(fig.transFigure)
bboxes.append(bboxi)

this is the bbox that bounds all the bboxes, again in relative
figure coords
bbox = mtransforms.Bbox.union(bboxes)
if fig.subplotpars.left < bbox.width:

we need to move it over
fig.subplots_adjust(left=1.1*bbox.width) # pad a little
fig.canvas.draw()

return False

fig.canvas.mpl_connect(’draw_event’, on_draw)

plt.show()

314 Chapter 25. How-To

Matplotlib, Release 1.3.1

0 1 2 3 4 5 6 7 8 9

really, really, really

long

labels

25.1.6 Configure the tick linewidths

In matplotlib, the ticks are markers. All Line2D objects support a line (solid, dashed, etc) and a marker
(circle, square, tick). The tick linewidth is controlled by the “markeredgewidth” property:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))

for line in ax.get_xticklines() + ax.get_yticklines():
line.set_markersize(10)

plt.show()

The other properties that control the tick marker, and all markers, are markerfacecolor,
markeredgecolor, markeredgewidth, markersize. For more information on configuring ticks, see
Axis containers and Tick containers.

25.1.7 Align my ylabels across multiple subplots

If you have multiple subplots over one another, and the y data have different scales, you can often get ylabels
that do not align vertically across the multiple subplots, which can be unattractive. By default, matplotlib

25.1. Plotting: howto 315

Matplotlib, Release 1.3.1

positions the x location of the ylabel so that it does not overlap any of the y ticks. You can override this
default behavior by specifying the coordinates of the label. The example below shows the default behavior
in the left subplots, and the manual setting in the right subplots.

import numpy as np
import matplotlib.pyplot as plt

box = dict(facecolor=’yellow’, pad=5, alpha=0.2)

fig = plt.figure()
fig.subplots_adjust(left=0.2, wspace=0.6)

ax1 = fig.add_subplot(221)
ax1.plot(2000*np.random.rand(10))
ax1.set_title(’ylabels not aligned’)
ax1.set_ylabel(’misaligned 1’, bbox=box)
ax1.set_ylim(0, 2000)
ax3 = fig.add_subplot(223)
ax3.set_ylabel(’misaligned 2’,bbox=box)
ax3.plot(np.random.rand(10))

labelx = -0.3 # axes coords

ax2 = fig.add_subplot(222)
ax2.set_title(’ylabels aligned’)
ax2.plot(2000*np.random.rand(10))
ax2.set_ylabel(’aligned 1’, bbox=box)
ax2.yaxis.set_label_coords(labelx, 0.5)
ax2.set_ylim(0, 2000)

ax4 = fig.add_subplot(224)
ax4.plot(np.random.rand(10))
ax4.set_ylabel(’aligned 2’, bbox=box)
ax4.yaxis.set_label_coords(labelx, 0.5)

plt.show()

316 Chapter 25. How-To

Matplotlib, Release 1.3.1

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000
m

is
a
lig

n
e
d
 1

ylabels not aligned

0 1 2 3 4 5 6 7 8 9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

m
is

a
lig

n
e
d
 2

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

a
lig

n
e
d
 1

ylabels aligned

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

a
lig

n
e
d
 2

25.1.8 Skip dates where there is no data

When plotting time series, eg financial time series, one often wants to leave out days on which there is no
data, eg weekends. By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there
is not data. The solution is to pass in some proxy x-data, eg evenly sampled indices, and then use a custom
formatter to format these as dates. The example below shows how to use an ‘index formatter’ to achieve the
desired plot:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker

r = mlab.csv2rec(’../data/aapl.csv’)
r.sort()
r = r[-30:] # get the last 30 days

N = len(r)
ind = np.arange(N) # the evenly spaced plot indices

def format_date(x, pos=None):
thisind = np.clip(int(x+0.5), 0, N-1)
return r.date[thisind].strftime(’%Y-%m-%d’)

25.1. Plotting: howto 317

Matplotlib, Release 1.3.1

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ind, r.adj_close, ’o-’)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
fig.autofmt_xdate()

plt.show()

25.1.9 Test whether a point is inside a polygon

The nxutils provides two high-performance methods: for a single point use pnpoly() and for an array of
points use points_inside_poly(). For a discussion of the implementation see pnpoly.

In [25]: import numpy as np

In [26]: import matplotlib.nxutils as nx

In [27]: verts = np.array([[0,0], [0, 1], [1, 1], [1,0]], float)

In [28]: nx.pnpoly(0.5, 0.5, verts)
Out[28]: 1

In [29]: nx.pnpoly(0.5, 1.5, verts)
Out[29]: 0

In [30]: points = np.random.rand(10,2)*2

In [31]: points
Out[31]:
array([[1.03597426, 0.61029911],

[1.94061056, 0.65233947],
[1.08593748, 1.16010789],
[0.9255139 , 1.79098751],
[1.54564936, 1.15604046],
[1.71514397, 1.26147554],
[1.19133536, 0.56787764],
[0.40939549, 0.35190339],
[1.8944715 , 0.61785408],
[0.03128518, 0.48144145]])

In [32]: nx.points_inside_poly(points, verts)
Out[32]: array([False, False, False, False, False, False, False, True, False, True], dtype=bool)

25.1.10 Control the depth of plot elements

Within an axes, the order that the various lines, markers, text, collections, etc appear is determined by the
set_zorder() property. The default order is patches, lines, text, with collections of lines and collections
of patches appearing at the same level as regular lines and patches, respectively:

318 Chapter 25. How-To

http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

Matplotlib, Release 1.3.1

line, = ax.plot(x, y, zorder=10)

You can also use the Axes property set_axisbelow() to control whether the grid lines are placed above
or below your other plot elements.

25.1.11 Make the aspect ratio for plots equal

The Axes property set_aspect() controls the aspect ratio of the axes. You can set it to be ‘auto’, ‘equal’,
or some ratio which controls the ratio:

ax = fig.add_subplot(111, aspect=’equal’)

25.1.12 Make a movie

If you want to take an animated plot and turn it into a movie, the best approach is to save a series of image
files (eg PNG) and use an external tool to convert them to a movie. You can use mencoder, which is part of
the mplayer suite for this:

#fps (frames per second) controls the play speed
mencoder ’mf://*.png’ -mf type=png:fps=10 -ovc \\
lavc -lavcopts vcodec=wmv2 -oac copy -o animation.avi

The swiss army knife of image tools, ImageMagick’s convert works for this as well.

Here is a simple example script that saves some PNGs, makes them into a movie, and then cleans up:

import os, sys
import matplotlib.pyplot as plt

files = []
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)
for i in range(50): # 50 frames

ax.cla()
ax.imshow(rand(5,5), interpolation=’nearest’)
fname = ’_tmp%03d.png’%i
print ’Saving frame’, fname
fig.savefig(fname)
files.append(fname)

print ’Making movie animation.mpg - this make take a while’
os.system("mencoder ’mf://_tmp*.png’ -mf type=png:fps=10 \\
-ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg")

25.1.13 Multiple y-axis scales

A frequent request is to have two scales for the left and right y-axis, which is possible using twinx() (more
than two scales are not currently supported, though it is on the wish list). This works pretty well, though

25.1. Plotting: howto 319

http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://www.mplayerhq.hu
http://www.imagemagick.org/script/convert.php

Matplotlib, Release 1.3.1

there are some quirks when you are trying to interactively pan and zoom, because both scales do not get the
signals.

The approach uses twinx() (and its sister twiny()) to use 2 different axes, turning the axes rectangular
frame off on the 2nd axes to keep it from obscuring the first, and manually setting the tick locs and labels as
desired. You can use separate matplotlib.ticker formatters and locators as desired because the two axes are
independent.

0 2 4 6 8 10
time (s)

0

5000

10000

15000

20000

25000

e
x
p

1.0

0.5

0.0

0.5

1.0

si
n

25.1.14 Generate images without having a window appear

The easiest way to do this is use a non-interactive backend (see What is a backend?) such as Agg (for
PNGs), PDF, SVG or PS. In your figure-generating script, just call the matplotlib.use() directive before
importing pylab or pyplot:

import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig(’myfig’)

See also:

Matplotlib in a web application server for information about running matplotlib inside of a web application.

320 Chapter 25. How-To

Matplotlib, Release 1.3.1

25.1.15 Use show()

When you want to view your plots on your display, the user interface backend will need to start the GUI
mainloop. This is what show() does. It tells matplotlib to raise all of the figure windows created so far
and start the mainloop. Because this mainloop is blocking by default (i.e., script execution is paused), you
should only call this once per script, at the end. Script execution is resumed after the last window is closed.
Therefore, if you are using matplotlib to generate only images and do not want a user interface window, you
do not need to call show (see Generate images without having a window appear and What is a backend?).

Note: Because closing a figure window invokes the destruction of its plotting elements, you should call
savefig() before calling show if you wish to save the figure as well as view it.

New in version v1.0.0: show now starts the GUI mainloop only if it isn’t already running. Therefore,
multiple calls to show are now allowed.

Having show block further execution of the script or the python interpreter depends on whether matplotlib
is set for interactive mode or not. In non-interactive mode (the default setting), execution is paused until the
last figure window is closed. In interactive mode, the execution is not paused, which allows you to create
additional figures (but the script won’t finish until the last figure window is closed).

Note: Support for interactive/non-interactive mode depends upon the backend. Until version 1.0.0 (and
subsequent fixes for 1.0.1), the behavior of the interactive mode was not consistent across backends. As of
v1.0.1, only the macosx backend differs from other backends because it does not support non-interactive
mode.

Because it is expensive to draw, you typically will not want matplotlib to redraw a figure many times in a
script such as the following:

plot([1,2,3]) # draw here ?
xlabel(’time’) # and here ?
ylabel(’volts’) # and here ?
title(’a simple plot’) # and here ?
show()

However, it is possible to force matplotlib to draw after every command, which might be what you want
when working interactively at the python console (see Using matplotlib in a python shell), but in a script
you want to defer all drawing until the call to show. This is especially important for complex figures that
take some time to draw. show() is designed to tell matplotlib that you’re all done issuing commands and
you want to draw the figure now.

Note: show() should typically only be called at most once per script and it should be the last line of your
script. At that point, the GUI takes control of the interpreter. If you want to force a figure draw, use draw()
instead.

Many users are frustrated by show because they want it to be a blocking call that raises the figure, pauses the
script until they close the figure, and then allow the script to continue running until the next figure is created
and the next show is made. Something like this:

25.1. Plotting: howto 321

Matplotlib, Release 1.3.1

WARNING : illustrating how NOT to use show
for i in range(10):

make figure i
show()

This is not what show does and unfortunately, because doing blocking calls across user interfaces can be
tricky, is currently unsupported, though we have made significant progress towards supporting blocking
events.

New in version v1.0.0: As noted earlier, this restriction has been relaxed to allow multiple calls to show. In
most backends, you can now expect to be able to create new figures and raise them in a subsequent call to
show after closing the figures from a previous call to show.

25.2 Contributing: howto

25.2.1 Submit a patch

See Making patches for information on how to make a patch with git.

If you are posting a patch to fix a code bug, please explain your patch in words – what was broken before
and how you fixed it. Also, even if your patch is particularly simple, just a few lines or a single function
replacement, we encourage people to submit git diffs against HEAD of the branch they are patching. It just
makes life easier for us, since we (fortunately) get a lot of contributions, and want to receive them in a stan-
dard format. If possible, for any non-trivial change, please include a complete, free-standing example that
the developers can run unmodified which shows the undesired behavior pre-patch and the desired behavior
post-patch, with a clear verbal description of what to look for. A developer may have written the function
you are working on years ago, and may no longer be with the project, so it is quite possible you are the
world expert on the code you are patching and we want to hear as much detail as you can offer.

When emailing your patch and examples, feel free to paste any code into the text of the message, indeed we
encourage it, but also attach the patches and examples since many email clients screw up the formatting of
plain text, and we spend lots of needless time trying to reformat the code to make it usable.

You should check out the guide to developing matplotlib to make sure your patch abides by our coding
conventions The Matplotlib Developers’ Guide.

25.2.2 Contribute to matplotlib documentation

matplotlib is a big library, which is used in many ways, and the documentation has only scratched the surface
of everything it can do. So far, the place most people have learned all these features are through studying
the examples (Search examples), which is a recommended and great way to learn, but it would be nice to
have more official narrative documentation guiding people through all the dark corners. This is where you
come in.

There is a good chance you know more about matplotlib usage in some areas, the stuff you do every day,
than many of the core developers who wrote most of the documentation. Just pulled your hair out compiling
matplotlib for windows? Write a FAQ or a section for the Installation page. Are you a digital signal
processing wizard? Write a tutorial on the signal analysis plotting functions like xcorr(), psd() and

322 Chapter 25. How-To

Matplotlib, Release 1.3.1

specgram(). Do you use matplotlib with django or other popular web application servers? Write a FAQ or
tutorial and we’ll find a place for it in the User’s Guide. Bundle matplotlib in a py2exe app? ... I think you
get the idea.

matplotlib is documented using the sphinx extensions to restructured text (ReST). sphinx is an extensible
python framework for documentation projects which generates HTML and PDF, and is pretty easy to write;
you can see the source for this document or any page on this site by clicking on the Show Source link at the
end of the page in the sidebar (or here for this document).

The sphinx website is a good resource for learning sphinx, but we have put together a cheat-sheet at Docu-
menting matplotlib which shows you how to get started, and outlines the matplotlib conventions and exten-
sions, eg for including plots directly from external code in your documents.

Once your documentation contributions are working (and hopefully tested by actually building the docs)
you can submit them as a patch against git. See Install git and Submit a patch. Looking for something to
do? Search for TODO.

25.3 Matplotlib in a web application server

Many users report initial problems trying to use maptlotlib in web application servers, because by default
matplotlib ships configured to work with a graphical user interface which may require an X11 connection.
Since many barebones application servers do not have X11 enabled, you may get errors if you don’t config-
ure matplotlib for use in these environments. Most importantly, you need to decide what kinds of images
you want to generate (PNG, PDF, SVG) and configure the appropriate default backend. For 99% of users,
this will be the Agg backend, which uses the C++ antigrain rendering engine to make nice PNGs. The Agg
backend is also configured to recognize requests to generate other output formats (PDF, PS, EPS, SVG).
The easiest way to configure matplotlib to use Agg is to call:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt

For more on configuring your backend, see What is a backend?.

Alternatively, you can avoid pylab/pyplot altogether, which will give you a little more control, by calling the
API directly as shown in api-agg_oo.

You can either generate hardcopy on the filesystem by calling savefig:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot([1,2,3])
fig.savefig(’test.png’)

or by saving to a file handle:

25.3. Matplotlib in a web application server 323

http://www.djangoproject.com/
http://www.py2exe.org/
http://sphinx.pocoo.org/index.html
http://docutils.sourceforge.net/rst.html
http://antigrain.com

Matplotlib, Release 1.3.1

import sys
fig.savefig(sys.stdout)

Here is an example using the Python Imaging Library (PIL). First, the figure is saved to a StringIO object
which is then fed to PIL for further processing:

import StringIO, Image
imgdata = StringIO.StringIO()
fig.savefig(imgdata, format=’png’)
imgdata.seek(0) # rewind the data
im = Image.open(imgdata)

25.3.1 matplotlib with apache

TODO; see Contribute to matplotlib documentation.

25.3.2 matplotlib with django

TODO; see Contribute to matplotlib documentation.

25.3.3 matplotlib with zope

TODO; see Contribute to matplotlib documentation.

25.3.4 Clickable images for HTML

Andrew Dalke of Dalke Scientific has written a nice article on how to make html click maps with matplotlib
agg PNGs. We would also like to add this functionality to SVG and add a SWF backend to support these
kind of images. If you are interested in contributing to these efforts that would be great.

25.4 Search examples

The nearly 300 code examples-index included with the matplotlib source distribution are full-text searchable
from the search page, but sometimes when you search, you get a lot of results from the The Matplotlib API
or other documentation that you may not be interested in if you just want to find a complete, free-standing,
working piece of example code. To facilitate example searches, we have tagged every code example page
with the keyword codex for code example which shouldn’t appear anywhere else on this site except in the
FAQ. So if you want to search for an example that uses an ellipse, search for codex ellipse.

25.5 Cite Matplotlib

If you want to refer to matplotlib in a publication, you can use “Matplotlib: A 2D Graphics Environment”
by J. D. Hunter In Computing in Science & Engineering, Vol. 9, No. 3. (2007), pp. 90-95 (see this reference

324 Chapter 25. How-To

http://www.dalkescientific.com
http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55

Matplotlib, Release 1.3.1

page):

@article{Hunter:2007,
Address = {10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA},
Author = {Hunter, John D.},
Date-Added = {2010-09-23 12:22:10 -0700},
Date-Modified = {2010-09-23 12:22:10 -0700},
Isi = {000245668100019},
Isi-Recid = {155389429},
Journal = {Computing In Science \& Engineering},
Month = {May-Jun},
Number = {3},
Pages = {90--95},
Publisher = {IEEE COMPUTER SOC},
Times-Cited = {21},
Title = {Matplotlib: A 2D graphics environment},
Type = {Editorial Material},
Volume = {9},
Year = {2007},
Abstract = {Matplotlib is a 2D graphics package used for Python for application

development, interactive scripting, and publication-quality image
generation across user interfaces and operating systems.},

Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000245668100019}}

25.5. Cite Matplotlib 325

http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55

Matplotlib, Release 1.3.1

326 Chapter 25. How-To

CHAPTER

TWENTYSIX

TROUBLESHOOTING

Contents

• Troubleshooting
– Obtaining matplotlib version
– matplotlib install location
– .matplotlib directory location
– Getting help
– Problems with recent git versions

26.1 Obtaining matplotlib version

To find out your matplotlib version number, import it and print the __version__ attribute:

>>> import matplotlib
>>> matplotlib.__version__
’0.98.0’

26.2 matplotlib install location

You can find what directory matplotlib is installed in by importing it and printing the __file__ attribute:

>>> import matplotlib
>>> matplotlib.__file__
’/home/jdhunter/dev/lib64/python2.5/site-packages/matplotlib/__init__.pyc’

26.3 .matplotlib directory location

Each user has a matplotlib configuration directory which may contain a matplotlibrc file. To locate your
.matplotlib/ directory, use matplotlib.get_configdir():

327

Matplotlib, Release 1.3.1

>>> import matplotlib as mpl
>>> mpl.get_configdir()
’/home/darren/.matplotlib’

On unix-like systems, this directory is generally located in your HOME directory. On windows, it is in your
documents and settings directory by default:

>>> import matplotlib
>>> mpl.get_configdir()
’C:\\Documents and Settings\\jdhunter\\.matplotlib’

If you would like to use a different configuration directory, you can do so by specifying the location in your
MPLCONFIGDIR environment variable – see Setting environment variables in Linux and OS-X.

26.4 Getting help

There are a number of good resources for getting help with matplotlib. There is a good chance your question
has already been asked:

• The mailing list archive.

• Github issues.

• Stackoverflow questions tagged matplotlib.

If you are unable to find an answer to your question through search, please provide the following information
in your e-mail to the mailing list:

• your operating system; (Linux/UNIX users: post the output of uname -a)

• matplotlib version:

python -c ‘import matplotlib; print matplotlib.__version__‘

• where you obtained matplotlib (e.g., your Linux distribution’s packages or the matplotlib Sourceforge
site, or the enthought python distribution EPD).

• any customizations to your matplotlibrc file (see Customizing matplotlib).

• if the problem is reproducible, please try to provide a minimal, standalone Python script that demon-
strates the problem. This is the critical step. If you can’t post a piece of code that we can run and
reproduce your error, the chances of getting help are significantly diminished. Very often, the mere
act of trying to minimize your code to the smallest bit that produces the error will help you find a bug
in your code that is causing the problem.

• you can get very helpful debugging output from matlotlib by running your script with a
verbose-helpful or --verbose-debug flags and posting the verbose output the lists:

> python simple_plot.py --verbose-helpful > output.txt

If you compiled matplotlib yourself, please also provide

• any changes you have made to setup.py or setupext.py

328 Chapter 26. Troubleshooting

http://matplotlib.1069221.n5.nabble.com/
https://github.com/matplotlib/matplotlib/issues
http://stackoverflow.com/questions/tagged/matplotlib
http://lists.sourceforge.net/mailman/listinfo/matplotlib-users
http://www.enthought.com/products/epd.php

Matplotlib, Release 1.3.1

• the output of:

rm -rf build
python setup.py build

The beginning of the build output contains lots of details about your platform that are useful for the
matplotlib developers to diagnose your problem.

• your compiler version – eg, gcc --version

Including this information in your first e-mail to the mailing list will save a lot of time.

You will likely get a faster response writing to the mailing list than filing a bug in the bug tracker. Most
developers check the bug tracker only periodically. If your problem has been determined to be a bug and
can not be quickly solved, you may be asked to file a bug in the tracker so the issue doesn’t get lost.

26.5 Problems with recent git versions

First make sure you have a clean build and install (see How to completely remove matplotlib), get the latest
git update, install it and run a simple test script in debug mode:

rm -rf build
rm -rf /path/to/site-packages/matplotlib*
git pull
python setup.py install > build.out
python examples/pylab_examples/simple_plot.py --verbose-debug > run.out

and post build.out and run.out to the matplotlib-devel mailing list (please do not post git problems to
the users list).

Of course, you will want to clearly describe your problem, what you are expecting and what you are getting,
but often a clean build and install will help. See also Getting help.

26.5. Problems with recent git versions 329

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel
http://lists.sourceforge.net/mailman/listinfo/matplotlib-users

Matplotlib, Release 1.3.1

330 Chapter 26. Troubleshooting

CHAPTER

TWENTYSEVEN

ENVIRONMENT VARIABLES

Contents

• Environment Variables
– Setting environment variables in Linux and OS-X

* BASH/KSH

* CSH/TCSH
– Setting environment variables in windows

HOME
The user’s home directory. On linux, ~ is shorthand for HOME.

PATH
The list of directories searched to find executable programs

PYTHONPATH
The list of directories that is added to Python’s standard search list when importing packages and
modules

MPLCONFIGDIR
This is the directory used to store user customizations to matplotlib, as well as some caches to im-
prove performance. If MPLCONFIGDIR is not defined, HOME/.matplotlib is used if it is writable.
Otherwise, the python standard library tempfile.gettmpdir() is used to find a base directory in
which the matplotlib subdirectory is created.

27.1 Setting environment variables in Linux and OS-X

To list the current value of PYTHONPATH, which may be empty, try:

echo $PYTHONPATH

The procedure for setting environment variables in depends on what your default shell is. BASH seems to
be the most common, but CSH is also common. You should be able to determine which by running at the
command prompt:

echo $SHELL

331

Matplotlib, Release 1.3.1

27.1.1 BASH/KSH

To create a new environment variable:

export PYTHONPATH=~/Python

To prepend to an existing environment variable:

export PATH=~/bin:${PATH}

The search order may be important to you, do you want ~/bin to be searched first or last? To append to an
existing environment variable:

export PATH=${PATH}:~/bin

To make your changes available in the future, add the commands to your ~/.bashrc file.

27.1.2 CSH/TCSH

To create a new environment variable:

setenv PYTHONPATH ~/Python

To prepend to an existing environment variable:

setenv PATH ~/bin:${PATH}

The search order may be important to you, do you want ~/bin to be searched first or last? To append to an
existing environment variable:

setenv PATH ${PATH}:~/bin

To make your changes available in the future, add the commands to your ~/.cshrc file.

27.2 Setting environment variables in windows

Open the Control Panel (Start → Control Panel), start the System program. Click the Advanced tab and
select the Environment Variables button. You can edit or add to the User Variables.

332 Chapter 27. Environment Variables

Part III

The Matplotlib Developers’ Guide

333

CHAPTER

TWENTYEIGHT

CODING GUIDE

28.1 Pull request checklist

This checklist should be consulted when creating pull requests to make sure they are complete before merg-
ing. These are not intended to be rigidly followed—it’s just an attempt to list in one place all of the items
that are necessary for a good pull request. Of course, some items will not always apply.

28.1.1 Branch selection

• In general, simple bugfixes that are unlikely to introduce new bugs of their own should be merged
onto the maintenance branch. New features, or anything that changes the API, should be made against
master. The rules are fuzzy here – when in doubt, try to get some consensus.

– Once changes are merged into the maintenance branch, they should be merged into master.

28.1.2 Style

• Formatting should follow PEP8. Exceptions to these rules are acceptable if it makes the code objec-
tively more readable.

– You may want to consider installing automatic PEP8 checking in your editor.

• No tabs (only spaces). No trailing whitespace.

– Configuring your editor to remove these things upon saving will save a lot of trouble.

• Import the following modules using the standard scipy conventions:

import numpy as np
import numpy.ma as ma
import matplotlib as mpl
from matplotlib import pyplot as plt
import matplotlib.cbook as cbook
import matplotlib.collections as mcol
import matplotlib.patches as mpatches

• See below for additional points about Keyword argument processing, if code in your pull request does
that.

335

http://www.python.org/dev/peps/pep-0008/

Matplotlib, Release 1.3.1

• Adding a new pyplot function involves generating code. See Writing a new pyplot function for more
information.

28.1.3 Documentation

• Every new feature should be documented. If it’s a new module, don’t forget to add it to the API docs.

• Docstrings should be in numpydoc format. Don’t be thrown off by the fact that many of the existing
docstrings are not in that format. We are working to standardize on numpydoc.

• Each high-level plotting function should have a simple example in the Example section. This should
be as simple as possible to demonstrate the method. More complex examples should go in the
examples tree.

• Build the docs and make sure all formatting warnings are addressed.

• See Documenting matplotlib for our documentation style guide.

• If your changes are non-trivial, please make an entry in the CHANGELOG.

• If your change is a major new feature, add an entry to doc/users/whats_new.rst.

• If you change the API in a backward-incompatible way, please document it in
doc/api/api_changes.rst.

28.1.4 Testing

Using the test framework is discussed in detail in the section Testing.

• If the PR is a bugfix, add a test that fails prior to the change and passes with the change. Include any
relevant issue numbers in the docstring of the test.

• If this is a new feature, add a test that exercises as much of the new feature as possible. (The
--with-coverage option may be useful here).

• Make sure the Travis tests are passing before merging.

– The Travis tests automatically test on all of the Python versions matplotlib supports whenever
a pull request is created or updated. The tox support in matplotlib may be useful for testing
locally.

28.1.5 Installation

• If you have added new files or directories, or reorganized existing ones, make sure the new files
included in the match patterns in MANIFEST.in, and/or in package_data in setup.py.

28.1.6 C/C++ extensions

• Extensions may be written in C or C++.

336 Chapter 28. Coding guide

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

Matplotlib, Release 1.3.1

• Code style should conform to PEP7 (understanding that PEP7 doesn’t address C++, but most of its
admonitions still apply).

• Interfacing with Python may be done either with the raw Python/C API or Cython. Use of PyCXX is
discouraged for new code.

• Python/C interface code should be kept separate from the core C/C++ code. The interface code should
be named FOO_wrap.cpp.

• Header file documentation (aka docstrings) should be in Numpydoc format. We don’t plan on using
automated tools for these docstrings, and the Numpydoc format is well understood in the scientific
Python community.

28.2 Style guide

28.2.1 Keyword argument processing

Matplotlib makes extensive use of **kwargs for pass-through customizations from one function to another.
A typical example is in matplotlib.pylab.text(). The definition of the pylab text function is a simple
pass-through to matplotlib.axes.Axes.text():

in pylab.py
def text(*args, **kwargs):

ret = gca().text(*args, **kwargs)
draw_if_interactive()
return ret

text() in simplified form looks like this, i.e., it just passes all args and kwargs on to
matplotlib.text.Text.__init__():

in axes.py
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):

t = Text(x=x, y=y, text=s, **kwargs)

and __init__() (again with liberties for illustration) just passes them on to the
matplotlib.artist.Artist.update() method:

in text.py
def __init__(self, x=0, y=0, text=’’, **kwargs):

Artist.__init__(self)
self.update(kwargs)

update does the work looking for methods named like set_property if property is a keyword argument.
I.e., no one looks at the keywords, they just get passed through the API to the artist constructor which looks
for suitably named methods and calls them with the value.

As a general rule, the use of **kwargs should be reserved for pass-through keyword arguments, as in the
example above. If all the keyword args are to be used in the function, and not passed on, use the key/value
keyword args in the function definition rather than the **kwargs idiom.

In some cases, you may want to consume some keys in the local function, and let others pass through. You
can pop the ones to be used locally and pass on the rest. For example, in plot(), scalex and scaley are

28.2. Style guide 337

Matplotlib, Release 1.3.1

local arguments and the rest are passed on as Line2D() keyword arguments:

in axes.py
def plot(self, *args, **kwargs):

scalex = kwargs.pop(’scalex’, True)
scaley = kwargs.pop(’scaley’, True)
if not self._hold: self.cla()
lines = []
for line in self._get_lines(*args, **kwargs):

self.add_line(line)
lines.append(line)

Note: there is a use case when kwargs are meant to be used locally in the function (not passed on), but
you still need the **kwargs idiom. That is when you want to use *args to allow variable numbers of non-
keyword args. In this case, python will not allow you to use named keyword args after the *args usage, so
you will be forced to use **kwargs. An example is matplotlib.contour.ContourLabeler.clabel():

in contour.py
def clabel(self, *args, **kwargs):

fontsize = kwargs.get(’fontsize’, None)
inline = kwargs.get(’inline’, 1)
self.fmt = kwargs.get(’fmt’, ’%1.3f’)
colors = kwargs.get(’colors’, None)
if len(args) == 0:

levels = self.levels
indices = range(len(self.levels))

elif len(args) == 1:
...etc...

28.3 Hints

This section describes how to add certain kinds of new features to matplotlib.

28.3.1 Developing a new backend

If you are working on a custom backend, the backend setting in matplotlibrc (Customizing matplotlib)
supports an external backend via the module directive. if my_backend.py is a matplotlib backend in your
PYTHONPATH, you can set use it on one of several ways

• in matplotlibrc:

backend : module://my_backend

• with the use directive is your script:

import matplotlib
matplotlib.use(’module://my_backend’)

• from the command shell with the -d flag:

338 Chapter 28. Coding guide

Matplotlib, Release 1.3.1

> python simple_plot.py -d module://my_backend

28.3.2 Writing examples

We have hundreds of examples in subdirectories of matplotlib/examples, and these are automatically
generated when the website is built to show up both in the examples and gallery sections of the website.

Any sample data that the example uses should be kept small and distributed with matplotlib in the
lib/matplotlib/mpl-data/sample_data/ directory. Then in your example code you can load it into a
file handle with:

import matplotlib.cbook as cbook
fh = cbook.get_sample_data(’mydata.dat’)

28.3.3 Writing a new pyplot function

A large portion of the pyplot interface is automatically generated by the boilerplate.py script (in the
root of the source tree). To add or remove a plotting method from pyplot, edit the appropriate list in
boilerplate.py and then run the script which will update the content in lib/matplotlib/pyplot.py.
Both the changes in boilerplate.py and lib/matplotlib/pyplot.py should be checked into the
repository.

28.3. Hints 339

http://matplotlib.org/examples/index.html
http://matplotlib.org/gallery.html

Matplotlib, Release 1.3.1

340 Chapter 28. Coding guide

CHAPTER

TWENTYNINE

LICENSES

Matplotlib only uses BSD compatible code. If you bring in code from another project make sure it has a
PSF, BSD, MIT or compatible license (see the Open Source Initiative licenses page for details on individual
licenses). If it doesn’t, you may consider contacting the author and asking them to relicense it. GPL and
LGPL code are not acceptable in the main code base, though we are considering an alternative way of
distributing L/GPL code through an separate channel, possibly a toolkit. If you include code, make sure you
include a copy of that code’s license in the license directory if the code’s license requires you to distribute
the license with it. Non-BSD compatible licenses are acceptable in matplotlib toolkits (eg basemap), but
make sure you clearly state the licenses you are using.

29.1 Why BSD compatible?

The two dominant license variants in the wild are GPL-style and BSD-style. There are countless other
licenses that place specific restrictions on code reuse, but there is an important difference to be considered
in the GPL and BSD variants. The best known and perhaps most widely used license is the GPL, which
in addition to granting you full rights to the source code including redistribution, carries with it an extra
obligation. If you use GPL code in your own code, or link with it, your product must be released under a
GPL compatible license. I.e., you are required to give the source code to other people and give them the
right to redistribute it as well. Many of the most famous and widely used open source projects are released
under the GPL, including linux, gcc, emacs and sage.

The second major class are the BSD-style licenses (which includes MIT and the python PSF license). These
basically allow you to do whatever you want with the code: ignore it, include it in your own open source
project, include it in your proprietary product, sell it, whatever. python itself is released under a BSD
compatible license, in the sense that, quoting from the PSF license page:

There is no GPL-like "copyleft" restriction. Distributing
binary-only versions of Python, modified or not, is allowed. There
is no requirement to release any of your source code. You can also
write extension modules for Python and provide them only in binary
form.

Famous projects released under a BSD-style license in the permissive sense of the last paragraph are the
BSD operating system, python and TeX.

There are several reasons why early matplotlib developers selected a BSD compatible license. matplotlib
is a python extension, and we choose a license that was based on the python license (BSD compatible).
Also, we wanted to attract as many users and developers as possible, and many software companies will

341

http://www.opensource.org/licenses

Matplotlib, Release 1.3.1

not use GPL code in software they plan to distribute, even those that are highly committed to open source
development, such as enthought, out of legitimate concern that use of the GPL will “infect” their code base
by its viral nature. In effect, they want to retain the right to release some proprietary code. Companies and
institutions who use matplotlib often make significant contributions, because they have the resources to get
a job done, even a boring one. Two of the matplotlib backends (FLTK and WX) were contributed by private
companies. The final reason behind the licensing choice is compatibility with the other python extensions
for scientific computing: ipython, numpy, scipy, the enthought tool suite and python itself are all distributed
under BSD compatible licenses.

342 Chapter 29. Licenses

http://enthought.com

CHAPTER

THIRTY

WORKING WITH MATPLOTLIB SOURCE CODE

Contents:

30.1 Introduction

These pages describe a git and github workflow for the matplotlib project.

There are several different workflows here, for different ways of working with matplotlib.

This is not a comprehensive git reference, it’s just a workflow for our own project. It’s tailored to the github
hosting service. You may well find better or quicker ways of getting stuff done with git, but these should get
you started.

For general resources for learning git see git resources.

30.2 Install git

30.2.1 Overview

Debian / Ubuntu sudo apt-get install git-core
Fedora sudo yum install git-core
Windows Download and install msysGit
OS X Use the git-osx-installer

30.2.2 In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help

There are good instructions here: http://book.git-scm.com/2_installing_git.html

343

http://git-scm.com/
http://github.com
http://matplotlib.org
http://git-scm.com/
http://github.com
http://git-scm.com/
http://git-scm.com/
http://code.google.com/p/msysgit/downloads/list
http://code.google.com/p/git-osx-installer/downloads/list
http://git-scm.com/
http://github.com
http://help.github.com
http://book.git-scm.com/2_installing_git.html

Matplotlib, Release 1.3.1

30.3 Following the latest source

These are the instructions if you just want to follow the latest matplotlib source, but you don’t need to do
any development for now.

The steps are:

• Install git

• get local copy of the git repository from github

• update local copy from time to time

30.3.1 Get the local copy of the code

From the command line:

git clone git://github.com/matplotlib/matplotlib.git

You now have a copy of the code tree in the new matplotlib directory.

30.3.2 Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd matplotlib
git pull

The tree in matplotlib will now have the latest changes from the initial repository.

30.4 Making a patch

You’ve discovered a bug or something else you want to change in matplotlib .. — excellent!

You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here we explain how. Making a patch is the simplest and
quickest, but if you’re going to be doing anything more than simple quick things, please consider following
the Git for development model instead.

30.4.1 Making patches

Overview

344 Chapter 30. Working with matplotlib source code

http://github.com
http://matplotlib.org

Matplotlib, Release 1.3.1

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don’t have it
git clone git://github.com/matplotlib/matplotlib.git
make a branch for your patching
cd matplotlib
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you’ve made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am ’BF - added tests for Funny bug’
hack hack, hack
git commit -am ’BF - added fix for Funny bug’
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the matplotlib mailing list — where we will thank you warmly.

In detail

1. Tell git who you are so it can label the commits you’ve made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

2. If you don’t already have one, clone a copy of the matplotlib repository:

git clone git://github.com/matplotlib/matplotlib.git
cd matplotlib

3. Make a ‘feature branch’. This will be where you work on your bug fix. It’s nice and safe and leaves
you with access to an unmodified copy of the code in the main branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

4. Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you’ve made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am ’BF - added tests for Funny bug’
hack hack, hack
git commit -am ’BF - added fix for Funny bug’

Note the -am options to commit. The m flag just signals that you’re going to type a message on the
command line. The a flag — you can just take on faith — or see why the -a flag?.

5. When you have finished, check you have committed all your changes:

30.4. Making a patch 345

https://lists.sourceforge.net/lists/listinfo/matplotlib-devel
http://git-scm.com/
http://matplotlib.org
http://www.gitready.com/beginner/2009/01/18/the-staging-area.html

Matplotlib, Release 1.3.1

git status

6. Finally, make your commits into patches. You want all the commits since you branched from the
master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the matplotlib mailing list.

When you are done, to switch back to the main copy of the code, just return to the master branch:

git checkout master

30.4.2 Moving from patching to development

If you find you have done some patches, and you have one or more feature branches, you will probably want
to switch to development mode. You can do this with the repository you have.

Fork the matplotlib repository on github — Making your own copy (fork) of matplotlib. Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to ’upstream’
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/matplotlib.git
push up any branches you’ve made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the Development workflow.

30.5 Git for development

Contents:

30.5.1 Making your own copy (fork) of matplotlib

You need to do this only once. The instructions here are very similar to the instructions at
http://help.github.com/forking/ — please see that page for more detail. We’re repeating some of it here
just to give the specifics for the matplotlib project, and to suggest some default names.

346 Chapter 30. Working with matplotlib source code

https://lists.sourceforge.net/lists/listinfo/matplotlib-devel
http://matplotlib.org
http://github.com
http://help.github.com/forking/
http://matplotlib.org

Matplotlib, Release 1.3.1

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see the Generating SSH keys help on
github help.

Create your own forked copy of matplotlib

1. Log into your github account.

2. Go to the matplotlib github home at matplotlib github.

3. Click on the fork button:

Now, after a short pause and some ‘Hardcore forking action’, you should find yourself at the home
page for your own forked copy of matplotlib.

30.5.2 Set up your fork

First you follow the instructions for Making your own copy (fork) of matplotlib.

Overview

git clone git@github.com:your-user-name/matplotlib.git
cd matplotlib
git remote add upstream git://github.com/matplotlib/matplotlib.git

In detail

Clone your fork

1. Clone your fork to the local computer with git clone git@github.com:your-user-name/matplotlib.git

2. Investigate. Change directory to your new repo: cd matplotlib. Then git branch -a to show
you all branches. You’ll get something like:

* master
remotes/origin/master

30.5. Git for development 347

http://github.com
http://github.com
http://help.github.com
http://github.com
http://matplotlib.org
http://github.com/matplotlib/matplotlib
http://matplotlib.org

Matplotlib, Release 1.3.1

This tells you that you are currently on the master branch, and that you also have a remote connec-
tion to origin/master. What remote repository is remote/origin? Try git remote -v to see
the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream matplotlib github repository, so you can merge in changes
from trunk.

Linking your repository to the upstream repo

cd matplotlib
git remote add upstream git://github.com/matplotlib/matplotlib.git

upstream here is just the arbitrary name we’re using to refer to the main matplotlib repository at matplotlib
github.

Note that we’ve used git:// for the URL rather than git@. The git:// URL is read only. This means
we that we can’t accidentally (or deliberately) write to the upstream repo, and we are only going to use it to
merge into our own code.

Note this command needs to be run on every clone of the repository that you make. It is not tracked in your
personal repository on github.

Just for your own satisfaction, show yourself that you now have a new ‘remote’, with git remote -v
show, giving you something like:

upstream git://github.com/matplotlib/matplotlib.git (fetch)
upstream git://github.com/matplotlib/matplotlib.git (push)
origin git@github.com:your-user-name/matplotlib.git (fetch)
origin git@github.com:your-user-name/matplotlib.git (push)

30.5.3 Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in your home directory. Here is an
example .gitconfig file:

[user]
name = Your Name
email = you@yourdomain.example.com

[alias]
ci = commit -a
co = checkout
st = status -a
stat = status -a
br = branch
wdiff = diff --color-words

[core]

348 Chapter 30. Working with matplotlib source code

http://github.com
http://github.com/matplotlib/matplotlib
http://matplotlib.org
http://github.com/matplotlib/matplotlib
http://github.com/matplotlib/matplotlib
http://github.com
http://git-scm.com/

Matplotlib, Release 1.3.1

editor = vim

[merge]
summary = true

[apply]
whitespace = fix

[core]
autocrlf = input

You can edit this file directly or you can use the git config --global command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file, or run the commands above.

In detail

user.name and user.email

It is good practice to tell git who you are, for labeling any changes you make to the code. The simplest way
to do this is from the command line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which should now contain a user section with
your name and email:

[user]
name = Your Name
email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com with your actual name
and email address.

Aliases

You might well benefit from some aliases to common commands.

30.5. Git for development 349

http://git-scm.com/

Matplotlib, Release 1.3.1

For example, you might well want to be able to shorten git checkout to git co. Or you may want to
alias git diff --color-words (which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents like this:

[alias]
ci = commit -a
co = checkout
st = status -a
stat = status -a
br = branch
wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
log = true

Or from the command line:

git config --global merge.log true

30.5.4 Development workflow

You already have your own forked copy of the matplotlib repository, by following Making your own copy
(fork) of matplotlib, Set up your fork, and you have configured git by following Configure git.

Workflow summary

• Keep your master branch clean of edits that have not been merged to the main matplotlib develop-
ment repo. Your master then will follow the main matplotlib repository.

350 Chapter 30. Working with matplotlib source code

http://matplotlib.org
http://git-scm.com/
http://matplotlib.org
http://matplotlib.org

Matplotlib, Release 1.3.1

• Start a new feature branch for each set of edits that you do.

• If you can avoid it, try not to merge other branches into your feature branch while you are working.

• Ask for review!

This way of working really helps to keep work well organized, and in keeping history as clear as possible.

See — for example — linux git workflow.

Making a new feature branch

git checkout -b my-new-feature master

This will create and immediately check out a feature branch based on master. To create a feature branch
based on a maintenance branch, use:

git fetch origin
git checkout -b my-new-feature origin/v1.0.x

Generally, you will want to keep this also on your public github fork of matplotlib. To do this, you git push
this new branch up to your github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push up to your own repo on github
with:

git push origin my-new-feature

You will need to use this exact command, rather than simply git push every time you want to push
changes on your feature branch to your github repo. However, in git >1.7 you can set up a link by us-
ing the --set-upstream option:

git push --set-upstream origin my-new-feature

and then next time you need to push changes to your branch a simple git push will suffice. Note that git
push pushes out all branches that are linked to a remote branch.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am ’NF - some message’
git push

In more detail

1. Make some changes

30.5. Git for development 351

http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://github.com
http://matplotlib.org
http://schacon.github.com/git/git-push.html
http://github.com
http://github.com
http://github.com
http://github.com

Matplotlib, Release 1.3.1

2. See which files have changed with git status (see git status). You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

3. Check what the actual changes are with git diff (git diff).

4. Add any new files to version control git add new_file_name (see git add).

5. To commit all modified files into the local copy of your repo„ do git commit -am ’A commit
message’. Note the -am options to commit. The m flag just signals that you’re going to type a
message on the command line. The a flag — you can just take on faith — or see why the -a flag? —
and the helpful use-case description in the tangled working copy problem. The git commit manual
page might also be useful.

6. To push the changes up to your forked repo on github, do a git push (see git push).

Asking for code review

1. Go to your repo URL — e.g., http://github.com/your-user-name/matplotlib.

2. Click on the Branch list button:

3. Click on the Compare button for your feature branch — here my-new-feature:

4. If asked, select the base and comparison branch names you want to compare. Usually these will be
master and my-new-feature (where that is your feature branch name).

5. At this point you should get a nice summary of the changes. Copy the URL for this, and
post it to the matplotlib mailing list, asking for review. The URL will look something like:
http://github.com/your-user-name/matplotlib/compare/master...my-new-feature.

352 Chapter 30. Working with matplotlib source code

http://schacon.github.com/git/git-status.html
http://schacon.github.com/git/git-diff.html
http://schacon.github.com/git/git-add.html
http://www.gitready.com/beginner/2009/01/18/the-staging-area.html
http://tomayko.com/writings/the-thing-about-git
http://schacon.github.com/git/git-commit.html
http://github.com
https://lists.sourceforge.net/lists/listinfo/matplotlib-devel

Matplotlib, Release 1.3.1

There’s an example at http://github.com/matthew-brett/nipy/compare/master...find-install-data See:
http://github.com/blog/612-introducing-github-compare-view for more detail.

The generated comparison, is between your feature branch my-new-feature, and the place in master
from which you branched my-new-feature. In other words, you can keep updating master without
interfering with the output from the comparison. More detail? Note the three dots in the URL above
(master...my-new-feature) and see dot2-dot3.

It’s a good idea to consult the Pull request checklist to make sure your pull request is ready for merging.

Asking for your changes to be merged into the main repo

When you are ready to ask for the merge of your code:

1. Go to the URL of your forked repo, say http://github.com/your-user-name/matplotlib.git.

2. Click on the ‘Pull request’ button:

Enter a message; we suggest you select only matplotlib as the recipient. The message will go to
the matplotlib mailing list. Please feel free to add others from the list as you like.

3. If the branch is to be merged into a maintenance branch on the main repo, make sure the “base branch”
indicates the maintenance branch and not master. Github can not automatically determine the branch
to merge into.

Staying up to date with changes in the central repository

This updates your working copy from the upstream matplotlib github repo.

Overview

go to your master branch
git checkout master
pull changes from github
git fetch upstream
merge from upstream
git merge --ff-only upstream/master

30.5. Git for development 353

http://github.com/matthew-brett/nipy/compare/master...find-install-data
http://github.com/blog/612-introducing-github-compare-view
https://lists.sourceforge.net/lists/listinfo/matplotlib-devel
http://github.com/matplotlib/matplotlib

Matplotlib, Release 1.3.1

In detail

We suggest that you do this only for your master branch, and leave your ‘feature’ branches unmerged, to
keep their history as clean as possible. This makes code review easier:

git checkout master

Make sure you have done Linking your repository to the upstream repo.

Merge the upstream code into your current development by first pulling the upstream repo to a copy on your
local machine:

git fetch upstream

then merging into your current branch:

git merge --ff-only upstream/master

The --ff-only option guarantees that if you have mistakenly committed code on your master branch,
the merge fails at this point. If you were to merge upstream/master to your master, you would start to
diverge from the upstream. If this command fails, see the section on accidents.

The letters ‘ff’ in --ff-only mean ‘fast forward’, which is a special case of merge where git can simply
update your branch to point to the other branch and not do any actual merging of files. For master and other
integration branches this is exactly what you want.

Other integration branches

Some people like to keep separate local branches corresponding to the maintenance branches on github. At
the time of this writing, v1.0.x is the active maintenance branch. If you have such a local branch, treat is
just as master: don’t commit on it, and before starting new branches off of it, update it from upstream:

git checkout v1.0.x
git fetch upstream
git merge --ff-only upstream/v1.0.x

But you don’t necessarily have to have such a branch. Instead, if you are preparing a bugfix that applies to
the maintenance branch, fetch from upstream and base your bugfix on the remote branch:

git fetch upstream
git checkout -b my-bug-fix upstream/v1.0.x

Recovering from accidental commits on master

If you have accidentally committed changes on master and git merge --ff-only fails, don’t panic!
First find out how much you have diverged:

git diff upstream/master...master

If you find that you want simply to get rid of the changes, reset your master branch to the upstream version:

354 Chapter 30. Working with matplotlib source code

Matplotlib, Release 1.3.1

git reset --hard upstream/master

As you might surmise from the words ‘reset’ and ‘hard’, this command actually causes your changes to the
current branch to be lost, so think twice.

If, on the other hand, you find that you want to preserve the changes, create a feature branch for them:

git checkout -b my-important-changes

Now my-important-changes points to the branch that has your changes, and you can safely reset master
as above — but make sure to reset the correct branch:

git checkout master
git reset --hard upstream/master

Deleting a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also: http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all committing into the same repository,
or even the same branch, then just share it via github.

First fork matplotlib into your account, as from Making your own copy (fork) of matplotlib.

Then, go to your forked repository github page, say http://github.com/your-user-name/matplotlib

Click on the ‘Admin’ button, and add anyone else to the repo as a collaborator:

Now all those people can do:

git clone git@githhub.com:your-user-name/matplotlib.git

Remember that links starting with git@ use the ssh protocol and are read-write; links starting with git://
are read-only.

Your collaborators can then commit directly into that repo with the usual:

30.5. Git for development 355

http://github.com/guides/remove-a-remote-branch
http://github.com

Matplotlib, Release 1.3.1

git commit -am ’ENH - much better code’
git push origin master # pushes directly into your repo

Exploring your repository

To see a graphical representation of the repository branches and commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer for your github repo.

30.6 git resources

30.6.1 Tutorials and summaries

• github help has an excellent series of how-to guides.

• learn.github has an excellent series of tutorials

• The pro git book is a good in-depth book on git.

• A git cheat sheet is a page giving summaries of common commands.

• The git user manual

• The git tutorial

• The git community book

• git ready — a nice series of tutorials

• git casts — video snippets giving git how-tos.

• git magic — extended introduction with intermediate detail

• The git parable is an easy read explaining the concepts behind git.

• Our own git foundation expands on the git parable.

• Fernando Perez’ git page — Fernando’s git page — many links and tips

• A good but technical page on git concepts

• git svn crash course: git for those of us used to subversion

356 Chapter 30. Working with matplotlib source code

http://github.com/blog/39-say-hello-to-the-network-graph-visualizer
http://github.com
http://help.github.com
http://learn.github.com/
http://progit.org/
http://github.com/guides/git-cheat-sheet
http://schacon.github.com/git/user-manual.html
http://schacon.github.com/git/gittutorial.html
http://book.git-scm.com/
http://www.gitready.com/
http://www.gitcasts.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://matthew-brett.github.com/pydagogue/foundation.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://www.fperez.org/py4science/git.html
http://www.eecs.harvard.edu/~cduan/technical/git/
http://git-scm.com/course/svn.html
http://git-scm.com/
http://subversion.tigris.org/

Matplotlib, Release 1.3.1

30.6.2 Advanced git workflow

There are many ways of working with git; here are some posts on the rules of thumb that other projects have
come up with:

• Linus Torvalds on git management

• Linus Torvalds on linux git workflow . Summary; use the git tools to make the history of your edits
as clean as possible; merge from upstream edits as little as possible in branches where you are doing
active development.

30.6.3 Manual pages online

You can get these on your own machine with (e.g) git help push or (same thing) git push --help,
but, for convenience, here are the online manual pages for some common commands:

• git add

• git branch

• git checkout

• git clone

• git commit

• git config

• git diff

• git log

• git pull

• git push

• git remote

• git status

30.6. git resources 357

http://git-scm.com/
http://kerneltrap.org/Linux/Git_Management
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://schacon.github.com/git/git-add.html
http://schacon.github.com/git/git-branch.html
http://schacon.github.com/git/git-checkout.html
http://schacon.github.com/git/git-clone.html
http://schacon.github.com/git/git-commit.html
http://schacon.github.com/git/git-config.html
http://schacon.github.com/git/git-diff.html
http://schacon.github.com/git/git-log.html
http://schacon.github.com/git/git-pull.html
http://schacon.github.com/git/git-push.html
http://schacon.github.com/git/git-remote.html
http://schacon.github.com/git/git-status.html

Matplotlib, Release 1.3.1

358 Chapter 30. Working with matplotlib source code

CHAPTER

THIRTYONE

TESTING

Matplotlib has a testing infrastructure based on nose, making it easy to write new tests. The tests are in
matplotlib.tests, and customizations to the nose testing infrastructure are in matplotlib.testing.
(There is other old testing cruft around, please ignore it while we consolidate our testing to these locations.)

31.1 Requirements

The following software is required to run the tests:

• nose, version 1.0 or later

• Ghostscript (to render PDF files)

• Inkscape (to render SVG files)

31.2 Running the tests

Running the tests is simple. Make sure you have nose installed and run the script tests.py in the root
directory of the distribution. The script can take any of the usual nosetest arguments, such as

-v increase verbosity
-d detailed error messages
--with-coverage enable collecting coverage information

To run a single test from the command line, you can provide a dot-separated path to the module followed by
the function separated by a colon, e.g., (this is assuming the test is installed):

python tests.py matplotlib.tests.test_simplification:test_clipping

An alternative implementation that does not look at command line arguments works from within Python:

import matplotlib
matplotlib.test()

Running tests by any means other than matplotlib.test() does not load the nose “knownfailureif”
(Known failing tests) plugin, causing known-failing tests to fail for real.

359

http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://pages.cs.wisc.edu/~ghost/
http://inkscape.org
http://somethingaboutorange.com/mrl/projects/nose/1.0.0/usage.html

Matplotlib, Release 1.3.1

31.3 Writing a simple test

Many elements of Matplotlib can be tested using standard tests. For example, here is a test from
matplotlib.tests.test_basic:

from nose.tools import assert_equal

def test_simple():
"""
very simple example test
"""
assert_equal(1+1,2)

Nose determines which functions are tests by searching for functions beginning with “test” in their name.

If the test has side effects that need to be cleaned up, such as creating figures using the pyplot interface, use
the @cleanup decorator:

from matplotlib.testing.decorators import cleanup

@cleanup
def test_create_figure():

"""
very simple example test that creates a figure using pyplot.
"""
fig = figure()
...

31.4 Writing an image comparison test

Writing an image based test is only slightly more difficult than a simple test. The main consideration is that
you must specify the “baseline”, or expected, images in the image_comparison() decorator. For example,
this test generates a single image and automatically tests it:

import numpy as np
import matplotlib
from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt

@image_comparison(baseline_images=[’spines_axes_positions’])
def test_spines_axes_positions():

SF bug 2852168
fig = plt.figure()
x = np.linspace(0,2*np.pi,100)
y = 2*np.sin(x)
ax = fig.add_subplot(1,1,1)
ax.set_title(’centered spines’)
ax.plot(x,y)
ax.spines[’right’].set_position((’axes’,0.1))
ax.yaxis.set_ticks_position(’right’)
ax.spines[’top’].set_position((’axes’,0.25))

360 Chapter 31. Testing

Matplotlib, Release 1.3.1

ax.xaxis.set_ticks_position(’top’)
ax.spines[’left’].set_color(’none’)
ax.spines[’bottom’].set_color(’none’)

The first time this test is run, there will be no baseline image to compare against, so the test will fail.
Copy the output images (in this case result_images/test_category/spines_axes_positions.*)
to the correct subdirectory of baseline_images tree in the source directory (in this case
lib/matplotlib/tests/baseline_images/test_category). Note carefully the * at the end: this will
copy only the images we need to include in the git repository. The files ending in _pdf.png and _svg.png
are converted from the pdf and svg originals on the fly and do not need to be in the respository. Put these
new files under source code revision control (with git add). When rerunning the tests, they should now
pass.

There are two optional keyword arguments to the image_comparison decorator:

• extensions: If you only wish to test some of the image formats (rather than the default png, svg
and pdf formats), pass a list of the extensions to test.

• tol: This is the image matching tolerance, the default 1e-3. If some variation is expected in the
image between runs, this value may be adjusted.

31.5 Known failing tests

If you’re writing a test, you may mark it as a known failing test with the knownfailureif() decorator.
This allows the test to be added to the test suite and run on the buildbots without causing undue alarm. For
example, although the following test will fail, it is an expected failure:

from nose.tools import assert_equal
from matplotlib.testing.decorators import knownfailureif

@knownfailureif(True)
def test_simple_fail():

’’’very simple example test that should fail’’’
assert_equal(1+1,3)

Note that the first argument to the knownfailureif() decorator is a fail condition, which can be a value
such as True, False, or ‘indeterminate’, or may be a dynamically evaluated expression.

31.6 Creating a new module in matplotlib.tests

We try to keep the tests categorized by the primary module they are testing. For example, the tests related
to the mathtext.py module are in test_mathtext.py.

Let’s say you’ve added a new module named whizbang.py and you want to add tests for it in
matplotlib.tests.test_whizbang. To add this module to the list of default tests, append its name
to default_test_modules in lib/matplotlib/__init__.py.

31.5. Known failing tests 361

Matplotlib, Release 1.3.1

31.7 Using tox

Tox is a tool for running tests against multiple Python environments, including multiple versions of Python
(e.g., 2.6, 2.7, 3.2, etc.) and even different Python implementations altogether (e.g., CPython, PyPy, Jython,
etc.)

Testing all 4 versions of Python (2.6, 2.7, 3.1, and 3.2) requires having four versions of Python installed on
your system and on the PATH. Depending on your operating system, you may want to use your package
manager (such as apt-get, yum or MacPorts) to do this, or use pythonbrew.

tox makes it easy to determine if your working copy introduced any regressions before submitting a pull
request. Here’s how to use it:

$ pip install tox
$ tox

You can also run tox on a subset of environments:

$ tox -e py26,py27

Tox processes everything serially so it can take a long time to test several environments. To speed it up, you
might try using a new, parallelized version of tox called detox. Give this a try:

$ pip install -U -i http://pypi.testrun.org detox
$ detox

Tox is configured using a file called tox.ini. You may need to edit this file if you want to add new
environments to test (e.g., py33) or if you want to tweak the dependencies or the way the tests are run. For
more info on the tox.ini file, see the Tox Configuration Specification.

31.8 Using Travis CI

Travis CI is a hosted CI system “in the cloud”.

Travis is configured to receive notifications of new commits to GitHub repos (via GitHub “service hooks”)
and to run builds or tests when it sees these new commits. It looks for a YAML file called .travis.yml in
the root of the repository to see how to test the project.

Travis CI is already enabled for the main matplotlib GitHub repository – for example, see its Travis page.

If you want to enable Travis CI for your personal matplotlib GitHub repo, simply enable the repo to use
Travis CI in either the Travis CI UI or the GitHub UI (Admin | Service Hooks). For details, see the Travis
CI Getting Started page. This generally isn’t necessary, since any pull request submitted against the main
matplotlib repository will be tested.

Once this is configured, you can see the Travis CI results at http://travis-
ci.org/#!/your_GitHub_user_name/matplotlib – here’s an example.

362 Chapter 31. Testing

http://tox.testrun.org/
https://github.com/utahta/pythonbrew
http://tox.testrun.org/latest/config.html
http://travis-ci.org/
https://github.com/matplotlib/matplotlib/
http://travis-ci.org/#!/matplotlib/matplotlib
http://about.travis-ci.org/docs/user/getting-started/
http://about.travis-ci.org/docs/user/getting-started/
http://travis-ci.org/#!/your_GitHub_user_name/matplotlib
http://travis-ci.org/#!/your_GitHub_user_name/matplotlib
http://travis-ci.org/#!/msabramo/matplotlib

CHAPTER

THIRTYTWO

DOCUMENTING MATPLOTLIB

32.1 Getting started

The documentation for matplotlib is generated from ReStructured Text using the Sphinx documentation
generation tool. Sphinx-1.0 or later and numpydoc 0.4 or later is required.

The documentation sources are found in the doc/ directory in the trunk. To build the users guide in html
format, cd into doc/ and do:

python make.py html

or:

./make.py html

you can also pass a latex flag to make.py to build a pdf, or pass no arguments to build everything.

The output produced by Sphinx can be configured by editing the conf.py file located in the doc/.

32.2 Organization of matplotlib’s documentation

The actual ReStructured Text files are kept in doc/users, doc/devel, doc/api and doc/faq. The main
entry point is doc/index.rst, which pulls in the index.rst file for the users guide, developers guide,
api reference, and faqs. The documentation suite is built as a single document in order to make the most
effective use of cross referencing, we want to make navigating the Matplotlib documentation as easy as
possible.

Additional files can be added to the various guides by including their base file name (the .rst extension is
not necessary) in the table of contents. It is also possible to include other documents through the use of an
include statement, such as:

.. include:: ../../TODO

32.2.1 docstrings

In addition to the “narrative” documentation described above, matplotlib also defines its API reference
documentation in docstrings. For the most part, these are standard Python docstrings, but matplotlib also

363

http://sphinx.pocoo.org

Matplotlib, Release 1.3.1

includes some features to better support documenting getters and setters.

Matplotlib uses artist introspection of docstrings to support properties. All properties that you want to
support through setp and getp should have a set_property and get_property method in the Artist
class. Yes, this is not ideal given python properties or enthought traits, but it is a historical legacy for now.
The setter methods use the docstring with the ACCEPTS token to indicate the type of argument the method
accepts. e.g., in matplotlib.lines.Line2D:

in lines.py
def set_linestyle(self, linestyle):

"""
Set the linestyle of the line

ACCEPTS: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’ | ’ ’ | ’’]
"""

Since matplotlib uses a lot of pass-through kwargs, e.g., in every function that creates a line (plot(),
semilogx(), semilogy(), etc...), it can be difficult for the new user to know which kwargs are supported.
Matplotlib uses a docstring interpolation scheme to support documentation of every function that takes a
**kwargs. The requirements are:

1. single point of configuration so changes to the properties don’t require multiple docstring edits.

2. as automated as possible so that as properties change, the docs are updated automagically.

The functions matplotlib.artist.kwdocd and matplotlib.artist.kwdoc() to facilitate this. They
combine python string interpolation in the docstring with the matplotlib artist introspection facility that
underlies setp and getp. The kwdocd is a single dictionary that maps class name to a docstring of kwargs.
Here is an example from matplotlib.lines:

in lines.py
artist.kwdocd[’Line2D’] = artist.kwdoc(Line2D)

Then in any function accepting Line2D pass-through kwargs, e.g., matplotlib.axes.Axes.plot():

in axes.py
def plot(self, *args, **kwargs):

"""
Some stuff omitted

The kwargs are Line2D properties:
%(Line2D)s

kwargs scalex and scaley, if defined, are passed on
to autoscale_view to determine whether the x and y axes are
autoscaled; default True. See Axes.autoscale_view for more
information
"""
pass

plot.__doc__ = cbook.dedent(plot.__doc__) % artist.kwdocd

Note there is a problem for Artist __init__methods, e.g., matplotlib.patches.Patch.__init__(),
which supports Patch kwargs, since the artist inspector cannot work until the class is fully defined
and we can’t modify the Patch.__init__.__doc__ docstring outside the class definition. There are

364 Chapter 32. Documenting matplotlib

Matplotlib, Release 1.3.1

some some manual hacks in this case, violating the “single entry point” requirement above – see the
artist.kwdocd[’Patch’] setting in matplotlib.patches.

32.3 Formatting

The Sphinx website contains plenty of documentation concerning ReST markup and working with Sphinx
in general. Here are a few additional things to keep in mind:

• Please familiarize yourself with the Sphinx directives for inline markup. Matplotlib’s documentation
makes heavy use of cross-referencing and other semantic markup. For example, when referring to
external files, use the :file: directive.

• Function arguments and keywords should be referred to using the emphasis role. This will keep
matplotlib’s documentation consistent with Python’s documentation:

Here is a description of *argument*

Please do not use the default role:

Please do not describe ‘argument‘ like this.

nor the literal role:

Please do not describe ‘‘argument‘‘ like this.

• Sphinx does not support tables with column- or row-spanning cells for latex output. Such tables can
not be used when documenting matplotlib.

• Mathematical expressions can be rendered as png images in html, and in the usual way by latex. For
example:

:math:‘\sin(x_n^2)‘ yields: sin(x2
n), and:

.. math::

\int_{-\infty}^{\infty}\frac{e^{i\phi}}{1+x^2\frac{e^{i\phi}}{1+x^2}}

yields: ∫ ∞

−∞

eiφ

1 + x2 eiφ

1+x2

(32.1)

• Interactive IPython sessions can be illustrated in the documentation using the following directive:

.. sourcecode:: ipython

In [69]: lines = plot([1,2,3])

which would yield:

In [69]: lines = plot([1,2,3])

32.3. Formatting 365

http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/markup/inline.html

Matplotlib, Release 1.3.1

• Footnotes 1 can be added using [#]_, followed later by:

.. rubric:: Footnotes

.. [#]

• Use the note and warning directives, sparingly, to draw attention to important comments:

.. note::
Here is a note

yields:

Note: here is a note

also:

Warning: here is a warning

• Use the deprecated directive when appropriate:

.. deprecated:: 0.98
This feature is obsolete, use something else.

yields:

Deprecated since version 0.98: This feature is obsolete, use something else.

• Use the versionadded and versionchanged directives, which have similar syntax to the deprecated
role:

.. versionadded:: 0.98
The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.

• Use the seealso directive, for example:

.. seealso::

Using ReST :ref:‘emacs-helpers‘:
One example

A bit about :ref:‘referring-to-mpl-docs‘:
One more

yields:

See also:

Using ResT Emacs helpers: One example

A bit about Referring to mpl documents: One more

1 For example.

366 Chapter 32. Documenting matplotlib

Matplotlib, Release 1.3.1

• Please keep the Glossary in mind when writing documentation. You can create a references to a term
in the glossary with the :term: role.

• The autodoc extension will handle index entries for the API, but additional entries in the index need
to be explicitly added.

• Please limit the text width of docstrings to 70 characters.

• Keyword arguments should be described using a definition list.

Note: matplotlib makes extensive use of keyword arguments as pass-through arguments, there are a
many cases where a table is used in place of a definition list for autogenerated sections of docstrings.

32.4 Figures

32.4.1 Dynamically generated figures

Figures can be automatically generated from scripts and included in the docs. It is not necessary to explicitly
save the figure in the script, this will be done automatically at build time to ensure that the code that is
included runs and produces the advertised figure.

The path should be relative to the doc directory. Any plots specific to the documentation should be added
to the doc/pyplots directory and committed to git. Plots from the examples directory may be referenced
through the symlink mpl_examples in the doc directory. e.g.:

.. plot:: mpl_examples/pylab_examples/simple_plot.py

The :scale: directive rescales the image to some percentage of the original size, though we don’t recom-
mend using this in most cases since it is probably better to choose the correct figure size and dpi in mpl and
let it handle the scaling.

Plot directive documentation

A directive for including a matplotlib plot in a Sphinx document.

By default, in HTML output, plot will include a .png file with a link to a high-res .png and .pdf. In LaTeX
output, it will include a .pdf.

The source code for the plot may be included in one of three ways:

1. A path to a source file as the argument to the directive:

.. plot:: path/to/plot.py

When a path to a source file is given, the content of the directive may optionally contain a caption for
the plot:

.. plot:: path/to/plot.py

This is the caption for the plot

32.4. Figures 367

http://sphinx.pocoo.org/markup/para.html#index-generating-markup

Matplotlib, Release 1.3.1

Additionally, one my specify the name of a function to call (with no arguments) immediately after
importing the module:

.. plot:: path/to/plot.py plot_function1

2. Included as inline content to the directive:

.. plot::

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
img = mpimg.imread(’_static/stinkbug.png’)
imgplot = plt.imshow(img)

3. Using doctest syntax:

.. plot::
A plotting example:
>>> import matplotlib.pyplot as plt
>>> plt.plot([1,2,3], [4,5,6])

Options

The plot directive supports the following options:

format [{‘python’, ‘doctest’}] Specify the format of the input

include-source [bool] Whether to display the source code. The default can be changed using
the plot_include_source variable in conf.py

encoding [str] If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must
be specified using the :encoding: option. The encoding will not be inferred using the
-*- coding -*- metacomment.

context [bool] If provided, the code will be run in the context of all previous plot directives
for which the :context: option was specified. This only applies to inline code plot
directives, not those run from files.

nofigs [bool] If specified, the code block will be run, but no figures will be inserted. This is
usually useful with the :context: option.

Additionally, this directive supports all of the options of the image directive, except for target (since plot
will add its own target). These include alt, height, width, scale, align and class.

Configuration options

The plot directive has the following configuration options:

plot_include_source Default value for the include-source option

plot_pre_code Code that should be executed before each plot.

368 Chapter 32. Documenting matplotlib

Matplotlib, Release 1.3.1

plot_basedir Base directory, to which plot:: file names are relative to. (If None or empty,
file names are relative to the directoly where the file containing the directive is.)

plot_formats File formats to generate. List of tuples or strings:

[(suffix, dpi), suffix, ...]

that determine the file format and the DPI. For entries whose DPI was omitted, sensible
defaults are chosen.

plot_html_show_formats Whether to show links to the files in HTML.

plot_rcparams A dictionary containing any non-standard rcParams that should be applied
before each plot.

plot_apply_rcparams By default, rcParams are applied when context option is not used in
a plot directive. This configuration option overrides this behaviour and applies rcParams
before each plot.

plot_working_directory By default, the working directory will be changed to the directory
of the example, so the code can get at its data files, if any. Also its path will be added to
sys.path so it can import any helper modules sitting beside it. This configuration option
can be used to specify a central directory (also added to sys.path) where data files and
helper modules for all code are located.

plot_template Provide a customized template for preparing resturctured text.

32.4.2 Static figures

Any figures that rely on optional system configurations need to be handled a little differently. These figures
are not to be generated during the documentation build, in order to keep the prerequisites to the documen-
tation effort as low as possible. Please run the doc/pyplots/make.py script when adding such figures,
and commit the script and the images to git. Please also add a line to the README in doc/pyplots for any
additional requirements necessary to generate a new figure. Once these steps have been taken, these figures
can be included in the usual way:

.. plot:: pyplots/tex_unicode_demo.py
:include-source:

32.4.3 Examples

The source of the files in the examples directory are automatically included in the HTML docs. An image
is generated and included for all examples in the api and pylab_examples directories. To exclude the
example from having an image rendered, insert the following special comment anywhere in the script:

-*- noplot -*-

32.4. Figures 369

Matplotlib, Release 1.3.1

32.4.4 Animations

We have a matplotlib google/gmail account with username mplgithub which we used to setup the
github account but can be used for other purposes, like hosting google docs or youtube videos.
You can embed a matplotlib animation in the docs by first saving the animation as a movie using
matplotlib.animation.Animation.save(), and then uploading to matplotlib’s youtube channel and
inserting the embedding string youtube provides like:

.. raw:: html

<iframe width="420" height="315"
src="http://www.youtube.com/embed/32cjc6V0OZY"
frameborder="0" allowfullscreen>

</iframe>

An example save command to generate a movie looks like this

ani = animation.FuncAnimation(fig, animate, np.arange(1, len(y)),
interval=25, blit=True, init_func=init)

ani.save(’double_pendulum.mp4’, fps=15)

Contact Michael Droettboom for the login password to upload youtube videos of google docs to the
mplgithub account.

32.5 Referring to mpl documents

In the documentation, you may want to include to a document in the matplotlib src, e.g., a license file or an
image file from mpl-data, refer to it via a relative path from the document where the rst file resides, eg, in
users/navigation_toolbar.rst, we refer to the image icons with:

.. image:: ../../lib/matplotlib/mpl-data/images/subplots.png

In the users subdirectory, if I want to refer to a file in the mpl-data directory, I use the symlink directory.
For example, from customizing.rst:

.. literalinclude:: ../../lib/matplotlib/mpl-data/matplotlibrc

One exception to this is when referring to the examples dir. Relative paths are extremely confusing in the
sphinx plot extensions, so without getting into the dirty details, it is easier to simply include a symlink to the
files at the top doc level directory. This way, API documents like matplotlib.pyplot.plot() can refer
to the examples in a known location.

In the top level doc directory we have symlinks pointing to the mpl examples:

home:~/mpl/doc> ls -l mpl_*
mpl_examples -> ../examples

So we can include plots from the examples dir using the symlink:

370 Chapter 32. Documenting matplotlib

http://www.youtube.com/user/matplotlib

Matplotlib, Release 1.3.1

.. plot:: mpl_examples/pylab_examples/simple_plot.py

We used to use a symlink for mpl-data too, but the distro becomes very large on platforms that do not
support links (eg the font files are duplicated and large)

32.6 Internal section references

To maximize internal consistency in section labeling and references, use hyphen separated, descriptive labels
for section references, eg:

.. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref:‘howto-webapp‘

Keep in mind that we may want to reorganize the contents later, so let’s avoid top level names in references
like user or devel or faq unless necessary, because for example the FAQ “what is a backend?” could later
become part of the users guide, so the label:

.. _what-is-a-backend

is better than:

.. _faq-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer hyphens to separate words.

32.7 Section names, etc

For everything but top level chapters, please use Upper lower for section titles, eg Possible hangups
rather than Possible Hangups

32.8 Inheritance diagrams

Class inheritance diagrams can be generated with the inheritance-diagram directive. To use it, you
provide the directive with a number of class or module names (separated by whitespace). If a module name
is provided, all classes in that module will be used. All of the ancestors of these classes will be included in
the inheritance diagram.

A single option is available: parts controls how many of parts in the path to the class are shown. For
example, if parts == 1, the class matplotlib.patches.Patch is shown as Patch. If parts == 2, it is
shown as patches.Patch. If parts == 0, the full path is shown.

Example:

32.6. Internal section references 371

Matplotlib, Release 1.3.1

.. inheritance-diagram:: matplotlib.patches matplotlib.lines matplotlib.text
:parts: 2

patches.Patch

patches.Arrow

patches.Ellipse

patches.FancyArrowPatch

patches.RegularPolygon

patches.Polygon

patches.Shadow

patches.Wedge

patches.PathPatch

patches.Rectangle

patches.FancyBboxPatch

patches.YAArrow

artist.Artist text.Text

lines.Line2D

patches.ConnectionStyle

patches.Circle

patches.Arc

patches.ConnectionPatch

patches.CirclePolygon

text.TextWithDash

text.Annotation

patches.BoxStyle

patches.FancyArrow

patches.ArrowStyle

text.OffsetFrom

lines.VertexSelector

32.9 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updating
table-of-contents, and promoting or demoting section headings. Here is the basic .emacs configuration:

(require ’rst)
(setq auto-mode-alist

(append ’(("\\.txt$" . rst-mode)
("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert

Insert table of contents at point

372 Chapter 32. Documenting matplotlib

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

Matplotlib, Release 1.3.1

C-c C-u - rst-toc-update

Update the table of contents at point

C-c C-l rst-shift-region-left

Shift region to the left

C-c C-r rst-shift-region-right

Shift region to the right

32.9. Emacs helpers 373

Matplotlib, Release 1.3.1

374 Chapter 32. Documenting matplotlib

CHAPTER

THIRTYTHREE

DOING A MATPLOTLIB RELEASE

A guide for developers who are doing a matplotlib release.

• Edit __init__.py and bump the version number

33.1 Testing

• Run all of the regression tests by running the tests.py script at the root of the source tree.

• Run unit/memleak_hawaii3.py and make sure there are no memory leaks

• try some GUI examples, eg simple_plot.py with GTKAgg, TkAgg, etc...

• remove font cache and tex cache from .matplotlib and test with and without cache on some exam-
ple script

• Optionally, make sure examples/tests/backend_driver.py runs without errors and check the
output of the PNG, PDF, PS and SVG backends

33.2 Branching

Once all the tests are passing and you are ready to do a release, you need to create a release branch. These
only need to be created when the second part of the version number changes:

git checkout -b v1.1.x
git push git@github.com:matplotlib/matplotlib.git v1.1.x

On the branch, do any additional testing you want to do, and then build binaries and source distributions for
testing as release candidates.

For each release candidate as well as for the final release version, please git tag the commit you will use
for packaging like so:

git tag -a v1.1.0rc1

The -a flag will allow you to write a message about the tag, and affiliate your name with it. A reasonable
tag message would be something like v1.1.0 Release Candidate 1 (September 24, 2011). To tag
a release after the fact, just track down the commit hash, and:

375

Matplotlib, Release 1.3.1

git tag -a v1.0.1rc1 a9f3f3a50745

Tags allow developers to quickly checkout different releases by name, and also provides source download
via zip and tarball on github.

Then push the tags to the main repository:

git push upstream v1.0.1rc1

33.3 Packaging

• Make sure the MANIFEST.in is up to date and remove MANIFEST so it will be rebuilt by MANIFEST.in

• run git clean in the mpl git directory before building the sdist

• unpack the sdist and make sure you can build from that directory

• Use setup.cfg to set the default backends. For windows and OSX, the default backend should be
TkAgg. You should also turn on or off any platform specific build options you need. Importantly,
you also need to make sure that you delete the build dir after any changes to setup.cfg before
rebuilding since cruft in the build dir can get carried along.

• On windows, unix2dos the rc file.

• We have a Makefile for the OS X builds in the mpl source dir release/osx, so use this to prepare
the OS X releases.

• We have a Makefile for the win32 mingw builds in the mpl source dir release/win32 which you
can use this to prepare the windows releases.

33.4 Posting files

Our current method is for the release manager to collect all of the binaries from the platform builders and
post the files online on Sourceforge. It is also possible that those building the binaries could upload to
directly to Sourceforge.

There are many ways to upload files to Sourceforge (scp, rsync, sftp, and a web interface) described in
Sourceforge Release File System documentation. Below, we will use sftp.

1. Create a directory containing all of the release files and cd to it.

2. sftp to Sourceforge:

sftp USERNAME@frs.sourceforge.net:/home/frs/project/matplotlib/matplotlib

3. Make a new directory for the release and move to it:

mkdir matplotlib-1.1.0rc1
cd matplotlib-1.1.0rc1

4. Upload all of the files in the current directory on your local machine:

376 Chapter 33. Doing a matplotlib release

https://sourceforge.net/apps/trac/sourceforge/wiki/Release%20files%20for%20download

Matplotlib, Release 1.3.1

put *

If this release is a final release, the default download for the matplotlib project should also be updated. Login
to Sourceforge and visit the matplotlib files page. Navigate to the tarball of the release you just updated,
click on “Details” icon (it looks like a lower case i), and make it the default download for all platforms.

There is a list of direct links to downloads on matplotlib’s main website. This needs to be manually generated
and updated every time new files are posted.

1. Clone the matplotlib documentation repository and cd into it:

git clone git@github.com:matplotlib/matplotlib.github.com.git
cd matplotlib.github.com

2. Update the list of downloads that you want to display by editing the downloads.txt file. Generally,
this should contain the last two final releases and any active release candidates.

3. Update the downloads webpage by running the update_downloads.py script. This script requires
paramiko (for sftp support) and jinja2 for templating. Both of these dependencies can be installed
using pip:

pip install paramiko
pip install jinja2

Then update the download page:

./update_downloads.py

You will be prompted for your Sourceforge username and password.

4. Commit the changes and push them up to github:

git commit -m "Updating download list"
git push

33.5 Update PyPI

Once the tarball has been posted on Sourceforge, you can register a link to the new release on PyPI. This
should only be done with final (non-release-candidate) releases, since doing so will hide any available stable
releases.

You may need to set up your pypirc file as described in the distutils register command documentation.

Then updating the record on PyPI is as simple as:

python setup.py register

This will hide any previous releases automatically.

33.5. Update PyPI 377

https://sourceforge.net/projects/matplotlib/files/matplotlib/
http://docs.python.org/2/distutils/packageindex.html

Matplotlib, Release 1.3.1

33.6 Documentation updates

The built documentation exists in the matplotlib.github.com repository. Pushing changes to master automat-
ically updates the website.

The documentation is organized by version. At the root of the tree is always the documentation for the latest
stable release. Under that, there are directories containing the documentation for older versions as well as
the bleeding edge release version called dev (usually based on what’s on master in the github repository, but
it may also temporarily be a staging area for proposed changes). There is also a symlink directory with the
name of the most recently released version that points to the root. With each new release, these directories
may need to be reorganized accordingly. Any time these version directories are added or removed, the
versions.html file (which contains a list of the available documentation versions for the user) must also
be updated.

To make sure everyone’s hard work gets credited, regenerate the github stats. cd into the tools directory and
run:

python github_stats.py $TAG > ../doc/users/github_stats.rst

where $TAG is the tag of the last major release. This will generate stats for all work done since that release.

In the matplotlib source repository, build the documentation:

cd doc
python make.py html
python make.py latex

Then copy the build products into your local checkout of the matplotlib.github.com repository (assum-
ing here to be checked out in com:

cp -r build/html/* ~/matplotlib.github.com
cp build/latex/Matplotlib.pdf ~/matplotlib.github.com

Then, from the matplotlib.github.com directory, commit and push the changes upstream:

git commit -m "Updating for v1.0.1"
git push upstream master

33.7 Announcing

Announce the release on matplotlib-announce, matplotlib-users, and matplotlib-devel. Final (non-release-
candidate) versions should also be announced on python-announce. Include a summary of highlights from
the CHANGELOG and/or post the whole CHANGELOG since the last release.

378 Chapter 33. Doing a matplotlib release

https://github.com/matplotlib/matplotlib.github.com/

CHAPTER

THIRTYFOUR

WORKING WITH TRANSFORMATIONS

Transform

TransformWrapper

AffineBase

BlendedGenericTransform

CompositeGenericTransform

TransformNode BboxBase

TransformedPath

TransformedBbox

Bbox

IdentityTransform

Affine2DBase

Affine2D

ScaledTranslation

CompositeAffine2D

BlendedAffine2D

BboxTransformFrom

BboxTransform

BboxTransformTo

Path

BboxTransformToMaxOnly

34.1 matplotlib.transforms

matplotlib includes a framework for arbitrary geometric transformations that is used determine the final
position of all elements drawn on the canvas.

Transforms are composed into trees of TransformNode objects whose actual value depends on their chil-
dren. When the contents of children change, their parents are automatically invalidated. The next time
an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching
approach prevents unnecessary recomputations of transforms, and contributes to better interactive perfor-
mance.

For example, here is a graph of the transform tree used to plot data to the graph:

379

Matplotlib, Release 1.3.1

The framework can be used for both affine and non-affine transformations. However, for speed, we want
use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to
perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed
to occur after the non-affine. For any transform:

full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations themselves.

380 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

class matplotlib.transforms.TransformNode(shorthand_name=None)
Bases: object

TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such as
bounding boxes, since some transforms depend on bounding boxes to compute their values.

Creates a new TransformNode.

shorthand_name - a string representing the “name” of this transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DEBUG=True.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

invalidate()
Invalidate this TransformNode and triggers an invalidation of its ancestors. Should be called
any time the transform changes.

pass_through = False
If pass_through is True, all ancestors will always be invalidated, even if ‘self’ is already invalid.

set_children(*children)
Set the children of the transform, to let the invalidation system know which transforms can
invalidate this transform. Should be called from the constructor of any transforms that depend
on other transforms.

class matplotlib.transforms.BboxBase(shorthand_name=None)
Bases: matplotlib.transforms.TransformNode

This is the base class of all bounding boxes, and provides read-only access to its data. A mutable
bounding box is provided by the Bbox class.

The canonical representation is as two points, with no restrictions on their ordering. Convenience
properties are provided to get the left, bottom, right and top edges and width and height, but these are
not stored explicitly.

Creates a new TransformNode.

shorthand_name - a string representing the “name” of this transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DEBUG=True.

anchored(c, container=None)
Return a copy of the Bbox, shifted to position c within a container.

c: may be either:

•a sequence (cx, cy) where cx and cy range from 0 to 1, where 0 is left or bottom and 1 is
right or top

•a string: - ‘C’ for centered - ‘S’ for bottom-center - ‘SE’ for bottom-left - ‘E’ for left - etc.

Optional argument container is the box within which the Bbox is positioned; it defaults to the
initial Bbox.

34.1. matplotlib.transforms 381

Matplotlib, Release 1.3.1

bounds None
(property) Returns (x0, y0, width, height).

contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box or on its edge.

containsx(x)
Returns True if x is between or equal to x0 and x1.

containsy(y)
Returns True if y is between or equal to y0 and y1.

corners()
Return an array of points which are the four corners of this rectangle. For example, if this Bbox
is defined by the points (a, b) and (c, d), corners() returns (a, b), (a, d), (c, b) and (c, d).

count_contains(vertices)
Count the number of vertices contained in the Bbox.

vertices is a Nx2 Numpy array.

count_overlaps(bboxes)
Count the number of bounding boxes that overlap this one.

bboxes is a sequence of BboxBase objects

expanded(sw, sh)
Return a new Bbox which is this Bbox expanded around its center by the given factors sw and
sh.

extents None
(property) Returns (x0, y0, x1, y1).

frozen()
TransformNode is the base class for anything that participates in the transform tree and needs
to invalidate its parents or be invalidated. This includes classes that are not really transforms,
such as bounding boxes, since some transforms depend on bounding boxes to compute their
values.

fully_contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box, but not on its edge.

fully_containsx(x)
Returns True if x is between but not equal to x0 and x1.

fully_containsy(y)
Returns True if y is between but not equal to y0 and y1.

fully_overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other, but not on its
edge alone.

height None
(property) The height of the bounding box. It may be negative if y1 < y0.

382 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

static intersection(bbox1, bbox2)
Return the intersection of the two bboxes or None if they do not intersect.

Implements the algorithm described at:

http://www.tekpool.com/node/2687

intervalx None
(property) intervalx is the pair of x coordinates that define the bounding box. It is not guar-
anteed to be sorted from left to right.

intervaly None
(property) intervaly is the pair of y coordinates that define the bounding box. It is not guar-
anteed to be sorted from bottom to top.

inverse_transformed(transform)
Return a new Bbox object, statically transformed by the inverse of the given transform.

is_unit()
Returns True if the Bbox is the unit bounding box from (0, 0) to (1, 1).

max None
(property) max is the top-right corner of the bounding box.

min None
(property) min is the bottom-left corner of the bounding box.

overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other.

p0 None
(property) p0 is the first pair of (x, y) coordinates that define the bounding box. It is not guaran-
teed to be the bottom-left corner. For that, use min.

p1 None
(property) p1 is the second pair of (x, y) coordinates that define the bounding box. It is not
guaranteed to be the top-right corner. For that, use max.

padded(p)
Return a new Bbox that is padded on all four sides by the given value.

rotated(radians)
Return a new bounding box that bounds a rotated version of this bounding box by the given
radians. The new bounding box is still aligned with the axes, of course.

shrunk(mx, my)
Return a copy of the Bbox, shrunk by the factor mx in the x direction and the factor my in the y
direction. The lower left corner of the box remains unchanged. Normally mx and my will be
less than 1, but this is not enforced.

shrunk_to_aspect(box_aspect, container=None, fig_aspect=1.0)
Return a copy of the Bbox, shrunk so that it is as large as it can be while having the desired
aspect ratio, box_aspect. If the box coordinates are relative—that is, fractions of a larger box
such as a figure—then the physical aspect ratio of that figure is specified with fig_aspect, so that
box_aspect can also be given as a ratio of the absolute dimensions, not the relative dimensions.

34.1. matplotlib.transforms 383

http://www.tekpool.com/node/2687

Matplotlib, Release 1.3.1

size None
(property) The width and height of the bounding box. May be negative, in the same way as
width and height.

splitx(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with vertical lines at
fractional positions f1, f2, ...

splity(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with horizontal lines at
fractional positions f1, f2, ...

transformed(transform)
Return a new Bbox object, statically transformed by the given transform.

translated(tx, ty)
Return a copy of the Bbox, statically translated by tx and ty.

static union(bboxes)
Return a Bbox that contains all of the given bboxes.

width None
(property) The width of the bounding box. It may be negative if x1 < x0.

x0 None
(property) x0 is the first of the pair of x coordinates that define the bounding box. x0 is not
guaranteed to be less than x1. If you require that, use xmin.

x1 None
(property) x1 is the second of the pair of x coordinates that define the bounding box. x1 is not
guaranteed to be greater than x0. If you require that, use xmax.

xmax None
(property) xmax is the right edge of the bounding box.

xmin None
(property) xmin is the left edge of the bounding box.

y0 None
(property) y0 is the first of the pair of y coordinates that define the bounding box. y0 is not
guaranteed to be less than y1. If you require that, use ymin.

y1 None
(property) y1 is the second of the pair of y coordinates that define the bounding box. y1 is not
guaranteed to be greater than y0. If you require that, use ymax.

ymax None
(property) ymax is the top edge of the bounding box.

ymin None
(property) ymin is the bottom edge of the bounding box.

384 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

class matplotlib.transforms.Bbox(points, **kwargs)
Bases: matplotlib.transforms.BboxBase

A mutable bounding box.

points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]

If you need to create a Bbox object from another form of data, consider the static methods unit(),
from_bounds() and from_extents().

static from_bounds(x0, y0, width, height)
(staticmethod) Create a new Bbox from x0, y0, width and height.

width and height may be negative.

static from_extents(*args)
(staticmethod) Create a new Bbox from left, bottom, right and top.

The y-axis increases upwards.

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

ignore(value)
Set whether the existing bounds of the box should be ignored by subsequent calls to
update_from_data() or update_from_data_xy().

value:

•When True, subsequent calls to update_from_data() will ignore the existing bounds of
the Bbox.

•When False, subsequent calls to update_from_data() will include the existing bounds of
the Bbox.

mutated()
return whether the bbox has changed since init

mutatedx()
return whether the x-limits have changed since init

mutatedy()
return whether the y-limits have changed since init

static null()
(staticmethod) Create a new null Bbox from (inf, inf) to (-inf, -inf).

set(other)
Set this bounding box from the “frozen” bounds of another Bbox.

set_points(points)
Set the points of the bounding box directly from a numpy array of the form: [[x0, y0], [x1, y1]].
No error checking is performed, as this method is mainly for internal use.

static unit()
(staticmethod) Create a new unit Bbox from (0, 0) to (1, 1).

34.1. matplotlib.transforms 385

Matplotlib, Release 1.3.1

update_from_data(x, y, ignore=None)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will
have positive width and height; x0 and y0 will be the minimal values.

x: a numpy array of x-values

y: a numpy array of y-values

ignore:

•when True, ignore the existing bounds of the Bbox.

•when False, include the existing bounds of the Bbox.

•when None, use the last value passed to ignore().

update_from_data_xy(xy, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will
have positive width and height; x0 and y0 will be the minimal values.

xy: a numpy array of 2D points

ignore:

•when True, ignore the existing bounds of the Bbox.

•when False, include the existing bounds of the Bbox.

•when None, use the last value passed to ignore().

updatex: when True, update the x values

updatey: when True, update the y values

update_from_path(path, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will
have positive width and height; x0 and y0 will be the minimal values.

path: a Path instance

ignore:

•when True, ignore the existing bounds of the Bbox.

•when False, include the existing bounds of the Bbox.

•when None, use the last value passed to ignore().

updatex: when True, update the x values

updatey: when True, update the y values

class matplotlib.transforms.TransformedBbox(bbox, transform, **kwargs)
Bases: matplotlib.transforms.BboxBase

A Bbox that is automatically transformed by a given transform. When either the child bounding box
or transform changes, the bounds of this bbox will update accordingly.

bbox: a child Bbox

transform: a 2D Transform

386 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

class matplotlib.transforms.Transform(shorthand_name=None)
Bases: matplotlib.transforms.TransformNode

The base class of all TransformNode instances that actually perform a transformation.

All non-affine transformations should be subclasses of this class. New affine transformations should
be subclasses of Affine2D.

Subclasses of this class should override the following members (at minimum):

•input_dims

•output_dims

•transform()

•is_separable

•has_inverse

•inverted() (if has_inverse is True)

If the transform needs to do something non-standard with matplotlib.path.Path objects, such as
adding curves where there were once line segments, it should override:

•transform_path()

Creates a new TransformNode.

shorthand_name - a string representing the “name” of this transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DEBUG=True.

contains_branch(other)
Return whether the given transform is a sub-tree of this transform.

This routine uses transform equality to identify sub-trees, therefore in many situations it is object
id which will be used.

For the case where the given transform represents the whole of this transform, returns True.

contains_branch_seperately(other_transform)
Returns whether the given branch is a sub-tree of this transform on each seperate dimension.

A common use for this method is to identify if a transform is a blended transform containing an
axes’ data transform. e.g.:

x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)

depth None
Returns the number of transforms which have been chained together to form this Transform
instance.

Note: For the special case of a Composite transform, the maximum depth of the two is returned.

34.1. matplotlib.transforms 387

Matplotlib, Release 1.3.1

get_affine()
Get the affine part of this transform.

get_matrix()
Get the Affine transformation array for the affine part of this transform.

has_inverse = False
True if this transform has a corresponding inverse transform.

input_dims = None
The number of input dimensions of this transform. Must be overridden (with integers) in the
subclass.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

is_separable = False
True if this transform is separable in the x- and y- dimensions.

output_dims = None
The number of output dimensions of this transform. Must be overridden (with integers) in the
subclass.

transform(values)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(values)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_angles(angles, pts, radians=False, pushoff=1e-05)
Performs transformation on a set of angles anchored at specific locations.

The angles must be a column vector (i.e., numpy array).

The pts must be a two-column numpy array of x,y positions (angle transforms currently only
work in 2D). This array must have the same number of rows as angles.

radians indicates whether or not input angles are given in radians (True) or degrees (False;
the default).

388 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

pushoff is the distance to move away from pts for determining transformed angles (see dis-
cussion of method below).

The transformed angles are returned in an array with the same size as angles.

The generic version of this method uses a very generic algorithm that transforms pts, as well as
locations very close to pts, to find the angle in the transformed system.

transform_non_affine(values)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed path.

path: a Path instance.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a path, transformed only by the affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_point(point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class matplotlib.transforms.TransformWrapper(child)
Bases: matplotlib.transforms.Transform

A helper class that holds a single child transform and acts equivalently to it.

This is useful if a node of the transform tree must be replaced at run time with a transform of a different
type. This class allows that replacement to correctly trigger invalidation.

Note that TransformWrapper instances must have the same input and output dimensions during their
entire lifetime, so the child transform may only be replaced with another child transform of the same
dimensions.

child: A class:Transform instance. This child may later be replaced with set().

34.1. matplotlib.transforms 389

Matplotlib, Release 1.3.1

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

set(child)
Replace the current child of this transform with another one.

The new child must have the same number of input and output dimensions as the current child.

class matplotlib.transforms.AffineBase(*args, **kwargs)
Bases: matplotlib.transforms.Transform

The base class of all affine transformations of any number of dimensions.

get_affine()
Get the affine part of this transform.

transform(values)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(values)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed path.

path: a Path instance.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a path, transformed only by the affine part of this transform.

path: a Path instance.

390 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.Affine2DBase(*args, **kwargs)
Bases: matplotlib.transforms.AffineBase

The base class of all 2D affine transformations.

2D affine transformations are performed using a 3x3 numpy array:

a c e
b d f
0 0 1

This class provides the read-only interface. For a mutable 2D affine transformation, use Affine2D.

Subclasses of this class will generally only need to override a constructor and get_matrix() that
generates a custom 3x3 matrix.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

static matrix_from_values(a, b, c, d, e, f)
(staticmethod) Create a new transformation matrix as a 3x3 numpy array of the form:

a c e
b d f
0 0 1

to_values()
Return the values of the matrix as a sequence (a,b,c,d,e,f)

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

34.1. matplotlib.transforms 391

Matplotlib, Release 1.3.1

transform_point(point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class matplotlib.transforms.Affine2D(matrix=None, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A mutable 2D affine transformation.

Initialize an Affine transform from a 3x3 numpy float array:

a c e
b d f
0 0 1

If matrix is None, initialize with the identity transform.

clear()
Reset the underlying matrix to the identity transform.

static from_values(a, b, c, d, e, f)
(staticmethod) Create a new Affine2D instance from the given values:

a c e
b d f
0 0 1

.

get_matrix()
Get the underlying transformation matrix as a 3x3 numpy array:

a c e
b d f
0 0 1

.

static identity()
(staticmethod) Return a new Affine2D object that is the identity transform.

Unless this transform will be mutated later on, consider using the faster IdentityTransform
class instead.

rotate(theta)
Add a rotation (in radians) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_around(x, y, theta)
Add a rotation (in radians) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

392 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

rotate_deg(degrees)
Add a rotation (in degrees) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_deg_around(x, y, degrees)
Add a rotation (in degrees) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

scale(sx, sy=None)
Adds a scale in place.

If sy is None, the same scale is applied in both the x- and y-directions.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

set(other)
Set this transformation from the frozen copy of another Affine2DBase object.

set_matrix(mtx)
Set the underlying transformation matrix from a 3x3 numpy array:

a c e
b d f
0 0 1

.

translate(tx, ty)
Adds a translation in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

class matplotlib.transforms.IdentityTransform(*args, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A special class that does on thing, the identity transform, in a fast way.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

34.1. matplotlib.transforms 393

Matplotlib, Release 1.3.1

get_matrix()
Get the Affine transformation array for the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_affine(path)
Returns a path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

394 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

transform_path_non_affine(path)
Returns a path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.BlendedGenericTransform(x_transform, y_transform,
**kwargs)

Bases: matplotlib.transforms.Transform

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This “generic” version can handle any given child transform in the x- and y-directions.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

class matplotlib.transforms.BlendedAffine2D(x_transform, y_transform, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This version is an optimization for the case where both child transforms are of type Affine2DBase.

34.1. matplotlib.transforms 395

Matplotlib, Release 1.3.1

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

Both x_transform and y_transform must be 2D affine transforms.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

get_matrix()
Get the Affine transformation array for the affine part of this transform.

matplotlib.transforms.blended_transform_factory(x_transform, y_transform)
Create a new “blended” transform using x_transform to transform the x-axis and y_transform to
transform the y-axis.

A faster version of the blended transform is returned for the case where both child transforms are
affine.

class matplotlib.transforms.CompositeGenericTransform(a, b, **kwargs)
Bases: matplotlib.transforms.Transform

A composite transform formed by applying transform a then transform b.

This “generic” version can handle any two arbitrary transformations.

Create a new composite transform that is the result of applying transform a then transform b.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

396 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path_non_affine(path)
Returns a path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.CompositeAffine2D(a, b, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A composite transform formed by applying transform a then transform b.

This version is an optimization that handles the case where both a and b are 2D affines.

Create a new composite transform that is the result of applying transform a then transform b.

Both a and b must be instances of Affine2DBase.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

get_matrix()
Get the Affine transformation array for the affine part of this transform.

matplotlib.transforms.composite_transform_factory(a, b)
Create a new composite transform that is the result of applying transform a then transform b.

Shortcut versions of the blended transform are provided for the case where both child transforms are
affine, or one or the other is the identity transform.

Composite transforms may also be created using the ‘+’ operator, e.g.:

c = a + b

class matplotlib.transforms.BboxTransform(boxin, boxout, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

BboxTransform linearly transforms points from one Bbox to another Bbox.

Create a new BboxTransform that linearly transforms points from boxin to boxout.

get_matrix()
Get the Affine transformation array for the affine part of this transform.

class matplotlib.transforms.BboxTransformTo(boxout, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

34.1. matplotlib.transforms 397

Matplotlib, Release 1.3.1

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to
a given Bbox.

Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout.

get_matrix()
Get the Affine transformation array for the affine part of this transform.

class matplotlib.transforms.BboxTransformFrom(boxin, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformFrom linearly transforms points from a given Bbox to the unit bounding box.

get_matrix()
Get the Affine transformation array for the affine part of this transform.

class matplotlib.transforms.ScaledTranslation(xt, yt, scale_trans, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A transformation that translates by xt and yt, after xt and yt have been transformad by the given
transform scale_trans.

get_matrix()
Get the Affine transformation array for the affine part of this transform.

class matplotlib.transforms.TransformedPath(path, transform)
Bases: matplotlib.transforms.TransformNode

A TransformedPath caches a non-affine transformed copy of the Path. This cached copy is auto-
matically updated when the non-affine part of the transform changes.

Note: Paths are considered immutable by this class. Any update to the path’s vertices/codes will not
trigger a transform recomputation.

Create a new TransformedPath from the given Path and Transform.

get_fully_transformed_path()
Return a fully-transformed copy of the child path.

get_transformed_path_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied, along
with the affine part of the path necessary to complete the transformation.

get_transformed_points_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied,
along with the affine part of the path necessary to complete the transformation. Unlike
get_transformed_path_and_affine(), no interpolation will be performed.

matplotlib.transforms.nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increas-
ing=True)

Modify the endpoints of a range as needed to avoid singularities.

vmin, vmax the initial endpoints.

398 Chapter 34. Working with transformations

Matplotlib, Release 1.3.1

tiny threshold for the ratio of the interval to the maximum absolute value of its endpoints. If the
interval is smaller than this, it will be expanded. This value should be around 1e-15 or larger;
otherwise the interval will be approaching the double precision resolution limit.

expander fractional amount by which vmin and vmax are expanded if the original interval is too small,
based on tiny.

increasing: [True | False] If True (default), swap vmin, vmax if vmin > vmax

Returns vmin, vmax, expanded and/or swapped if necessary.

If either input is inf or NaN, or if both inputs are 0, returns -expander, expander.

34.1. matplotlib.transforms 399

Matplotlib, Release 1.3.1

400 Chapter 34. Working with transformations

CHAPTER

THIRTYFIVE

ADDING NEW SCALES AND PROJECTIONS TO MATPLOTLIB

Matplotlib supports the addition of custom procedures that transform the data before it is displayed.

There is an important distinction between two kinds of transformations. Separable transformations, working
on a single dimension, are called “scales”, and non-separable transformations, that handle data in two or
more dimensions at a time, are called “projections”.

From the user’s perspective, the scale of a plot can be set with set_xscale() and set_xscale(). Pro-
jections can be chosen using the projection keyword argument to the plot() or subplot() functions,
e.g.:

plot(x, y, projection="custom")

This document is intended for developers and advanced users who need to create new scales and projections
for matplotlib. The necessary code for scales and projections can be included anywhere: directly within a
plot script, in third-party code, or in the matplotlib source tree itself.

35.1 Creating a new scale

Adding a new scale consists of defining a subclass of matplotlib.scale.ScaleBase, that includes the
following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• A function to limit the range of the axis to acceptable values (limit_range_for_scale()). A log
scale, for instance, would prevent the range from including values less than or equal to zero.

• Locators (major and minor) that determine where to place ticks in the plot, and optionally, how to
adjust the limits of the plot to some “good” values. Unlike limit_range_for_scale(), which is
always enforced, the range setting here is only used when automatically setting the range of the plot.

• Formatters (major and minor) that specify how the tick labels should be drawn.

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_scale_example.py. There
are also some classes in matplotlib.scale that may be used as starting points.

401

Matplotlib, Release 1.3.1

35.2 Creating a new projection

Adding a new projection consists of defining a projection axes which subclasses matplotlib.axes.Axes
and includes the following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• Transformations for the gridlines, ticks and ticklabels. Custom projections will often need to place
these elements in special locations, and matplotlib has a facility to help with doing so.

• Setting up default values (overriding cla()), since the defaults for a rectilinear axes may not be
appropriate.

• Defining the shape of the axes, for example, an elliptical axes, that will be used to draw the background
of the plot and for clipping any data elements.

• Defining custom locators and formatters for the projection. For example, in a geographic projection,
it may be more convenient to display the grid in degrees, even if the data is in radians.

• Set up interactive panning and zooming. This is left as an “advanced” feature left to the reader, but
there is an example of this for polar plots in matplotlib.projections.polar.

• Any additional methods for additional convenience or features.

Once the projection axes is defined, it can be used in one of two ways:

• By defining the class attribute name, the projection axes can be registered with
matplotlib.projections.register_projection() and subsequently simply invoked by
name:

plt.axes(projection=’my_proj_name’)

• For more complex, parameterisable projections, a generic “projection” object may be defined which
includes the method _as_mpl_axes. _as_mpl_axes should take no arguments and return the pro-
jection’s axes subclass and a dictionary of additional arguments to pass to the subclass’ __init__
method. Subsequently a parameterised projection can be initialised with:

plt.axes(projection=MyProjection(param1=param1_value))

where MyProjection is an object which implements a _as_mpl_axes method.

A full-fledged and heavily annotated example is in examples/api/custom_projection_example.py.
The polar plot functionality in matplotlib.projections.polar may also be of interest.

402 Chapter 35. Adding new scales and projections to matplotlib

Matplotlib, Release 1.3.1

35.3 API documentation

35.3.1 matplotlib.scale

class matplotlib.scale.LinearScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

The default linear scale.

get_transform()
The transform for linear scaling is just the IdentityTransform.

set_default_locators_and_formatters(axis)
Set the locators and formatters to reasonable defaults for linear scaling.

class matplotlib.scale.LogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

A standard logarithmic scale. Care is taken so non-positive values are not plotted.

For computational efficiency (to push as much as possible to Numpy C code in the common cases),
this scale provides different transforms depending on the base of the logarithm:

•base 10 (Log10Transform)

•base 2 (Log2Transform)

•base e (NaturalLogTransform)

•arbitrary base (LogTransform)

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as invalid, or clipped
to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.

get_transform()
Return a Transform instance appropriate for the given logarithm base.

limit_range_for_scale(vmin, vmax, minpos)
Limit the domain to positive values.

set_default_locators_and_formatters(axis)
Set the locators and formatters to specialized versions for log scaling.

class matplotlib.scale.ScaleBase
Bases: object

The base class for all scales.

Scales are separable transformations, working on a single dimension.

35.3. API documentation 403

Matplotlib, Release 1.3.1

Any subclasses will want to override:

•name

•get_transform()

And optionally:

•set_default_locators_and_formatters()

•limit_range_for_scale()

get_transform()
Return the Transform object associated with this scale.

limit_range_for_scale(vmin, vmax, minpos)
Returns the range vmin, vmax, possibly limited to the domain supported by this scale.

minpos should be the minimum positive value in the data. This is used by log scales to deter-
mine a minimum value.

set_default_locators_and_formatters(axis)
Set the Locator and Formatter objects on the given axis to match this scale.

class matplotlib.scale.SymmetricalLogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the
origin.

Since the values close to zero tend toward infinity, there is a need to have a range around zero that is
linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having the plot go to
infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.

linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to be stretched relative to the
logarithmic range. Its value is the number of decades to use for each half of the linear range. For
example, when linscale == 1.0 (the default), the space used for the positive and negative halves
of the linear range will be equal to one decade in the logarithmic range.

get_transform()
Return a SymmetricalLogTransform instance.

set_default_locators_and_formatters(axis)
Set the locators and formatters to specialized versions for symmetrical log scaling.

matplotlib.scale.get_scale_docs()
Helper function for generating docstrings related to scales.

404 Chapter 35. Adding new scales and projections to matplotlib

Matplotlib, Release 1.3.1

matplotlib.scale.register_scale(scale_class)
Register a new kind of scale.

scale_class must be a subclass of ScaleBase.

matplotlib.scale.scale_factory(scale, axis, **kwargs)
Return a scale class by name.

ACCEPTS: [linear | log | symlog]

35.3.2 matplotlib.projections

class matplotlib.projections.ProjectionRegistry
Bases: object

Manages the set of projections available to the system.

get_projection_class(name)
Get a projection class from its name.

get_projection_names()
Get a list of the names of all projections currently registered.

register(*projections)
Register a new set of projection(s).

matplotlib.projections.get_projection_class(projection=None)
Get a projection class from its name.

If projection is None, a standard rectilinear projection is returned.

matplotlib.projections.get_projection_names()
Get a list of acceptable projection names.

matplotlib.projections.process_projection_requirements(figure, *args, **kwargs)
Handle the args/kwargs to for add_axes/add_subplot/gca, returning:

(axes_proj_class, proj_class_kwargs, proj_stack_key)

Which can be used for new axes initialization/identification.

Note: kwargs is modified in place.

matplotlib.projections.projection_factory(projection, figure, rect, **kwargs)
Get a new projection instance.

projection is a projection name.

figure is a figure to add the axes to.

rect is a Bbox object specifying the location of the axes within the figure.

Any other kwargs are passed along to the specific projection constructor being used.

35.3. API documentation 405

Matplotlib, Release 1.3.1

Deprecated since version 1.3: This routine is deprecated in favour of getting the projection class
directly with get_projection_class() and initialising it directly. Will be removed in version 1.3.

matplotlib.projections.polar

class matplotlib.projections.polar.InvertedPolarTransform(axis=None,
use_rmin=True)

Bases: matplotlib.transforms.Transform

The inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta and r.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform_non_affine(xy)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

class matplotlib.projections.polar.PolarAffine(scale_transform, limits)
Bases: matplotlib.transforms.Affine2DBase

The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of
the axes circle.

limits is the view limit of the data. The only part of its bounds that is used is ymax (for the radius
maximum). The theta range is always fixed to (0, 2pi).

get_matrix()
Get the Affine transformation array for the affine part of this transform.

class matplotlib.projections.polar.PolarAxes(*args, **kwargs)
Bases: matplotlib.axes.Axes

A polar graph projection, where the input dimensions are theta, r.

Theta starts pointing east and goes anti-clockwise.

class InvertedPolarTransform(axis=None, use_rmin=True)
Bases: matplotlib.transforms.Transform

The inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta
and r.

406 Chapter 35. Adding new scales and projections to matplotlib

Matplotlib, Release 1.3.1

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform_non_affine(xy)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

class PolarAxes.PolarAffine(scale_transform, limits)
Bases: matplotlib.transforms.Affine2DBase

The affine part of the polar projection. Scales the output so that maximum radius rests on the
edge of the axes circle.

limits is the view limit of the data. The only part of its bounds that is used is ymax (for the radius
maximum). The theta range is always fixed to (0, 2pi).

get_matrix()
Get the Affine transformation array for the affine part of this transform.

class PolarAxes.PolarTransform(axis=None, use_rmin=True)
Bases: matplotlib.transforms.Transform

The base polar transform. This handles projection theta and r into Cartesian coordinate space x
and y, but does not perform the ultimate affine transformation into the correct position.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform_non_affine(tr)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

transform_path_non_affine(path)
Returns a path, transformed only by the non-affine part of this transform.

35.3. API documentation 407

Matplotlib, Release 1.3.1

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class PolarAxes.RadialLocator(base)
Bases: matplotlib.ticker.Locator

Used to locate radius ticks.

Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base Locator
(which may be different depending on the scale of the r-axis.

class PolarAxes.ThetaFormatter
Bases: matplotlib.ticker.Formatter

Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a
degree symbol.

PolarAxes.can_pan()
Return True if this axes supports the pan/zoom button functionality.

For polar axes, this is slightly misleading. Both panning and zooming are performed by the same
button. Panning is performed in azimuth while zooming is done along the radial.

PolarAxes.can_zoom()
Return True if this axes supports the zoom box button functionality.

Polar axes do not support zoom boxes.

PolarAxes.format_coord(theta, r)
Return a format string formatting the coordinate using Unicode characters.

PolarAxes.get_data_ratio()
Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0

PolarAxes.get_theta_direction()
Get the direction in which theta increases.

-1: Theta increases in the clockwise direction

1: Theta increases in the counterclockwise direction

PolarAxes.get_theta_offset()
Get the offset for the location of 0 in radians.

PolarAxes.set_rgrids(radii, labels=None, angle=None, fmt=None, **kwargs)
Set the radial locations and labels of the r grids.

The labels will appear at radial distances radii at the given angle in degrees.

labels, if not None, is a len(radii) list of strings of the labels to use at each radius.

If labels is None, the built-in formatter will be used.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text
instances.

kwargs are optional text properties for the labels:

408 Chapter 35. Adding new scales and projections to matplotlib

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of floats

PolarAxes.set_theta_direction(direction)

35.3. API documentation 409

Matplotlib, Release 1.3.1

Set the direction in which theta increases.

clockwise, -1: Theta increases in the clockwise direction

counterclockwise, anticlockwise, 1: Theta increases in the counterclockwise direction

PolarAxes.set_theta_offset(offset)
Set the offset for the location of 0 in radians.

PolarAxes.set_theta_zero_location(loc)
Sets the location of theta’s zero. (Calls set_theta_offset with the correct value in radians under
the hood.)

May be one of “N”, “NW”, “W”, “SW”, “S”, “SE”, “E”, or “NE”.

PolarAxes.set_thetagrids(angles, labels=None, frac=None, fmt=None, **kwargs)
Set the angles at which to place the theta grids (these gridlines are equal along the theta dimen-
sion). angles is in degrees.

labels, if not None, is a len(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt % angle

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). e.g., 1.05
is outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text
instances.

kwargs are optional text properties for the labels:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]

Continued on next page

410 Chapter 35. Adding new scales and projections to matplotlib

Matplotlib, Release 1.3.1

Table 35.2 – continued from previous page
Property Description
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of floats

class matplotlib.projections.polar.PolarTransform(axis=None, use_rmin=True)
Bases: matplotlib.transforms.Transform

The base polar transform. This handles projection theta and r into Cartesian coordinate space x and
y, but does not perform the ultimate affine transformation into the correct position.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform_non_affine(tr)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

35.3. API documentation 411

Matplotlib, Release 1.3.1

transform_path_non_affine(path)
Returns a path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class matplotlib.projections.polar.RadialLocator(base)
Bases: matplotlib.ticker.Locator

Used to locate radius ticks.

Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base Locator (which
may be different depending on the scale of the r-axis.

class matplotlib.projections.polar.ThetaFormatter
Bases: matplotlib.ticker.Formatter

Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree
symbol.

412 Chapter 35. Adding new scales and projections to matplotlib

Part IV

Matplotlib AxesGrid Toolkit

413

Matplotlib, Release 1.3.1

The matplotlib AxesGrid toolkit is a collection of helper classes to ease displaying multiple images in
matplotlib. While the aspect parameter in matplotlib adjust the position of the single axes, AxesGrid toolkit
provides a framework to adjust the position of multiple axes according to their aspects.

Note: AxesGrid toolkit has been a part of matplotlib since v 0.99. Originally, the toolkit had a single
namespace of axes_grid. In more recent version (since svn r8226), the toolkit has divided into two sep-
arate namespace (axes_grid1 and axisartist). While axes_grid namespace is maintained for the backward
compatibility, use of axes_grid1 and axisartist is recommended.

Warning: axes_grid and axisartist (but not axes_grid1) uses a custom Axes class (derived from the
mpl’s original Axes class). As a side effect, some commands (mostly tick-related) do not work. Use
axes_grid1 to avoid this, or see how things are different in axes_grid and axisartist (LINK needed)

415

Matplotlib, Release 1.3.1

416

CHAPTER

THIRTYSIX

OVERVIEW OF AXESGRID TOOLKIT

36.1 What is AxesGrid toolkit?

The matplotlib AxesGrid toolkit is a collection of helper classes, mainly to ease displaying (multiple) images
in matplotlib.

Note: AxesGrid toolkit has been a part of matplotlib since v 0.99. Originally, the toolkit had a single
namespace of axes_grid. In more recent version (since svn r8226), the toolkit has divided into two sep-
arate namespace (axes_grid1 and axisartist). While axes_grid namespace is maintained for the backward
compatibility, use of axes_grid1 and axisartist is recommended.

Warning: axes_grid and axisartist (but not axes_grid1) uses a custom Axes class (derived from the
mpl’s original Axes class). As a side effect, some commands (mostly tick-related) do not work. Use
axes_grid1 to avoid this, or see how things are different in axes_grid and axisartist (LINK needed)

AxesGrid toolkit has two namespaces (axes_grid1 and axisartist). axisartist contains custom Axes class
that is meant to support for curvilinear grids (e.g., the world coordinate system in astronomy). Unlike mpl’s
original Axes class which uses Axes.xaxis and Axes.yaxis to draw ticks, ticklines and etc., Axes in axisartist
uses special artist (AxisArtist) which can handle tick, ticklines and etc. for curved coordinate systems.

417

Matplotlib, Release 1.3.1

−120 ◦ −90 ◦ −60 ◦ −30 ◦

−3
0
◦

0
◦

30
◦

60◦

90◦120
◦

r
=

6

0
2

4
6

8
10

θ
=

60
◦

6

6

8

10

Since it uses a special artists, some mpl commands that work on Axes.xaxis and Axes.yaxis may not work.
See LINK for more detail.

axes_grid1 is a collection of helper classes to ease displaying (multiple) images with matplotlib. In mat-
plotlib, the axes location (and size) is specified in the normalized figure coordinates, which may not be ideal
for displaying images that needs to have a given aspect ratio. For example, it helps you to have a colorbar
whose height always matches that of the image. ImageGrid, RGB Axes and AxesDivider are helper classes
that deals with adjusting the location of (multiple) Axes. They provides a framework to adjust the position
of multiple axes at the drawing time. ParasiteAxes provides twinx(or twiny)-like features so that you can
plot different data (e.g., different y-scale) in a same Axes. AnchoredArtists includes custom artists which
are placed at some anchored position, like the legend.

418 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

20 2

2
0
2

2
0
2

2 0 2

2
0
2

2 0 2 20 2

2
0
2

36.2 AXES_GRID1

36.2.1 ImageGrid

A class that creates a grid of Axes. In matplotlib, the axes location (and size) is specified in the normalized
figure coordinates. This may not be ideal for images that needs to be displayed with a given aspect ratio. For
example, displaying images of a same size with some fixed padding between them cannot be easily done in
matplotlib. ImageGrid is used in such case.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import numpy as np

im = np.arange(100)
im.shape = 10, 10

fig = plt.figure(1, (4., 4.))
grid = ImageGrid(fig, 111, # similar to subplot(111)

nrows_ncols = (2, 2), # creates 2x2 grid of axes
axes_pad=0.1, # pad between axes in inch.
)

for i in range(4):
grid[i].imshow(im) # The AxesGrid object work as a list of axes.

plt.show()

36.2. AXES_GRID1 419

Matplotlib, Release 1.3.1

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

• The position of each axes is determined at the drawing time (see AxesDivider), so that the size of the
entire grid fits in the given rectangle (like the aspect of axes). Note that in this example, the paddings
between axes are fixed even if you changes the figure size.

• axes in the same column has a same axes width (in figure coordinate), and similarly, axes in the same
row has a same height. The widths (height) of the axes in the same row (column) are scaled according
to their view limits (xlim or ylim).

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid

def get_demo_image():
import numpy as np
from matplotlib.cbook import get_sample_data
f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False)
z = np.load(f)
z is a numpy array of 15x15
return z, (-3,4,-4,3)

F = plt.figure(1, (5.5, 3.5))
grid = ImageGrid(F, 111, # similar to subplot(111)

nrows_ncols = (1, 3),
axes_pad = 0.1,
add_all=True,
label_mode = "L",
)

Z, extent = get_demo_image() # demo image

420 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

im1=Z
im2=Z[:,:10]
im3=Z[:,10:]
vmin, vmax = Z.min(), Z.max()
for i, im in enumerate([im1, im2, im3]):

ax = grid[i]
ax.imshow(im, origin="lower", vmin=vmin, vmax=vmax, interpolation="nearest")

plt.draw()
plt.show()

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

0 2 4 6 8 0 1 2 34

• xaxis are shared among axes in a same column. Similarly, yaxis are shared among axes in a same row.
Therefore, changing axis properties (view limits, tick location, etc. either by plot commands or using
your mouse in interactive backends) of one axes will affect all other shared axes.

When initialized, ImageGrid creates given number (ngrids or ncols * nrows if ngrids is None) of Axes
instances. A sequence-like interface is provided to access the individual Axes instances (e.g., grid[0] is the
first Axes in the grid. See below for the order of axes).

AxesGrid takes following arguments,

36.2. AXES_GRID1 421

Matplotlib, Release 1.3.1

Name De-
fault

Description

fig
rect
nrows_ncols number of rows and cols. e.g., (2,2)
ngrids None number of grids. nrows x ncols if None
direc-
tion

“row” increasing direction of axes number. [row|column]

axes_pad 0.02 pad between axes in inches
add_all True Add axes to figures if True
share_all False xaxis & yaxis of all axes are shared if True
aspect True aspect of axes
la-
bel_mode

“L” location of tick labels thaw will be displayed. “1” (only the lower left
axes), “L” (left most and bottom most axes), or “all”.

cbar_modeNone [None|single|each]
cbar_location“right” [right|top]
cbar_pad None pad between image axes and colorbar axes
cbar_size “5%” size of the colorbar
axes_class None

rect specifies the location of the grid. You can either specify coordinates of the rectangle to be
used (e.g., (0.1, 0.1, 0.8, 0.8) as in the Axes), or the subplot-like position (e.g., “121”).

direction means the increasing direction of the axes number.

aspect By default (False), widths and heights of axes in the grid are scaled independently. If
True, they are scaled according to their data limits (similar to aspect parameter in mpl).

share_all if True, xaxis and yaxis of all axes are shared.

direction direction of increasing axes number. For “row”,

grid[0] grid[1]
grid[2] grid[3]

For “column”,

grid[0] grid[2]
grid[1] grid[3]

You can also create a colorbar (or colorbars). You can have colorbar for each axes (cbar_mode=”each”), or
you can have a single colorbar for the grid (cbar_mode=”single”). The colorbar can be placed on your right,
or top. The axes for each colorbar is stored as a cbar_axes attribute.

The examples below show what you can do with AxesGrid.

422 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

20 2

2
0
2

2
0
2

2 0 2

2
0
2

2 0 2 20 2

2
0
2

36.2.2 AxesDivider

Behind the scene, the ImageGrid class and the RGBAxes class utilize the AxesDivider class, whose role
is to calculate the location of the axes at drawing time. While a more about the AxesDivider is (will be)
explained in (yet to be written) AxesDividerGuide, direct use of the AxesDivider class will not be necessary
for most users. The axes_divider module provides a helper function make_axes_locatable, which can be
useful. It takes a existing axes instance and create a divider for it.

ax = subplot(1,1,1)
divider = make_axes_locatable(ax)

make_axes_locatable returns an instance of the AxesLocator class, derived from the Locator. It provides
append_axes method that creates a new axes on the given side of (“top”, “right”, “bottom” and “left”) of the
original axes.

36.2.3 colorbar whose height (or width) in sync with the master axes

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np

ax = plt.subplot(111)
im = ax.imshow(np.arange(100).reshape((10,10)))

create an axes on the right side of ax. The width of cax will be 5%
of ax and the padding between cax and ax will be fixed at 0.05 inch.
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)

plt.colorbar(im, cax=cax)

36.2. AXES_GRID1 423

Matplotlib, Release 1.3.1

0 2 4 6 8

0

2

4

6

8

0

10

20

30

40

50

60

70

80

90

scatter_hist.py with AxesDivider

The “scatter_hist.py” example in mpl can be rewritten using make_axes_locatable.

axScatter = subplot(111)
axScatter.scatter(x, y)
axScatter.set_aspect(1.)

create new axes on the right and on the top of the current axes.
divider = make_axes_locatable(axScatter)
axHistx = divider.append_axes("top", size=1.2, pad=0.1, sharex=axScatter)
axHisty = divider.append_axes("right", size=1.2, pad=0.1, sharey=axScatter)

the scatter plot:
histograms
bins = np.arange(-lim, lim + binwidth, binwidth)
axHistx.hist(x, bins=bins)
axHisty.hist(y, bins=bins, orientation=’horizontal’)

See the full source code below.

424 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3
0

50

100

0 50 100

The scatter_hist using the AxesDivider has some advantage over the original scatter_hist.py in mpl. For
example, you can set the aspect ratio of the scatter plot, even with the x-axis or y-axis is shared accordingly.

36.2.4 ParasiteAxes

The ParasiteAxes is an axes whose location is identical to its host axes. The location is adjusted in the
drawing time, thus it works even if the host change its location (e.g., images).

In most cases, you first create a host axes, which provides a few method that can be used to create parasite
axes. They are twinx, twiny (which are similar to twinx and twiny in the matplotlib) and twin. twin takes
an arbitrary transformation that maps between the data coordinates of the host axes and the parasite axes.
draw method of the parasite axes are never called. Instead, host axes collects artists in parasite axes and
draw them as if they belong to the host axes, i.e., artists in parasite axes are merged to those of the host axes
and then drawn according to their zorder. The host and parasite axes modifies some of the axes behavior.
For example, color cycle for plot lines are shared between host and parasites. Also, the legend command in
host, creates a legend that includes lines in the parasite axes. To create a host axes, you may use host_suplot
or host_axes command.

36.2. AXES_GRID1 425

Matplotlib, Release 1.3.1

Example 1. twinx

from mpl_toolkits.axes_grid1 import host_subplot
import matplotlib.pyplot as plt

host = host_subplot(111)

par = host.twinx()

host.set_xlabel("Distance")
host.set_ylabel("Density")
par.set_ylabel("Temperature")

p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par.plot([0, 1, 2], [0, 3, 2], label="Temperature")

leg = plt.legend()

host.yaxis.get_label().set_color(p1.get_color())
leg.texts[0].set_color(p1.get_color())

par.yaxis.get_label().set_color(p2.get_color())
leg.texts[1].set_color(p2.get_color())

plt.show()

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
e
m

p
e
ra

tu
re

0.0 0.5 1.0 1.5 2.0
Distance

0.0

0.5

1.0

1.5

2.0

D
e
n
si

ty

Density
Temperature

426 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

Example 2. twin

twin without a transform argument treat the parasite axes to have a same data transform as the host. This can
be useful when you want the top(or right)-axis to have different tick-locations, tick-labels, or tick-formatter
for bottom(or left)-axis.

ax2 = ax.twin() # now, ax2 is responsible for "top" axis and "right" axis
ax2.set_xticks([0., .5*np.pi, np.pi, 1.5*np.pi, 2*np.pi])
ax2.set_xticklabels(["0", r"$\frac{1}{2}\pi$",

r"π", r"$\frac{3}{2}\pi$", r"2π"])

0 1
2
π π 3

2
π 2π

1.0

0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7

A more sophisticated example using twin. Note that if you change the x-limit in the host axes, the x-limit of
the parasite axes will change accordingly.

36.2. AXES_GRID1 427

Matplotlib, Release 1.3.1

0.10 0.15 0.20 0.25 0.30
Proper Motion [ϕ

′
/yr]

1000 1500 2000 2500 3000 3500
Linear velocity at 2.3 kpc [km/s]

1000

1500

2000

2500

3000

FW
H

M
 [

km
/s

]

36.2.5 AnchoredArtists

It’s a collection of artists whose location is anchored to the (axes) bbox, like the legend. It is derived from
OffsetBox in mpl, and artist need to be drawn in the canvas coordinate. But, there is a limited support for
an arbitrary transform. For example, the ellipse in the example below will have width and height in the data
coordinate.

import matplotlib.pyplot as plt

def draw_text(ax):
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredText
at = AnchoredText("Figure 1a",

loc=2, prop=dict(size=8), frameon=True,
)

at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

at2 = AnchoredText("Figure 1(b)",
loc=3, prop=dict(size=8), frameon=True,
bbox_to_anchor=(0., 1.),
bbox_transform=ax.transAxes
)

at2.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")

428 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

ax.add_artist(at2)

def draw_circle(ax): # circle in the canvas coordinate
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredDrawingArea
from matplotlib.patches import Circle
ada = AnchoredDrawingArea(20, 20, 0, 0,

loc=1, pad=0., frameon=False)
p = Circle((10, 10), 10)
ada.da.add_artist(p)
ax.add_artist(ada)

def draw_ellipse(ax):
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredEllipse
draw an ellipse of width=0.1, height=0.15 in the data coordinate
ae = AnchoredEllipse(ax.transData, width=0.1, height=0.15, angle=0.,

loc=3, pad=0.5, borderpad=0.4, frameon=True)

ax.add_artist(ae)

def draw_sizebar(ax):
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar
draw a horizontal bar with length of 0.1 in Data coordinate
(ax.transData) with a label underneath.
asb = AnchoredSizeBar(ax.transData,

0.1,
r"1$^{\prime}$",
loc=8,
pad=0.1, borderpad=0.5, sep=5,
frameon=False)

ax.add_artist(asb)

if 1:
ax = plt.gca()
ax.set_aspect(1.)

draw_text(ax)
draw_circle(ax)
draw_ellipse(ax)
draw_sizebar(ax)

plt.show()

36.2. AXES_GRID1 429

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Figure 1a

Figure 1(b)

1′

36.2.6 InsetLocator

mpl_toolkits.axes_grid.inset_locator provides helper classes and functions to place your (inset)
axes at the anchored position of the parent axes, similarly to AnchoredArtist.

Using mpl_toolkits.axes_grid.inset_locator.inset_axes(), you can have inset axes whose size
is either fixed, or a fixed proportion of the parent axes. For example,:

inset_axes = inset_axes(parent_axes,
width="30%", # width = 30% of parent_bbox
height=1., # height : 1 inch
loc=3)

creates an inset axes whose width is 30% of the parent axes and whose height is fixed at 1 inch.

You may creates your inset whose size is determined so that the data scale of the inset axes to be that of the
parent axes multiplied by some factor. For example,

inset_axes = zoomed_inset_axes(ax,
0.5, # zoom = 0.5
loc=1)

creates an inset axes whose data scale is half of the parent axes. Here is complete examples.

430 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.5

For example, zoomed_inset_axes() can be used when you want the inset represents the zoom-up of
the small portion in the parent axes. And mpl_toolkits/axes_grid/inset_locator provides a helper
function mark_inset() to mark the location of the area represented by the inset axes.

import matplotlib.pyplot as plt

from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset

import numpy as np

def get_demo_image():
from matplotlib.cbook import get_sample_data
import numpy as np
f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False)
z = np.load(f)
z is a numpy array of 15x15
return z, (-3,4,-4,3)

fig, ax = plt.subplots(figsize=[5,4])

prepare the demo image
Z, extent = get_demo_image()
Z2 = np.zeros([150, 150], dtype="d")
ny, nx = Z.shape
Z2[30:30+ny, 30:30+nx] = Z

extent = [-3, 4, -4, 3]
ax.imshow(Z2, extent=extent, interpolation="nearest",

origin="lower")

axins = zoomed_inset_axes(ax, 6, loc=1) # zoom = 6
axins.imshow(Z2, extent=extent, interpolation="nearest",

origin="lower")

36.2. AXES_GRID1 431

Matplotlib, Release 1.3.1

sub region of the original image
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)

plt.xticks(visible=False)
plt.yticks(visible=False)

draw a bbox of the region of the inset axes in the parent axes and
connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")

plt.draw()
plt.show()

3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

RGB Axes

RGBAxes is a helper class to conveniently show RGB composite images. Like ImageGrid, the location of
axes are adjusted so that the area occupied by them fits in a given rectangle. Also, the xaxis and yaxis of
each axes are shared.

from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes

fig = plt.figure(1)
ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8])

r, g, b = get_rgb() # r,g,b are 2-d images

432 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

ax.imshow_rgb(r, g, b,
origin="lower", interpolation="nearest")

0 2 4 6 8

2

4

6

8

10

36.3 AXISARTIST

36.3.1 AxisArtist

AxisArtist module provides a custom (and very experimental) Axes class, where each axis (left, right, top
and bottom) have a separate artist associated which is responsible to draw axis-line, ticks, ticklabels, label.
Also, you can create your own axis, which can pass through a fixed position in the axes coordinate, or a
fixed position in the data coordinate (i.e., the axis floats around when viewlimit changes).

The axes class, by default, have its xaxis and yaxis invisible, and has 4 additional artists which are responsi-
ble to draw axis in “left”,”right”,”bottom” and “top”. They are accessed as ax.axis[”left”], ax.axis[”right”],
and so on, i.e., ax.axis is a dictionary that contains artists (note that ax.axis is still a callable methods and it
behaves as an original Axes.axis method in mpl).

To create an axes,

import mpl_toolkits.axisartist as AA
fig = plt.figure(1)
ax = AA.Axes(fig, [0.1, 0.1, 0.8, 0.8])
fig.add_axes(ax)

36.3. AXISARTIST 433

Matplotlib, Release 1.3.1

or to create a subplot

ax = AA.Subplot(fig, 111)
fig.add_subplot(ax)

For example, you can hide the right, and top axis by

ax.axis["right"].set_visible(False)
ax.axis["top"].set_visible(False)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

It is also possible to add an extra axis. For example, you may have an horizontal axis at y=0 (in data
coordinate).

ax.axis["y=0"] = ax.new_floating_axis(nth_coord=0, value=0)

import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as AA

fig = plt.figure(1)
fig.subplots_adjust(right=0.85)
ax = AA.Subplot(fig, 1, 1, 1)
fig.add_subplot(ax)

make some axis invisible
ax.axis["bottom", "top", "right"].set_visible(False)

make an new axis along the first axis axis (x-axis) which pass
throught y=0.
ax.axis["y=0"] = ax.new_floating_axis(nth_coord=0, value=0,

axis_direction="bottom")
ax.axis["y=0"].toggle(all=True)
ax.axis["y=0"].label.set_text("y = 0")

434 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

ax.set_ylim(-2, 4)

plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
y = 0

2

1

0

1

2

3

4

Or a fixed axis with some offset

make new (right-side) yaxis, but wth some offset
ax.axis["right2"] = ax.new_fixed_axis(loc="right",

offset=(20, 0))

AxisArtist with ParasiteAxes

Most commands in the axes_grid1 toolkit can take a axes_class keyword argument, and the commands
creates an axes of the given class. For example, to create a host subplot with axisartist.Axes,

import mpl_tookits.axisartist as AA
from mpl_toolkits.axes_grid1 import host_subplot

host = host_subplot(111, axes_class=AA.Axes)

Here is an example that uses parasiteAxes.

36.3. AXISARTIST 435

Matplotlib, Release 1.3.1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
e
m

p
e
ra

tu
re

10

20

30

40

50

60

V
e
lo

ci
ty

0.0

0.5

1.0

1.5

2.0
D

e
n
si

ty

0.0 0.5 1.0 1.5 2.0
Distance

Density
Temperature
Velocity

36.3.2 Curvilinear Grid

The motivation behind the AxisArtist module is to support curvilinear grid and ticks.

436 Chapter 36. Overview of AxesGrid toolkit

Matplotlib, Release 1.3.1

−120 ◦ −90 ◦ −60 ◦ −30 ◦

−3
0
◦

0
◦

30
◦

60◦

90◦120
◦

r
=

6

0
2

4
6

8
10

θ
=

60
◦

6

6

8

10

See AXISARTIST namespace for more details.

36.3.3 Floating Axes

This also support a Floating Axes whose outer axis are defined as floating axis.

36.3. AXISARTIST 437

Matplotlib, Release 1.3.1

0
1

2
3

4

0
1

2
3

4 1.0

1.5

2.0

0

1
4π

1
2π

8 h

9 h

10 h

11 h12h
13

h

14
h

α
1950

0
5000 10000

cz [k
m
−1]

438 Chapter 36. Overview of AxesGrid toolkit

CHAPTER

THIRTYSEVEN

THE MATPLOTLIB AXESGRID TOOLKIT USER’S GUIDE

Release 1.3.1

Date October 10, 2013

37.1 AxesDivider

The axes_divider module provide helper classes to adjust the axes positions of set of images in the drawing
time.

• axes_size provides a classes of units that the size of each axes will be determined. For example,
you can specify a fixed size

• Divider this is the class that is used calculates the axes position. It divides the given rectangular
area into several areas. You initialize the divider by setting the horizontal and vertical list of sizes that
the division will be based on. You then use the new_locator method, whose return value is a callable
object that can be used to set the axes_locator of the axes.

You first initialize the divider by specifying its grids, i.e., horizontal and vertical.

for example,:

rect = [0.2, 0.2, 0.6, 0.6]
horiz=[h0, h1, h2, h3]
vert=[v0, v1, v2]
divider = Divider(fig, rect, horiz, vert)

where, rect is a bounds of the box that will be divided and h0,..h3, v0,..v2 need to be an instance of classes
in the axes_size. They have get_size method that returns a tuple of two floats. The first float is the relative
size, and the second float is the absolute size. Consider a following grid.

v0
v1
h0,v2 h1 h2 h3

• v0 => 0, 2

• v1 => 2, 0

• v2 => 3, 0

439

Matplotlib, Release 1.3.1

The height of the bottom row is always 2 (axes_divider internally assumes that the unit is inch). The first
and the second rows with height ratio of 2:3. For example, if the total height of the grid 6, then the first and
second row will each occupy 2/(2+3) and 3/(2+3) of (6-1) inches. The widths of columns (horiz) will be
similarly determined. When aspect ratio is set, the total height (or width) will be adjusted accordingly.

The mpl_toolkits.axes_grid.axes_size contains several classes that can be used to set the horizontal
and vertical configurations. For example, for the vertical configuration above will be:

from mpl_toolkits.axes_grid.axes_size import Fixed, Scaled
vert = [Fixed(2), Scaled(2), Scaled(3)]

After you set up the divider object, then you create a locator instance which will be given to the axes.:

locator = divider.new_locator(nx=0, ny=1)
ax.set_axes_locator(locator)

The return value of the new_locator method is a instance of the AxesLocator class. It is a callable object
that returns the location and size of the cell at the first column and the second row. You may create a locator
that spans over multiple cells.:

locator = divider.new_locator(nx=0, nx=2, ny=1)

The above locator, when called, will return the position and size of the cells spanning the first and second
column and the first row. You may consider it as [0:2, 1].

See the example,

import mpl_toolkits.axes_grid.axes_size as Size
from mpl_toolkits.axes_grid import Divider
import matplotlib.pyplot as plt

fig1 = plt.figure(1, (5.5, 4.))

the rect parameter will be ignore as we will set axes_locator
rect = (0.1, 0.1, 0.8, 0.8)
ax = [fig1.add_axes(rect, label="%d"%i) for i in range(4)]

horiz = [Size.Scaled(1.5), Size.Fixed(.5), Size.Scaled(1.),
Size.Scaled(.5)]

vert = [Size.Scaled(1.), Size.Fixed(.5), Size.Scaled(1.5)]

divide the axes rectangle into grid whose size is specified by horiz * vert
divider = Divider(fig1, rect, horiz, vert, aspect=False)

ax[0].set_axes_locator(divider.new_locator(nx=0, ny=0))
ax[1].set_axes_locator(divider.new_locator(nx=0, ny=2))
ax[2].set_axes_locator(divider.new_locator(nx=2, ny=2))
ax[3].set_axes_locator(divider.new_locator(nx=2, nx1=4, ny=0))

for ax1 in ax:
plt.setp(ax1.get_xticklabels()+ax1.get_yticklabels(),

visible=False)

440 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

Matplotlib, Release 1.3.1

plt.draw()
plt.show()

You can adjust the size of the each axes according to their x or y data limits (AxesX and AxesY), similar to
the axes aspect parameter.

import mpl_toolkits.axes_grid.axes_size as Size
from mpl_toolkits.axes_grid import Divider
import matplotlib.pyplot as plt

fig1 = plt.figure(1, (5.5, 4))

the rect parameter will be ignore as we will set axes_locator
rect = (0.1, 0.1, 0.8, 0.8)
ax = [fig1.add_axes(rect, label="%d"%i) for i in range(4)]

horiz = [Size.AxesX(ax[0]), Size.Fixed(.5), Size.AxesX(ax[1])]
vert = [Size.AxesY(ax[0]), Size.Fixed(.5), Size.AxesY(ax[2])]

divide the axes rectangle into grid whose size is specified by horiz * vert
divider = Divider(fig1, rect, horiz, vert, aspect=False)

ax[0].set_axes_locator(divider.new_locator(nx=0, ny=0))
ax[1].set_axes_locator(divider.new_locator(nx=2, ny=0))
ax[2].set_axes_locator(divider.new_locator(nx=0, ny=2))

37.1. AxesDivider 441

Matplotlib, Release 1.3.1

ax[3].set_axes_locator(divider.new_locator(nx=2, ny=2))

ax[0].set_xlim(0, 2)
ax[1].set_xlim(0, 1)

ax[0].set_ylim(0, 1)
ax[2].set_ylim(0, 2)

divider.set_aspect(1.)

for ax1 in ax:
plt.setp(ax1.get_xticklabels()+ax1.get_yticklabels(),

visible=False)

plt.draw()
plt.show()

37.2 AXISARTIST namespace

The AxisArtist namespace includes a derived Axes implementation. The biggest difference is that the artists
responsible to draw axis line, ticks, ticklabel and axis labels are separated out from the mpl’s Axis class,
which are much more than artists in the original mpl. This change was strongly motivated to support curvi-
linear grid. Here are a few things that mpl_tootlkits.axisartist.Axes is different from original Axes from
mpl.

• Axis elements (axis line(spine), ticks, ticklabel and axis labels) are drawn by a AxisArtist instance.

442 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

Matplotlib, Release 1.3.1

Unlike Axis, left, right, top and bottom axis are drawn by separate artists. And each of them may have
different tick location and different tick labels.

• gridlines are drawn by a Gridlines instance. The change was motivated that in curvilinear coordinate,
a gridline may not cross axis-lines (i.e., no associated ticks). In the original Axes class, gridlines are
tied to ticks.

• ticklines can be rotated if necessary (i.e, along the gridlines)

In summary, all these changes was to support

• a curvilinear grid.

• a floating axis

−120 ◦ −90 ◦ −60 ◦ −30 ◦

−3
0
◦

0
◦

30
◦

60◦

90◦120
◦

r
=

6

0
2

4
6

8
10

θ
=

60
◦

6

6

8

10

mpl_toolkits.axisartist.Axes class defines a axis attribute, which is a dictionary of AxisArtist instances. By
default, the dictionary has 4 AxisArtist instances, responsible for drawing of left, right, bottom and top axis.

xaxis and yaxis attributes are still available, however they are set to not visible. As separate artists are used
for rendering axis, some axis-related method in mpl may have no effect. In addition to AxisArtist instances,
the mpl_toolkits.axisartist.Axes will have gridlines attribute (Gridlines), which obviously draws grid lines.

In both AxisArtist and Gridlines, the calculation of tick and grid location is delegated to an instance of
GridHelper class. mpl_toolkits.axisartist.Axes class uses GridHelperRectlinear as a grid helper. The Grid-

37.2. AXISARTIST namespace 443

Matplotlib, Release 1.3.1

HelperRectlinear class is a wrapper around the xaxis and yaxis of mpl’s original Axes, and it was meant to
work as the way how mpl’s original axes works. For example, tick location changes using set_ticks method
and etc. should work as expected. But change in artist properties (e.g., color) will not work in general,
although some effort has been made so that some often-change attributes (color, etc.) are respected.

37.2.1 AxisArtist

AxisArtist can be considered as a container artist with following attributes which will draw ticks, labels, etc.

• line

• major_ticks, major_ticklabels

• minor_ticks, minor_ticklabels

• offsetText

• label

line

Derived from Line2d class. Responsible for drawing a spinal(?) line.

major_ticks, minor_ticks

Derived from Line2d class. Note that ticks are markers.

major_ticklabels, minor_ticklabels

Derived from Text. Note that it is not a list of Text artist, but a single artist (similar to a collection).

axislabel

Derived from Text.

Default AxisArtists

By default, following for axis artists are defined.:

ax.axis["left"], ax.axis["bottom"], ax.axis["right"], ax.axis["top"]

The ticklabels and axislabel of the top and the right axis are set to not visible.

For example, if you want to change the color attributes of major_ticklabels of the bottom x-axis

ax.axis["bottom"].major_ticklabels.set_color("b")

Similarly, to make ticklabels invisible

444 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

Matplotlib, Release 1.3.1

ax.axis["bottom"].major_ticklabels.set_visible(False)

AxisAritst provides a helper method to control the visibility of ticks, ticklabels, and label. To make ticklabel
invisible,

ax.axis["bottom"].toggle(ticklabels=False)

To make all of ticks, ticklabels, and (axis) label invisible

ax.axis["bottom"].toggle(all=False)

To turn all off but ticks on

ax.axis["bottom"].toggle(all=False, ticks=True)

To turn all on but (axis) label off

ax.axis["bottom"].toggle(all=True, label=False))

ax.axis’s __getitem__ method can take multiple axis names. For example, to turn ticklabels of “top” and
“right” axis on,

ax.axis["top","right"].toggle(ticklabels=True))

Note that ‘ax.axis[”top”,”right”]’ returns a simple proxy object that translate above code to something like
below.

for n in ["top","right"]:
ax.axis[n].toggle(ticklabels=True))

So, any return values in the for loop are ignored. And you should not use it anything more than a simple
method.

Like the list indexing ”:” means all items, i.e.,

ax.axis[:].major_ticks.set_color("r")

changes tick color in all axis.

37.2.2 HowTo

1. Changing tick locations and label.

Same as the original mpl’s axes.:

ax.set_xticks([1,2,3])

2. Changing axis properties like color, etc.

Change the properties of appropriate artists. For example, to change the color of the ticklabels:

ax.axis["left"].major_ticklabels.set_color("r")

3. To change the attributes of multiple axis:

37.2. AXISARTIST namespace 445

Matplotlib, Release 1.3.1

ax.axis["left","bottom"].major_ticklabels.set_color("r")

or to change the attributes of all axis:

ax.axis[:].major_ticklabels.set_color("r")

4. To change the tick size (length), you need to use axis.major_ticks.set_ticksize method. To change
the direction of the ticks (ticks are in opposite direction of ticklabels by default), use
axis.major_ticks.set_tick_out method.

To change the pad between ticks and ticklabels, use axis.major_ticklabels.set_pad method.

To change the pad between ticklabels and axis label, axis.label.set_pad method.

37.2.3 Rotation and Alignment of TickLabels

This is also quite different from the original mpl and can be confusing. When you want to rotate the
ticklabels, first consider using “set_axis_direction” method.

ax1.axis["left"].major_ticklabels.set_axis_direction("top")
ax1.axis["right"].label.set_axis_direction("left")

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

La
b
e
l La

b
e
l

0.0 0.2 0.4 0.6 0.8 1.0

The parameter for set_axis_direction is one of [”left”, “right”, “bottom”, “top”].

You must understand some underlying concept of directions.

1. There is a reference direction which is defined as the direction of the axis line with in-
creasing coordinate. For example, the reference direction of the left x-axis is from bottom
to top.

446 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

Matplotlib, Release 1.3.1

0

1

The direction, text angle, and alignments of the ticks, ticklabels and axis-label is
determined with respect to the reference direction

2. ticklabel_direction is either the right-hand side (+) of the reference direction or the left-
hand side (-).

0
1

ticklabel direction= +

0
1

ticklabel direction=−

3. same for the label_direction

La
b
e
l

label direction= +

La
b
e
l

label direction=−

4. ticks are by default drawn toward the opposite direction of the ticklabels.

37.2. AXISARTIST namespace 447

Matplotlib, Release 1.3.1

5. text rotation of ticklabels and label is determined in reference to the ticklabel_direction or
label_direction, respectively. The rotation of ticklabels and label is anchored.

ro
ta

ti
o
n
=

1
0

ro
ta

ti
o
n
=

0

label direction= +

ro
ta

tio
n
=

1
0

ro
ta

tio
n
=

0

label direction=−

On the other hand, there is a concept of “axis_direction”. This is a default setting of above properties for
each, “bottom”, “left”, “top”, and “right” axis.

? ? left bottom right top
axislabel direction ‘-‘ ‘+’ ‘+’ ‘-‘
axislabel rotation 180 0 0 180
axislabel va center top center bottom
axislabel ha right center right center
ticklabel direction ‘-‘ ‘+’ ‘+’ ‘-‘
ticklabels rotation 90 0 -90 180
ticklabel ha right center right center
ticklabel va center baseline center baseline

And, ‘set_axis_direction(“top”)’ means to adjust the text rotation etc, for settings suitable for “top” axis.
The concept of axis direction can be more clear with curved axis.

0
4

8
12

θ=
30
◦

bottom

0

4

8

12

θ=
30
◦left

0
4

8
12

θ=
30
◦top

0

4

8

12

θ=
30
◦

right

−3
0
◦

0
◦

30
◦

60◦
90◦120

◦
r
=

6

bottom

−30 ◦
0 ◦

30
◦60

◦
90

◦
12

0◦

r
=

6

left

−3
0
◦ 0

◦
30
◦

60◦
90◦120

◦

r
=

6

top

−30 ◦

0 ◦

30
◦

60
◦90
◦

12
0◦

r
=

6

right

448 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

Matplotlib, Release 1.3.1

The axis_direction can be adjusted in the AxisArtist level, or in the level of its child arists, i.e., ticks,
ticklabels, and axis-label.

ax1.axis["left"].set_axis_direction("top")

changes axis_direction of all the associated artist with the “left” axis, while

ax1.axis["left"].major_ticklabels.set_axis_direction("top")

changes the axis_direction of only the major_ticklabels. Note that set_axis_direction in the AxisArtist level
changes the ticklabel_direction and label_direction, while changing the axis_direction of ticks, ticklabels,
and axis-label does not affect them.

If you want to make ticks outward and ticklabels inside the axes, use invert_ticklabel_direction method.

ax.axis[:].invert_ticklabel_direction()

A related method is “set_tick_out”. It makes ticks outward (as a matter of fact, it makes ticks toward the
opposite direction of the default direction).

ax.axis[:].major_ticks.set_tick_out(True)

0.2

0.8

Y
-l

a
b
e
l

0.2 0.8

X-label

0.2

0.8

Y
-l

a
b
e
l

0.2 0.8
X-label

So, in summary,

• AxisArtist’s methods

– set_axis_direction : “left”, “right”, “bottom”, or “top”

– set_ticklabel_direction : “+” or “-“

– set_axislabel_direction : “+” or “-“

– invert_ticklabel_direction

• Ticks’ methods (major_ticks and minor_ticks)

– set_tick_out : True or False

– set_ticksize : size in points

• TickLabels’ methods (major_ticklabels and minor_ticklabels)

– set_axis_direction : “left”, “right”, “bottom”, or “top”

– set_rotation : angle with respect to the reference direction

37.2. AXISARTIST namespace 449

Matplotlib, Release 1.3.1

– set_ha and set_va : see below

• AxisLabels’ methods (label)

– set_axis_direction : “left”, “right”, “bottom”, or “top”

– set_rotation : angle with respect to the reference direction

– set_ha and set_va

Adjusting ticklabels alignment

Alignment of TickLabels are treated specially. See below

short

loooong

h
a
=

ri
g
h
t

1
2
π π

va=baseline

short

loooong

h
a
=

ce
n
te

r

1
2
π π

va=top

short

loooong

h
a
=

le
ft

1
2
π π

va=bottom

Adjusting pad

To change the pad between ticks and ticklabels

ax.axis["left"].major_ticklabels.set_pad(10)

Or ticklabels and axis-label

450 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

Matplotlib, Release 1.3.1

ax.axis["left"].label.set_pad(10)

0

4

8
12

θ=
30
◦

default

0

4

8
12

θ=
30
◦

ticklabels.set_pad(10)

0

4

8
12

θ=
30
◦

label.set_pad(20)

0

4

8
12

θ=
30
◦

ticks.set_tick_out(True)

37.2.4 GridHelper

To actually define a curvilinear coordinate, you have to use your own grid helper. A generalised version
of grid helper class is supplied and this class should suffice in most of cases. A user may provide two
functions which defines a transformation (and its inverse pair) from the curved coordinate to (rectilinear)
image coordinate. Note that while ticks and grids are drawn for curved coordinate, the data transform of the
axes itself (ax.transData) is still rectilinear (image) coordinate.

from mpl_toolkits.axisartist.grid_helper_curvelinear \
import GridHelperCurveLinear

from mpl_toolkits.axisartist import Subplot

from curved coordinate to rectlinear coordinate.
def tr(x, y):

x, y = np.asarray(x), np.asarray(y)
return x, y-x

from rectlinear coordinate to curved coordinate.
def inv_tr(x,y):

x, y = np.asarray(x), np.asarray(y)
return x, y+x

grid_helper = GridHelperCurveLinear((tr, inv_tr))

ax1 = Subplot(fig, 1, 1, 1, grid_helper=grid_helper)

fig.add_subplot(ax1)

You may use matplotlib’s Transform instance instead (but a inverse transformation must be defined). Often,
coordinate range in a curved coordinate system may have a limited range, or may have cycles. In those
cases, a more customized version of grid helper is required.

import mpl_toolkits.axisartist.angle_helper as angle_helper

PolarAxes.PolarTransform takes radian. However, we want our coordinate

37.2. AXISARTIST namespace 451

Matplotlib, Release 1.3.1

system in degree
tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

extreme finder : find a range of coordinate.
20, 20 : number of sampling points along x, y direction
The first coordinate (longitude, but theta in polar)
has a cycle of 360 degree.
The second coordinate (latitude, but radius in polar) has a minimum of 0
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,

lon_cycle = 360,
lat_cycle = None,
lon_minmax = None,
lat_minmax = (0, np.inf),
)

Find a grid values appropriate for the coordinate (degree,
minute, second). The argument is a approximate number of grids.
grid_locator1 = angle_helper.LocatorDMS(12)

And also uses an appropriate formatter. Note that,the
acceptable Locator and Formatter class is a bit different than
that of mpl’s, and you cannot directly use mpl’s Locator and
Formatter here (but may be possible in the future).
tick_formatter1 = angle_helper.FormatterDMS()

grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
tick_formatter1=tick_formatter1
)

Again, the transData of the axes is still a rectilinear coordinate (image coordinate). You may manually do
conversion between two coordinates, or you may use Parasite Axes for convenience.:

ax1 = SubplotHost(fig, 1, 2, 2, grid_helper=grid_helper)

A parasite axes with given transform
ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
note that ax2.transData == tr + ax1.transData
Anthing you draw in ax2 will match the ticks and grids of ax1.
ax1.parasites.append(ax2)

452 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

Matplotlib, Release 1.3.1

0.0 1.5 3.0 4.5 6.0 7.5 9.0

0.0

1.5

3.0

4.5

6.0

5
.0

7
.5

1
0

.0
1

2
.5

0.0

2.5

5.0

7.5

10.0 60 ◦90 ◦

6

6

8

10

0 ◦

30 ◦

6 6 8 10 12

37.2.5 FloatingAxis

A floating axis is an axis one of whose data coordinate is fixed, i.e, its location is not fixed in Axes coordinate
but changes as axes data limits changes. A floating axis can be created using new_floating_axis method.
However, it is your responsibility that the resulting AxisArtist is properly added to the axes. A recommended
way is to add it as an item of Axes’s axis attribute.:

floating axis whose first (index starts from 0) coordinate
(theta) is fixed at 60

ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
axis.label.set_text(r"$\theta = 60^{\circ}$")
axis.label.set_visible(True)

See the first example of this page.

37.2.6 Current Limitations and TODO’s

The code need more refinement. Here is a incomplete list of issues and TODO’s

• No easy way to support a user customized tick location (for curvilinear grid). A new Locator class
needs to be created.

• FloatingAxis may have coordinate limits, e.g., a floating axis of x = 0, but y only spans from 0 to 1.

• The location of axislabel of FloatingAxis needs to be optionally given as a coordinate value. ex, a
floating axis of x=0 with label at y=1

37.2. AXISARTIST namespace 453

Matplotlib, Release 1.3.1

454 Chapter 37. The Matplotlib AxesGrid Toolkit User’s Guide

CHAPTER

THIRTYEIGHT

THE MATPLOTLIB AXESGRID TOOLKIT API

Release 1.3.1

Date October 10, 2013

38.1 mpl_toolkits.axes_grid.axes_size

class mpl_toolkits.axes_grid.axes_size.Fixed(fixed_size)
Simple fixed size with absolute part = fixed_size and relative part = 0

class mpl_toolkits.axes_grid.axes_size.Scaled(scalable_size)
Simple scaled(?) size with absolute part = 0 and relative part = scalable_size

class mpl_toolkits.axes_grid.axes_size.AxesX(axes, aspect=1.0)
Scaled size whose relative part corresponds to the data width of the axes multiplied by the aspect.

class mpl_toolkits.axes_grid.axes_size.AxesY(axes, aspect=1.0)
Scaled size whose relative part corresponds to the data height of the axes multiplied by the aspect.

class mpl_toolkits.axes_grid.axes_size.MaxWidth(artist_list)
Size whose absolute part is the largest width of the given artist_list.

class mpl_toolkits.axes_grid.axes_size.MaxHeight(artist_list)
Size whose absolute part is the largest height of the given artist_list.

class mpl_toolkits.axes_grid.axes_size.Fraction(fraction, ref_size)
An instance whose size is a fraction of the ref_size.

>>> s = Fraction(0.3, AxesX(ax))

class mpl_toolkits.axes_grid.axes_size.Padded(size, pad)
Return a instance where the absolute part of size is increase by the amount of pad.

mpl_toolkits.axes_grid.axes_size.from_any(size, fraction_ref=None)
Creates Fixed unit when the first argument is a float, or a Fraction unit if that is a string that ends with
%. The second argument is only meaningful when Fraction unit is created.:

>>> a = Size.from_any(1.2) # => Size.Fixed(1.2)
>>> Size.from_any("50%", a) # => Size.Fraction(0.5, a)

455

Matplotlib, Release 1.3.1

38.2 mpl_toolkits.axes_grid.axes_divider

class mpl_toolkits.axes_grid.axes_divider.Divider(fig, pos, horizontal, vertical, as-
pect=None, anchor=’C’)

This is the class that is used calculates the axes position. It divides the given rectangular area into
several sub-rectangles. You initialize the divider by setting the horizontal and vertical lists of sizes
(mpl_toolkits.axes_grid.axes_size) that the division will be based on. You then use the
new_locator method to create a callable object that can be used to as the axes_locator of the axes.

Parameters

•fig – matplotlib figure

•pos – position (tuple of 4 floats) of the rectangle that will be divided.

•horizontal – list of sizes (axes_size) for horizontal division

•vertical – list of sizes (axes_size) for vertical division

•aspect – if True, the overall rectangular area is reduced so that the relative part of
the horizontal and vertical scales have same scale.

•anchor – Determine how the reduced rectangle is placed when aspect is True.

add_auto_adjustable_area(use_axes, pad=0.1, adjust_dirs=[’left’, ‘right’, ‘bottom’,
‘top’])

append_size(position, size)

get_anchor()
return the anchor

get_aspect()
return aspect

get_horizontal()
return horizontal sizes

get_horizontal_sizes(renderer)

get_locator()

get_position()
return the position of the rectangle.

get_position_runtime(ax, renderer)

get_vertical()
return vertical sizes

get_vertical_sizes(renderer)

456 Chapter 38. The Matplotlib AxesGrid Toolkit API

Matplotlib, Release 1.3.1

get_vsize_hsize()

locate(nx, ny, nx1=None, ny1=None, axes=None, renderer=None)

Parameters

•nx1 (nx,) – Integers specifying the column-position of the cell. When nx1 is
None, a single nx-th column is specified. Otherwise location of columns span-
ning between nx to nx1 (but excluding nx1-th column) is specified.

•ny1 (ny,) – same as nx and nx1, but for row positions.

new_locator(nx, ny, nx1=None, ny1=None)
returns a new locator (mpl_toolkits.axes_grid.axes_divider.AxesLocator) for speci-
fied cell.

Parameters

•nx1 (nx,) – Integers specifying the column-position of the cell. When nx1 is
None, a single nx-th column is specified. Otherwise location of columns span-
ning between nx to nx1 (but excluding nx1-th column) is specified.

•ny1 (ny,) – same as nx and nx1, but for row positions.

set_anchor(anchor)

Parameters anchor – anchor position

value description
‘C’ Center
‘SW’ bottom left
‘S’ bottom
‘SE’ bottom right
‘E’ right
‘NE’ top right
‘N’ top
‘NW’ top left
‘W’ left

set_aspect(aspect=False)

Parameters anchor – True or False

set_horizontal(h)

Parameters horizontal – list of sizes (axes_size) for horizontal division

.

set_locator(_locator)

38.2. mpl_toolkits.axes_grid.axes_divider 457

Matplotlib, Release 1.3.1

set_position(pos)
set the position of the rectangle.

Parameters pos – position (tuple of 4 floats) of the rectangle that will be divided.

set_vertical(v)

Parameters horizontal – list of sizes (axes_size) for horizontal division

.

class mpl_toolkits.axes_grid.axes_divider.AxesLocator(axes_divider, nx, ny, nx1=None,
ny1=None)

A simple callable object, initialized with AxesDivider class, returns the position and size of the given
cell.

Parameters

•axes_divider – An instance of AxesDivider class.

•nx1 (nx,) – Integers specifying the column-position of the cell. When nx1 is
None, a single nx-th column is specified. Otherwise location of columns spanning
between nx to nx1 (but excluding nx1-th column) is is specified.

•ny1 (ny,) – same as nx and nx1, but for row positions.

get_subplotspec()

class mpl_toolkits.axes_grid.axes_divider.SubplotDivider(fig, *args, **kwargs)
The Divider class whose rectangle area is specified as a subplot geometry.

fig is a matplotlib.figure.Figure instance.

args is the tuple (numRows, numCols, plotNum), where the array of subplots in the figure has dimen-
sions numRows, numCols, and where plotNum is the number of the subplot being created. plotNum
starts at 1 in the upper left corner and increases to the right.

If numRows <= numCols <= plotNum < 10, args can be the decimal integer numRows * 100 +

numCols * 10 + plotNum.

change_geometry(numrows, numcols, num)
change subplot geometry, e.g., from 1,1,1 to 2,2,3

get_geometry()
get the subplot geometry, eg 2,2,3

get_position()
return the bounds of the subplot box

get_subplotspec()
get the SubplotSpec instance

set_subplotspec(subplotspec)
set the SubplotSpec instance

458 Chapter 38. The Matplotlib AxesGrid Toolkit API

Matplotlib, Release 1.3.1

update_params()
update the subplot position from fig.subplotpars

class mpl_toolkits.axes_grid.axes_divider.AxesDivider(axes, xref=None, yref=None)
Divider based on the pre-existing axes.

Parameters axes – axes

append_axes(position, size, pad=None, add_to_figure=True, **kwargs)
create an axes at the given position with the same height (or width) of the main axes.

position [”left”|”right”|”bottom”|”top”]

size and pad should be axes_grid.axes_size compatible.

new_horizontal(size, pad=None, pack_start=False, **kwargs)
Add a new axes on the right (or left) side of the main axes.

Parameters

•size – A width of the axes. A axes_size instance or if float or string is given,
from_any function is used to create one, with ref_size set to AxesX instance of
the current axes.

•pad – pad between the axes. It takes same argument as size.

•pack_start – If False, the new axes is appended at the end of the list, i.e., it
became the right-most axes. If True, it is inserted at the start of the list, and
becomes the left-most axes.

All extra keywords arguments are passed to the created axes. If axes_class is given, the new
axes will be created as an instance of the given class. Otherwise, the same class of the main axes
will be used.

new_vertical(size, pad=None, pack_start=False, **kwargs)
Add a new axes on the top (or bottom) side of the main axes.

Parameters

•size – A height of the axes. A axes_size instance or if float or string is given,
from_any function is used to create one, with ref_size set to AxesX instance of
the current axes.

•pad – pad between the axes. It takes same argument as size.

•pack_start – If False, the new axes is appended at the end of the list, i.e., it
became the top-most axes. If True, it is inserted at the start of the list, and
becomes the bottom-most axes.

All extra keywords arguments are passed to the created axes. If axes_class is given, the new
axes will be created as an instance of the given class. Otherwise, the same class of the main axes
will be used.

38.2. mpl_toolkits.axes_grid.axes_divider 459

Matplotlib, Release 1.3.1

38.3 mpl_toolkits.axes_grid.axes_grid

class mpl_toolkits.axes_grid.axes_grid.Grid(fig, rect, nrows_ncols, ngrids=None, direc-
tion=’row’, axes_pad=0.02, add_all=True,
share_all=False, share_x=True,
share_y=True, label_mode=’L’,
axes_class=None)

Build an Grid instance with a grid nrows*ncols Axes in Figure fig with rect=[left, bottom, width,
height] (in Figure coordinates) or the subplot position code (e.g., “121”).

Optional keyword arguments:

Keyword Default Description
direction “row” [“row” | “column”]
axes_pad 0.02 float| pad between axes given in inches
add_all True [True | False]
share_all False [True | False]
share_x True [True | False]
share_y True [True | False]
label_mode “L” [“L” | “1” | “all”]
axes_class None a type object which must be a subclass of Axes

class mpl_toolkits.axes_grid.axes_grid.ImageGrid(fig, rect, nrows_ncols,
ngrids=None, direction=’row’,
axes_pad=0.02, add_all=True,
share_all=False, aspect=True, la-
bel_mode=’L’, cbar_mode=None,
cbar_location=’right’,
cbar_pad=None, cbar_size=‘5%’,
cbar_set_cax=True,
axes_class=None)

Build an ImageGrid instance with a grid nrows*ncols Axes in Figure fig with rect=[left, bottom,
width, height] (in Figure coordinates) or the subplot position code (e.g., “121”).

Optional keyword arguments:

Keyword Default Description
direction “row” [“row” | “column”]
axes_pad 0.02 float| pad between axes given in inches
add_all True [True | False]
share_all False [True | False]
aspect True [True | False]
label_mode “L” [“L” | “1” | “all”]
cbar_mode None [“each” | “single” | “edge”]
cbar_location “right” [“left” | “right” | “bottom” | “top”]
cbar_pad None
cbar_size “5%”
cbar_set_cax True [True | False]
axes_class None a type object which must be a subclass of Axes

460 Chapter 38. The Matplotlib AxesGrid Toolkit API

Matplotlib, Release 1.3.1

cbar_set_cax [if True, each axes in the grid has a cax] attribute that is bind to associated cbar_axes.

38.4 mpl_toolkits.axes_grid.axis_artist

class mpl_toolkits.axes_grid.axis_artist.AxisArtist(axes, helper, offset=None,
axis_direction=’bottom’, **kw)

An artist which draws axis (a line along which the n-th axes coord is constant) line, ticks, ticklabels,
and axis label.

axes : axes helper : an AxisArtistHelper instance.

LABELPAD None

ZORDER = 2.5

draw(artist, renderer, *args, **kwargs)
Draw the axis lines, tick lines and labels

get_axisline_style()
return the current axisline style.

get_helper()
Return axis artist helper instance.

get_tightbbox(renderer)

get_transform()

invert_ticklabel_direction()

set_axis_direction(axis_direction)
Adjust the direction, text angle, text alignment of ticklabels, labels following the matplotlib
convention for the rectangle axes.

The axis_direction must be one of [left, right, bottom, top].

property left bottom right top
ticklabels location “-“ “+” “+” “-“
axislabel location “-“ “+” “+” “-“
ticklabels angle 90 0 -90 180
ticklabel va center baseline center baseline
ticklabel ha right center right center
axislabel angle 180 0 0 180
axislabel va center top center bottom
axislabel ha right center right center

Note that the direction “+” and “-” are relative to the direction of the increasing coordinate.
Also, the text angles are actually relative to (90 + angle of the direction to the ticklabel), which

38.4. mpl_toolkits.axes_grid.axis_artist 461

Matplotlib, Release 1.3.1

gives 0 for bottom axis.

set_axislabel_direction(label_direction)
Adjust the direction of the axislabel.

ACCEPTS: [“+” | “-”]

Note that the label_direction ‘+’ and ‘-‘ are relative to the direction of the increasing coordinate.

set_axisline_style(axisline_style=None, **kw)
Set the axisline style.

axisline_style can be a string with axisline style name with optional comma-separated
attributes. Alternatively, the attrs can be provided as keywords.

set_arrowstyle(“->,size=1.5”) set_arrowstyle(“->”, size=1.5)

Old attrs simply are forgotten.

Without argument (or with arrowstyle=None), return available styles as a list of strings.

set_label(s)

set_ticklabel_direction(tick_direction)
Adjust the direction of the ticklabel.

ACCEPTS: [“+” | “-”]

Note that the label_direction ‘+’ and ‘-‘ are relative to the direction of the increasing coordinate.

toggle(all=None, ticks=None, ticklabels=None, label=None)
Toggle visibility of ticks, ticklabels, and (axis) label. To turn all off,

axis.toggle(all=False)

To turn all off but ticks on

axis.toggle(all=False, ticks=True)

To turn all on but (axis) label off

axis.toggle(all=True, label=False))

class mpl_toolkits.axes_grid.axis_artist.Ticks(ticksize, tick_out=False, **kwargs)
Ticks are derived from Line2D, and note that ticks themselves are markers. Thus, you should use
set_mec, set_mew, etc.

To change the tick size (length), you need to use set_ticksize. To change the direction of the ticks
(ticks are in opposite direction of ticklabels by default), use set_tick_out(False).

get_tick_out()
Return True if the tick will be rotated by 180 degree.

get_ticksize()
Return length of the ticks in points.

462 Chapter 38. The Matplotlib AxesGrid Toolkit API

Matplotlib, Release 1.3.1

set_tick_out(b)
set True if tick need to be rotated by 180 degree.

set_ticksize(ticksize)
set length of the ticks in points.

class mpl_toolkits.axes_grid.axis_artist.AxisLabel(*kl, **kwargs)
Axis Label. Derived from Text. The position of the text is updated in the fly, so changing text position
has no effect. Otherwise, the properties can be changed as a normal Text.

To change the pad between ticklabels and axis label, use set_pad.

get_pad()
return pad in points. See set_pad for more details.

set_axis_direction(d)
Adjust the text angle and text alignment of axis label according to the matplotlib convention.

property left bottom right top
axislabel angle 180 0 0 180
axislabel va center top center bottom
axislabel ha right center right center

Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel),
which gives 0 for bottom axis.

set_pad(pad)
Set the pad in points. Note that the actual pad will be the sum of the internal pad and the
external pad (that are set automatically by the AxisArtist), and it only set the internal pad

class mpl_toolkits.axes_grid.axis_artist.TickLabels(**kwargs)
Tick Labels. While derived from Text, this single artist draws all ticklabels. As in AxisLabel, the
position of the text is updated in the fly, so changing text position has no effect. Otherwise, the
properties can be changed as a normal Text. Unlike the ticklabels of the mainline matplotlib,
properties of single ticklabel alone cannot modified.

To change the pad between ticks and ticklabels, use set_pad.

get_texts_widths_heights_descents(renderer)
return a list of width, height, descent for ticklabels.

set_axis_direction(label_direction)
Adjust the text angle and text alignment of ticklabels according to the matplotlib convention.

The label_direction must be one of [left, right, bottom, top].

property left bottom right top
ticklabels angle 90 0 -90 180
ticklabel va center baseline center baseline
ticklabel ha right center right center

Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel),
which gives 0 for bottom axis.

38.4. mpl_toolkits.axes_grid.axis_artist 463

Matplotlib, Release 1.3.1

464 Chapter 38. The Matplotlib AxesGrid Toolkit API

Part V

mplot3d

465

CHAPTER

THIRTYNINE

MATPLOTLIB MPLOT3D TOOLKIT

The mplot3d toolkit adds simple 3D plotting capabilities to matplotlib by supplying an axes object that can
create a 2D projection of a 3D scene. The resulting graph will have the same look and feel as regular 2D
plots.

The interactive backends also provide the ability to rotate and zoom the 3D scene. One can rotate the 3D
scene by simply clicking-and-dragging the scene. Zooming is done by right-clicking the scene and dragging
the mouse up and down. Note that one does not use the zoom button like one would use for regular 2D plots.

39.1 mplot3d tutorial

467

Matplotlib, Release 1.3.1

Contents

• mplot3d tutorial
– Getting started
– Line plots
– Scatter plots
– Wireframe plots
– Surface plots
– Tri-Surface plots
– Contour plots
– Filled contour plots
– Polygon plots
– Bar plots
– 2D plots in 3D
– Text
– Subplotting

39.1.1 Getting started

An Axes3D object is created just like any other axes using the projection=‘3d’ keyword. Create a new
matplotlib.figure.Figure and add a new axes to it of type Axes3D:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection=’3d’)

New in version 1.0.0: This approach is the preferred method of creating a 3D axes.

Note: Prior to version 1.0.0, the method of creating a 3D axes was different. For those using older versions
of matplotlib, change ax = fig.add_subplot(111, projection=’3d’) to ax = Axes3D(fig).

39.1.2 Line plots

Axes3D.plot(xs, ys, *args, **kwargs)
Plot 2D or 3D data.

Argument Description
xs, ys X, y coordinates of vertices
zs z value(s), either one for all points or one for each point.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.

Other arguments are passed on to plot()

468 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

4
2

0
2

4 4
3

2
1
0

1
2

3
4

5
2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

parametric curve

39.1.3 Scatter plots

Axes3D.scatter(xs, ys, zs=0, zdir=’z’, s=20, c=’b’, *args, **kwargs)
Create a scatter plot.

Argu-
ment

Description

xs, ys Positions of data points.
zs Either an array of the same length as xs and ys or a single value to place all points in the

same plane. Default is 0.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.
s size in points^2. It is a scalar or an array of the same length as x and y.
c a color. c can be a single color format string, or a sequence of color specifications of

length N, or a sequence of N numbers to be mapped to colors using the cmap and norm
specified via kwargs (see below). Note that c should not be a single numeric RGB or
RGBA sequence because that is indistinguishable from an array of values to be
colormapped. c can be a 2-D array in which the rows are RGB or RGBA, however.

Keyword arguments are passed on to scatter().

Returns a Patch3DCollection

39.1. mplot3d tutorial 469

Matplotlib, Release 1.3.1

X Label

22 24 26 28 30 32 34

Y
La

bel

20
0
20

40
60

80
100

120

Z
 L

a
b
e
l

60

50

40

30

20

10

0

39.1.4 Wireframe plots

Axes3D.plot_wireframe(X, Y, Z, *args, **kwargs)
Plot a 3D wireframe.

Argument Description
X, Y, Data values as 2D arrays
Z
rstride Array row stride (step size)
cstride Array column stride (step size)

Keyword arguments are passed on to LineCollection.

Returns a Line3DCollection

470 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

30 20 10 0 10 20 30 30
20

10
0

10
20

30
80
60
40
20
0
20
40
60
80
100

39.1.5 Surface plots

Axes3D.plot_surface(X, Y, Z, *args, **kwargs)
Create a surface plot.

By default it will be colored in shades of a solid color, but it also supports color mapping by supplying
the cmap argument.

Argument Description
X, Y, Z Data values as 2D arrays
rstride Array row stride (step size)
cstride Array column stride (step size)
color Color of the surface patches
cmap A colormap for the surface patches.
facecolors Face colors for the individual patches
norm An instance of Normalize to map values to colors
vmin Minimum value to map
vmax Maximum value to map
shade Whether to shade the facecolors

Other arguments are passed on to Poly3DCollection

39.1. mplot3d tutorial 471

Matplotlib, Release 1.3.1

6 4 2 0 2 4 6 6
4

2
0

2
4

6
-1.01
-0.79
-0.56
-0.34
-0.11
0.11
0.34
0.56
0.79
1.01

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

472 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

10
5

0
5

10 10

5
0

5
10

10

5

0

5

10

39.1. mplot3d tutorial 473

Matplotlib, Release 1.3.1

6 4 2 0 2 4 6 6
4

2
0

2
4

6
1.0

0.6

0.2

0.2

0.6

1.0

39.1.6 Tri-Surface plots

Axes3D.plot_trisurf(*args, **kwargs)
Argument Description
X, Y, Z Data values as 1D arrays
color Color of the surface patches
cmap A colormap for the surface patches.
norm An instance of Normalize to map values to colors
vmin Minimum value to map
vmax Maximum value to map
shade Whether to shade the facecolors

The (optional) triangulation can be specified in one of two ways; either:

plot_trisurf(triangulation, ...)

where triangulation is a Triangulation object, or:

plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

474 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

The remaining arguments are:

plot_trisurf(..., Z)

where Z is the array of values to contour, one per point in the triangulation.

Other arguments are passed on to Poly3DCollection

Examples:

1.0
0.5

0.0
0.5

1.0 1.0

0.5
0.0

0.5
1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

39.1. mplot3d tutorial 475

Matplotlib, Release 1.3.1

1.5 1.0 0.50.0 0.5 1.0 1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5
1.0

0.5

0.0

0.5

1.0

476 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

1.0
0.5

0.0
0.5

1.0 1.0

0.5
0.0

0.5
1.0

1.0

0.5

0.0

0.5

1.0

New in version 1.2.0: This plotting function was added for the v1.2.0 release.

39.1. mplot3d tutorial 477

Matplotlib, Release 1.3.1

1.0
0.5

0.0
0.5

1.0 1.0

0.5
0.0

0.5
1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

39.1.7 Contour plots

Axes3D.contour(X, Y, Z, *args, **kwargs)
Create a 3D contour plot.

Argument Description
X, Y, Data values as numpy.arrays
Z
extend3d Whether to extend contour in 3D (default: False)
stride Stride (step size) for extending contour
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the contour lines on this position in plane normal to zdir

The positional and other keyword arguments are passed on to contour()

Returns a contour

478 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

30 20 10 0 10 20 30
20

10
0

10
20

60
40
20
0
20
40
60
80

39.1. mplot3d tutorial 479

Matplotlib, Release 1.3.1

30 20 10 0 10 20 30
20

10
0

10
20

60
40
20
0
20
40
60
80

480 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

X

40 30 20 100 10 20 30 40

Y

40
30

20
10

0
10

20
30

40

Z

100

50

0

50

100

39.1.8 Filled contour plots

Axes3D.contourf(X, Y, Z, *args, **kwargs)
Create a 3D contourf plot.

Argument Description
X, Y, Data values as numpy.arrays
Z
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the filled contour on this position in plane normal to zdir

The positional and keyword arguments are passed on to contourf()

Returns a contourf

Changed in version 1.1.0: The zdir and offset kwargs were added.

39.1. mplot3d tutorial 481

Matplotlib, Release 1.3.1

30 20 10 0 10 20 30
20

10
0

10
20

60
40
20
0
20
40
60
80

482 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

X

40 30 20 100 10 20 30 40

Y

40
30

20
10

0
10

20
30

40

Z

100

50

0

50

100

New in version 1.1.0: The feature demoed in the second contourf3d example was enabled as a result of a
bugfix for version 1.1.0.

39.1.9 Polygon plots

Axes3D.add_collection3d(col, zs=0, zdir=’z’)
Add a 3D collection object to the plot.

2D collection types are converted to a 3D version by modifying the object and adding z coordinate
information.

Supported are:

•PolyCollection

•LineColleciton

•PatchCollection

39.1. mplot3d tutorial 483

Matplotlib, Release 1.3.1

X

0
2

4
6

8
10

Y

1
0

1
2

3
4

Z

0.0

0.2

0.4

0.6

0.8

1.0

39.1.10 Bar plots

Axes3D.bar(left, height, zs=0, zdir=’z’, *args, **kwargs)
Add 2D bar(s).

Argument Description
left The x coordinates of the left sides of the bars.
height The height of the bars.
zs Z coordinate of bars, if one value is specified they will all be placed at the same z.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.

Keyword arguments are passed onto bar().

Returns a Patch3DCollection

484 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

X

0
5

10
15

20

Y

0
5

10
15

20
25

30

Z

0.0

0.2

0.4

0.6

0.8

1.0

39.1. mplot3d tutorial 485

Matplotlib, Release 1.3.1

39.1.11 2D plots in 3D

0.0
0.2

0.4
0.6

0.8
1.00.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

zs=0, zdir=z

39.1.12 Text

Axes3D.text(x, y, z, s, zdir=None, **kwargs)
Add text to the plot. kwargs will be passed on to Axes.text, except for the zdir keyword, which sets
the direction to be used as the z direction.

486 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

X axis

0
2

4
6

8
10

Y
ax

is

0
2

4
6

8
10

Z
 a

x
is

0

2

4

6

8

10

(2, 6, 4), dir=None

(6, 4, 2), dir=x

(4
, 8

, 5
),

dir=
y

(9
,
7
,
6
),

 d
ir

=
z

(7, 2, 1), dir=(1, 1, 0)
(2

, 2
, 7

),
dir=

(1
, 1

, 1
)

red

2D Text

39.1.13 Subplotting

Having multiple 3D plots in a single figure is the same as it is for 2D plots. Also, you can have both 2D and
3D plots in the same figure.

New in version 1.0.0: Subplotting 3D plots was added in v1.0.0. Earlier version can not do this.

39.1. mplot3d tutorial 487

Matplotlib, Release 1.3.1

6 4 20 2 4 6 6
4

2
0

2
4
6
1.0

0.5

0.0

0.5

1.0

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

3020 100 10 20 30 30
20

10
0
10

20
30

80
60
40
20
0
20
40
60
80
100

488 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

0 1 2 3 4 5
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

D
a
m

p
e
d
 o

sc
ill

a
ti

o
n

6 4 2 0 2 4 6 6
4

2
0

2
4

6
1.0

0.5

0.0

0.5

1.0

A tale of 2 subplots

39.2 mplot3d API

39.2. mplot3d API 489

Matplotlib, Release 1.3.1

Contents

• mplot3d API
– axes3d
– axis3d
– art3d
– proj3d

39.2.1 axes3d

Note: Significant effort went into bringing axes3d to feature-parity with regular axes objects for version
1.1.0. However, more work remains. Please report any functions that do not behave as expected as a bug. In
addition, help and patches would be greatly appreciated!

Module containing Axes3D, an object which can plot 3D objects on a 2D matplotlib figure.

class mpl_toolkits.mplot3d.axes3d.Axes3D(fig, rect=None, *args, **kwargs)
Bases: matplotlib.axes.Axes

3D axes object.

add_collection3d(col, zs=0, zdir=’z’)
Add a 3D collection object to the plot.

2D collection types are converted to a 3D version by modifying the object and adding z coordi-
nate information.

Supported are:

•PolyCollection

•LineColleciton

•PatchCollection

add_contour_set(cset, extend3d=False, stride=5, zdir=’z’, offset=None)

add_contourf_set(cset, zdir=’z’, offset=None)

auto_scale_xyz(X, Y, Z=None, had_data=None)

autoscale(enable=True, axis=’both’, tight=None)
Convenience method for simple axis view autoscaling. See
matplotlib.axes.Axes.autoscale() for full explanation. Note that this function be-
haves the same, but for all three axes. Therfore, ‘z’ can be passed for axis, and ‘both’ applies to
all three axes.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

490 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

autoscale_view(tight=None, scalex=True, scaley=True, scalez=True)
Autoscale the view limits using the data limits. See
matplotlib.axes.Axes.autoscale_view() for documentation. Note that this func-
tion applies to the 3D axes, and as such adds the scalez to the function arguments.

Changed in version 1.1.0: Function signature was changed to better match the 2D version. tight
is now explicitly a kwarg and placed first.

Changed in version 1.2.1: This is now fully functional.

bar(left, height, zs=0, zdir=’z’, *args, **kwargs)
Add 2D bar(s).

Argument Description
left The x coordinates of the left sides of the bars.
height The height of the bars.
zs Z coordinate of bars, if one value is specified they will all be placed at the same z.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.

Keyword arguments are passed onto bar().

Returns a Patch3DCollection

bar3d(x, y, z, dx, dy, dz, color=’b’, zsort=’average’, *args, **kwargs)
Generate a 3D bar, or multiple bars.

When generating multiple bars, x, y, z have to be arrays. dx, dy, dz can be arrays or scalars.

color can be:

•A single color value, to color all bars the same color.

•An array of colors of length N bars, to color each bar independently.

•An array of colors of length 6, to color the faces of the bars similarly.

•An array of colors of length 6 * N bars, to color each face independently.

When coloring the faces of the boxes specifically, this is the order of the coloring:

1.-Z (bottom of box)

2.+Z (top of box)

3.-Y

4.+Y

5.-X

6.+X

Keyword arguments are passed onto Poly3DCollection()

can_pan()
Return True if this axes supports the pan/zoom button functionality.

3D axes objects do not use the pan/zoom button.

39.2. mplot3d API 491

Matplotlib, Release 1.3.1

can_zoom()
Return True if this axes supports the zoom box button functionality.

3D axes objects do not use the zoom box button.

cla()
Clear axes

clabel(*args, **kwargs)
This function is currently not implemented for 3D axes. Returns None.

contour(X, Y, Z, *args, **kwargs)
Create a 3D contour plot.

Argu-
ment

Description

X, Y, Data values as numpy.arrays
Z
extend3d Whether to extend contour in 3D (default: False)
stride Stride (step size) for extending contour
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the contour lines on this position in plane

normal to zdir

The positional and other keyword arguments are passed on to contour()

Returns a contour

contour3D(X, Y, Z, *args, **kwargs)
Create a 3D contour plot.

Argu-
ment

Description

X, Y, Data values as numpy.arrays
Z
extend3d Whether to extend contour in 3D (default: False)
stride Stride (step size) for extending contour
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the contour lines on this position in plane

normal to zdir

The positional and other keyword arguments are passed on to contour()

Returns a contour

contourf(X, Y, Z, *args, **kwargs)
Create a 3D contourf plot.

492 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

Argu-
ment

Description

X, Y, Data values as numpy.arrays
Z
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the filled contour on this position in plane

normal to zdir

The positional and keyword arguments are passed on to contourf()

Returns a contourf

Changed in version 1.1.0: The zdir and offset kwargs were added.

contourf3D(X, Y, Z, *args, **kwargs)
Create a 3D contourf plot.

Argu-
ment

Description

X, Y, Data values as numpy.arrays
Z
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the filled contour on this position in plane

normal to zdir

The positional and keyword arguments are passed on to contourf()

Returns a contourf

Changed in version 1.1.0: The zdir and offset kwargs were added.

convert_zunits(z)
For artists in an axes, if the zaxis has units support, convert z using zaxis unit type

New in version 1.2.1.

disable_mouse_rotation()
Disable mouse button callbacks.

draw(renderer)

format_coord(xd, yd)
Given the 2D view coordinates attempt to guess a 3D coordinate. Looks for the nearest edge to
the point and then assumes that the point is at the same z location as the nearest point on the
edge.

format_zdata(z)
Return z string formatted. This function will use the fmt_zdata attribute if it is callable, else
will fall back on the zaxis major formatter

get_autoscale_on()
Get whether autoscaling is applied for all axes on plot commands

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

39.2. mplot3d API 493

Matplotlib, Release 1.3.1

get_autoscalez_on()
Get whether autoscaling for the z-axis is applied on plot commands

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

get_axis_position()

get_axisbelow()
Get whether axis below is true or not.

For axes3d objects, this will always be True

New in version 1.1.0: This function was added for completeness.

get_children()

get_frame_on()
Get whether the 3D axes panels are drawn

New in version 1.1.0.

get_proj()
Create the projection matrix from the current viewing position.

elev stores the elevation angle in the z plane azim stores the azimuth angle in the x,y plane

dist is the distance of the eye viewing point from the object point.

get_w_lims()
Get 3D world limits.

get_xlim()
Get the x-axis range [left, right]

Changed in version 1.1.0: This function now correctly refers to the 3D x-limits

get_xlim3d()
Get the x-axis range [left, right]

Changed in version 1.1.0: This function now correctly refers to the 3D x-limits

get_ylim()
Get the y-axis range [bottom, top]

Changed in version 1.1.0: This function now correctly refers to the 3D y-limits.

get_ylim3d()
Get the y-axis range [bottom, top]

Changed in version 1.1.0: This function now correctly refers to the 3D y-limits.

get_zbound()
Returns the z-axis numerical bounds where:

lowerBound < upperBound

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

494 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

get_zlabel()
Get the z-label text string.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

get_zlim()
Get 3D z limits.

get_zlim3d()
Get 3D z limits.

get_zmajorticklabels()
Get the ztick labels as a list of Text instances

New in version 1.1.0.

get_zminorticklabels()
Get the ztick labels as a list of Text instances

Note: Minor ticks are not supported. This function was added only for completeness.

New in version 1.1.0.

get_zscale()

get_zticklabels(minor=False)
Get ztick labels as a list of Text instances. See matplotlib.axes.Axes.get_yticklabels()
for more details.

Note: Minor ticks are not supported.

New in version 1.1.0.

get_zticklines()
Get ztick lines as a list of Line2D instances. Note that this function is provided merely for
completeness. These lines are re-calculated as the display changes.

New in version 1.1.0.

get_zticks(minor=False)
Return the z ticks as a list of locations See matplotlib.axes.Axes.get_yticks() for more
details.

Note: Minor ticks are not supported.

New in version 1.1.0.

grid(b=True, **kwargs)
Set / unset 3D grid.

Note: Currently, this function does not behave the same as matplotlib.axes.Axes.grid(),
but it is intended to eventually support that behavior.

39.2. mplot3d API 495

Matplotlib, Release 1.3.1

Changed in version 1.1.0: This function was changed, but not tested. Please report any bugs.

have_units()
Return True if units are set on the x, y, or z axes

invert_zaxis()
Invert the z-axis.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

locator_params(axis=’both’, tight=None, **kwargs)
Convenience method for controlling tick locators.

See matplotlib.axes.Axes.locator_params() for full documentation Note that this is for
Axes3D objects, therefore, setting axis to ‘both’ will result in the parameters being set for all
three axes. Also, axis can also take a value of ‘z’ to apply parameters to the z axis.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

margins(*args, **kw)
Convenience method to set or retrieve autoscaling margins.

signatures:: margins()

returns xmargin, ymargin, zmargin

margins(margin)

margins(xmargin, ymargin, zmargin)

margins(x=xmargin, y=ymargin, z=zmargin)

margins(..., tight=False)

All forms above set the xmargin, ymargin and zmargin parameters. All keyword parameters are
optional. A single argument specifies xmargin, ymargin and zmargin. The tight parameter is
passed to autoscale_view(), which is executed after a margin is changed; the default here is
True, on the assumption that when margins are specified, no additional padding to match tick
marks is usually desired. Setting tight to None will preserve the previous setting.

Specifying any margin changes only the autoscaling; for example, if xmargin is not None, then
xmargin times the X data interval will be added to each end of that interval before it is used in
autoscaling.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

mouse_init(rotate_btn=1, zoom_btn=3)
Initializes mouse button callbacks to enable 3D rotation of the axes. Also optionally sets the
mouse buttons for 3D rotation and zooming.

496 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

Argu-
ment

Description

ro-
tate_btn

The integer or list of integers specifying which mouse button or buttons to use for
3D rotation of the axes. Default = 1.

zoom_btn The integer or list of integers specifying which mouse button or buttons to use to
zoom the 3D axes. Default = 3.

name = ‘3d’

plot(xs, ys, *args, **kwargs)
Plot 2D or 3D data.

Argument Description
xs, ys X, y coordinates of vertices
zs z value(s), either one for all points or one for each point.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.

Other arguments are passed on to plot()

plot3D(xs, ys, *args, **kwargs)
Plot 2D or 3D data.

Argument Description
xs, ys X, y coordinates of vertices
zs z value(s), either one for all points or one for each point.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.

Other arguments are passed on to plot()

plot_surface(X, Y, Z, *args, **kwargs)
Create a surface plot.

By default it will be colored in shades of a solid color, but it also supports color mapping by
supplying the cmap argument.

Argument Description
X, Y, Z Data values as 2D arrays
rstride Array row stride (step size)
cstride Array column stride (step size)
color Color of the surface patches
cmap A colormap for the surface patches.
facecolors Face colors for the individual patches
norm An instance of Normalize to map values to colors
vmin Minimum value to map
vmax Maximum value to map
shade Whether to shade the facecolors

Other arguments are passed on to Poly3DCollection

plot_trisurf(*args, **kwargs)

39.2. mplot3d API 497

Matplotlib, Release 1.3.1

Argument Description
X, Y, Z Data values as 1D arrays
color Color of the surface patches
cmap A colormap for the surface patches.
norm An instance of Normalize to map values to colors
vmin Minimum value to map
vmax Maximum value to map
shade Whether to shade the facecolors

The (optional) triangulation can be specified in one of two ways; either:

plot_trisurf(triangulation, ...)

where triangulation is a Triangulation object, or:

plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The remaining arguments are:

plot_trisurf(..., Z)

where Z is the array of values to contour, one per point in the triangulation.

Other arguments are passed on to Poly3DCollection

Examples:

498 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

1.0
0.5

0.0
0.5

1.0 1.0

0.5
0.0

0.5
1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

39.2. mplot3d API 499

Matplotlib, Release 1.3.1

1.5 1.0 0.50.0 0.5 1.0 1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5
1.0

0.5

0.0

0.5

1.0

500 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

1.0
0.5

0.0
0.5

1.0 1.0

0.5
0.0

0.5
1.0

1.0

0.5

0.0

0.5

1.0

New in version 1.2.0: This plotting function was added for the v1.2.0 release.

plot_wireframe(X, Y, Z, *args, **kwargs)
Plot a 3D wireframe.

Argument Description
X, Y, Data values as 2D arrays
Z
rstride Array row stride (step size)
cstride Array column stride (step size)

Keyword arguments are passed on to LineCollection.

Returns a Line3DCollection

scatter(xs, ys, zs=0, zdir=’z’, s=20, c=’b’, *args, **kwargs)
Create a scatter plot.

39.2. mplot3d API 501

Matplotlib, Release 1.3.1

Ar-
gu-
ment

Description

xs, ys Positions of data points.
zs Either an array of the same length as xs and ys or a single value to place all points in

the same plane. Default is 0.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.
s size in points^2. It is a scalar or an array of the same length as x and y.
c a color. c can be a single color format string, or a sequence of color specifications of

length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values
to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA,
however.

Keyword arguments are passed on to scatter().

Returns a Patch3DCollection

scatter3D(xs, ys, zs=0, zdir=’z’, s=20, c=’b’, *args, **kwargs)
Create a scatter plot.

Ar-
gu-
ment

Description

xs, ys Positions of data points.
zs Either an array of the same length as xs and ys or a single value to place all points in

the same plane. Default is 0.
zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.
s size in points^2. It is a scalar or an array of the same length as x and y.
c a color. c can be a single color format string, or a sequence of color specifications of

length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values
to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA,
however.

Keyword arguments are passed on to scatter().

Returns a Patch3DCollection

set_autoscale_on(b)
Set whether autoscaling is applied on plot commands

accepts: [True | False]

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

set_autoscalez_on(b)
Set whether autoscaling for the z-axis is applied on plot commands

accepts: [True | False]

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

502 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

set_axis_off()

set_axis_on()

set_axisbelow(b)
Set whether the axis ticks and gridlines are above or below most artists

For axes3d objects, this will ignore any settings and just use True

ACCEPTS: [True | False]

New in version 1.1.0: This function was added for completeness.

set_frame_on(b)
Set whether the 3D axes panels are drawn

ACCEPTS: [True | False]

New in version 1.1.0.

set_title(label, fontdict=None, loc=’center’, **kwargs)
Set a title for the axes.

Set one of the three available axes titles. The available titles are positioned above the axes in the
center, flush with the left edge, and flush with the right edge.

Parameters label : str

Text to use for the title

fontdict : dict

A dictionary controlling the appearance of the title text, the default fontdict
is:

{’fontsize’: rcParams[’axes.titlesize’],
’verticalalignment’: ’baseline’,
’horizontalalignment’: loc}

loc : {‘center’, ‘left’, ‘right’}, str, optional

Which title to set, defaults to ‘center’

Returns text : Text

The matplotlib text instance representing the title

Other Parameters Other keyword arguments are text properties, see :

:class:‘~matplotlib.text.Text‘ for a list of valid text :

properties. :

set_top_view()

39.2. mplot3d API 503

Matplotlib, Release 1.3.1

set_xlim(left=None, right=None, emit=True, auto=False, **kw)
Set 3D x limits.

See matplotlib.axes.Axes.set_xlim() for full documentation.

set_xlim3d(left=None, right=None, emit=True, auto=False, **kw)
Set 3D x limits.

See matplotlib.axes.Axes.set_xlim() for full documentation.

set_xscale(value, **kwargs)
Call signature:

set_xscale(value)

Set the scaling of the x-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]
Different kwargs are accepted, depending on the scale: ‘linear’

‘log’
basex/basey: The base of the logarithm
nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as in-

valid, or clipped to a very small positive number
subsx/subsy: Where to place the subticks between each major tick. Should be a se-

quence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
‘symlog’

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having

the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be a se-

quence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to be stretched

relative to the logarithmic range. Its value is the number of decades to use for each
half of the linear range. For example, when linscale == 1.0 (the default), the space
used for the positive and negative halves of the linear range will be equal to one
decade in the logarithmic range.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

set_ylim(bottom=None, top=None, emit=True, auto=False, **kw)
Set 3D y limits.

See matplotlib.axes.Axes.set_ylim() for full documentation.

set_ylim3d(bottom=None, top=None, emit=True, auto=False, **kw)
Set 3D y limits.

See matplotlib.axes.Axes.set_ylim() for full documentation.

504 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

set_yscale(value, **kwargs)
Call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]
Different kwargs are accepted, depending on the scale: ‘linear’

‘log’
basex/basey: The base of the logarithm
nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as in-

valid, or clipped to a very small positive number
subsx/subsy: Where to place the subticks between each major tick. Should be a se-

quence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
‘symlog’

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having

the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be a se-

quence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to be stretched

relative to the logarithmic range. Its value is the number of decades to use for each
half of the linear range. For example, when linscale == 1.0 (the default), the space
used for the positive and negative halves of the linear range will be equal to one
decade in the logarithmic range.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

set_zbound(lower=None, upper=None)
Set the lower and upper numerical bounds of the z-axis. This method will honor axes inversion
regardless of parameter order. It will not change the _autoscaleZon attribute.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

set_zlabel(zlabel, fontdict=None, labelpad=None, **kwargs)
Set zlabel. See doc for set_ylabel() for description.

Note: Currently, labelpad does not have an effect on the labels.

set_zlim(bottom=None, top=None, emit=True, auto=False, **kw)
Set 3D z limits.

See matplotlib.axes.Axes.set_ylim() for full documentation

set_zlim3d(bottom=None, top=None, emit=True, auto=False, **kw)
Set 3D z limits.

39.2. mplot3d API 505

Matplotlib, Release 1.3.1

See matplotlib.axes.Axes.set_ylim() for full documentation

set_zmargin(m)
Set padding of Z data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.

accepts: float in range 0 to 1

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

set_zscale(value, **kwargs)
call signature:

set_zscale(value)

Set the scaling of the z-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]
Different kwargs are accepted, depending on the scale: ‘linear’

‘log’
basex/basey: The base of the logarithm
nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as in-

valid, or clipped to a very small positive number
subsx/subsy: Where to place the subticks between each major tick. Should be a se-

quence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
‘symlog’

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having

the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be a se-

quence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to be stretched

relative to the logarithmic range. Its value is the number of decades to use for each
half of the linear range. For example, when linscale == 1.0 (the default), the space
used for the positive and negative halves of the linear range will be equal to one
decade in the logarithmic range.

Note: Currently, Axes3D objects only supports linear scales. Other scales may or may not work,
and support for these is improving with each release.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

set_zticklabels(*args, **kwargs)
Set z-axis tick labels. See matplotlib.axes.Axes.set_yticklabels() for more details.

Note: Minor ticks are not supported by Axes3D objects.

506 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

New in version 1.1.0.

set_zticks(*args, **kwargs)
Set z-axis tick locations. See matplotlib.axes.Axes.set_yticks() for more details.

Note: Minor ticks are not supported.

New in version 1.1.0.

text(x, y, z, s, zdir=None, **kwargs)
Add text to the plot. kwargs will be passed on to Axes.text, except for the zdir keyword, which
sets the direction to be used as the z direction.

text2D(x, y, s, fontdict=None, withdash=False, **kwargs)
Add text to the axes.

Add text in string s to axis at location x, y, data coordinates.
Parameters s : string

text
x, y : scalars

data coordinates
fontdict : dictionary, optional, default: None

A dictionary to override the default text properties. If fontdict is None, the de-
faults are determined by your rc parameters.

withdash : boolean, optional, default: False
Creates a TextWithDash instance instead of a Text instance.

Other Parameters kwargs : Text properties.
Other miscellaneous text parameters.

Examples

Individual keyword arguments can be used to override any given parameter:

>>> text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in
axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center
of the axes:

>>> text(0.5, 0.5,’matplotlib’, horizontalalignment=’center’,
... verticalalignment=’center’,
... transform=ax.transAxes)

You can put a rectangular box around the text instance (e.g., to set a background color) by using
the keyword bbox. bbox is a dictionary of Rectangle properties. For example:

>>> text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

39.2. mplot3d API 507

Matplotlib, Release 1.3.1

text3D(x, y, z, s, zdir=None, **kwargs)
Add text to the plot. kwargs will be passed on to Axes.text, except for the zdir keyword, which
sets the direction to be used as the z direction.

tick_params(axis=’both’, **kwargs)
Convenience method for changing the appearance of ticks and tick labels.

See matplotlib.axes.Axes.tick_params() for more complete documentation.

The only difference is that setting axis to ‘both’ will mean that the settings are applied to all three
axes. Also, the axis parameter also accepts a value of ‘z’, which would mean to apply to only the
z-axis.

Also, because of how Axes3D objects are drawn very differently from regular 2D axes, some of
these settings may have ambiguous meaning. For simplicity, the ‘z’ axis will accept settings as if
it was like the ‘y’ axis.

Note: While this function is currently implemented, the core part of the Axes3D object may
ignore some of these settings. Future releases will fix this. Priority will be given to those who
file bugs.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

ticklabel_format(**kwargs)
Convenience method for manipulating the ScalarFormatter used by default for linear axes in
Axed3D objects.

See matplotlib.axes.Axes.ticklabel_format() for full documentation. Note that this
version applies to all three axes of the Axes3D object. Therefore, the axis argument will also
accept a value of ‘z’ and the value of ‘both’ will apply to all three axes.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

tricontour(X, Y, Z, *args, **kwargs)
Create a 3D contour plot.

Argu-
ment

Description

X, Y, Data values as numpy.arrays
Z
extend3d Whether to extend contour in 3D (default: False)
stride Stride (step size) for extending contour
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the contour lines on this position in plane normal

to zdir

Other keyword arguments are passed on to tricontour()

Returns a contour

New in version 1.1.0.

tricontourf(X, Y, Z, offset=None, zdir=’z’, *args, **kwargs)
Create a 3D contourf plot.

508 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

Argu-
ment

Description

X, Y, Data values as numpy.arrays
Z
zdir The direction to use: x, y or z (default)
offset If specified plot a projection of the contour lines on this position in plane normal

to zdir

Other keyword arguments are passed on to tricontour()

Returns a contour

New in version 1.1.0.

tunit_cube(vals=None, M=None)

tunit_edges(vals=None, M=None)

unit_cube(vals=None)

update_datalim(xys, **kwargs)

view_init(elev=None, azim=None)
Set the elevation and azimuth of the axes.

This can be used to rotate the axes programatically.

‘elev’ stores the elevation angle in the z plane. ‘azim’ stores the azimuth angle in the x,y plane.

if elev or azim are None (default), then the initial value is used which was specified in the Axes3D
constructor.

zaxis_date(tz=None)
Sets up z-axis ticks and labels that treat the z data as dates.

tz is a timezone string or tzinfo instance. Defaults to rc value.

Note: This function is merely provided for completeness. Axes3D objects do not officially
support dates for ticks, and so this may or may not work as expected.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

zaxis_inverted()
Returns True if the z-axis is inverted.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

mpl_toolkits.mplot3d.axes3d.get_test_data(delta=0.05)
Return a tuple X, Y, Z with a test data set.

mpl_toolkits.mplot3d.axes3d.unit_bbox()

39.2. mplot3d API 509

Matplotlib, Release 1.3.1

39.2.2 axis3d

Note: Historically, axis3d has suffered from having hard-coded constants controlling the look and feel of the
3D plot. This precluded user level adjustments such as label spacing, font colors and panel colors. For ver-
sion 1.1.0, these constants have been consolidated into a single private member dictionary, self._axinfo,
for the axis object. This is intended only as a stop-gap measure to allow user-level customization, but it is
not intended to be permanent.

class mpl_toolkits.mplot3d.axis3d.Axis(adir, v_intervalx, d_intervalx, axes, *args,
**kwargs)

Bases: matplotlib.axis.XAxis

draw(renderer)

draw_pane(renderer)

get_major_ticks(numticks=None)

get_rotate_label(text)

get_tick_positions()

get_tightbbox(renderer)

get_view_interval()
return the Interval instance for this 3d axis view limits

init3d()

set_pane_color(color)
Set pane color to a RGBA tuple

set_pane_pos(xys)

set_rotate_label(val)
Whether to rotate the axis label: True, False or None. If set to None the label will be rotated if
longer than 4 chars.

set_view_interval(vmin, vmax, ignore=False)

class mpl_toolkits.mplot3d.axis3d.XAxis(adir, v_intervalx, d_intervalx, axes, *args,
**kwargs)

Bases: mpl_toolkits.mplot3d.axis3d.Axis

510 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

get_data_interval()
return the Interval instance for this axis data limits

class mpl_toolkits.mplot3d.axis3d.YAxis(adir, v_intervalx, d_intervalx, axes, *args,
**kwargs)

Bases: mpl_toolkits.mplot3d.axis3d.Axis

get_data_interval()
return the Interval instance for this axis data limits

class mpl_toolkits.mplot3d.axis3d.ZAxis(adir, v_intervalx, d_intervalx, axes, *args,
**kwargs)

Bases: mpl_toolkits.mplot3d.axis3d.Axis

get_data_interval()
return the Interval instance for this axis data limits

mpl_toolkits.mplot3d.axis3d.get_flip_min_max(coord, index, mins, maxs)

mpl_toolkits.mplot3d.axis3d.move_from_center(coord, centers, deltas, axmask=(True,
True, True))

Return a coordinate that is moved by “deltas” away from the center.

mpl_toolkits.mplot3d.axis3d.tick_update_position(tick, tickxs, tickys, labelpos)
Update tick line and label position and style.

39.2.3 art3d

Module containing 3D artist code and functions to convert 2D artists into 3D versions which can be added
to an Axes3D.

class mpl_toolkits.mplot3d.art3d.Line3D(xs, ys, zs, *args, **kwargs)
Bases: matplotlib.lines.Line2D

3D line object.

Keyword arguments are passed onto Line2D().

draw(renderer)

set_3d_properties(zs=0, zdir=’z’)

class mpl_toolkits.mplot3d.art3d.Line3DCollection(segments, *args, **kwargs)
Bases: matplotlib.collections.LineCollection

A collection of 3D lines.

Keyword arguments are passed onto LineCollection().

do_3d_projection(renderer)
Project the points according to renderer matrix.

39.2. mplot3d API 511

Matplotlib, Release 1.3.1

draw(renderer, project=False)

set_segments(segments)
Set 3D segments

set_sort_zpos(val)
Set the position to use for z-sorting.

class mpl_toolkits.mplot3d.art3d.Patch3D(*args, **kwargs)
Bases: matplotlib.patches.Patch

3D patch object.

do_3d_projection(renderer)

draw(renderer)

get_facecolor()

get_path()

set_3d_properties(verts, zs=0, zdir=’z’)

class mpl_toolkits.mplot3d.art3d.Patch3DCollection(*args, **kwargs)
Bases: matplotlib.collections.PatchCollection

A collection of 3D patches.

do_3d_projection(renderer)

draw(renderer)

set_3d_properties(zs, zdir)

set_sort_zpos(val)
Set the position to use for z-sorting.

class mpl_toolkits.mplot3d.art3d.PathPatch3D(path, **kwargs)
Bases: mpl_toolkits.mplot3d.art3d.Patch3D

3D PathPatch object.

do_3d_projection(renderer)

set_3d_properties(path, zs=0, zdir=’z’)

512 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

class mpl_toolkits.mplot3d.art3d.Poly3DCollection(verts, *args, **kwargs)
Bases: matplotlib.collections.PolyCollection

A collection of 3D polygons.

Create a Poly3DCollection.

verts should contain 3D coordinates.

Keyword arguments: zsort, see set_zsort for options.

Note that this class does a bit of magic with the _facecolors and _edgecolors properties.

do_3d_projection(renderer)
Perform the 3D projection for this object.

draw(renderer)

get_edgecolor()

get_edgecolors()

get_facecolor()

get_facecolors()

get_vector(segments3d)
Optimize points for projection

set_3d_properties()

set_edgecolor(colors)

set_edgecolors(colors)

set_facecolor(colors)

set_facecolors(colors)

set_sort_zpos(val)
Set the position to use for z-sorting.

set_verts(verts, closed=True)
Set 3D vertices.

set_zsort(zsort)

Set z-sorting behaviour: boolean: if True use default ‘average’ string: ‘average’, ‘min’ or ‘max’

39.2. mplot3d API 513

Matplotlib, Release 1.3.1

class mpl_toolkits.mplot3d.art3d.Text3D(x=0, y=0, z=0, text=’‘, zdir=’z’, **kwargs)
Bases: matplotlib.text.Text

Text object with 3D position and (in the future) direction.

x, y, z Position of text text Text string to display zdir Direction of text

Keyword arguments are passed onto Text().

draw(renderer)

set_3d_properties(z=0, zdir=’z’)

mpl_toolkits.mplot3d.art3d.get_colors(c, num)
Stretch the color argument to provide the required number num

mpl_toolkits.mplot3d.art3d.get_dir_vector(zdir)

mpl_toolkits.mplot3d.art3d.get_patch_verts(patch)
Return a list of vertices for the path of a patch.

mpl_toolkits.mplot3d.art3d.iscolor(c)

mpl_toolkits.mplot3d.art3d.juggle_axes(xs, ys, zs, zdir)
Reorder coordinates so that 2D xs, ys can be plotted in the plane orthogonal to zdir. zdir is normally
x, y or z. However, if zdir starts with a ‘-‘ it is interpreted as a compensation for rotate_axes.

mpl_toolkits.mplot3d.art3d.line_2d_to_3d(line, zs=0, zdir=’z’)
Convert a 2D line to 3D.

mpl_toolkits.mplot3d.art3d.line_collection_2d_to_3d(col, zs=0, zdir=’z’)
Convert a LineCollection to a Line3DCollection object.

mpl_toolkits.mplot3d.art3d.norm_angle(a)
Return angle between -180 and +180

mpl_toolkits.mplot3d.art3d.norm_text_angle(a)
Return angle between -90 and +90

mpl_toolkits.mplot3d.art3d.patch_2d_to_3d(patch, z=0, zdir=’z’)
Convert a Patch to a Patch3D object.

mpl_toolkits.mplot3d.art3d.patch_collection_2d_to_3d(col, zs=0, zdir=’z’)
Convert a PatchCollection to a Patch3DCollection object.

mpl_toolkits.mplot3d.art3d.path_to_3d_segment(path, zs=0, zdir=’z’)
Convert a path to a 3D segment.

mpl_toolkits.mplot3d.art3d.pathpatch_2d_to_3d(pathpatch, z=0, zdir=’z’)
Convert a PathPatch to a PathPatch3D object.

mpl_toolkits.mplot3d.art3d.paths_to_3d_segments(paths, zs=0, zdir=’z’)
Convert paths from a collection object to 3D segments.

514 Chapter 39. Matplotlib mplot3d toolkit

Matplotlib, Release 1.3.1

mpl_toolkits.mplot3d.art3d.poly_collection_2d_to_3d(col, zs=0, zdir=’z’)
Convert a PolyCollection to a Poly3DCollection object.

mpl_toolkits.mplot3d.art3d.rotate_axes(xs, ys, zs, zdir)
Reorder coordinates so that the axes are rotated with zdir along the original z axis. Prepending the
axis with a ‘-‘ does the inverse transform, so zdir can be x, -x, y, -y, z or -z

mpl_toolkits.mplot3d.art3d.text_2d_to_3d(obj, z=0, zdir=’z’)
Convert a Text to a Text3D object.

mpl_toolkits.mplot3d.art3d.zalpha(colors, zs)
Modify the alphas of the color list according to depth

39.2.4 proj3d

Various transforms used for by the 3D code

mpl_toolkits.mplot3d.proj3d.inv_transform(xs, ys, zs, M)

mpl_toolkits.mplot3d.proj3d.line2d(p0, p1)
Return 2D equation of line in the form ax+by+c = 0

mpl_toolkits.mplot3d.proj3d.line2d_dist(l, p)
Distance from line to point line is a tuple of coefficients a,b,c

mpl_toolkits.mplot3d.proj3d.line2d_seg_dist(p1, p2, p0)
distance(s) from line defined by p1 - p2 to point(s) p0

p0[0] = x(s) p0[1] = y(s)

intersection point p = p1 + u*(p2-p1) and intersection point lies within segment if u is between 0 and
1

mpl_toolkits.mplot3d.proj3d.mod(v)
3d vector length

mpl_toolkits.mplot3d.proj3d.persp_transformation(zfront, zback)

mpl_toolkits.mplot3d.proj3d.proj_points(points, M)

mpl_toolkits.mplot3d.proj3d.proj_trans_clip_points(points, M)

mpl_toolkits.mplot3d.proj3d.proj_trans_points(points, M)

mpl_toolkits.mplot3d.proj3d.proj_transform(xs, ys, zs, M)
Transform the points by the projection matrix

mpl_toolkits.mplot3d.proj3d.proj_transform_clip(xs, ys, zs, M)
Transform the points by the projection matrix and return the clipping result returns txs,tys,tzs,tis

39.2. mplot3d API 515

Matplotlib, Release 1.3.1

mpl_toolkits.mplot3d.proj3d.proj_transform_vec(vec, M)

mpl_toolkits.mplot3d.proj3d.proj_transform_vec_clip(vec, M)

mpl_toolkits.mplot3d.proj3d.rot_x(V, alpha)

mpl_toolkits.mplot3d.proj3d.test_lines_dists()

mpl_toolkits.mplot3d.proj3d.test_proj()

mpl_toolkits.mplot3d.proj3d.test_proj_draw_axes(M, s=1)

mpl_toolkits.mplot3d.proj3d.test_proj_make_M(E=None)

mpl_toolkits.mplot3d.proj3d.test_rot()

mpl_toolkits.mplot3d.proj3d.test_world()

mpl_toolkits.mplot3d.proj3d.transform(xs, ys, zs, M)
Transform the points by the projection matrix

mpl_toolkits.mplot3d.proj3d.vec_pad_ones(xs, ys, zs)

mpl_toolkits.mplot3d.proj3d.view_transformation(E, R, V)

mpl_toolkits.mplot3d.proj3d.world_transformation(xmin, xmax, ymin, ymax, zmin, zmax)

39.3 mplot3d FAQ

39.3.1 How is mplot3d different from MayaVi?

MayaVi2 is a very powerful and featureful 3D graphing library. For advanced 3D scenes and excellent
rendering capabilities, it is highly recomended to use MayaVi2.

mplot3d was intended to allow users to create simple 3D graphs with the same “look-and-feel” as mat-
plotlib’s 2D plots. Furthermore, users can use the same toolkit that they are already familiar with to generate
both their 2D and 3D plots.

516 Chapter 39. Matplotlib mplot3d toolkit

http://code.enthought.com/projects/mayavi/documentation.php

Matplotlib, Release 1.3.1

39.3.2 My 3D plot doesn’t look right at certain viewing angles

This is probably the most commonly reported issue with mplot3d. The problem is that – from some viewing
angles – a 3D object would appear in front of another object, even though it is physically behind it. This can
result in plots that do not look “physically correct.”

Unfortunately, while some work is being done to reduce the occurance of this artifact, it is currently an
intractable problem, and can not be fully solved until matplotlib supports 3D graphics rendering at its core.

The problem occurs due to the reduction of 3D data down to 2D + z-order scalar. A single value represents
the 3rd dimension for all parts of 3D objects in a collection. Therefore, when the bounding boxes of two
collections intersect, it becomes possible for this artifact to occur. Furthermore, the intersection of two 3D
objects (such as polygons or patches) can not be rendered properly in matplotlib’s 2D rendering engine.

This problem will likely not be solved until OpenGL support is added to all of the backends (patches are
greatly welcomed). Until then, if you need complex 3D scenes, we recommend using MayaVi.

39.3.3 I don’t like how the 3D plot is laid out, how do I change that?

Historically, mplot3d has suffered from a hard-coding of parameters used to control visuals such as label
spacing, tick length, and grid line width. Work is being done to eliminate this issue. For matplotlib v1.1.0,
there is a semi-official manner to modify these parameters. See the note in the axis3d section of the mplot3d
API documentation for more information.

39.3. mplot3d FAQ 517

http://code.enthought.com/projects/mayavi/documentation.php

Matplotlib, Release 1.3.1

518 Chapter 39. Matplotlib mplot3d toolkit

Part VI

Toolkits

519

Matplotlib, Release 1.3.1

Toolkits are collections of application-specific functions that extend matplotlib.

521

Matplotlib, Release 1.3.1

522

CHAPTER

FORTY

BASEMAP (NOT DISTRIBUTED WITH MATPLOTLIB)

Plots data on map projections, with continental and political boundaries, see basemap docs.

523

http://matplotlib.org/basemap

Matplotlib, Release 1.3.1

524 Chapter 40. Basemap (Not distributed with matplotlib)

CHAPTER

FORTYONE

CARTOPY (NOT DISTRIBUTED WITH MATPLOTLIB)

An alternative mapping library written for matplotlib v1.2 and beyond. Cartopy builds on top of matplotlib
to provide object oriented map projection definitions and close integration with Shapely for powerful yet
easy-to-use vector data processing tools. An example plot from the Cartopy gallery:

525

http://scitools.org.uk/cartopy/docs/latest
http://scitools.org.uk/cartopy/docs/latest/gallery.html

Matplotlib, Release 1.3.1

526 Chapter 41. Cartopy (Not distributed with matplotlib)

CHAPTER

FORTYTWO

GTK TOOLS

mpl_toolkits.gtktools provides some utilities for working with GTK. This toolkit ships with matplotlib, but
requires pygtk.

527

http://www.pygtk.org/

Matplotlib, Release 1.3.1

528 Chapter 42. GTK Tools

CHAPTER

FORTYTHREE

EXCEL TOOLS

mpl_toolkits.exceltools provides some utilities for working with Excel. This toolkit ships with matplotlib,
but requires xlwt

529

http://pypi.python.org/pypi/xlwt

Matplotlib, Release 1.3.1

530 Chapter 43. Excel Tools

CHAPTER

FORTYFOUR

NATGRID (NOT DISTRIBUTED WITH MATPLOTLIB)

mpl_toolkits.natgrid is an interface to natgrid C library for gridding irregularly spaced data. This requires a
separate installation of the natgrid toolkit from the sourceforge download page.

531

http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

Matplotlib, Release 1.3.1

532 Chapter 44. Natgrid (Not distributed with matplotlib)

CHAPTER

FORTYFIVE

MPLOT3D

mpl_toolkits.mplot3d provides some basic 3D plotting (scatter, surf, line, mesh) tools. Not the fastest or
feature complete 3D library out there, but ships with matplotlib and thus may be a lighter weight solution
for some use cases.

X

40 30 20 100 10 20 30 40

Y

40
30

20
10

0
10

20
30

40

Z

100

50

0

50

100

533

Matplotlib, Release 1.3.1

534 Chapter 45. mplot3d

CHAPTER

FORTYSIX

AXESGRID

The matplotlib AxesGrid toolkit is a collection of helper classes to ease displaying multiple images in mat-
plotlib. The AxesGrid toolkit is distributed with matplotlib source.

535

Matplotlib, Release 1.3.1

536 Chapter 46. AxesGrid

Part VII

The Matplotlib API

537

CHAPTER

FORTYSEVEN

PLOTTING COMMANDS SUMMARY

matplotlib.pyplot.plotting()

Function Description
acorr Plot the autocorrelation of x.
annotate Create an annotation: a piece of text referring to a data point.
arrow Add an arrow to the axes.
autoscale Autoscale the axis view to the data (toggle).
axes Add an axes to the figure.
axhline Add a horizontal line across the axis.
axhspan Add a horizontal span (rectangle) across the axis.
axis Convenience method to get or set axis properties.
axvline Add a vertical line across the axes.
axvspan Add a vertical span (rectangle) across the axes.
bar Make a bar plot.
barbs Plot a 2-D field of barbs.
barh Make a horizontal bar plot.
box Turn the axes box on or off.
boxplot Make a box and whisker plot.
broken_barh Plot horizontal bars.
cla Clear the current axes.
clabel Label a contour plot.
clf Clear the current figure.
clim Set the color limits of the current image.
close Close a figure window.
cohere Plot the coherence between x and y.
colorbar Add a colorbar to a plot.
contour Plot contours.
contourf Plot contours.
csd Plot cross-spectral density.
delaxes Remove an axes from the current figure.
draw Redraw the current figure.
errorbar Plot an errorbar graph.
eventplot Plot identical parallel lines at specific positions.
figimage Adds a non-resampled image to the figure.

Continued on next page

539

Matplotlib, Release 1.3.1

Table 47.1 – continued from previous page
Function Description
figlegend Place a legend in the figure.
figtext Add text to figure.
figure Creates a new figure.
fill Plot filled polygons.
fill_between Make filled polygons between two curves.
fill_betweenx Make filled polygons between two horizontal curves.
findobj Find artist objects.
gca Return the current axis instance.
gcf Return a reference to the current figure.
gci Get the current colorable artist.
get_figlabels Return a list of existing figure labels.
get_fignums Return a list of existing figure numbers.
grid Turn the axes grids on or off.
hexbin Make a hexagonal binning plot.
hist Plot a histogram.
hist2d Make a 2D histogram plot.
hlines Plot horizontal lines.
hold Set the hold state.
imread Read an image from a file into an array.
imsave Save an array as in image file.
imshow Display an image on the axes.
ioff Turn interactive mode off.
ion Turn interactive mode on.
ishold Return the hold status of the current axes.
isinteractive Return status of interactive mode.
legend Place a legend on the current axes.
locator_params Control behavior of tick locators.
loglog Make a plot with log scaling on both the x and y axis.
margins Set or retrieve autoscaling margins.
matshow Display an array as a matrix in a new figure window.
minorticks_off Remove minor ticks from the current plot.
minorticks_on Display minor ticks on the current plot.
over Call a function with hold(True).
pause Pause for interval seconds.
pcolor Create a pseudocolor plot of a 2-D array.
pcolormesh Plot a quadrilateral mesh.
pie Plot a pie chart.
plot Plot lines and/or markers to the Axes.
plot_date Plot with data with dates.
plotfile Plot the data in in a file.
polar Make a polar plot.
psd Plot the power spectral density.
quiver Plot a 2-D field of arrows.
quiverkey Add a key to a quiver plot.
rc Set the current rc params.

Continued on next page

540 Chapter 47. Plotting commands summary

Matplotlib, Release 1.3.1

Table 47.1 – continued from previous page
Function Description
rc_context Return a context manager for managing rc settings.
rcdefaults Restore the default rc params.
rgrids Get or set the radial gridlines on a polar plot.
savefig Save the current figure.
sca Set the current Axes instance to ax.
scatter Make a scatter plot of x vs y, where x and y are sequence like objects of the same lengths.
sci Set the current image.
semilogx Make a plot with log scaling on the x axis.
semilogy Make a plot with log scaling on the y axis.
set_cmap Set the default colormap.
setp Set a property on an artist object.
show Display a figure.
specgram Plot a spectrogram.
spy Plot the sparsity pattern on a 2-D array.
stackplot Draws a stacked area plot.
stem Create a stem plot.
step Make a step plot.
streamplot Draws streamlines of a vector flow.
subplot Return a subplot axes positioned by the given grid definition.
subplot2grid Create a subplot in a grid.
subplot_tool Launch a subplot tool window for a figure.
subplots Create a figure with a set of subplots already made.
subplots_adjust Tune the subplot layout.
suptitle Add a centered title to the figure.
switch_backend Switch the default backend.
table Add a table to the current axes.
text Add text to the axes.
thetagrids Get or set the theta locations of the gridlines in a polar plot.
tick_params Change the appearance of ticks and tick labels.
ticklabel_format Change the ScalarFormatter used by default for linear axes.
tight_layout Automatically adjust subplot parameters to give specified padding.
title Set a title of the current axes.
tricontour Draw contours on an unstructured triangular grid.
tricontourf Draw contours on an unstructured triangular grid.
tripcolor Create a pseudocolor plot of an unstructured triangular grid.
triplot Draw a unstructured triangular grid as lines and/or markers.
twinx Make a second axes that shares the x-axis.
twiny Make a second axes that shares the y-axis.
vlines Plot vertical lines.
xcorr Plot the cross correlation between x and y.
xkcd Turns on xkcd sketch-style drawing mode.
xlabel Set the x axis label of the current axis.
xlim Get or set the x limits of the current axes.
xscale Set the scaling of the x-axis.
xticks Get or set the x-limits of the current tick locations and labels.

Continued on next page

541

http://xkcd.com/

Matplotlib, Release 1.3.1

Table 47.1 – continued from previous page
Function Description
ylabel Set the y axis label of the current axis.
ylim Get or set the y-limits of the current axes.
yscale Set the scaling of the y-axis.
yticks Get or set the y-limits of the current tick locations and labels.

matplotlib.pyplot.colormaps()
Matplotlib provides a number of colormaps, and others can be added using register_cmap(). This
function documents the built-in colormaps, and will also return a list of all registered colormaps if
called.

You can set the colormap for an image, pcolor, scatter, etc, using a keyword argument:

imshow(X, cmap=cm.hot)

or using the set_cmap() function:

imshow(X)
pyplot.set_cmap(’hot’)
pyplot.set_cmap(’jet’)

In interactive mode, set_cmap() will update the colormap post-hoc, allowing you to see which one
works best for your data.

All built-in colormaps can be reversed by appending _r: For instance, gray_r is the reverse of gray.

There are several common color schemes used in visualization:

Sequential schemes for unipolar data that progresses from low to high

Diverging schemes for bipolar data that emphasizes positive or negative deviations from a central
value

Cyclic schemes meant for plotting values that wrap around at the endpoints, such as phase angle, wind
direction, or time of day

Qualitative schemes for nominal data that has no inherent ordering, where color is used only to dis-
tinguish categories

The base colormaps are derived from those of the same name provided with Matlab:

542 Chapter 47. Plotting commands summary

Matplotlib, Release 1.3.1

Col-
ormap

Description

au-
tumn

sequential linearly-increasing shades of red-orange-yellow

bone sequential increasing black-white color map with a tinge of blue, to emulate
X-ray film

cool linearly-decreasing shades of cyan-magenta
cop-
per

sequential increasing shades of black-copper

flag repetitive red-white-blue-black pattern (not cyclic at endpoints)
gray sequential linearly-increasing black-to-white grayscale
hot sequential black-red-yellow-white, to emulate blackbody radiation from an

object at increasing temperatures
hsv cyclic red-yellow-green-cyan-blue-magenta-red, formed by changing the hue

component in the HSV color space
jet a spectral map with dark endpoints, blue-cyan-yellow-red; based on a fluid-jet

simulation by NCSA 1

pink sequential increasing pastel black-pink-white, meant for sepia tone colorization
of photographs

prism repetitive red-yellow-green-blue-purple-...-green pattern (not cyclic at endpoints)
spring linearly-increasing shades of magenta-yellow
sum-
mer

sequential linearly-increasing shades of green-yellow

win-
ter

linearly-increasing shades of blue-green

For the above list only, you can also set the colormap using the corresponding pylab shortcut interface
function, similar to Matlab:

imshow(X)
hot()
jet()

The next set of palettes are from the Yorick scientific visualisation package, an evolution of the GIST
package, both by David H. Munro:

Col-
ormap

Description

gist_earthmapmaker’s colors from dark blue deep ocean to green lowlands to brown
highlands to white mountains

gist_heat sequential increasing black-red-orange-white, to emulate blackbody radiation
from an iron bar as it grows hotter

gist_ncarpseudo-spectral black-blue-green-yellow-red-purple-white colormap from
National Center for Atmospheric Research 2

gist_rainbowruns through the colors in spectral order from red to violet at full saturation (like
hsv but not cyclic)

gist_stern“Stern special” color table from Interactive Data Language software

1Rainbow colormaps, jet in particular, are considered a poor choice for scientific visualization by many researchers: Rainbow
Color Map (Still) Considered Harmful

2Resembles “BkBlAqGrYeOrReViWh200” from NCAR Command Language. See Color Table Gallery

543

http://yorick.sourceforge.net/index.php
http://www.jwave.vt.edu/%7Erkriz/Projects/create_color_table/color_07.pdf
http://www.jwave.vt.edu/%7Erkriz/Projects/create_color_table/color_07.pdf
http://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml

Matplotlib, Release 1.3.1

The following colormaps are based on the ColorBrewer color specifications and designs developed by
Cynthia Brewer:

ColorBrewer Diverging (luminance is highest at the midpoint, and decreases towards differently-
colored endpoints):

Colormap Description
BrBG brown, white, blue-green
PiYG pink, white, yellow-green
PRGn purple, white, green
PuOr orange, white, purple
RdBu red, white, blue
RdGy red, white, gray
RdYlBu red, yellow, blue
RdYlGn red, yellow, green
Spectral red, orange, yellow, green, blue

ColorBrewer Sequential (luminance decreases monotonically):

Colormap Description
Blues white to dark blue
BuGn white, light blue, dark green
BuPu white, light blue, dark purple
GnBu white, light green, dark blue
Greens white to dark green
Greys white to black (not linear)
Oranges white, orange, dark brown
OrRd white, orange, dark red
PuBu white, light purple, dark blue
PuBuGn white, light purple, dark green
PuRd white, light purple, dark red
Purples white to dark purple
RdPu white, pink, dark purple
Reds white to dark red
YlGn light yellow, dark green
YlGnBu light yellow, light green, dark blue
YlOrBr light yellow, orange, dark brown
YlOrRd light yellow, orange, dark red

ColorBrewer Qualitative:

(For plotting nominal data, ListedColormap should be used, not LinearSegmentedColormap. Dif-
ferent sets of colors are recommended for different numbers of categories. These continuous versions
of the qualitative schemes may be removed or converted in the future.)

•Accent

•Dark2

•Paired

•Pastel1

544 Chapter 47. Plotting commands summary

http://colorbrewer.org

Matplotlib, Release 1.3.1

•Pastel2

•Set1

•Set2

•Set3

Other miscellaneous schemes:

Col-
ormap

Description

afmhot sequential black-orange-yellow-white blackbody spectrum, commonly used in
atomic force microscopy

brg blue-red-green
bwr diverging blue-white-red
cool-
warm

diverging blue-gray-red, meant to avoid issues with 3D shading, color
blindness, and ordering of colors 3

CM-
Rmap

“Default colormaps on color images often reproduce to confusing grayscale
images. The proposed colormap maintains an aesthetically pleasing color image
that automatically reproduces to a monotonic grayscale with discrete,
quantifiable saturation levels.” 4

cube-
helix

Unlike most other color schemes cubehelix was designed by D.A. Green to be
monotonically increasing in terms of perceived brightness. Also, when printed
on a black and white postscript printer, the scheme results in a greyscale with
monotonically increasing brightness. This color scheme is named cubehelix
because the r,g,b values produced can be visualised as a squashed helix around
the diagonal in the r,g,b color cube.

gnu-
plot

gnuplot’s traditional pm3d scheme (black-blue-red-yellow)

gnu-
plot2

sequential color printable as gray (black-blue-violet-yellow-white)

ocean green-blue-white
rain-
bow

spectral purple-blue-green-yellow-orange-red colormap with diverging
luminance

seis-
mic

diverging blue-white-red

nipy_spectralblack-purple-blue-green-yellow-red-white spectrum, originally from the
Neuroimaging in Python project

terrain mapmaker’s colors, blue-green-yellow-brown-white, originally from IGOR Pro

The following colormaps are redundant and may be removed in future versions. It’s recommended to
use the names in the descriptions instead, which produce identical output:

3See Diverging Color Maps for Scientific Visualization by Kenneth Moreland.
4See A Color Map for Effective Black-and-White Rendering of Color-Scale Images by Carey Rappaport

545

http://www.cs.unm.edu/~kmorel/documents/ColorMaps/
http://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m

Matplotlib, Release 1.3.1

Col-
ormap

Description

gist_grayidentical to gray
gist_yargidentical to gray_r
bi-
nary

identical to gray_r

spec-
tral

identical to nipy_spectral 5

5Changed to distinguish from ColorBrewer’s Spectral map. spectral() still works, but set_cmap(’nipy_spectral’) is
recommended for clarity.

546 Chapter 47. Plotting commands summary

CHAPTER

FORTYEIGHT

API CHANGES

This chapter is a log of changes to matplotlib that affect the outward-facing API. If updating matplotlib
breaks your scripts, this list may help describe what changes may be necessary in your code or help figure
out possible sources of the changes you are experiencing.

For new features that were added to matplotlib, please see What’s new in matplotlib.

48.1 Changes in 1.3.x

48.1.1 Changes in 1.3.1

It is rare that we make an API change in a bugfix release, however, for 1.3.1 since 1.3.0 the following change
was made:

• text.Text.cached (used to cache font objects) has been made into a private variable. Among the
obvious encapsulation benefit, this removes this confusing-looking member from the documentation.

• The method hist() now always returns bin occupancies as an array of type float. Previously, it was
sometimes an array of type int, depending on the call.

48.1.2 Code removal

• The following items that were deprecated in version 1.2 or earlier have now been removed completely.

– The Qt 3.x backends (qt and qtagg) have been removed in favor of the Qt 4.x backends (qt4 and
qt4agg).

– The FltkAgg and Emf backends have been removed.

– The matplotlib.nxutils module has been removed. Use the functionality on
matplotlib.path.Path.contains_point and friends instead.

– Instead of axes.Axes.get_frame, use axes.Axes.patch.

– The following kwargs to the legend function have been renamed:

* pad -> borderpad

* labelsep -> labelspacing

547

Matplotlib, Release 1.3.1

* handlelen -> handlelength

* handletextsep -> handletextpad

* axespad -> borderaxespad

Related to this, the following rcParams have been removed:

* legend.pad, legend.labelsep, legend.handlelen, legend.handletextsep and
legend.axespad

– For the hist function, instead of width, use rwidth (relative width).

– On patches.Circle, the resolution kwarg has been removed. For a circle made up of line
segments, use patches.CirclePolygon.

– The printing functions in the Wx backend have been removed due to the burden of keeping them
up-to-date.

– mlab.liaupunov has been removed.

– mlab.save, mlab.load, pylab.save and pylab.load have been removed. We recommend
using numpy.savetxt and numpy.loadtxt instead.

– widgets.HorizontalSpanSelector has been removed. Use widgets.SpanSelector in-
stead.

48.1.3 Code deprecation

• The CocoaAgg backend has been deprecated, with the possibility for deletion or resurrection in a
future release.

• The top-level functions in matplotlib.path that are implemented in C++ were never meant
to be public. Instead, users should use the Pythonic wrappers for them in the path.Path and
collections.Collection classes. Use the following mapping to update your code:

– point_in_path -> path.Path.contains_point

– get_path_extents -> path.Path.get_extents

– point_in_path_collection -> collection.Collection.contains

– path_in_path -> path.Path.contains_path

– path_intersects_path -> path.Path.intersects_path

– convert_path_to_polygons -> path.Path.to_polygons

– cleanup_path -> path.Path.cleaned

– points_in_path -> path.Path.contains_points

– clip_path_to_rect -> path.Path.clip_to_bbox

• matplotlib.colors.normalize and matplotlib.colors.no_norm have been deprecated in
favour of matplotlib.colors.Normalize and matplotlib.colors.NoNorm respectively.

548 Chapter 48. API Changes

Matplotlib, Release 1.3.1

• The ScalarMappable class’ set_colorbar is now deprecated. Instead, the
matplotlib.cm.ScalarMappable.colorbar attribute should be used. In previous matplotlib
versions this attribute was an undocumented tuple of (colorbar_instance, colorbar_axes) but
is now just colorbar_instance. To get the colorbar axes it is possible to just use the ax attribute on
a colorbar instance.

• The mplmodule is now deprecated. Those who relied on this module should transition to simply using
import matplotlib as mpl.

48.1.4 Code changes

• Patch now fully supports using RGBA values for its facecolor and edgecolor attributes, which
enables faces and edges to have different alpha values. If the Patch object’s alpha attribute is set to
anything other than None, that value will override any alpha-channel value in both the face and edge
colors. Previously, if Patch had alpha=None, the alpha component of edgecolor would be applied
to both the edge and face.

• The optional isRGB argument to set_foreground() (and the other GraphicsContext classes that
descend from it) has been renamed to isRGBA, and should now only be set to True if the fg color
argument is known to be an RGBA tuple.

• For Patch, the capstyle used is now butt, to be consistent with the default for most other objects,
and to avoid problems with non-solid linestyle appearing solid when using a large linewidth.
Previously, Patch used capstyle=’projecting’.

• Path objects can now be marked as readonly by passing readonly=True to its constructor. The
built-in path singletons, obtained through Path.unit* class methods return readonly paths. If you
have code that modified these, you will need to make a deepcopy first, using either:

import copy
path = copy.deepcopy(Path.unit_circle())

or

path = Path.unit_circle().deepcopy()

Deep copying a Path always creates an editable (i.e. non-readonly) Path.

• The list at Path.NUM_VERTICES was replaced by a dictionary mapping Path codes to the number of
expected vertices at NUM_VERTICES_FOR_CODE.

• To support XKCD style plots, the matplotlib.path.cleanup_path() method’s signature was up-
dated to require a sketch argument. Users of matplotlib.path.cleanup_path() are encouraged
to use the new cleaned() Path method.

• Data limits on a plot now start from a state of having “null” limits, rather than limits in the range (0, 1).
This has an effect on artists that only control limits in one direction, such as axvline and axhline,
since their limits will not longer also include the range (0, 1). This fixes some problems where the
computed limits would be dependent on the order in which artists were added to the axes.

• Fixed a bug in setting the position for the right/top spine with data position type. Previously, it would
draw the right or top spine at +1 data offset.

48.1. Changes in 1.3.x 549

Matplotlib, Release 1.3.1

• In FancyArrow, the default arrow head width, head_width, has been made larger to produce a visible
arrow head. The new value of this kwarg is head_width = 20 * width.

• It is now possible to provide number of levels + 1 colors in the case of extend=’both’ for
contourf (or just number of levels colors for an extend value min or max) such that the resulting
colormap’s set_under and set_over are defined appropriately. Any other number of colors will
continue to behave as before (if more colors are provided than levels, the colors will be unused). A
similar change has been applied to contour, where extend=’both’would expect number of levels
+ 2 colors.

• A new keyword extendrect in colorbar() and ColorbarBase allows one to control the shape of
colorbar extensions.

• The extension of MultiCursor to both vertical (default) and/or horizontal cursor implied that
self.line is replaced by self.vline for vertical cursors lines and self.hline is added for the
horizontal cursors lines.

• On POSIX platforms, the report_memory() function raises NotImplementedError instead of
OSError if the ps command cannot be run.

• The matplotlib.cbook.check_output() function has been moved to
matplotlib.compat.subprocess().

48.1.5 Configuration and rcParams

• On Linux, the user-specific matplotlibrc configuration file is now located in
config/matplotlib/matplotlibrc to conform to the XDG Base Directory Specification.

• The font.* rcParams now affect only text objects created after the rcParam has been set, and will
not retroactively affect already existing text objects. This brings their behavior in line with most other
rcParams.

• Removed call of grid() in plotfile(). To draw the axes grid, set the axes.grid rcParam to True,
or explicitly call grid().

48.2 Changes in 1.2.x

• The classic option of the rc parameter toolbar is deprecated and will be removed in the next
release.

• The isvector() method has been removed since it is no longer functional.

• The rasterization_zorder property on Axes a zorder below which artists are rasterized. This has
defaulted to -30000.0, but it now defaults to None, meaning no artists will be rasterized. In order to
rasterize artists below a given zorder value, set_rasterization_zorder must be explicitly called.

• In scatter(), and scatter, when specifying a marker using a tuple, the angle is now specified in
degrees, not radians.

• Using twinx() or twiny() no longer overrides the current locaters and formatters on the axes.

550 Chapter 48. API Changes

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

Matplotlib, Release 1.3.1

• In contourf(), the handling of the extend kwarg has changed. Formerly, the extended ranges were
mapped after to 0, 1 after being normed, so that they always corresponded to the extreme values of the
colormap. Now they are mapped outside this range so that they correspond to the special colormap
values determined by the set_under() and set_over()methods, which default to the colormap end
points.

• The new rc parameter savefig.format replaces cairo.format and savefig.extension, and sets
the default file format used by matplotlib.figure.Figure.savefig().

• In pie() and pie(), one can now set the radius of the pie; setting the radius to ‘None’ (the default
value), will result in a pie with a radius of 1 as before.

• Use of projection_factory() is now deprecated in favour of axes class identification using
process_projection_requirements() followed by direct axes class invocation (at the time of
writing, functions which do this are: add_axes(), add_subplot() and gca()). Therefore:

key = figure._make_key(*args, **kwargs)
ispolar = kwargs.pop(’polar’, False)
projection = kwargs.pop(’projection’, None)
if ispolar:

if projection is not None and projection != ’polar’:
raise ValueError(’polar and projection args are inconsistent’)

projection = ’polar’
ax = projection_factory(projection, self, rect, **kwargs)
key = self._make_key(*args, **kwargs)

is now

projection_class, kwargs, key = \
process_projection_requirements(self, *args, **kwargs)

ax = projection_class(self, rect, **kwargs)

This change means that third party objects can expose themselves as matplotlib axes by providing a
_as_mpl_axes method. See Adding new scales and projections to matplotlib for more detail.

• A new keyword extendfrac in colorbar() and ColorbarBase allows one to control the size of the
triangular minimum and maximum extensions on colorbars.

• A new keyword capthick in errorbar() has been added as an intuitive alias to the markeredgewidth
and mew keyword arguments, which indirectly controlled the thickness of the caps on the errorbars.
For backwards compatibility, specifying either of the original keyword arguments will override any
value provided by capthick.

• Transform subclassing behaviour is now subtly changed. If your transform implements a non-affine
transformation, then it should override the transform_non_affine method, rather than the generic
transform method. Previously transforms would define transform and then copy the method into
transform_non_affine:

class MyTransform(mtrans.Transform):
def transform(self, xy):

...
transform_non_affine = transform

This approach will no longer function correctly and should be changed to:

48.2. Changes in 1.2.x 551

Matplotlib, Release 1.3.1

class MyTransform(mtrans.Transform):
def transform_non_affine(self, xy):

...

• Artists no longer have x_isdata or y_isdata attributes; instead any artist’s transform can be interro-
gated with artist_instance.get_transform().contains_branch(ax.transData)

• Lines added to an axes now take into account their transform when updating the data and view limits.
This means transforms can now be used as a pre-transform. For instance:

>>> import matplotlib.pyplot as plt
>>> import matplotlib.transforms as mtrans
>>> ax = plt.axes()
>>> ax.plot(range(10), transform=mtrans.Affine2D().scale(10) + ax.transData)
>>> print(ax.viewLim)
Bbox(’array([[0., 0.],\n [90., 90.]])’)

• One can now easily get a transform which goes from one transform’s coordinate system to another,
in an optimized way, using the new subtract method on a transform. For instance, to go from data
coordinates to axes coordinates:

>>> import matplotlib.pyplot as plt
>>> ax = plt.axes()
>>> data2ax = ax.transData - ax.transAxes
>>> print(ax.transData.depth, ax.transAxes.depth)
3, 1
>>> print(data2ax.depth)
2

for versions before 1.2 this could only be achieved in a sub-optimal way, using ax.transData +
ax.transAxes.inverted() (depth is a new concept, but had it existed it would return 4 for this
example).

• twinx and twiny now returns an instance of SubplotBase if parent axes is an instance of SubplotBase.

• All Qt3-based backends are now deprecated due to the lack of py3k bindings. Qt and QtAgg backends
will continue to work in v1.2.x for py2.6 and py2.7. It is anticipated that the Qt3 support will be
completely removed for the next release.

• ColorConverter, Colormap and Normalize now subclasses object

• ContourSet instances no longer have a transform attribute. Instead, access the transform with the
get_transform method.

48.3 Changes in 1.1.x

• Added new matplotlib.sankey.Sankey for generating Sankey diagrams.

• In imshow(), setting interpolation to ‘nearest’ will now always mean that the nearest-neighbor inter-
polation is performed. If you want the no-op interpolation to be performed, choose ‘none’.

552 Chapter 48. API Changes

Matplotlib, Release 1.3.1

• There were errors in how the tri-functions were handling input parameters that had to be fixed. If your
tri-plots are not working correctly anymore, or you were working around apparent mistakes, please see
issue #203 in the github tracker. When in doubt, use kwargs.

• The ‘symlog’ scale had some bad behavior in previous versions. This has now been fixed and users
should now be able to use it without frustrations. The fixes did result in some minor changes in
appearance for some users who may have been depending on the bad behavior.

• There is now a common set of markers for all plotting functions. Previously, some markers existed
only for scatter() or just for plot(). This is now no longer the case. This merge did result in a
conflict. The string ‘d’ now means “thin diamond” while ‘D’ will mean “regular diamond”.

48.4 Changes beyond 0.99.x

• The default behavior of matplotlib.axes.Axes.set_xlim(),
matplotlib.axes.Axes.set_ylim(), and matplotlib.axes.Axes.axis(), and their cor-
responding pyplot functions, has been changed: when view limits are set explicitly with one of these
methods, autoscaling is turned off for the matching axis. A new auto kwarg is available to control this
behavior. The limit kwargs have been renamed to left and right instead of xmin and xmax, and bottom
and top instead of ymin and ymax. The old names may still be used, however.

• There are five new Axes methods with corresponding pyplot functions to facilitate autoscaling, tick
location, and tick label formatting, and the general appearance of ticks and tick labels:

– matplotlib.axes.Axes.autoscale() turns autoscaling on or off, and applies it.

– matplotlib.axes.Axes.margins() sets margins used to autoscale the
matplotlib.axes.Axes.viewLim based on the matplotlib.axes.Axes.dataLim.

– matplotlib.axes.Axes.locator_params() allows one to adjust axes locator parameters
such as nbins.

– matplotlib.axes.Axes.ticklabel_format() is a convenience method for controlling the
matplotlib.ticker.ScalarFormatter that is used by default with linear axes.

– matplotlib.axes.Axes.tick_params() controls direction, size, visibility, and color of ticks
and their labels.

• The matplotlib.axes.Axes.bar() method accepts a error_kw kwarg; it is a dictionary of kwargs
to be passed to the errorbar function.

• The matplotlib.axes.Axes.hist() color kwarg now accepts a sequence of color specs to match
a sequence of datasets.

• The EllipseCollection has been changed in two ways:

– There is a new units option, ‘xy’, that scales the ellipse with the data units. This matches the
:class:’~matplotlib.patches.Ellipse‘ scaling.

– The height and width kwargs have been changed to specify the height and width, again for con-
sistency with Ellipse, and to better match their names; previously they specified the half-height
and half-width.

48.4. Changes beyond 0.99.x 553

Matplotlib, Release 1.3.1

• There is a new rc parameter axes.color_cycle, and the color cycle is now independent of the rc
parameter lines.color. matplotlib.Axes.set_default_color_cycle() is deprecated.

• You can now print several figures to one pdf file and modify the document information dictionary of a
pdf file. See the docstrings of the class matplotlib.backends.backend_pdf.PdfPages for more
information.

• Removed configobj and enthought.traits packages, which are only required by the experimental traited
config and are somewhat out of date. If needed, install them independently.

• The new rc parameter savefig.extension sets the filename extension that is used by
matplotlib.figure.Figure.savefig() if its fname argument lacks an extension.

• In an effort to simplify the backend API, all clipping rectangles and paths are now passed in using
GraphicsContext objects, even on collections and images. Therefore:

draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets,
offsetTrans, facecolors, edgecolors, linewidths,
linestyles, antialiaseds, urls)

is now

draw_path_collection(self, gc, master_transform, paths, all_transforms,
offsets, offsetTrans, facecolors, edgecolors,
linewidths, linestyles, antialiaseds, urls)

draw_quad_mesh(self, master_transform, cliprect, clippath,
clippath_trans, meshWidth, meshHeight, coordinates,
offsets, offsetTrans, facecolors, antialiased,
showedges)

is now

draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight,
coordinates, offsets, offsetTrans, facecolors,
antialiased, showedges)

draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None)

is now

draw_image(self, gc, x, y, im)

• There are four new Axes methods with corresponding pyplot functions that deal with unstructured
triangular grids:

– matplotlib.axes.Axes.tricontour() draws contour lines on a triangular grid.

– matplotlib.axes.Axes.tricontourf() draws filled contours on a triangular grid.

– matplotlib.axes.Axes.tripcolor() draws a pseudocolor plot on a triangular grid.

554 Chapter 48. API Changes

http://www.voidspace.org.uk/python/configobj.html
http://code.enthought.com/projects/traits

Matplotlib, Release 1.3.1

– matplotlib.axes.Axes.triplot() draws a triangular grid as lines and/or markers.

48.5 Changes in 0.99

• pylab no longer provides a load and save function. These are available in matplotlib.mlab, or you can
use numpy.loadtxt and numpy.savetxt for text files, or np.save and np.load for binary numpy arrays.

• User-generated colormaps can now be added to the set recognized by matplotlib.cm.get_cmap().
Colormaps can be made the default and applied to the current image using
matplotlib.pyplot.set_cmap().

• changed use_mrecords default to False in mlab.csv2rec since this is partially broken

• Axes instances no longer have a “frame” attribute. Instead, use the new “spines” attribute. Spines is a
dictionary where the keys are the names of the spines (e.g., ‘left’,’right’ and so on) and the values are
the artists that draw the spines. For normal (rectilinear) axes, these artists are Line2D instances. For
other axes (such as polar axes), these artists may be Patch instances.

• Polar plots no longer accept a resolution kwarg. Instead, each Path must specify its own number of
interpolation steps. This is unlikely to be a user-visible change – if interpolation of data is required,
that should be done before passing it to matplotlib.

48.6 Changes for 0.98.x

• psd(), csd(), and cohere() will now automatically wrap negative frequency components to the begin-
ning of the returned arrays. This is much more sensible behavior and makes them consistent with
specgram(). The previous behavior was more of an oversight than a design decision.

• Added new keyword parameters nonposx, nonposy to matplotlib.axes.Axes methods that set log
scale parameters. The default is still to mask out non-positive values, but the kwargs accept ‘clip’,
which causes non-positive values to be replaced with a very small positive value.

• Added new matplotlib.pyplot.fignum_exists() and matplotlib.pyplot.get_fignums();
they merely expose information that had been hidden in matplotlib._pylab_helpers.

• Deprecated numerix package.

• Added new matplotlib.image.imsave() and exposed it to the matplotlib.pyplot interface.

• Remove support for pyExcelerator in exceltools – use xlwt instead

• Changed the defaults of acorr and xcorr to use usevlines=True, maxlags=10 and normed=True since
these are the best defaults

• Following keyword parameters for matplotlib.label.Label are now deprecated and new set of
parameters are introduced. The new parameters are given as a fraction of the font-size. Also, scattery-
offsets, fancybox and columnspacing are added as keyword parameters.

48.5. Changes in 0.99 555

Matplotlib, Release 1.3.1

Deprecated New
pad borderpad
labelsep labelspacing
handlelen handlelength
handlestextsep handletextpad
axespad borderaxespad

• Removed the configobj and experimental traits rc support

• Modified matplotlib.mlab.psd(), matplotlib.mlab.csd(), matplotlib.mlab.cohere(),
and matplotlib.mlab.specgram() to scale one-sided densities by a factor of 2. Also, option-
ally scale the densities by the sampling frequency, which gives true values of densities that can be
integrated by the returned frequency values. This also gives better MATLAB compatibility. The cor-
responding matplotlib.axes.Axes methods and matplotlib.pyplot functions were updated as
well.

• Font lookup now uses a nearest-neighbor approach rather than an exact match. Some fonts may be
different in plots, but should be closer to what was requested.

• matplotlib.axes.Axes.set_xlim(), matplotlib.axes.Axes.set_ylim() now return a copy
of the viewlim array to avoid modify-in-place surprises.

• matplotlib.afm.AFM.get_fullname() and matplotlib.afm.AFM.get_familyname() no
longer raise an exception if the AFM file does not specify these optional attributes, but returns a guess
based on the required FontName attribute.

• Changed precision kwarg in matplotlib.pyplot.spy(); default is 0, and the string value ‘present’
is used for sparse arrays only to show filled locations.

• matplotlib.collections.EllipseCollection added.

• Added angles kwarg to matplotlib.pyplot.quiver() for more flexible specification of the arrow
angles.

• Deprecated (raise NotImplementedError) all the mlab2 functions from matplotlib.mlab out of con-
cern that some of them were not clean room implementations.

• Methods matplotlib.collections.Collection.get_offsets() and
matplotlib.collections.Collection.set_offsets() added to Collection base class.

• matplotlib.figure.Figure.figurePatch renamed matplotlib.figure.Figure.patch;
matplotlib.axes.Axes.axesPatch renamed matplotlib.axes.Axes.patch;
matplotlib.axes.Axes.axesFrame renamed matplotlib.axes.Axes.frame.
matplotlib.axes.Axes.get_frame(), which returns matplotlib.axes.Axes.patch, is
deprecated.

• Changes in the matplotlib.contour.ContourLabeler attributes
(matplotlib.pyplot.clabel() function) so that they all have a form like .labelAttribute.
The three attributes that are most likely to be used by end users, .cl, .cl_xy and .cl_cvalues have
been maintained for the moment (in addition to their renamed versions), but they are deprecated and
will eventually be removed.

• Moved several functions in matplotlib.mlab and matplotlib.cbook into a separate module
matplotlib.numerical_methods because they were unrelated to the initial purpose of mlab or

556 Chapter 48. API Changes

Matplotlib, Release 1.3.1

cbook and appeared more coherent elsewhere.

48.7 Changes for 0.98.1

• Removed broken matplotlib.axes3d support and replaced it with a non-implemented error pointing
to 0.91.x

48.8 Changes for 0.98.0

• matplotlib.image.imread() now no longer always returns RGBA data—if the image is luminance
or RGB, it will return a MxN or MxNx3 array if possible. Also uint8 is no longer always forced to
float.

• Rewrote the matplotlib.cm.ScalarMappable callback infrastructure to use
matplotlib.cbook.CallbackRegistry rather than custom callback handling. Any users of
matplotlib.cm.ScalarMappable.add_observer() of the ScalarMappable should use the
matplotlib.cm.ScalarMappable.callbacks CallbackRegistry instead.

• New axes function and Axes method provide control over the plot
color cycle: matplotlib.axes.set_default_color_cycle() and
matplotlib.axes.Axes.set_color_cycle().

• matplotlib now requires Python 2.4, so matplotlib.cbook will no longer provide set,
enumerate(), reversed() or izip() compatibility functions.

• In Numpy 1.0, bins are specified by the left edges only. The axes method
matplotlib.axes.Axes.hist() now uses future Numpy 1.3 semantics for histograms. Pro-
viding binedges, the last value gives the upper-right edge now, which was implicitly set to +infinity
in Numpy 1.0. This also means that the last bin doesn’t contain upper outliers any more by default.

• New axes method and pyplot function, hexbin(), is an alternative to scatter() for large datasets. It
makes something like a pcolor() of a 2-D histogram, but uses hexagonal bins.

• New kwarg, symmetric, in matplotlib.ticker.MaxNLocator allows one require an axis to be
centered around zero.

• Toolkits must now be imported from mpl_toolkits (not matplotlib.toolkits)

48.8.1 Notes about the transforms refactoring

A major new feature of the 0.98 series is a more flexible and extensible transformation infrastructure, written
in Python/Numpy rather than a custom C extension.

The primary goal of this refactoring was to make it easier to extend matplotlib to support new kinds of
projections. This is mostly an internal improvement, and the possible user-visible changes it allows are yet
to come.

See matplotlib.transforms for a description of the design of the new transformation framework.

48.7. Changes for 0.98.1 557

Matplotlib, Release 1.3.1

For efficiency, many of these functions return views into Numpy arrays. This means that if you hold on to a
reference to them, their contents may change. If you want to store a snapshot of their current values, use the
Numpy array method copy().

The view intervals are now stored only in one place – in the matplotlib.axes.Axes instance, not in the
locator instances as well. This means locators must get their limits from their matplotlib.axis.Axis,
which in turn looks up its limits from the Axes. If a locator is used temporarily and not assigned to an
Axis or Axes, (e.g., in matplotlib.contour), a dummy axis must be created to store its bounds. Call
matplotlib.ticker.Locator.create_dummy_axis() to do so.

The functionality of Pbox has been merged with Bbox. Its methods now all return copies rather than modi-
fying in place.

The following lists many of the simple changes necessary to update code from the old transformation frame-
work to the new one. In particular, methods that return a copy are named with a verb in the past tense,
whereas methods that alter an object in place are named with a verb in the present tense.

558 Chapter 48. API Changes

Matplotlib, Release 1.3.1

matplotlib.transforms

Old method New method
Bbox.get_bounds() transforms.Bbox.bounds
Bbox.width() transforms.Bbox.width
Bbox.height() transforms.Bbox.height
Bbox.intervalx().get_bounds()transforms.Bbox.intervalx
Bbox.intervalx().set_bounds()[Bbox.intervalx is now a property.]
Bbox.intervaly().get_bounds()transforms.Bbox.intervaly
Bbox.intervaly().set_bounds()[Bbox.intervaly is now a property.]
Bbox.xmin() transforms.Bbox.x0 or transforms.Bbox.xmin 1

Bbox.ymin() transforms.Bbox.y0 or transforms.Bbox.ymin 1

Bbox.xmax() transforms.Bbox.x1 or transforms.Bbox.xmax 1

Bbox.ymax() transforms.Bbox.y1 or transforms.Bbox.ymax 1

Bbox.overlaps(bboxes)Bbox.count_overlaps(bboxes)
bbox_all(bboxes) Bbox.union(bboxes) [transforms.Bbox.union() is a staticmethod.]
lbwh_to_bbox(l, b,
w, h)

Bbox.from_bounds(x0, y0, w, h)
[transforms.Bbox.from_bounds() is a staticmethod.]

inverse_transform_bbox(trans,
bbox)

Bbox.inverse_transformed(trans)

Interval.contains_open(v)interval_contains_open(tuple, v)
Interval.contains(v) interval_contains(tuple, v)
identity_transform() matplotlib.transforms.IdentityTransform
blend_xy_sep_transform(xtrans,
ytrans)

blended_transform_factory(xtrans, ytrans)

scale_transform(xs,
ys)

Affine2D().scale(xs[, ys])

get_bbox_transform(boxin,
boxout)

BboxTransform(boxin, boxout) or BboxTransformFrom(boxin) or
BboxTransformTo(boxout)

Transform.seq_xy_tup(points)Transform.transform(points)
Transform.inverse_xy_tup(points)Transform.inverted().transform(points)

matplotlib.axes

Old method New method
Axes.get_position()matplotlib.axes.Axes.get_position() 2

Axes.set_position()matplotlib.axes.Axes.set_position() 3

Axes.toggle_log_lineary()matplotlib.axes.Axes.set_yscale() 4

Subplot class removed.

The Polar class has moved to matplotlib.projections.polar.
1The Bbox is bound by the points (x0, y0) to (x1, y1) and there is no defined order to these points, that is, x0 is not necessarily

the left edge of the box. To get the left edge of the Bbox, use the read-only property xmin.
2matplotlib.axes.Axes.get_position() used to return a list of points, now it returns a matplotlib.transforms.Bbox

instance.
3matplotlib.axes.Axes.set_position() now accepts either four scalars or a matplotlib.transforms.Bbox instance.
4Since the recfactoring allows for more than two scale types (‘log’ or ‘linear’), it no longer makes sense to have a toggle.

Axes.toggle_log_lineary() has been removed.

48.8. Changes for 0.98.0 559

Matplotlib, Release 1.3.1

matplotlib.artist

Old method New method
Artist.set_clip_path(path)Artist.set_clip_path(path, transform) 5

matplotlib.collections

Old
method

New method

linestylelinestyles 6

matplotlib.colors

Old method New method
ColorConvertor.to_rgba_list(c)ColorConvertor.to_rgba_array(c)

[matplotlib.colors.ColorConvertor.to_rgba_array() returns an Nx4
Numpy array of RGBA color quadruples.]

matplotlib.contour

Old method New method
Contour._segmentsmatplotlib.contour.Contour.get_paths‘() [Returns a list of

matplotlib.path.Path instances.]

matplotlib.figure

Old method New method
Figure.dpi.get() / Figure.dpi.set() matplotlib.figure.Figure.dpi (a property)

matplotlib.patches

Old method New method
Patch.get_verts()matplotlib.patches.Patch.get_path() [Returns a

matplotlib.path.Path instance]

5matplotlib.artist.Artist.set_clip_path() now accepts a matplotlib.path.Path instance and a
matplotlib.transforms.Transform that will be applied to the path immediately before clipping.

6Linestyles are now treated like all other collection attributes, i.e. a single value or multiple values may be provided.

560 Chapter 48. API Changes

Matplotlib, Release 1.3.1

matplotlib.backend_bases

Old method New method
GraphicsContext.set_clip_rectangle(tuple)GraphicsContext.set_clip_rectangle(bbox)
GraphicsContext.get_clip_path()GraphicsContext.get_clip_path() 7

GraphicsContext.set_clip_path()GraphicsContext.set_clip_path() 8

RendererBase

New methods:

• draw_path(self, gc, path, transform, rgbFace)

• draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace)
<matplotlib.backend_bases.RendererBase.draw_markers()

• draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors,
edgecolors, linewidths, linestyles, antialiaseds) [optional]

Changed methods:

• draw_image(self, x, y, im, bbox) is now draw_image(self, x, y, im, bbox,
clippath, clippath_trans)

Removed methods:

• draw_arc

• draw_line_collection

• draw_line

• draw_lines

• draw_point

• draw_quad_mesh

• draw_poly_collection

• draw_polygon

• draw_rectangle

• draw_regpoly_collection

7matplotlib.backend_bases.GraphicsContext.get_clip_path() returns a tuple of the form (path, affine_transform),
where path is a matplotlib.path.Path instance and affine_transform is a matplotlib.transforms.Affine2D instance.

8matplotlib.backend_bases.GraphicsContext.set_clip_path() now only accepts a
matplotlib.transforms.TransformedPath instance.

48.8. Changes for 0.98.0 561

Matplotlib, Release 1.3.1

48.9 Changes for 0.91.2

• For csv2rec(), checkrows=0 is the new default indicating all rows will be checked for type inference

• A warning is issued when an image is drawn on log-scaled axes, since it will not log-scale the image
data.

• Moved rec2gtk() to matplotlib.toolkits.gtktools

• Moved rec2excel() to matplotlib.toolkits.exceltools

• Removed, dead/experimental ExampleInfo, Namespace and Importer code from
matplotlib.__init__

48.10 Changes for 0.91.1

48.11 Changes for 0.91.0

• Changed cbook.is_file_like() to cbook.is_writable_file_like() and corrected behavior.

• Added ax kwarg to pyplot.colorbar() and Figure.colorbar() so that one can specify the axes
object from which space for the colorbar is to be taken, if one does not want to make the colorbar axes
manually.

• Changed cbook.reversed() so it yields a tuple rather than a (index, tuple). This agrees with the
python reversed builtin, and cbook only defines reversed if python doesn’t provide the builtin.

• Made skiprows=1 the default on csv2rec()

• The gd and paint backends have been deleted.

• The errorbar method and function now accept additional kwargs so that upper and lower limits can be
indicated by capping the bar with a caret instead of a straight line segment.

• The matplotlib.dviread file now has a parser for files like psfonts.map and pdftex.map, to map
TeX font names to external files.

• The file matplotlib.type1font contains a new class for Type 1 fonts. Currently it simply reads pfa
and pfb format files and stores the data in a way that is suitable for embedding in pdf files. In the future
the class might actually parse the font to allow e.g., subsetting.

• matplotlib.FT2Font now supports FT_Attach_File(). In practice this can be used to read an afm
file in addition to a pfa/pfb file, to get metrics and kerning information for a Type 1 font.

• The AFM class now supports querying CapHeight and stem widths. The get_name_char method now
has an isord kwarg like get_width_char.

• Changed pcolor() default to shading=’flat’; but as noted now in the docstring, it is preferable to
simply use the edgecolor kwarg.

• The mathtext font commands (\cal, \rm, \it, \tt) now behave as TeX does: they are in effect until
the next font change command or the end of the grouping. Therefore uses of \cal{R} should be

562 Chapter 48. API Changes

Matplotlib, Release 1.3.1

changed to ${\cal R}$. Alternatively, you may use the new LaTeX-style font commands (\mathcal,
\mathrm, \mathit, \mathtt) which do affect the following group, e.g., \mathcal{R}.

• Text creation commands have a new default linespacing and a new linespacing kwarg, which is a
multiple of the maximum vertical extent of a line of ordinary text. The default is 1.2; linespacing=2
would be like ordinary double spacing, for example.

• Changed default kwarg in matplotlib.colors.Normalize.__init__‘() to clip=False; clip-
ping silently defeats the purpose of the special over, under, and bad values in the colormap, thereby
leading to unexpected behavior. The new default should reduce such surprises.

• Made the emit property of set_xlim() and set_ylim() True by default; removed the Axes cus-
tom callback handling into a ‘callbacks’ attribute which is a CallbackRegistry instance. This now
supports the ‘xlim_changed’ and ‘ylim_changed’ Axes events.

48.12 Changes for 0.90.1

The file dviread.py has a (very limited and fragile) dvi reader
for usetex support. The API might change in the future so don’t
depend on it yet.

Removed deprecated support for a float value as a gray-scale;
now it must be a string, like ’0.5’. Added alpha kwarg to
ColorConverter.to_rgba_list.

New method set_bounds(vmin, vmax) for formatters, locators sets
the viewInterval and dataInterval from floats.

Removed deprecated colorbar_classic.

Line2D.get_xdata and get_ydata valid_only=False kwarg is replaced
by orig=True. When True, it returns the original data, otherwise
the processed data (masked, converted)

Some modifications to the units interface.
units.ConversionInterface.tickers renamed to
units.ConversionInterface.axisinfo and it now returns a
units.AxisInfo object rather than a tuple. This will make it
easier to add axis info functionality (eg I added a default label
on this iteration) w/o having to change the tuple length and hence
the API of the client code every time new functionality is added.
Also, units.ConversionInterface.convert_to_value is now simply
named units.ConversionInterface.convert.

Axes.errorbar uses Axes.vlines and Axes.hlines to draw its error
limits int he vertical and horizontal direction. As you’ll see
in the changes below, these functions now return a LineCollection
rather than a list of lines. The new return signature for
errorbar is ylins, caplines, errorcollections where
errorcollections is a xerrcollection, yerrcollection

48.12. Changes for 0.90.1 563

Matplotlib, Release 1.3.1

Axes.vlines and Axes.hlines now create and returns a LineCollection, not a list
of lines. This is much faster. The kwarg signature has changed,
so consult the docs

MaxNLocator accepts a new Boolean kwarg (’integer’) to force
ticks to integer locations.

Commands that pass an argument to the Text constructor or to
Text.set_text() now accept any object that can be converted
with ’%s’. This affects xlabel(), title(), etc.

Barh now takes a **kwargs dict instead of most of the old
arguments. This helps ensure that bar and barh are kept in sync,
but as a side effect you can no longer pass e.g., color as a
positional argument.

ft2font.get_charmap() now returns a dict that maps character codes
to glyph indices (until now it was reversed)

Moved data files into lib/matplotlib so that setuptools’ develop
mode works. Re-organized the mpl-data layout so that this source
structure is maintained in the installation. (I.e. the ’fonts’ and
’images’ sub-directories are maintained in site-packages.).
Suggest removing site-packages/matplotlib/mpl-data and
~/.matplotlib/ttffont.cache before installing

48.13 Changes for 0.90.0

All artists now implement a "pick" method which users should not
call. Rather, set the "picker" property of any artist you want to
pick on (the epsilon distance in points for a hit test) and
register with the "pick_event" callback. See
examples/pick_event_demo.py for details

Bar, barh, and hist have "log" binary kwarg: log=True
sets the ordinate to a log scale.

Boxplot can handle a list of vectors instead of just
an array, so vectors can have different lengths.

Plot can handle 2-D x and/or y; it plots the columns.

Added linewidth kwarg to bar and barh.

Made the default Artist._transform None (rather than invoking
identity_transform for each artist only to have it overridden
later). Use artist.get_transform() rather than artist._transform,
even in derived classes, so that the default transform will be
created lazily as needed

New LogNorm subclass of Normalize added to colors.py.

564 Chapter 48. API Changes

Matplotlib, Release 1.3.1

All Normalize subclasses have new inverse() method, and
the __call__() method has a new clip kwarg.

Changed class names in colors.py to match convention:
normalize -> Normalize, no_norm -> NoNorm. Old names
are still available for now.

Removed obsolete pcolor_classic command and method.

Removed lineprops and markerprops from the Annotation code and
replaced them with an arrow configurable with kwarg arrowprops.
See examples/annotation_demo.py - JDH

48.14 Changes for 0.87.7

Completely reworked the annotations API because I found the old
API cumbersome. The new design is much more legible and easy to
read. See matplotlib.text.Annotation and
examples/annotation_demo.py

markeredgecolor and markerfacecolor cannot be configured in
matplotlibrc any more. Instead, markers are generally colored
automatically based on the color of the line, unless marker colors
are explicitly set as kwargs - NN

Changed default comment character for load to ’#’ - JDH

math_parse_s_ft2font_svg from mathtext.py & mathtext2.py now returns
width, height, svg_elements. svg_elements is an instance of Bunch (
cmbook.py) and has the attributes svg_glyphs and svg_lines, which are both
lists.

Renderer.draw_arc now takes an additional parameter, rotation.
It specifies to draw the artist rotated in degrees anti-
clockwise. It was added for rotated ellipses.

Renamed Figure.set_figsize_inches to Figure.set_size_inches to
better match the get method, Figure.get_size_inches.

Removed the copy_bbox_transform from transforms.py; added
shallowcopy methods to all transforms. All transforms already
had deepcopy methods.

FigureManager.resize(width, height): resize the window
specified in pixels

barh: x and y args have been renamed to width and bottom
respectively, and their order has been swapped to maintain
a (position, value) order.

bar and barh: now accept kwarg ’edgecolor’.

48.14. Changes for 0.87.7 565

Matplotlib, Release 1.3.1

bar and barh: The left, height, width and bottom args can
now all be scalars or sequences; see docstring.

barh: now defaults to edge aligned instead of center
aligned bars

bar, barh and hist: Added a keyword arg ’align’ that
controls between edge or center bar alignment.

Collections: PolyCollection and LineCollection now accept
vertices or segments either in the original form [(x,y),
(x,y), ...] or as a 2D numerix array, with X as the first column
and Y as the second. Contour and quiver output the numerix
form. The transforms methods Bbox.update() and
Transformation.seq_xy_tups() now accept either form.

Collections: LineCollection is now a ScalarMappable like
PolyCollection, etc.

Specifying a grayscale color as a float is deprecated; use
a string instead, e.g., 0.75 -> ’0.75’.

Collections: initializers now accept any mpl color arg, or
sequence of such args; previously only a sequence of rgba
tuples was accepted.

Colorbar: completely new version and api; see docstring. The
original version is still accessible as colorbar_classic, but
is deprecated.

Contourf: "extend" kwarg replaces "clip_ends"; see docstring.
Masked array support added to pcolormesh.

Modified aspect-ratio handling:
Removed aspect kwarg from imshow
Axes methods:

set_aspect(self, aspect, adjustable=None, anchor=None)
set_adjustable(self, adjustable)
set_anchor(self, anchor)

Pylab interface:
axis(’image’)

Backend developers: ft2font’s load_char now takes a flags
argument, which you can OR together from the LOAD_XXX
constants.

48.15 Changes for 0.86

Matplotlib data is installed into the matplotlib module.
This is similar to package_data. This should get rid of

566 Chapter 48. API Changes

Matplotlib, Release 1.3.1

having to check for many possibilities in _get_data_path().
The MATPLOTLIBDATA env key is still checked first to allow
for flexibility.

1) Separated the color table data from cm.py out into
a new file, _cm.py, to make it easier to find the actual
code in cm.py and to add new colormaps. Everything
from _cm.py is imported by cm.py, so the split should be
transparent.
2) Enabled automatic generation of a colormap from
a list of colors in contour; see modified
examples/contour_demo.py.
3) Support for imshow of a masked array, with the
ability to specify colors (or no color at all) for
masked regions, and for regions that are above or
below the normally mapped region. See
examples/image_masked.py.
4) In support of the above, added two new classes,
ListedColormap, and no_norm, to colors.py, and modified
the Colormap class to include common functionality. Added
a clip kwarg to the normalize class.

48.16 Changes for 0.85

Made xtick and ytick separate props in rc

made pos=None the default for tick formatters rather than 0 to
indicate "not supplied"

Removed "feature" of minor ticks which prevents them from
overlapping major ticks. Often you want major and minor ticks at
the same place, and can offset the major ticks with the pad. This
could be made configurable

Changed the internal structure of contour.py to a more OO style.
Calls to contour or contourf in axes.py or pylab.py now return
a ContourSet object which contains references to the
LineCollections or PolyCollections created by the call,
as well as the configuration variables that were used.
The ContourSet object is a "mappable" if a colormap was used.

Added a clip_ends kwarg to contourf. From the docstring:
* clip_ends = True
If False, the limits for color scaling are set to the
minimum and maximum contour levels.
True (default) clips the scaling limits. Example:
if the contour boundaries are V = [-100, 2, 1, 0, 1, 2, 100],
then the scaling limits will be [-100, 100] if clip_ends
is False, and [-3, 3] if clip_ends is True.

Added kwargs linewidths, antialiased, and nchunk to contourf. These
are experimental; see the docstring.

48.16. Changes for 0.85 567

Matplotlib, Release 1.3.1

Changed Figure.colorbar():
kw argument order changed;
if mappable arg is a non-filled ContourSet, colorbar() shows

lines instead hof polygons.
if mappable arg is a filled ContourSet with clip_ends=True,

the endpoints are not labelled, so as to give the
correct impression of open-endedness.

Changed LineCollection.get_linewidths to get_linewidth, for
consistency.

48.17 Changes for 0.84

Unified argument handling between hlines and vlines. Both now
take optionally a fmt argument (as in plot) and a keyword args
that can be passed onto Line2D.

Removed all references to "data clipping" in rc and lines.py since
these were not used and not optimized. I’m sure they’ll be
resurrected later with a better implementation when needed.

’set’ removed - no more deprecation warnings. Use ’setp’ instead.

Backend developers: Added flipud method to image and removed it
from to_str. Removed origin kwarg from backend.draw_image.
origin is handled entirely by the frontend now.

48.18 Changes for 0.83

- Made HOME/.matplotlib the new config dir where the matplotlibrc
file, the ttf.cache, and the tex.cache live. The new default
filenames in .matplotlib have no leading dot and are not hidden.
e.g., the new names are matplotlibrc, tex.cache, and ttffont.cache.
This is how ipython does it so it must be right.

If old files are found, a warning is issued and they are moved to
the new location.

- backends/__init__.py no longer imports new_figure_manager,
draw_if_interactive and show from the default backend, but puts
these imports into a call to pylab_setup. Also, the Toolbar is no
longer imported from WX/WXAgg. New usage:

from backends import pylab_setup
new_figure_manager, draw_if_interactive, show = pylab_setup()

- Moved Figure.get_width_height() to FigureCanvasBase. It now
returns int instead of float.

568 Chapter 48. API Changes

Matplotlib, Release 1.3.1

48.19 Changes for 0.82

- toolbar import change in GTKAgg, GTKCairo and WXAgg

- Added subplot config tool to GTK* backends -- note you must now
import the NavigationToolbar2 from your backend of choice rather
than from backend_gtk because it needs to know about the backend
specific canvas -- see examples/embedding_in_gtk2.py. Ditto for
wx backend -- see examples/embedding_in_wxagg.py

- hist bin change

Sean Richards notes there was a problem in the way we created
the binning for histogram, which made the last bin
underrepresented. From his post:

I see that hist uses the linspace function to create the bins
and then uses searchsorted to put the values in their correct
bin. That’s all good but I am confused over the use of linspace
for the bin creation. I wouldn’t have thought that it does
what is needed, to quote the docstring it creates a "Linear
spaced array from min to max". For it to work correctly
shouldn’t the values in the bins array be the same bound for
each bin? (i.e. each value should be the lower bound of a
bin). To provide the correct bins for hist would it not be
something like

def bins(xmin, xmax, N):
if N==1: return xmax
dx = (xmax-xmin)/N # instead of N-1
return xmin + dx*arange(N)

This suggestion is implemented in 0.81. My test script with these
changes does not reveal any bias in the binning

from matplotlib.numerix.mlab import randn, rand, zeros, Float
from matplotlib.mlab import hist, mean

Nbins = 50
Ntests = 200
results = zeros((Ntests,Nbins), typecode=Float)
for i in range(Ntests):

print ’computing’, i
x = rand(10000)
n, bins = hist(x, Nbins)
results[i] = n

print mean(results)

48.19. Changes for 0.82 569

Matplotlib, Release 1.3.1

48.20 Changes for 0.81

- pylab and artist "set" functions renamed to setp to avoid clash
with python2.4 built-in set. Current version will issue a
deprecation warning which will be removed in future versions

- imshow interpolation arguments changes for advanced interpolation
schemes. See help imshow, particularly the interpolation,
filternorm and filterrad kwargs

- Support for masked arrays has been added to the plot command and
to the Line2D object. Only the valid points are plotted. A
"valid_only" kwarg was added to the get_xdata() and get_ydata()
methods of Line2D; by default it is False, so that the original
data arrays are returned. Setting it to True returns the plottable
points.

- contour changes:

Masked arrays: contour and contourf now accept masked arrays as
the variable to be contoured. Masking works correctly for
contour, but a bug remains to be fixed before it will work for
contourf. The "badmask" kwarg has been removed from both
functions.

Level argument changes:

Old version: a list of levels as one of the positional
arguments specified the lower bound of each filled region; the
upper bound of the last region was taken as a very large
number. Hence, it was not possible to specify that z values
between 0 and 1, for example, be filled, and that values
outside that range remain unfilled.

New version: a list of N levels is taken as specifying the
boundaries of N-1 z ranges. Now the user has more control over
what is colored and what is not. Repeated calls to contourf
(with different colormaps or color specifications, for example)
can be used to color different ranges of z. Values of z
outside an expected range are left uncolored.

Example:
Old: contourf(z, [0, 1, 2]) would yield 3 regions: 0-1, 1-2, and >2.
New: it would yield 2 regions: 0-1, 1-2. If the same 3 regions were
desired, the equivalent list of levels would be [0, 1, 2,
1e38].

570 Chapter 48. API Changes

Matplotlib, Release 1.3.1

48.21 Changes for 0.80

- xlim/ylim/axis always return the new limits regardless of
arguments. They now take kwargs which allow you to selectively
change the upper or lower limits while leaving unnamed limits
unchanged. See help(xlim) for example

48.22 Changes for 0.73

- Removed deprecated ColormapJet and friends

- Removed all error handling from the verbose object

- figure num of zero is now allowed

48.23 Changes for 0.72

- Line2D, Text, and Patch copy_properties renamed update_from and
moved into artist base class

- LineCollecitons.color renamed to LineCollections.set_color for
consistency with set/get introspection mechanism,

- pylab figure now defaults to num=None, which creates a new figure
with a guaranteed unique number

- contour method syntax changed - now it is MATLAB compatible

unchanged: contour(Z)
old: contour(Z, x=Y, y=Y)
new: contour(X, Y, Z)

see http://matplotlib.sf.net/matplotlib.pylab.html#-contour

- Increased the default resolution for save command.

- Renamed the base attribute of the ticker classes to _base to avoid conflict
with the base method. Sitt for subs

- subs=none now does autosubbing in the tick locator.

- New subplots that overlap old will delete the old axes. If you
do not want this behavior, use fig.add_subplot or the axes
command

48.21. Changes for 0.80 571

Matplotlib, Release 1.3.1

48.24 Changes for 0.71

Significant numerix namespace changes, introduced to resolve
namespace clashes between python built-ins and mlab names.
Refactored numerix to maintain separate modules, rather than
folding all these names into a single namespace. See the following
mailing list threads for more information and background

http://sourceforge.net/mailarchive/forum.php?thread_id=6398890&forum_id=36187
http://sourceforge.net/mailarchive/forum.php?thread_id=6323208&forum_id=36187

OLD usage

from matplotlib.numerix import array, mean, fft

NEW usage

from matplotlib.numerix import array
from matplotlib.numerix.mlab import mean
from matplotlib.numerix.fft import fft

numerix dir structure mirrors numarray (though it is an incomplete
implementation)

numerix
numerix/mlab
numerix/linear_algebra
numerix/fft
numerix/random_array

but of course you can use ’numerix : Numeric’ and still get the
symbols.

pylab still imports most of the symbols from Numerix, MLab, fft,
etc, but is more cautious. For names that clash with python names
(min, max, sum), pylab keeps the builtins and provides the numeric
versions with an a* prefix, eg (amin, amax, asum)

48.25 Changes for 0.70

MplEvent factored into a base class Event and derived classes
MouseEvent and KeyEvent

Removed definct set_measurement in wx toolbar

572 Chapter 48. API Changes

Matplotlib, Release 1.3.1

48.26 Changes for 0.65.1

removed add_axes and add_subplot from backend_bases. Use
figure.add_axes and add_subplot instead. The figure now manages the
current axes with gca and sca for get and set current axes. If you
have code you are porting which called, eg, figmanager.add_axes, you
can now simply do figmanager.canvas.figure.add_axes.

48.27 Changes for 0.65

mpl_connect and mpl_disconnect in the MATLAB interface renamed to
connect and disconnect

Did away with the text methods for angle since they were ambiguous.
fontangle could mean fontstyle (obligue, etc) or the rotation of the
text. Use style and rotation instead.

48.28 Changes for 0.63

Dates are now represented internally as float days since 0001-01-01,
UTC.

All date tickers and formatters are now in matplotlib.dates, rather
than matplotlib.tickers

converters have been abolished from all functions and classes.
num2date and date2num are now the converter functions for all date
plots

Most of the date tick locators have a different meaning in their
constructors. In the prior implementation, the first argument was a
base and multiples of the base were ticked. e.g.,

HourLocator(5) # old: tick every 5 minutes

In the new implementation, the explicit points you want to tick are
provided as a number or sequence

HourLocator(range(0,5,61)) # new: tick every 5 minutes

This gives much greater flexibility. I have tried to make the
default constructors (no args) behave similarly, where possible.

Note that YearLocator still works under the base/multiple scheme.
The difference between the YearLocator and the other locators is
that years are not recurrent.

48.26. Changes for 0.65.1 573

Matplotlib, Release 1.3.1

Financial functions:

matplotlib.finance.quotes_historical_yahoo(ticker, date1, date2)

date1, date2 are now datetime instances. Return value is a list
of quotes where the quote time is a float - days since gregorian
start, as returned by date2num

See examples/finance_demo.py for example usage of new API

48.29 Changes for 0.61

canvas.connect is now deprecated for event handling. use
mpl_connect and mpl_disconnect instead. The callback signature is
func(event) rather than func(widget, event)

48.30 Changes for 0.60

ColormapJet and Grayscale are deprecated. For backwards
compatibility, they can be obtained either by doing

from matplotlib.cm import ColormapJet

or

from matplotlib.matlab import *

They are replaced by cm.jet and cm.grey

48.31 Changes for 0.54.3

removed the set_default_font / get_default_font scheme from the
font_manager to unify customization of font defaults with the rest of
the rc scheme. See examples/font_properties_demo.py and help(rc) in
matplotlib.matlab.

574 Chapter 48. API Changes

Matplotlib, Release 1.3.1

48.32 Changes for 0.54

48.32.1 MATLAB interface

dpi

Several of the backends used a PIXELS_PER_INCH hack that I added to try and make images render
consistently across backends. This just complicated matters. So you may find that some font sizes and line
widths appear different than before. Apologies for the inconvenience. You should set the dpi to an accurate
value for your screen to get true sizes.

pcolor and scatter

There are two changes to the MATLAB interface API, both involving the patch drawing commands. For
efficiency, pcolor and scatter have been rewritten to use polygon collections, which are a new set of objects
from matplotlib.collections designed to enable efficient handling of large collections of objects. These new
collections make it possible to build large scatter plots or pcolor plots with no loops at the python level,
and are significantly faster than their predecessors. The original pcolor and scatter functions are retained as
pcolor_classic and scatter_classic.

The return value from pcolor is a PolyCollection. Most of the propertes that are available on rectangles or
other patches are also available on PolyCollections, eg you can say:

c = scatter(blah, blah)
c.set_linewidth(1.0)
c.set_facecolor(’r’)
c.set_alpha(0.5)

or:

c = scatter(blah, blah)
set(c, ’linewidth’, 1.0, ’facecolor’, ’r’, ’alpha’, 0.5)

Because the collection is a single object, you no longer need to loop over the return value of scatter or pcolor
to set properties for the entire list.

If you want the different elements of a collection to vary on a property, eg to have different line widths, see
matplotlib.collections for a discussion on how to set the properties as a sequence.

For scatter, the size argument is now in points^2 (the area of the symbol in points) as in MATLAB and is
not in data coords as before. Using sizes in data coords caused several problems. So you will need to adjust
your size arguments accordingly or use scatter_classic.

mathtext spacing

For reasons not clear to me (and which I’ll eventually fix) spacing no longer works in font groups. However,
I added three new spacing commands which compensate for this ‘’ (regular space), ‘/’ (small space) and
‘hspace{frac}’ where frac is a fraction of fontsize in points. You will need to quote spaces in font strings,
is:

48.32. Changes for 0.54 575

Matplotlib, Release 1.3.1

title(r’$\rm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$’)

48.32.2 Object interface - Application programmers

Autoscaling

The x and y axis instances no longer have autoscale view. These are handled by
axes.autoscale_view

Axes creation

You should not instantiate your own Axes any more using the OO API. Rather, create a Figure as
before and in place of:

f = Figure(figsize=(5,4), dpi=100)
a = Subplot(f, 111)
f.add_axis(a)

use:

f = Figure(figsize=(5,4), dpi=100)
a = f.add_subplot(111)

That is, add_axis no longer exists and is replaced by:

add_axes(rect, axisbg=defaultcolor, frameon=True)
add_subplot(num, axisbg=defaultcolor, frameon=True)

Artist methods

If you define your own Artists, you need to rename the _draw method to draw

Bounding boxes

matplotlib.transforms.Bound2D is replaced by matplotlib.transforms.Bbox. If you want to
construct a bbox from left, bottom, width, height (the signature for Bound2D), use mat-
plotlib.transforms.lbwh_to_bbox, as in

bbox = clickBBox = lbwh_to_bbox(left, bottom, width, height)

The Bbox has a different API than the Bound2D. e.g., if you want to get the width and height of
the bbox

OLD:: width = fig.bbox.x.interval() height = fig.bbox.y.interval()

New:: width = fig.bbox.width() height = fig.bbox.height()

576 Chapter 48. API Changes

Matplotlib, Release 1.3.1

Object constructors

You no longer pass the bbox, dpi, or transforms to the various Artist constructors. The old way or
creating lines and rectangles was cumbersome because you had to pass so many attributes to the
Line2D and Rectangle classes not related directly to the geometry and properties of the object.
Now default values are added to the object when you call axes.add_line or axes.add_patch, so
they are hidden from the user.

If you want to define a custom transformation on these objects, call o.set_transform(trans) where
trans is a Transformation instance.

In prior versions of you wanted to add a custom line in data coords, you would have to do

l = Line2D(dpi, bbox, x, y, color = color, transx = transx, transy = transy,)

now all you need is

l = Line2D(x, y, color=color)

and the axes will set the transformation for you (unless you have set your own already, in which
case it will eave it unchanged)

Transformations

The entire transformation architecture has been rewritten. Previously the x and y transforma-
tions where stored in the xaxis and yaxis instances. The problem with this approach is it only
allows for separable transforms (where the x and y transformations don’t depend on one an-
other). But for cases like polar, they do. Now transformations operate on x,y together. There
is a new base class matplotlib.transforms.Transformation and two concrete implementations,
matplotlib.transforms.SeparableTransformation and matplotlib.transforms.Affine. The Separa-
bleTransformation is constructed with the bounding box of the input (this determines the rectan-
gular coordinate system of the input, ie the x and y view limits), the bounding box of the display,
and possibly nonlinear transformations of x and y. The 2 most frequently used transformations,
data coordinates -> display and axes coordinates -> display are available as ax.transData and
ax.transAxes. See alignment_demo.py which uses axes coords.

Also, the transformations should be much faster now, for two reasons

• they are written entirely in extension code

• because they operate on x and y together, they can do the entire transformation in one loop.
Earlier I did something along the lines of:

xt = sx*func(x) + tx
yt = sy*func(y) + ty

Although this was done in numerix, it still involves 6 length(x) for-loops (the multiply, add,
and function evaluation each for x and y). Now all of that is done in a single pass.

If you are using transformations and bounding boxes to get the cursor position in data coordinates,
the method calls are a little different now. See the updated examples/coords_demo.py which
shows you how to do this.

48.32. Changes for 0.54 577

Matplotlib, Release 1.3.1

Likewise, if you are using the artist bounding boxes to pick items on the canvas with the
GUI, the bbox methods are somewhat different. You will need to see the updated exam-
ples/object_picker.py.

See unit/transforms_unit.py for many examples using the new transformations.

48.33 Changes for 0.50

* refactored Figure class so it is no longer backend dependent.
FigureCanvasBackend takes over the backend specific duties of the
Figure. matplotlib.backend_bases.FigureBase moved to
matplotlib.figure.Figure.

* backends must implement FigureCanvasBackend (the thing that
controls the figure and handles the events if any) and
FigureManagerBackend (wraps the canvas and the window for MATLAB
interface). FigureCanvasBase implements a backend switching
mechanism

* Figure is now an Artist (like everything else in the figure) and
is totally backend independent

* GDFONTPATH renamed to TTFPATH

* backend faceColor argument changed to rgbFace

* colormap stuff moved to colors.py

* arg_to_rgb in backend_bases moved to class ColorConverter in
colors.py

* GD users must upgrade to gd-2.0.22 and gdmodule-0.52 since new gd
features (clipping, antialiased lines) are now used.

* Renderer must implement points_to_pixels

Migrating code:

MATLAB interface:

The only API change for those using the MATLAB interface is in how
you call figure redraws for dynamically updating figures. In the
old API, you did

fig.draw()

In the new API, you do

manager = get_current_fig_manager()
manager.canvas.draw()

See the examples system_monitor.py, dynamic_demo.py, and anim.py

578 Chapter 48. API Changes

Matplotlib, Release 1.3.1

API

There is one important API change for application developers.
Figure instances used subclass GUI widgets that enabled them to be
placed directly into figures. e.g., FigureGTK subclassed
gtk.DrawingArea. Now the Figure class is independent of the
backend, and FigureCanvas takes over the functionality formerly
handled by Figure. In order to include figures into your apps,
you now need to do, for example

gtk example
fig = Figure(figsize=(5,4), dpi=100)
canvas = FigureCanvasGTK(fig) # a gtk.DrawingArea
canvas.show()
vbox.pack_start(canvas)

If you use the NavigationToolbar, this in now intialized with a
FigureCanvas, not a Figure. The examples embedding_in_gtk.py,
embedding_in_gtk2.py, and mpl_with_glade.py all reflect the new
API so use these as a guide.

All prior calls to

figure.draw() and
figure.print_figure(args)

should now be

canvas.draw() and
canvas.print_figure(args)

Apologies for the inconvenience. This refactorization brings
significant more freedom in developing matplotlib and should bring
better plotting capabilities, so I hope the inconvenience is worth
it.

48.34 Changes for 0.42

* Refactoring AxisText to be backend independent. Text drawing and
get_window_extent functionality will be moved to the Renderer.

* backend_bases.AxisTextBase is now text.Text module

* All the erase and reset functionality removed from AxisText - not
needed with double buffered drawing. Ditto with state change.
Text instances have a get_prop_tup method that returns a hashable
tuple of text properties which you can use to see if text props
have changed, eg by caching a font or layout instance in a dict
with the prop tup as a key -- see RendererGTK.get_pango_layout in
backend_gtk for an example.

48.34. Changes for 0.42 579

Matplotlib, Release 1.3.1

* Text._get_xy_display renamed Text.get_xy_display

* Artist set_renderer and wash_brushes methods removed

* Moved Legend class from matplotlib.axes into matplotlib.legend

* Moved Tick, XTick, YTick, Axis, XAxis, YAxis from matplotlib.axes
to matplotlib.axis

* moved process_text_args to matplotlib.text

* After getting Text handled in a backend independent fashion, the
import process is much cleaner since there are no longer cyclic
dependencies

* matplotlib.matlab._get_current_fig_manager renamed to
matplotlib.matlab.get_current_fig_manager to allow user access to
the GUI window attribute, eg figManager.window for GTK and
figManager.frame for wx

48.35 Changes for 0.40

- Artist
* __init__ takes a DPI instance and a Bound2D instance which is
the bounding box of the artist in display coords

* get_window_extent returns a Bound2D instance
* set_size is removed; replaced by bbox and dpi
* the clip_gc method is removed. Artists now clip themselves with
their box

* added _clipOn boolean attribute. If True, gc clip to bbox.

- AxisTextBase
* Initialized with a transx, transy which are Transform instances
* set_drawing_area removed
* get_left_right and get_top_bottom are replaced by get_window_extent

- Line2D Patches now take transx, transy
* Initialized with a transx, transy which are Transform instances

- Patches
* Initialized with a transx, transy which are Transform instances

- FigureBase attributes dpi is a DPI intance rather than scalar and
new attribute bbox is a Bound2D in display coords, and I got rid
of the left, width, height, etc... attributes. These are now
accessible as, for example, bbox.x.min is left, bbox.x.interval()
is width, bbox.y.max is top, etc...

- GcfBase attribute pagesize renamed to figsize

580 Chapter 48. API Changes

Matplotlib, Release 1.3.1

- Axes
* removed figbg attribute
* added fig instance to __init__
* resizing is handled by figure call to resize.

- Subplot
* added fig instance to __init__

- Renderer methods for patches now take gcEdge and gcFace instances.
gcFace=None takes the place of filled=False

- True and False symbols provided by cbook in a python2.3 compatible
way

- new module transforms supplies Bound1D, Bound2D and Transform
instances and more

- Changes to the MATLAB helpers API

* _matlab_helpers.GcfBase is renamed by Gcf. Backends no longer
need to derive from this class. Instead, they provide a factory
function new_figure_manager(num, figsize, dpi). The destroy
method of the GcfDerived from the backends is moved to the derived
FigureManager.

* FigureManagerBase moved to backend_bases

* Gcf.get_all_figwins renamed to Gcf.get_all_fig_managers

Jeremy:

Make sure to self._reset = False in AxisTextWX._set_font. This was
something missing in my backend code.

48.35. Changes for 0.40 581

Matplotlib, Release 1.3.1

582 Chapter 48. API Changes

CHAPTER

FORTYNINE

THE TOP LEVEL MATPLOTLIB MODULE

matplotlib.use(arg, warn=True, force=False)
Set the matplotlib backend to one of the known backends.

The argument is case-insensitive. warn specifies whether a warning should be issued if a backend has
already been set up. force is an experimental flag that tells matplotlib to attempt to initialize a new
backend by reloading the backend module.

Note: This function must be called before importing pyplot for the first time; or, if you are not using
pyplot, it must be called before importing matplotlib.backends. If warn is True, a warning is issued
if you try and call this after pylab or pyplot have been loaded. In certain black magic use cases, e.g.
pyplot.switch_backend(), we are doing the reloading necessary to make the backend switch work
(in some cases, e.g., pure image backends) so one can set warn=False to suppress the warnings.

To find out which backend is currently set, see matplotlib.get_backend().

matplotlib.get_backend()
Return the name of the current backend.

matplotlib.rcParams
An instance of RcParams for handling default matplotlib values.

matplotlib.rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, e.g., for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, e.g., (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

The following aliases are available to save typing for interactive users:

583

Matplotlib, Release 1.3.1

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, lw=2, c=’r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. e.g.,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

matplotlib.matplotlib_fname()
Get the location of the config file.

The file location is determined in the following order

•$PWD/matplotlibrc

•environment variable MATPLOTLIBRC

•$MPLCONFIGDIR/matplotlib

•On Linux,

–$HOME/.matplotlib/matplotlibrc, if it exists

–or $XDG_CONFIG_HOME/matplotlib/matplotlibrc (if $XDG_CONFIG_HOME is de-
fined)

–or $HOME/.config/matplotlib/matplotlibrc (if $XDG_CONFIG_HOME is not de-
fined)

•On other platforms,

–$HOME/.matplotlib/matplotlibrc if $HOME is defined.

•Lastly, it looks in $MATPLOTLIBDATA/matplotlibrc for a system-defined copy.

class matplotlib.RcParams
A dictionary object including validation

validating functions are defined and associated with rc parameters in matplotlib.rcsetup

584 Chapter 49. The top level matplotlib module

Matplotlib, Release 1.3.1

matplotlib.rc_params(fail_on_error=False)
Return a matplotlib.RcParams instance from the default matplotlib rc file.

matplotlib.rc_params_from_file(fname, fail_on_error=False)
Return a matplotlib.RcParams instance from the contents of the given filename.

class matplotlib.rc_context(rc=None, fname=None)
Return a context manager for managing rc settings.

This allows one to do:

with mpl.rc_context(fname=’screen.rc’):
plt.plot(x, a)
with mpl.rc_context(fname=’print.rc’):

plt.plot(x, b)
plt.plot(x, c)

The ‘a’ vs ‘x’ and ‘c’ vs ‘x’ plots would have settings from ‘screen.rc’, while the ‘b’ vs ‘x’ plot would
have settings from ‘print.rc’.

A dictionary can also be passed to the context manager:

with mpl.rc_context(rc={’text.usetex’: True}, fname=’screen.rc’):
plt.plot(x, a)

The ‘rc’ dictionary takes precedence over the settings loaded from ‘fname’. Passing a dictionary only
is also valid.

585

Matplotlib, Release 1.3.1

586 Chapter 49. The top level matplotlib module

CHAPTER

FIFTY

AFM (ADOBE FONT METRICS INTERFACE)

50.1 matplotlib.afm

This is a python interface to Adobe Font Metrics Files. Although a number of other python implementations
exist, and may be more complete than this, it was decided not to go with them because they were either:

1. copyrighted or used a non-BSD compatible license

2. had too many dependencies and a free standing lib was needed

3. Did more than needed and it was easier to write afresh rather than figure out how to get just what was
needed.

It is pretty easy to use, and requires only built-in python libs:

>>> from matplotlib import rcParams
>>> import os.path
>>> afm_fname = os.path.join(rcParams[’datapath’],
... ’fonts’, ’afm’, ’ptmr8a.afm’)
>>>
>>> from matplotlib.afm import AFM
>>> afm = AFM(open(afm_fname))
>>> afm.string_width_height(’What the heck?’)
(6220.0, 694)
>>> afm.get_fontname()
’Times-Roman’
>>> afm.get_kern_dist(’A’, ’f’)
0
>>> afm.get_kern_dist(’A’, ’y’)
-92.0
>>> afm.get_bbox_char(’!’)
[130, -9, 238, 676]

class matplotlib.afm.AFM(fh)
Bases: object

Parse the AFM file in file object fh

get_angle()
Return the fontangle as float

587

Matplotlib, Release 1.3.1

get_bbox_char(c, isord=False)

get_capheight()
Return the cap height as float

get_familyname()
Return the font family name, e.g., ‘Times’

get_fontname()
Return the font name, e.g., ‘Times-Roman’

get_fullname()
Return the font full name, e.g., ‘Times-Roman’

get_height_char(c, isord=False)
Get the height of character c from the bounding box. This is the ink height (space is 0)

get_horizontal_stem_width()
Return the standard horizontal stem width as float, or None if not specified in AFM file.

get_kern_dist(c1, c2)
Return the kerning pair distance (possibly 0) for chars c1 and c2

get_kern_dist_from_name(name1, name2)
Return the kerning pair distance (possibly 0) for chars name1 and name2

get_name_char(c, isord=False)
Get the name of the character, ie, ‘;’ is ‘semicolon’

get_str_bbox(s)
Return the string bounding box

get_str_bbox_and_descent(s)
Return the string bounding box

get_underline_thickness()
Return the underline thickness as float

get_vertical_stem_width()
Return the standard vertical stem width as float, or None if not specified in AFM file.

get_weight()
Return the font weight, e.g., ‘Bold’ or ‘Roman’

get_width_char(c, isord=False)
Get the width of the character from the character metric WX field

get_width_from_char_name(name)
Get the width of the character from a type1 character name

get_xheight()
Return the xheight as float

string_width_height(s)
Return the string width (including kerning) and string height as a (w, h) tuple.

588 Chapter 50. afm (Adobe Font Metrics interface)

Matplotlib, Release 1.3.1

matplotlib.afm.parse_afm(fh)
Parse the Adobe Font Metics file in file handle fh. Return value is a (dhead, dcmetrics,
dkernpairs, dcomposite) tuple where dhead is a _parse_header() dict, dcmetrics is a
_parse_composites() dict, dkernpairs is a _parse_kern_pairs() dict (possibly {}), and
dcomposite is a _parse_composites() dict (possibly {})

50.1. matplotlib.afm 589

Matplotlib, Release 1.3.1

590 Chapter 50. afm (Adobe Font Metrics interface)

CHAPTER

FIFTYONE

ANIMATION

51.1 matplotlib.animation

class matplotlib.animation.AVConvBase
Bases: matplotlib.animation.FFMpegBase

args_key = ‘animation.avconv_args’

exec_key = ‘animation.avconv_path’

class matplotlib.animation.AVConvFileWriter(*args, **kwargs)
Bases: matplotlib.animation.AVConvBase, matplotlib.animation.FFMpegFileWriter

class matplotlib.animation.AVConvWriter(fps=5, codec=None, bitrate=None, ex-
tra_args=None, metadata=None)

Bases: matplotlib.animation.AVConvBase, matplotlib.animation.FFMpegWriter

Construct a new MovieWriter object.

fps: int Framerate for movie.

codec: string or None, optional The codec to use. If None (the default) the setting in the rcParam
animation.codec is used.

bitrate: int or None, optional The bitrate for the saved movie file, which is one way to control the
output file size and quality. The default value is None, which uses the value stored in the rcParam
animation.bitrate. A value of -1 implies that the bitrate should be determined automatically
by the underlying utility.

extra_args: list of strings or None A list of extra string arguments to be passed to the underlying
movie utiltiy. The default is None, which passes the additional argurments in the ‘anima-
tion.extra_args’ rcParam.

metadata: dict of string:string or None A dictionary of keys and values for metadata to include in
the output file. Some keys that may be of use include: title, artist, genre, subject, copyright,
srcform, comment.

class matplotlib.animation.Animation(fig, event_source=None, blit=False)
Bases: object

591

Matplotlib, Release 1.3.1

This class wraps the creation of an animation using matplotlib. It is only a base class which should be
subclassed to provide needed behavior.

fig is the figure object that is used to get draw, resize, and any other needed events.

event_source is a class that can run a callback when desired events are generated, as well as be stopped
and started. Examples include timers (see TimedAnimation) and file system notifications.

blit is a boolean that controls whether blitting is used to optimize drawing.

new_frame_seq()
Creates a new sequence of frame information.

new_saved_frame_seq()
Creates a new sequence of saved/cached frame information.

save(filename, writer=None, fps=None, dpi=None, codec=None, bitrate=None, ex-
tra_args=None, metadata=None, extra_anim=None, savefig_kwargs=None)

Saves a movie file by drawing every frame.

filename is the output filename, e.g., mymovie.mp4

writer is either an instance of MovieWriter or a string key that identifies a class to use, such as
‘ffmpeg’ or ‘mencoder’. If nothing is passed, the value of the rcparam animation.writer is
used.

fps is the frames per second in the movie. Defaults to None, which will use the animation’s
specified interval to set the frames per second.

dpi controls the dots per inch for the movie frames. This combined with the figure’s size in inches
controls the size of the movie.

codec is the video codec to be used. Not all codecs are supported by a given MovieWriter. If
none is given, this defaults to the value specified by the rcparam animation.codec.

bitrate specifies the amount of bits used per second in the compressed movie, in kilobits per
second. A higher number means a higher quality movie, but at the cost of increased file size. If
no value is given, this defaults to the value given by the rcparam animation.bitrate.

extra_args is a list of extra string arguments to be passed to the underlying movie utiltiy. The
default is None, which passes the additional argurments in the ‘animation.extra_args’ rcParam.

metadata is a dictionary of keys and values for metadata to include in the output file. Some keys
that may be of use include: title, artist, genre, subject, copyright, srcform, comment.

extra_anim is a list of additional Animation objects that should be included in the saved movie
file. These need to be from the same matplotlib.Figure instance. Also, animation frames will
just be simply combined, so there should be a 1:1 correspondence between the frames from the
different animations.

savefig_kwargs is a dictionary containing keyword arguments to be passed on to the ‘savefig’
command which is called repeatedly to save the individual frames. This can be used to set tight
bounding boxes, for example.

class matplotlib.animation.ArtistAnimation(fig, artists, *args, **kwargs)
Bases: matplotlib.animation.TimedAnimation

592 Chapter 51. animation

Matplotlib, Release 1.3.1

Before calling this function, all plotting should have taken place and the relevant artists saved.

frame_info is a list, with each list entry a collection of artists that represent what needs to be enabled
on each frame. These will be disabled for other frames.

class matplotlib.animation.FFMpegBase

args_key = ‘animation.ffmpeg_args’

exec_key = ‘animation.ffmpeg_path’

output_args None

class matplotlib.animation.FFMpegFileWriter(*args, **kwargs)
Bases: matplotlib.animation.FileMovieWriter, matplotlib.animation.FFMpegBase

supported_formats = [’png’, ‘jpeg’, ‘ppm’, ‘tiff’, ‘sgi’, ‘bmp’, ‘pbm’, ‘raw’, ‘rgba’]

class matplotlib.animation.FFMpegWriter(fps=5, codec=None, bitrate=None, ex-
tra_args=None, metadata=None)

Bases: matplotlib.animation.MovieWriter, matplotlib.animation.FFMpegBase

Construct a new MovieWriter object.

fps: int Framerate for movie.

codec: string or None, optional The codec to use. If None (the default) the setting in the rcParam
animation.codec is used.

bitrate: int or None, optional The bitrate for the saved movie file, which is one way to control the
output file size and quality. The default value is None, which uses the value stored in the rcParam
animation.bitrate. A value of -1 implies that the bitrate should be determined automatically
by the underlying utility.

extra_args: list of strings or None A list of extra string arguments to be passed to the underlying
movie utiltiy. The default is None, which passes the additional argurments in the ‘anima-
tion.extra_args’ rcParam.

metadata: dict of string:string or None A dictionary of keys and values for metadata to include in
the output file. Some keys that may be of use include: title, artist, genre, subject, copyright,
srcform, comment.

class matplotlib.animation.FileMovieWriter(*args, **kwargs)
Bases: matplotlib.animation.MovieWriter

MovieWriter subclass that handles writing to a file.

cleanup()

finish()

51.1. matplotlib.animation 593

Matplotlib, Release 1.3.1

frame_format None
Format (png, jpeg, etc.) to use for saving the frames, which can be decided by the individual
subclasses.

setup(fig, outfile, dpi, frame_prefix=’_tmp’, clear_temp=True)
Perform setup for writing the movie file.
fig: matplotlib.Figure instance The figure object that contains the information for frames
outfile: string The filename of the resulting movie file
dpi: int The DPI (or resolution) for the file. This controls the size in pixels of the resulting movie

file.
frame_prefix: string, optional The filename prefix to use for the temporary files. Defaults to

‘_tmp’
clear_temp: bool Specifies whether the temporary files should be deleted after the movie is writ-

ten. (Useful for debugging.) Defaults to True.

class matplotlib.animation.FuncAnimation(fig, func, frames=None, init_func=None,
fargs=None, save_count=None, **kwargs)

Bases: matplotlib.animation.TimedAnimation

Makes an animation by repeatedly calling a function func, passing in (optional) arguments in fargs.

frames can be a generator, an iterable, or a number of frames.

init_func is a function used to draw a clear frame. If not given, the results of drawing from the first
item in the frames sequence will be used. This function will be called once before the first frame.

If blit=True, func and init_func should return an iterable of drawables to clear.

new_frame_seq()

new_saved_frame_seq()

class matplotlib.animation.ImageMagickBase

args_key = ‘animation.convert_args’

delay None

exec_key = ‘animation.convert_path’

output_args None

class matplotlib.animation.ImageMagickFileWriter(*args, **kwargs)
Bases: matplotlib.animation.FileMovieWriter, matplotlib.animation.ImageMagickBase

supported_formats = [’png’, ‘jpeg’, ‘ppm’, ‘tiff’, ‘sgi’, ‘bmp’, ‘pbm’, ‘raw’, ‘rgba’]

594 Chapter 51. animation

Matplotlib, Release 1.3.1

class matplotlib.animation.ImageMagickWriter(fps=5, codec=None, bitrate=None, ex-
tra_args=None, metadata=None)

Bases: matplotlib.animation.MovieWriter, matplotlib.animation.ImageMagickBase

Construct a new MovieWriter object.

fps: int Framerate for movie.

codec: string or None, optional The codec to use. If None (the default) the setting in the rcParam
animation.codec is used.

bitrate: int or None, optional The bitrate for the saved movie file, which is one way to control the
output file size and quality. The default value is None, which uses the value stored in the rcParam
animation.bitrate. A value of -1 implies that the bitrate should be determined automatically
by the underlying utility.

extra_args: list of strings or None A list of extra string arguments to be passed to the underlying
movie utiltiy. The default is None, which passes the additional argurments in the ‘anima-
tion.extra_args’ rcParam.

metadata: dict of string:string or None A dictionary of keys and values for metadata to include in
the output file. Some keys that may be of use include: title, artist, genre, subject, copyright,
srcform, comment.

class matplotlib.animation.MencoderBase

allowed_metadata = [’name’, ‘artist’, ‘genre’, ‘subject’, ‘copyright’, ‘srcform’, ‘comment’]

args_key = ‘animation.mencoder_args’

exec_key = ‘animation.mencoder_path’

output_args None

class matplotlib.animation.MencoderFileWriter(*args, **kwargs)
Bases: matplotlib.animation.FileMovieWriter, matplotlib.animation.MencoderBase

supported_formats = [’png’, ‘jpeg’, ‘tga’, ‘sgi’]

class matplotlib.animation.MencoderWriter(fps=5, codec=None, bitrate=None, ex-
tra_args=None, metadata=None)

Bases: matplotlib.animation.MovieWriter, matplotlib.animation.MencoderBase

Construct a new MovieWriter object.

fps: int Framerate for movie.

codec: string or None, optional The codec to use. If None (the default) the setting in the rcParam
animation.codec is used.

51.1. matplotlib.animation 595

Matplotlib, Release 1.3.1

bitrate: int or None, optional The bitrate for the saved movie file, which is one way to control the
output file size and quality. The default value is None, which uses the value stored in the rcParam
animation.bitrate. A value of -1 implies that the bitrate should be determined automatically
by the underlying utility.

extra_args: list of strings or None A list of extra string arguments to be passed to the underlying
movie utiltiy. The default is None, which passes the additional argurments in the ‘anima-
tion.extra_args’ rcParam.

metadata: dict of string:string or None A dictionary of keys and values for metadata to include in
the output file. Some keys that may be of use include: title, artist, genre, subject, copyright,
srcform, comment.

class matplotlib.animation.MovieWriter(fps=5, codec=None, bitrate=None, ex-
tra_args=None, metadata=None)

Bases: object

Base class for writing movies. Fundamentally, what a MovieWriter does is provide is a way to grab
frames by calling grab_frame(). setup() is called to start the process and finish() is called afterwards.
This class is set up to provide for writing movie frame data to a pipe. saving() is provided as a context
manager to facilitate this process as:

with moviewriter.saving(’myfile.mp4’):
Iterate over frames
moviewriter.grab_frame()

The use of the context manager ensures that setup and cleanup are performed as necessary.

frame_format: string The format used in writing frame data, defaults to ‘rgba’

Construct a new MovieWriter object.

fps: int Framerate for movie.

codec: string or None, optional The codec to use. If None (the default) the setting in the rcParam
animation.codec is used.

bitrate: int or None, optional The bitrate for the saved movie file, which is one way to control the
output file size and quality. The default value is None, which uses the value stored in the rcParam
animation.bitrate. A value of -1 implies that the bitrate should be determined automatically
by the underlying utility.

extra_args: list of strings or None A list of extra string arguments to be passed to the underlying
movie utiltiy. The default is None, which passes the additional argurments in the ‘anima-
tion.extra_args’ rcParam.

metadata: dict of string:string or None A dictionary of keys and values for metadata to include in
the output file. Some keys that may be of use include: title, artist, genre, subject, copyright,
srcform, comment.

classmethod bin_path()
Returns the binary path to the commandline tool used by a specific subclass. This is a class
method so that the tool can be looked for before making a particular MovieWriter subclass
available.

596 Chapter 51. animation

Matplotlib, Release 1.3.1

cleanup()
Clean-up and collect the process used to write the movie file.

finish()
Finish any processing for writing the movie.

frame_size None
A tuple (width,height) in pixels of a movie frame.

grab_frame(**savefig_kwargs)
Grab the image information from the figure and save as a movie frame. All keyword arguments
in savefig_kwargs are passed on to the ‘savefig’ command that saves the figure.

classmethod isAvailable()
Check to see if a MovieWriter subclass is actually available by running the commandline tool.

saving(*args, **kwds)
Context manager to facilitate writing the movie file.

*args are any parameters that should be passed to setup.

setup(fig, outfile, dpi, *args)
Perform setup for writing the movie file.
fig: matplotlib.Figure instance The figure object that contains the information for frames
outfile: string The filename of the resulting movie file
dpi: int The DPI (or resolution) for the file. This controls the size in pixels of the resulting movie

file.

class matplotlib.animation.MovieWriterRegistry
Bases: object

is_available(name)

list()
Get a list of available MovieWriters.

register(name)

class matplotlib.animation.TimedAnimation(fig, interval=200, repeat_delay=None, re-
peat=True, event_source=None, *args,
**kwargs)

Bases: matplotlib.animation.Animation

Animation subclass that supports time-based animation, drawing a new frame every interval millisec-
onds.

repeat controls whether the animation should repeat when the sequence of frames is completed.

repeat_delay optionally adds a delay in milliseconds before repeating the animation.

51.1. matplotlib.animation 597

Matplotlib, Release 1.3.1

598 Chapter 51. animation

CHAPTER

FIFTYTWO

ARTISTS

patches.Patch

patches.Arrow

patches.Ellipse

patches.FancyArrowPatch

patches.RegularPolygon

patches.Polygon

patches.Shadow

patches.Wedge

patches.PathPatch

patches.Rectangle

patches.FancyBboxPatch

patches.YAArrow

artist.Artist text.Text

lines.Line2D

patches.ConnectionStyle

patches.Circle

patches.Arc

patches.ConnectionPatch

patches.CirclePolygon

text.TextWithDash

text.Annotation

patches.BoxStyle

patches.FancyArrow

patches.ArrowStyle

text.OffsetFrom

lines.VertexSelector

52.1 matplotlib.artist

class matplotlib.artist.Artist
Bases: object

Abstract base class for someone who renders into a FigureCanvas.

add_callback(func)

599

Matplotlib, Release 1.3.1

Adds a callback function that will be called whenever one of the Artist‘s properties changes.

Returns an id that is useful for removing the callback with remove_callback() later.

aname = ‘Artist’

contains(mouseevent)
Test whether the artist contains the mouse event.

Returns the truth value and a dictionary of artist specific details of selection, such as which points
are contained in the pick radius. See individual artists for details.

convert_xunits(x)
For artists in an axes, if the xaxis has units support, convert x using xaxis unit type

convert_yunits(y)
For artists in an axes, if the yaxis has units support, convert y using yaxis unit type

draw(renderer, *args, **kwargs)
Derived classes drawing method

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in self.

match can be
•None: return all objects contained in artist.
•function with signature boolean = match(artist) used to filter matches
•class instance: e.g., Line2D. Only return artists of class type.

If include_self is True (default), include self in the list to be checked for a match.

get_agg_filter()
return filter function to be used for agg filter

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_animated()
Return the artist’s animated state

get_axes()
Return the Axes instance the artist resides in, or None

get_children()
Return a list of the child Artist‘s this :class:‘Artist contains.

get_clip_box()
Return artist clipbox

get_clip_on()
Return whether artist uses clipping

get_clip_path()
Return artist clip path

600 Chapter 52. artists

Matplotlib, Release 1.3.1

get_contains()
Return the _contains test used by the artist, or None for default.

get_figure()
Return the Figure instance the artist belongs to.

get_gid()
Returns the group id

get_label()
Get the label used for this artist in the legend.

get_path_effects()

get_picker()
Return the picker object used by this artist

get_rasterized()
return True if the artist is to be rasterized

get_sketch_params()
Returns the sketch parameters for the artist.

Returns sketch_params : tuple or None

A 3-tuple with the following elements: :
•scale: The amplitude of the wiggle perpendicular to the source line.
•length: The length of the wiggle along the line.
•randomness: The scale factor by which the length is shrunken or expanded.

May return ‘None‘ if no sketch parameters were set. :

get_snap()
Returns the snap setting which may be:
•True: snap vertices to the nearest pixel center
•False: leave vertices as-is
•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

Only supported by the Agg and MacOSX backends.

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_url()
Returns the url

get_visible()
Return the artist’s visiblity

get_window_extent(renderer)
Get the axes bounding box in display space. Subclasses should override for inclusion in the
bounding box “tight” calculation. Default is to return an empty bounding box at 0, 0.

52.1. matplotlib.artist 601

Matplotlib, Release 1.3.1

get_zorder()
Return the Artist‘s zorder.

have_units()
Return True if units are set on the x or y axes

hitlist(event)
List the children of the artist which contain the mouse event event.

is_figure_set()
Returns True if the artist is assigned to a Figure.

is_transform_set()
Returns True if Artist has a transform explicitly set.

pchanged()
Fire an event when property changed, calling all of the registered callbacks.

pick(mouseevent)
call signature:

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pickable()
Return True if Artist is pickable.

properties()
return a dictionary mapping property name -> value for all Artist props

remove()
Remove the artist from the figure if possible. The effect will not be visible un-
til the figure is redrawn, e.g., with matplotlib.axes.Axes.draw_idle(). Call
matplotlib.axes.Axes.relim() to update the axes limits if desired.

Note: relim() will not see collections even if the collection was added to axes with autolim =

True.

Note: there is no support for removing the artist’s legend entry.

remove_callback(oid)
Remove a callback based on its id.

See also:

add_callback() For adding callbacks

set(**kwargs)
A tkstyle set command, pass kwargs to set properties

set_agg_filter(filter_func)
set agg_filter fuction.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

602 Chapter 52. artists

Matplotlib, Release 1.3.1

ACCEPTS: float (0.0 transparent through 1.0 opaque)

set_animated(b)
Set the artist’s animation state.

ACCEPTS: [True | False]

set_axes(axes)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_clip_box(clipbox)
Set the artist’s clip Bbox.

ACCEPTS: a matplotlib.transforms.Bbox instance

set_clip_on(b)
Set whether artist uses clipping.

ACCEPTS: [True | False]

set_clip_path(path, transform=None)
Set the artist’s clip path, which may be:
•a Patch (or subclass) instance
•a Path instance, in which case an optional Transform instance may be provided, which

will be applied to the path before using it for clipping.
•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clipping
box to the corresponding rectangle and set the clipping path to None.

ACCEPTS: [(Path, Transform) | Patch | None]

set_contains(picker)
Replace the contains test used by this artist. The new picker should be a callable function which
determines whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

If the mouse event is over the artist, return hit = True and props is a dictionary of properties you
want returned with the contains test.

ACCEPTS: a callable function

set_figure(fig)
Set the Figure instance the artist belongs to.

ACCEPTS: a matplotlib.figure.Figure instance

set_gid(gid)
Sets the (group) id for the artist

ACCEPTS: an id string

set_label(s)
Set the label to s for auto legend.

52.1. matplotlib.artist 603

Matplotlib, Release 1.3.1

ACCEPTS: string or anything printable with ‘%s’ conversion.

set_lod(on)
Set Level of Detail on or off. If on, the artists may examine things like the pixel width of the axes
and draw a subset of their contents accordingly

ACCEPTS: [True | False]

set_path_effects(path_effects)
set path_effects, which should be a list of instances of matplotlib.patheffect._Base class or its
derivatives.

set_picker(picker)
Set the epsilon for picking used by this artist

picker can be one of the following:
•None: picking is disabled for this artist (default)
•A boolean: if True then picking will be enabled and the artist will fire a pick event if the
mouse event is over the artist
•A float: if picker is a number it is interpreted as an epsilon tolerance in points and the artist
will fire off an event if it’s data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, e.g., the indices of the data within epsilon of the pick event
•A function: if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True and props is a
dictionary of properties you want added to the PickEvent attributes.

ACCEPTS: [None|float|boolean|callable]

set_rasterized(rasterized)
Force rasterized (bitmap) drawing in vector backend output.

Defaults to None, which implies the backend’s default behavior

ACCEPTS: [True | False | None]

set_sketch_params(scale=None, length=None, randomness=None)
Sets the the sketch parameters.

Parameters scale : float, optional
The amplitude of the wiggle perpendicular to the source line, in pixels. If scale is
None, or not provided, no sketch filter will be provided.

length : float, optional
The length of the wiggle along the line, in pixels (default 128.0)

randomness : float, optional
The scale factor by which the length is shrunken or expanded (default 16.0)

set_snap(snap)
Sets the snap setting which may be:
•True: snap vertices to the nearest pixel center
•False: leave vertices as-is

604 Chapter 52. artists

Matplotlib, Release 1.3.1

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

Only supported by the Agg and MacOSX backends.

set_transform(t)
Set the Transform instance used by this artist.

ACCEPTS: Transform instance

set_url(url)
Sets the url for the artist

ACCEPTS: a url string

set_visible(b)
Set the artist’s visiblity.

ACCEPTS: [True | False]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

ACCEPTS: any number

update(props)
Update the properties of this Artist from the dictionary prop.

update_from(other)
Copy properties from other to self.

zorder = 0

class matplotlib.artist.ArtistInspector(o)
A helper class to inspect an Artist and return information about it’s settable properties and their
current values.

Initialize the artist inspector with an Artist or sequence of Artists. If a sequence is used, we
assume it is a homogeneous sequence (all Artists are of the same type) and it is your responsibility
to make sure this is so.

aliased_name(s)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME.

e.g., for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

aliased_name_rest(s, target)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME formatted for ReST

e.g., for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

findobj(match=None)
Recursively find all matplotlib.artist.Artist instances contained in self.

If match is not None, it can be

52.1. matplotlib.artist 605

Matplotlib, Release 1.3.1

•function with signature boolean = match(artist)
•class instance: e.g., Line2D

used to filter matches.

get_aliases()
Get a dict mapping fullname -> alias for each alias in the ArtistInspector.

e.g., for lines:

{’markerfacecolor’: ’mfc’,
’linewidth’ : ’lw’,
}

get_setters()
Get the attribute strings with setters for object. e.g., for a line, return [’markerfacecolor’,
’linewidth’,].

get_valid_values(attr)
Get the legal arguments for the setter associated with attr.

This is done by querying the docstring of the function set_attr for a line that begins with AC-
CEPTS:

e.g., for a line linestyle, return “[’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]”

is_alias(o)
Return True if method object o is an alias for another function.

pprint_getters()
Return the getters and actual values as list of strings.

pprint_setters(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values.

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

pprint_setters_rest(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values. Format the
output for ReST

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

properties()
return a dictionary mapping property name -> value

matplotlib.artist.allow_rasterization(draw)
Decorator for Artist.draw method. Provides routines that run before and after the draw call. The
before and after functions are useful for changing artist-dependant renderer attributes or making other
setup function calls, such as starting and flushing a mixed-mode renderer.

matplotlib.artist.get(obj, property=None)
Return the value of object’s property. property is an optional string for the property you want to return

606 Chapter 52. artists

Matplotlib, Release 1.3.1

Example usage:

getp(obj) # get all the object properties
getp(obj, ’linestyle’) # get the linestyle property

obj is a Artist instance, e.g., Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

obj.get_somename()

getp() can be used to query all the gettable properties with getp(obj). Many properties have aliases
for shorter typing, e.g. ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

matplotlib.artist.getp(obj, property=None)
Return the value of object’s property. property is an optional string for the property you want to return

Example usage:

getp(obj) # get all the object properties
getp(obj, ’linestyle’) # get the linestyle property

obj is a Artist instance, e.g., Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

obj.get_somename()

getp() can be used to query all the gettable properties with getp(obj). Many properties have aliases
for shorter typing, e.g. ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

matplotlib.artist.kwdoc(a)

matplotlib.artist.setp(obj, *args, **kwargs)
Set a property on an artist object.

matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties, as
well as to do introspection on the object. For example, to set the linestyle of a line to be dashed, you
can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

52.1. matplotlib.artist 607

Matplotlib, Release 1.3.1

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. e.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the MATLAB style string/value pairs or with python kwargs. For example, the
following are equivalent:

>>> setp(lines, ’linewidth’, 2, ’color’, ’r’) # MATLAB style
>>> setp(lines, linewidth=2, color=’r’) # python style

52.2 matplotlib.lines

This module contains all the 2D line class which can draw with a variety of line styles, markers and colors.

class matplotlib.lines.Line2D(xdata, ydata, linewidth=None, linestyle=None,
color=None, marker=None, markersize=None, mark-
eredgewidth=None, markeredgecolor=None, markerface-
color=None, markerfacecoloralt=’none’, fillstyle=’full’,
antialiased=None, dash_capstyle=None, solid_capstyle=None,
dash_joinstyle=None, solid_joinstyle=None, pickradius=5,
drawstyle=None, markevery=None, **kwargs)

Bases: matplotlib.artist.Artist

A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex.
Additionally, the drawing of the solid line is influenced by the drawstyle, eg one can create “stepped”
lines in various styles.

Create a Line2D instance with x and y data in sequences xdata, ydata.

The kwargs are Line2D properties:

Property Description
agg_filter unknown

Continued on next page

608 Chapter 52. artists

Matplotlib, Release 1.3.1

Table 52.1 – continued from previous page
Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See set_linestyle() for a decription of the line styles, set_marker() for a description of the
markers, and set_drawstyle() for a description of the draw styles.

52.2. matplotlib.lines 609

Matplotlib, Release 1.3.1

contains(mouseevent)
Test whether the mouse event occurred on the line. The pick radius determines the precision
of the location test (usually within five points of the value). Use get_pickradius() or
set_pickradius() to view or modify it.

Returns True if any values are within the radius along with {’ind’: pointlist}, where
pointlist is the set of points within the radius.

TODO: sort returned indices by distance

draw(artist, renderer, *args, **kwargs)
draw the Line with renderer unless visiblity is False

drawStyleKeys = [’default’, ‘steps-mid’, ‘steps-pre’, ‘steps-post’, ‘steps’]

drawStyles = {‘default’: ‘_draw_lines’, ‘steps-mid’: ‘_draw_steps_mid’, ‘steps’: ‘_draw_steps_pre’, ‘steps-pre’: ‘_draw_steps_pre’, ‘steps-post’: ‘_draw_steps_post’}

fillStyles = (‘full’, ‘left’, ‘right’, ‘bottom’, ‘top’, ‘none’)

filled_markers = (‘o’, ‘v’, ‘^’, ‘<’, ‘>’, ‘8’, ‘s’, ‘p’, ‘*’, ‘h’, ‘H’, ‘D’, ‘d’)

get_aa()
alias for get_antialiased

get_antialiased()

get_c()
alias for get_color

get_color()

get_dash_capstyle()
Get the cap style for dashed linestyles

get_dash_joinstyle()
Get the join style for dashed linestyles

get_data(orig=True)
Return the xdata, ydata.

If orig is True, return the original data.

get_drawstyle()

get_fillstyle()
return the marker fillstyle

get_linestyle()

610 Chapter 52. artists

Matplotlib, Release 1.3.1

get_linewidth()

get_ls()
alias for get_linestyle

get_lw()
alias for get_linewidth

get_marker()

get_markeredgecolor()

get_markeredgewidth()

get_markerfacecolor()

get_markerfacecoloralt()

get_markersize()

get_markevery()
return the markevery setting

get_mec()
alias for get_markeredgecolor

get_mew()
alias for get_markeredgewidth

get_mfc()
alias for get_markerfacecolor

get_mfcalt(alt=False)
alias for get_markerfacecoloralt

get_ms()
alias for get_markersize

get_path()
Return the Path object associated with this line.

get_pickradius()
return the pick radius used for containment tests

get_solid_capstyle()
Get the cap style for solid linestyles

get_solid_joinstyle()
Get the join style for solid linestyles

52.2. matplotlib.lines 611

Matplotlib, Release 1.3.1

get_window_extent(renderer)

get_xdata(orig=True)
Return the xdata.

If orig is True, return the original data, else the processed data.

get_xydata()
Return the xy data as a Nx2 numpy array.

get_ydata(orig=True)
Return the ydata.

If orig is True, return the original data, else the processed data.

is_dashed()
return True if line is dashstyle

lineStyles = {‘’: ‘_draw_nothing’, ‘ ‘: ‘_draw_nothing’, ‘None’: ‘_draw_nothing’, ‘–‘: ‘_draw_dashed’, ‘-.’: ‘_draw_dash_dot’, ‘-‘: ‘_draw_solid’, ‘:’: ‘_draw_dotted’}

markers = {0: ‘tickleft’, 1: ‘tickright’, 2: ‘tickup’, 3: ‘tickdown’, 4: ‘caretleft’, ‘D’: ‘diamond’, 6: ‘caretup’, 7: ‘caretdown’, ‘s’: ‘square’, ‘|’: ‘vline’, ‘’: ‘nothing’, ‘None’: ‘nothing’, ‘x’: ‘x’, 5: ‘caretright’, ‘_’: ‘hline’, ‘^’: ‘triangle_up’, None: ‘nothing’, ‘d’: ‘thin_diamond’, ‘ ‘: ‘nothing’, ‘h’: ‘hexagon1’, ‘+’: ‘plus’, ‘*’: ‘star’, ‘,’: ‘pixel’, ‘o’: ‘circle’, ‘.’: ‘point’, ‘1’: ‘tri_down’, ‘p’: ‘pentagon’, ‘3’: ‘tri_left’, ‘2’: ‘tri_up’, ‘4’: ‘tri_right’, ‘H’: ‘hexagon2’, ‘v’: ‘triangle_down’, ‘8’: ‘octagon’, ‘<’: ‘triangle_left’, ‘>’: ‘triangle_right’}

recache(always=False)

recache_always()

set_aa(val)
alias for set_antialiased

set_antialiased(b)
True if line should be drawin with antialiased rendering

ACCEPTS: [True | False]

set_axes(ax)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_c(val)
alias for set_color

set_color(color)
Set the color of the line

ACCEPTS: any matplotlib color

set_dash_capstyle(s)
Set the cap style for dashed linestyles

ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

612 Chapter 52. artists

Matplotlib, Release 1.3.1

set_dash_joinstyle(s)
Set the join style for dashed linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

set_dashes(seq)
Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq =

(None, None), the linestyle will be set to solid.

ACCEPTS: sequence of on/off ink in points

set_data(*args)
Set the x and y data

ACCEPTS: 2D array (rows are x, y) or two 1D arrays

set_drawstyle(drawstyle)
Set the drawstyle of the plot

‘default’ connects the points with lines. The steps variants produce step-plots. ‘steps’ is equivalent
to ‘steps-pre’ and is maintained for backward-compatibility.
ACCEPTS: [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

set_fillstyle(fs)
Set the marker fill style; ‘full’ means fill the whole marker. ‘none’ means no filling; other options
are for half-filled markers.

ACCEPTS: [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]

set_linestyle(linestyle)
Set the linestyle of the line (also accepts drawstyles)

linestyle description
’-’ solid
’--’ dashed
’-.’ dash_dot
’:’ dotted
’None’ draw nothing
’ ’ draw nothing
’’ draw nothing

‘steps’ is equivalent to ‘steps-pre’ and is maintained for backward-compatibility.

See also:

set_drawstyle() To set the drawing style (stepping) of the plot.

ACCEPTS: [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’]

and any drawstyle in combination with a linestyle, e.g., ’steps--’.

set_linewidth(w)
Set the line width in points

ACCEPTS: float value in points

set_ls(val)
alias for set_linestyle

52.2. matplotlib.lines 613

Matplotlib, Release 1.3.1

set_lw(val)
alias for set_linewidth

set_marker(marker)
Set the line marker

Parameters marker: marker style :
See markers for full description of possible argument

set_markeredgecolor(ec)
Set the marker edge color

ACCEPTS: any matplotlib color

set_markeredgewidth(ew)
Set the marker edge width in points

ACCEPTS: float value in points

set_markerfacecolor(fc)
Set the marker face color.

ACCEPTS: any matplotlib color

set_markerfacecoloralt(fc)
Set the alternate marker face color.

ACCEPTS: any matplotlib color

set_markersize(sz)
Set the marker size in points

ACCEPTS: float

set_markevery(every)
Set the markevery property to subsample the plot when using markers. e.g., if markevery=5,
every 5-th marker will be plotted. every can be
None Every point will be plotted
an integer N Every N-th marker will be plotted starting with marker 0
A length-2 tuple of integers every=(start, N) will start at point start and plot every N-th marker
ACCEPTS: None | integer | (startind, stride)

set_mec(val)
alias for set_markeredgecolor

set_mew(val)
alias for set_markeredgewidth

set_mfc(val)
alias for set_markerfacecolor

set_mfcalt(val)
alias for set_markerfacecoloralt

set_ms(val)
alias for set_markersize

614 Chapter 52. artists

Matplotlib, Release 1.3.1

set_picker(p)
Sets the event picker details for the line.

ACCEPTS: float distance in points or callable pick function fn(artist, event)

set_pickradius(d)
Sets the pick radius used for containment tests

ACCEPTS: float distance in points

set_solid_capstyle(s)
Set the cap style for solid linestyles

ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_solid_joinstyle(s)
Set the join style for solid linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

set_transform(t)
set the Transformation instance used by this artist

ACCEPTS: a matplotlib.transforms.Transform instance

set_xdata(x)
Set the data np.array for x

ACCEPTS: 1D array

set_ydata(y)
Set the data np.array for y

ACCEPTS: 1D array

update_from(other)
copy properties from other to self

validCap = (‘butt’, ‘round’, ‘projecting’)

validJoin = (‘miter’, ‘round’, ‘bevel’)

zorder = 2

class matplotlib.lines.VertexSelector(line)
Manage the callbacks to maintain a list of selected vertices for matplotlib.lines.Line2D. Derived
classes should override process_selected() to do something with the picks.

Here is an example which highlights the selected verts with red circles:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines

class HighlightSelected(lines.VertexSelector):
def __init__(self, line, fmt=’ro’, **kwargs):

lines.VertexSelector.__init__(self, line)

52.2. matplotlib.lines 615

Matplotlib, Release 1.3.1

self.markers, = self.axes.plot([], [], fmt, **kwargs)

def process_selected(self, ind, xs, ys):
self.markers.set_data(xs, ys)
self.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
x, y = np.random.rand(2, 30)
line, = ax.plot(x, y, ’bs-’, picker=5)

selector = HighlightSelected(line)
plt.show()

Initialize the class with a matplotlib.lines.Line2D instance. The line should already be added to
some matplotlib.axes.Axes instance and should have the picker property set.

onpick(event)
When the line is picked, update the set of selected indicies.

process_selected(ind, xs, ys)
Default “do nothing” implementation of the process_selected() method.

ind are the indices of the selected vertices. xs and ys are the coordinates of the selected vertices.

matplotlib.lines.segment_hits(cx, cy, x, y, radius)
Determine if any line segments are within radius of a point. Returns the list of line segments that are
within that radius.

52.3 matplotlib.patches

class matplotlib.patches.Arc(xy, width, height, angle=0.0, theta1=0.0, theta2=360.0,
**kwargs)

Bases: matplotlib.patches.Ellipse

An elliptical arc. Because it performs various optimizations, it can not be filled.

The arc must be used in an Axes instance—it can not be added directly to a Figure—because it is
optimized to only render the segments that are inside the axes bounding box with high resolution.

The following args are supported:

xy center of ellipse

width length of horizontal axis

height length of vertical axis

angle rotation in degrees (anti-clockwise)

theta1 starting angle of the arc in degrees

theta2 ending angle of the arc in degrees

616 Chapter 52. artists

Matplotlib, Release 1.3.1

If theta1 and theta2 are not provided, the arc will form a complete ellipse.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(artist, renderer, *args, **kwargs)
Ellipses are normally drawn using an approximation that uses eight cubic bezier splines. The
error of this approximation is 1.89818e-6, according to this unverified source:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines.

http://www.tinaja.com/glib/ellipse4.pdf
There is a use case where very large ellipses must be drawn with very high accuracy, and it is
too expensive to render the entire ellipse with enough segments (either splines or line segments).
Therefore, in the case where either radius of the ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset from the ideal), a different technique
is used.

In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed
number of spline segments (8). The algorithm proceeds as follows:

1.The points where the ellipse intersects the axes bounding box are located. (This is done be

52.3. matplotlib.patches 617

http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 1.3.1

performing an inverse transformation on the axes bbox such that it is relative to the unit circle
– this makes the intersection calculation much easier than doing rotated ellipse intersection
directly).

This uses the “line intersecting a circle” algorithm from:
Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs. London:
Springer-Verlag, 2005.

2.The angles of each of the intersection points are calculated.
3.Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-

segments between the pairs of vertices are drawn using the bezier arc approximation tech-
nique implemented in matplotlib.path.Path.arc().

class matplotlib.patches.Arrow(x, y, dx, dy, width=1.0, **kwargs)
Bases: matplotlib.patches.Patch

An arrow patch.

Draws an arrow, starting at (x, y), direction and length given by (dx, dy) the width of the arrow is scaled
by width.

Valid kwargs are:

618 Chapter 52. artists

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

class matplotlib.patches.ArrowStyle
Bases: matplotlib.patches._Style

ArrowStyle is a container class which defines several arrowstyle classes, which is used to create an
arrow path along a given path. These are mainly used with FancyArrowPatch.

A arrowstyle object can be either created as:

ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4)

or:

ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4)

52.3. matplotlib.patches 619

Matplotlib, Release 1.3.1

or:

ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4")

The following classes are defined

Class Name Attrs
Curve - None
CurveB -> head_length=0.4,head_width=0.2
BracketB -[widthB=1.0,lengthB=0.2,angleB=None
Curve-
FilledB

-|> head_length=0.4,head_width=0.2

CurveA <- head_length=0.4,head_width=0.2
CurveAB <-> head_length=0.4,head_width=0.2
Curve-
FilledA

<|- head_length=0.4,head_width=0.2

Curve-
FilledAB

<|-|> head_length=0.4,head_width=0.2

BracketA]- widthA=1.0,lengthA=0.2,angleA=None
BracketAB]-[widthA=1.0,lengthA=0.2,angleA=None,widthB=1.0,lengthB=0.2,angleB=None
Fancy fancy head_length=0.4,head_width=0.4,tail_width=0.4
Simple simple head_length=0.5,head_width=0.5,tail_width=0.2
Wedge wedge tail_width=0.3,shrink_factor=0.5
BarAB |-| widthA=1.0,angleA=None,widthB=1.0,angleB=None

An instance of any arrow style class is an callable object, whose call signature is:

__call__(self, path, mutation_size, linewidth, aspect_ratio=1.)

and it returns a tuple of a Path instance and a boolean value. path is a Path instance along witch the
arrow will be drawn. mutation_size and aspect_ratio has a same meaning as in BoxStyle. linewidth
is a line width to be stroked. This is meant to be used to correct the location of the head so that it does
not overshoot the destination point, but not all classes support it.

620 Chapter 52. artists

Matplotlib, Release 1.3.1

-

->

-[

-|>

<-

<->

<|-

<|-|>

]-

]-[

fancy

simple

wedge

|-|

class BarAB(widthA=1.0, angleA=None, widthB=1.0, angleB=None)
Bases: matplotlib.patches._Bracket

An arrow with a bar(|) at both ends.
widthA width of the bracket
lengthA length of the bracket
angleA angle between the bracket and the line
widthB width of the bracket
lengthB length of the bracket
angleB angle between the bracket and the line

class ArrowStyle.BracketA(widthA=1.0, lengthA=0.2, angleA=None)
Bases: matplotlib.patches._Bracket

An arrow with a bracket(]) at its end.
widthA width of the bracket
lengthA length of the bracket
angleA angle between the bracket and the line

class ArrowStyle.BracketAB(widthA=1.0, lengthA=0.2, angleA=None, widthB=1.0,
lengthB=0.2, angleB=None)

Bases: matplotlib.patches._Bracket

52.3. matplotlib.patches 621

Matplotlib, Release 1.3.1

An arrow with a bracket(]) at both ends.
widthA width of the bracket
lengthA length of the bracket
angleA angle between the bracket and the line
widthB width of the bracket
lengthB length of the bracket
angleB angle between the bracket and the line

class ArrowStyle.BracketB(widthB=1.0, lengthB=0.2, angleB=None)
Bases: matplotlib.patches._Bracket

An arrow with a bracket([) at its end.
widthB width of the bracket
lengthB length of the bracket
angleB angle between the bracket and the line

class ArrowStyle.Curve
Bases: matplotlib.patches._Curve

A simple curve without any arrow head.

class ArrowStyle.CurveA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with a head at its begin point.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveAB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with heads both at the begin and the end point.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with a head at its end point.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveFilledA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the begin.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveFilledAB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle heads both at the begin and the end point.
head_length length of the arrow head
head_width width of the arrow head

622 Chapter 52. artists

Matplotlib, Release 1.3.1

class ArrowStyle.CurveFilledB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the end.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.Fancy(head_length=0.4, head_width=0.4, tail_width=0.4)
Bases: matplotlib.patches._Base

A fancy arrow. Only works with a quadratic bezier curve.
head_length length of the arrow head
head_with width of the arrow head
tail_width width of the arrow tail
transmute(path, mutation_size, linewidth)

class ArrowStyle.Simple(head_length=0.5, head_width=0.5, tail_width=0.2)
Bases: matplotlib.patches._Base

A simple arrow. Only works with a quadratic bezier curve.
head_length length of the arrow head
head_with width of the arrow head
tail_width width of the arrow tail
transmute(path, mutation_size, linewidth)

class ArrowStyle.Wedge(tail_width=0.3, shrink_factor=0.5)
Bases: matplotlib.patches._Base

Wedge(?) shape. Only wokrs with a quadratic bezier curve. The begin point has a width of the
tail_width and the end point has a width of 0. At the middle, the width is shrink_factor*tail_width.
tail_width width of the tail
shrink_factor fraction of the arrow width at the middle point
transmute(path, mutation_size, linewidth)

class matplotlib.patches.BoxStyle
Bases: matplotlib.patches._Style

BoxStyle is a container class which defines several boxstyle classes, which are used for
FancyBoxPatch.

A style object can be created as:

BoxStyle.Round(pad=0.2)

or:

BoxStyle("Round", pad=0.2)

or:

52.3. matplotlib.patches 623

Matplotlib, Release 1.3.1

BoxStyle("Round, pad=0.2")

Following boxstyle classes are defined.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

An instance of any boxstyle class is an callable object, whose call signature is:

__call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.)

and returns a Path instance. x0, y0, width and height specify the location and size of the box to be
drawn. mutation_scale determines the overall size of the mutation (by which I mean the transformation
of the rectangle to the fancy box). mutation_aspect determines the aspect-ratio of the mutation.

square

sawtooth

roundtooth

rarrow

larrow

round4

round

class LArrow(pad=0.3)

624 Chapter 52. artists

Matplotlib, Release 1.3.1

Bases: matplotlib.patches._Base

(left) Arrow Box

transmute(x0, y0, width, height, mutation_size)

class BoxStyle.RArrow(pad=0.3)
Bases: matplotlib.patches.LArrow

(right) Arrow Box

transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Round(pad=0.3, rounding_size=None)
Bases: matplotlib.patches._Base

A box with round corners.
pad amount of padding
rounding_size rounding radius of corners. pad if None
transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Round4(pad=0.3, rounding_size=None)
Bases: matplotlib.patches._Base

Another box with round edges.
pad amount of padding
rounding_size rounding size of edges. pad if None
transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Roundtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches.Sawtooth

A roundtooth(?) box.
pad amount of padding
tooth_size size of the sawtooth. pad* if None
transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Sawtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches._Base

A sawtooth box.
pad amount of padding
tooth_size size of the sawtooth. pad* if None
transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Square(pad=0.3)
Bases: matplotlib.patches._Base

A simple square box.

52.3. matplotlib.patches 625

Matplotlib, Release 1.3.1

pad amount of padding
transmute(x0, y0, width, height, mutation_size)

class matplotlib.patches.Circle(xy, radius=5, **kwargs)
Bases: matplotlib.patches.Ellipse

A circle patch.

Create true circle at center xy = (x, y) with given radius. Unlike CirclePolygon which is a polygonal
approximation, this uses Bézier splines and is much closer to a scale-free circle.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_radius()
return the radius of the circle

radius None
return the radius of the circle

626 Chapter 52. artists

Matplotlib, Release 1.3.1

set_radius(radius)
Set the radius of the circle

ACCEPTS: float

class matplotlib.patches.CirclePolygon(xy, radius=5, resolution=20, **kwargs)
Bases: matplotlib.patches.RegularPolygon

A polygon-approximation of a circle patch.

Create a circle at xy = (x, y) with given radius. This circle is approximated by a regular polygon with
resolution sides. For a smoother circle drawn with splines, see Circle.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

52.3. matplotlib.patches 627

Matplotlib, Release 1.3.1

class matplotlib.patches.ConnectionPatch(xyA, xyB, coordsA, coordsB=None, ax-
esA=None, axesB=None, arrowstyle=’-‘, ar-
row_transmuter=None, connectionstyle=’arc3’,
connector=None, patchA=None, patchB=None,
shrinkA=0.0, shrinkB=0.0, mutation_scale=10.0,
mutation_aspect=None, clip_on=False,
dpi_cor=1.0, **kwargs)

Bases: matplotlib.patches.FancyArrowPatch

A ConnectionPatch class is to make connecting lines between two points (possibly in different axes).

Connect point xyA in coordsA with point xyB in coordsB

Valid keys are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

coordsA and coordsB are strings that indicate the coordinates of xyA and xyB.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since that
is the native “data” coordinate system.

draw(renderer)

628 Chapter 52. artists

Matplotlib, Release 1.3.1

Draw.

get_annotation_clip()
Return annotation_clip attribute. See set_annotation_clip() for the meaning of return val-
ues.

get_path_in_displaycoord()
Return the mutated path of the arrow in the display coord

set_annotation_clip(b)
set annotation_clip attribute.
•True: the annotation will only be drawn when self.xy is inside the axes.
•False: the annotation will always be drawn regardless of its position.
•None: the self.xy will be checked only if xycoords is “data”

class matplotlib.patches.ConnectionStyle
Bases: matplotlib.patches._Style

ConnectionStyle is a container class which defines several connectionstyle classes, which is used to
create a path between two points. These are mainly used with FancyArrowPatch.

A connectionstyle object can be either created as:

ConnectionStyle.Arc3(rad=0.2)

or:

ConnectionStyle("Arc3", rad=0.2)

or:

ConnectionStyle("Arc3, rad=0.2")

The following classes are defined

Class Name Attrs
Angle angle angleA=90,angleB=0,rad=0.0
Angle3 angle3 angleA=90,angleB=0
Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

An instance of any connection style class is an callable object, whose call signature is:

__call__(self, posA, posB,
patchA=None, patchB=None,
shrinkA=2., shrinkB=2.)

and it returns a Path instance. posA and posB are tuples of x,y coordinates of the two points to be
connected. patchA (or patchB) is given, the returned path is clipped so that it start (or end) from the
boundary of the patch. The path is further shrunk by shrinkA (or shrinkB) which is given in points.

class Angle(angleA=90, angleB=0, rad=0.0)
Bases: matplotlib.patches._Base

52.3. matplotlib.patches 629

Matplotlib, Release 1.3.1

Creates a picewise continuous quadratic bezier path between two points. The path has a one
passing-through point placed at the intersecting point of two lines which crosses the start (or end)
point and has a angle of angleA (or angleB). The connecting edges are rounded with rad.
angleA starting angle of the path
angleB ending angle of the path
rad rounding radius of the edge
connect(posA, posB)

class ConnectionStyle.Angle3(angleA=90, angleB=0)
Bases: matplotlib.patches._Base

Creates a simple quadratic bezier curve between two points. The middle control points is placed at
the intersecting point of two lines which crosses the start (or end) point and has a angle of angleA
(or angleB).
angleA starting angle of the path
angleB ending angle of the path
connect(posA, posB)

class ConnectionStyle.Arc(angleA=0, angleB=0, armA=None, armB=None, rad=0.0)
Bases: matplotlib.patches._Base

Creates a picewise continuous quadratic bezier path between two points. The path can have two
passing-through points, a point placed at the distance of armA and angle of angleA from point A,
another point with respect to point B. The edges are rounded with rad.
angleA : starting angle of the path
angleB : ending angle of the path
armA : length of the starting arm
armB : length of the ending arm
rad : rounding radius of the edges
connect(posA, posB)

class ConnectionStyle.Arc3(rad=0.0)
Bases: matplotlib.patches._Base

Creates a simple quadratic bezier curve between two points. The curve is created so that the
middle contol points (C1) is located at the same distance from the start (C0) and end points(C2)
and the distance of the C1 to the line connecting C0-C2 is rad times the distance of C0-C2.
rad curvature of the curve.
connect(posA, posB)

class ConnectionStyle.Bar(armA=0.0, armB=0.0, fraction=0.3, angle=None)
Bases: matplotlib.patches._Base

A line with angle between A and B with armA and armB. One of the arm is extend so that they are
connected in a right angle. The length of armA is determined by (armA + fraction x AB distance).
Same for armB.

armA : minimum length of armA

630 Chapter 52. artists

Matplotlib, Release 1.3.1

armB : minimum length of armB
fraction [a fraction of the distance between two points that] will be added to armA and armB.
angle [angle of the connecting line (if None, parallel to A] and B)
connect(posA, posB)

class matplotlib.patches.Ellipse(xy, width, height, angle=0.0, **kwargs)
Bases: matplotlib.patches.Patch

A scale-free ellipse.

xy center of ellipse

width total length (diameter) of horizontal axis

height total length (diameter) of vertical axis

angle rotation in degrees (anti-clockwise)

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

52.3. matplotlib.patches 631

Matplotlib, Release 1.3.1

contains(ev)

get_patch_transform()

get_path()
Return the vertices of the rectangle

class matplotlib.patches.FancyArrow(x, y, dx, dy, width=0.001, length_includes_head=False,
head_width=None, head_length=None, shape=’full’,
overhang=0, head_starts_at_zero=False, **kwargs)

Bases: matplotlib.patches.Polygon

Like Arrow, but lets you set head width and head height independently.

Constructor arguments

width: float (default: 0.001) width of full arrow tail

length_includes_head: [True | False] (default: False) True if head is to be counted in calculat-
ing the length.

head_width: float or None (default: 3*width) total width of the full arrow head

head_length: float or None (default: 1.5 * head_width) length of arrow head

shape: [’full’, ‘left’, ‘right’] (default: ‘full’) draw the left-half, right-half, or full arrow

overhang: float (default: 0) fraction that the arrow is swept back (0 overhang means triangular
shape). Can be negative or greater than one.

head_starts_at_zero: [True | False] (default: False) if True, the head starts being drawn at coor-
dinate 0 instead of ending at coordinate 0.

Other valid kwargs (inherited from Patch) are:

632 Chapter 52. artists

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

class matplotlib.patches.FancyArrowPatch(posA=None, posB=None, path=None, arrow-
style=’simple’, arrow_transmuter=None, connec-
tionstyle=’arc3’, connector=None, patchA=None,
patchB=None, shrinkA=2.0, shrinkB=2.0,
mutation_scale=1.0, mutation_aspect=None,
dpi_cor=1.0, **kwargs)

Bases: matplotlib.patches.Patch

A fancy arrow patch. It draws an arrow using the :class:ArrowStyle.

If posA and posB is given, a path connecting two point are created according to the connectionstyle.
The path will be clipped with patchA and patchB and further shirnked by shrinkA and shrinkB. An
arrow is drawn along this resulting path using the arrowstyle parameter. If path provided, an arrow is
drawn along this path and patchA, patchB, shrinkA, and shrinkB are ignored.

The connectionstyle describes how posA and posB are connected. It can be an instance of the Con-
nectionStyle class (matplotlib.patches.ConnectionStlye) or a string of the connectionstyle name, with
optional comma-separated attributes. The following connection styles are available.

52.3. matplotlib.patches 633

Matplotlib, Release 1.3.1

Class Name Attrs
Angle angle angleA=90,angleB=0,rad=0.0
Angle3 angle3 angleA=90,angleB=0
Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

The arrowstyle describes how the fancy arrow will be drawn. It can be string of the available arrowstyle
names, with optional comma-separated attributes, or one of the ArrowStyle instance. The optional
attributes are meant to be scaled with the mutation_scale. The following arrow styles are available.

Class Name Attrs
Curve - None
CurveB -> head_length=0.4,head_width=0.2
BracketB -[widthB=1.0,lengthB=0.2,angleB=None
Curve-
FilledB

-|> head_length=0.4,head_width=0.2

CurveA <- head_length=0.4,head_width=0.2
CurveAB <-> head_length=0.4,head_width=0.2
Curve-
FilledA

<|- head_length=0.4,head_width=0.2

Curve-
FilledAB

<|-|> head_length=0.4,head_width=0.2

BracketA]- widthA=1.0,lengthA=0.2,angleA=None
BracketAB]-[widthA=1.0,lengthA=0.2,angleA=None,widthB=1.0,lengthB=0.2,angleB=None
Fancy fancy head_length=0.4,head_width=0.4,tail_width=0.4
Simple simple head_length=0.5,head_width=0.5,tail_width=0.2
Wedge wedge tail_width=0.3,shrink_factor=0.5
BarAB |-| widthA=1.0,angleA=None,widthB=1.0,angleB=None

mutation_scale [a value with which attributes of arrowstyle] (e.g., head_length) will be scaled. de-
fault=1.

mutation_aspect [The height of the rectangle will be] squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:

634 Chapter 52. artists

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(renderer)

get_arrowstyle()
Return the arrowstyle object

get_connectionstyle()
Return the ConnectionStyle instance

get_dpi_cor()
dpi_cor is currently used for linewidth-related things and shink factor. Mutation scale is not
affected by this.

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()

52.3. matplotlib.patches 635

Matplotlib, Release 1.3.1

return the path of the arrow in the data coordinate. Use get_path_in_displaycoord() method to
retrieve the arrow path in the display coord.

get_path_in_displaycoord()
Return the mutated path of the arrow in the display coord

set_arrowstyle(arrowstyle=None, **kw)
Set the arrow style.
arrowstyle can be a string with arrowstyle name with optional comma-separated attributes.

Alternatively, the attrs can be provided as keywords.

set_arrowstyle(“Fancy,head_length=0.2”) set_arrowstyle(“fancy”, head_length=0.2)
Old attrs simply are forgotten.

Without argument (or with arrowstyle=None), return available box styles as a list of strings.

set_connectionstyle(connectionstyle, **kw)
Set the connection style.
connectionstyle can be a string with connectionstyle name with optional comma-separated at-

tributes. Alternatively, the attrs can be probided as keywords.

set_connectionstyle(“arc,angleA=0,armA=30,rad=10”) set_connectionstyle(“arc”, an-
gleA=0,armA=30,rad=10)

Old attrs simply are forgotten.

Without argument (or with connectionstyle=None), return available styles as a list of strings.

set_dpi_cor(dpi_cor)
dpi_cor is currently used for linewidth-related things and shink factor. Mutation scale is not
affected by this.

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_patchA(patchA)
set the begin patch.

set_patchB(patchB)
set the begin patch

set_positions(posA, posB)
set the begin end end positions of the connecting path. Use current vlaue if None.

class matplotlib.patches.FancyBboxPatch(xy, width, height, boxstyle=’round’,
bbox_transmuter=None, mutation_scale=1.0,
mutation_aspect=None, **kwargs)

Bases: matplotlib.patches.Patch

Draw a fancy box around a rectangle with lower left at xy*=(*x, y) with specified width and height.

636 Chapter 52. artists

Matplotlib, Release 1.3.1

FancyBboxPatch class is similar to Rectangle class, but it draws a fancy box around the rectangle.
The transformation of the rectangle box to the fancy box is delegated to the BoxTransmuterBase and
its derived classes.

xy = lower left corner

width, height

boxstyle determines what kind of fancy box will be drawn. It can be a string of the style name with a
comma separated attribute, or an instance of BoxStyle. Following box styles are available.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

mutation_scale : a value with which attributes of boxstyle (e.g., pad) will be scaled. default=1.

mutation_aspect : The height of the rectangle will be squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:

52.3. matplotlib.patches 637

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_bbox()

get_boxstyle()
Return the boxstyle object

get_height()
Return the height of the rectangle

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
Return the mutated path of the rectangle

get_width()
Return the width of the rectangle

638 Chapter 52. artists

Matplotlib, Release 1.3.1

get_x()
Return the left coord of the rectangle

get_y()
Return the bottom coord of the rectangle

set_bounds(*args)
Set the bounds of the rectangle: l,b,w,h

ACCEPTS: (left, bottom, width, height)

set_boxstyle(boxstyle=None, **kw)
Set the box style.

boxstyle can be a string with boxstyle name with optional comma-separated attributes. Alterna-
tively, the attrs can be provided as keywords:

set_boxstyle("round,pad=0.2")
set_boxstyle("round", pad=0.2)

Old attrs simply are forgotten.

Without argument (or with boxstyle = None), it returns available box styles.

set_height(h)
Set the width rectangle

ACCEPTS: float

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

class matplotlib.patches.Patch(edgecolor=None, facecolor=None, color=None,
linewidth=None, linestyle=None, antialiased=None,
hatch=None, fill=True, **kwargs)

Bases: matplotlib.artist.Artist

52.3. matplotlib.patches 639

Matplotlib, Release 1.3.1

A patch is a 2D artist with a face color and an edge color.

If any of edgecolor, facecolor, linewidth, or antialiased are None, they default to their rc params
setting.

The following kwarg properties are supported

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(mouseevent, radius=None)
Test whether the mouse event occurred in the patch.

Returns T/F, {}

contains_point(point, radius=None)
Returns True if the given point is inside the path (transformed with its transform attribute).

draw(artist, renderer, *args, **kwargs)
Draw the Patch to the given renderer.

fill None
return whether fill is set

640 Chapter 52. artists

Matplotlib, Release 1.3.1

get_aa()
Returns True if the Patch is to be drawn with antialiasing.

get_antialiased()
Returns True if the Patch is to be drawn with antialiasing.

get_data_transform()
Return the Transform instance which maps data coordinates to physical coordinates.

get_ec()
Return the edge color of the Patch.

get_edgecolor()
Return the edge color of the Patch.

get_extents()
Return a Bbox object defining the axis-aligned extents of the Patch.

get_facecolor()
Return the face color of the Patch.

get_fc()
Return the face color of the Patch.

get_fill()
return whether fill is set

get_hatch()
Return the current hatching pattern

get_linestyle()
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_linewidth()
Return the line width in points.

get_ls()
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_lw()
Return the line width in points.

get_patch_transform()
Return the Transform instance which takes patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)
by 5.

get_path()
Return the path of this patch

get_transform()
Return the Transform applied to the Patch.

get_verts()
Return a copy of the vertices used in this patch

52.3. matplotlib.patches 641

Matplotlib, Release 1.3.1

If the patch contains Bezier curves, the curves will be interpolated by line segments. To access
the curves as curves, use get_path().

get_window_extent(renderer=None)

set_aa(aa)
alias for set_antialiased

set_alpha(alpha)
Set the alpha tranparency of the patch.

ACCEPTS: float or None

set_antialiased(aa)
Set whether to use antialiased rendering

ACCEPTS: [True | False] or None for default

set_color(c)
Set both the edgecolor and the facecolor.

ACCEPTS: matplotlib color spec

See also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_ec(color)
alias for set_edgecolor

set_edgecolor(color)
Set the patch edge color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_facecolor(color)
Set the patch face color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_fc(color)
alias for set_facecolor

set_fill(b)
Set whether to fill the patch

ACCEPTS: [True | False]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal

642 Chapter 52. artists

Matplotlib, Release 1.3.1

+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

ACCEPTS: [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]

set_linestyle(ls)
Set the patch linestyle

ACCEPTS: [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

set_linewidth(w)
Set the patch linewidth in points

ACCEPTS: float or None for default

set_ls(ls)
alias for set_linestyle

set_lw(lw)
alias for set_linewidth

update_from(other)
Updates this Patch from the properties of other.

zorder = 1

class matplotlib.patches.PathPatch(path, **kwargs)
Bases: matplotlib.patches.Patch

A general polycurve path patch.

path is a matplotlib.path.Path object.

Valid kwargs are:

52.3. matplotlib.patches 643

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See also:

Patch For additional kwargs

get_path()

class matplotlib.patches.Polygon(xy, closed=True, **kwargs)
Bases: matplotlib.patches.Patch

A general polygon patch.

xy is a numpy array with shape Nx2.

If closed is True, the polygon will be closed so the starting and ending points are the same.

Valid kwargs are:

644 Chapter 52. artists

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See also:

Patch For additional kwargs

get_closed()

get_path()

get_xy()

set_closed(closed)

set_xy(xy)

52.3. matplotlib.patches 645

Matplotlib, Release 1.3.1

xy None
Set/get the vertices of the polygon. This property is provided for backward compatibility with
matplotlib 0.91.x only. New code should use get_xy() and set_xy() instead.

class matplotlib.patches.Rectangle(xy, width, height, angle=0.0, **kwargs)
Bases: matplotlib.patches.Patch

Draw a rectangle with lower left at xy = (x, y) with specified width and height.

angle rotation in degrees (anti-clockwise)

fill is a boolean indicating whether to fill the rectangle

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(mouseevent)

get_bbox()

646 Chapter 52. artists

Matplotlib, Release 1.3.1

get_height()
Return the height of the rectangle

get_patch_transform()

get_path()
Return the vertices of the rectangle

get_width()
Return the width of the rectangle

get_x()
Return the left coord of the rectangle

get_xy()
Return the left and bottom coords of the rectangle

get_y()
Return the bottom coord of the rectangle

set_bounds(*args)
Set the bounds of the rectangle: l,b,w,h

ACCEPTS: (left, bottom, width, height)

set_height(h)
Set the width rectangle

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_xy(xy)
Set the left and bottom coords of the rectangle

ACCEPTS: 2-item sequence

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

xy None
Return the left and bottom coords of the rectangle

class matplotlib.patches.RegularPolygon(xy, numVertices, radius=5, orientation=0,
**kwargs)

Bases: matplotlib.patches.Patch

52.3. matplotlib.patches 647

Matplotlib, Release 1.3.1

A regular polygon patch.

Constructor arguments:

xy A length 2 tuple (x, y) of the center.

numVertices the number of vertices.

radius The distance from the center to each of the vertices.

orientation rotates the polygon (in radians).

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

numvertices None

648 Chapter 52. artists

Matplotlib, Release 1.3.1

orientation None

radius None

xy None

class matplotlib.patches.Shadow(patch, ox, oy, props=None, **kwargs)
Bases: matplotlib.patches.Patch

Create a shadow of the given patch offset by ox, oy. props, if not None, is a patch property update
dictionary. If None, the shadow will have have the same color as the face, but darkened.

kwargs are

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(renderer)

52.3. matplotlib.patches 649

Matplotlib, Release 1.3.1

get_patch_transform()

get_path()

class matplotlib.patches.Wedge(center, r, theta1, theta2, width=None, **kwargs)
Bases: matplotlib.patches.Patch

Wedge shaped patch.

Draw a wedge centered at x, y center with radius r that sweeps theta1 to theta2 (in degrees). If width
is given, then a partial wedge is drawn from inner radius r - width to outer radius r.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_path()

set_center(center)

650 Chapter 52. artists

Matplotlib, Release 1.3.1

set_radius(radius)

set_theta1(theta1)

set_theta2(theta2)

set_width(width)

class matplotlib.patches.YAArrow(figure, xytip, xybase, width=4, frac=0.1, headwidth=12,
**kwargs)

Bases: matplotlib.patches.Patch

Yet another arrow class.

This is an arrow that is defined in display space and has a tip at x1, y1 and a base at x2, y2.

Constructor arguments:

xytip (x, y) location of arrow tip

xybase (x, y) location the arrow base mid point

figure The Figure instance (fig.dpi)

width The width of the arrow in points

frac The fraction of the arrow length occupied by the head

headwidth The width of the base of the arrow head in points

Valid kwargs are:

52.3. matplotlib.patches 651

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

getpoints(x1, y1, x2, y2, k)
For line segment defined by (x1, y1) and (x2, y2) return the points on the line that is perpendicular
to the line and intersects (x2, y2) and the distance from (x2, y2) of the returned points is k.

matplotlib.patches.bbox_artist(artist, renderer, props=None, fill=True)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

props is a dict of rectangle props with the additional property ‘pad’ that sets the padding around the
bbox in points.

matplotlib.patches.draw_bbox(bbox, renderer, color=’k’, trans=None)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

652 Chapter 52. artists

Matplotlib, Release 1.3.1

52.4 matplotlib.text

Classes for including text in a figure.

class matplotlib.text.Annotation(s, xy, xytext=None, xycoords=’data’, textcoords=None, ar-
rowprops=None, annotation_clip=None, **kwargs)

Bases: matplotlib.text.Text, matplotlib.text._AnnotationBase

A Text class to make annotating things in the figure, such as Figure, Axes, Rectangle, etc., easier.

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given dictionary
and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point
being annotated. If d is the distance between the text and annotated point, shrink will
shorten the arrow so the tip and base are shink percent of the distance d away from the
endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

52.4. matplotlib.text 653

Matplotlib, Release 1.3.1

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,0 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since that
is the native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. e.g.:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

You may use an instance of Transform or Artist. See Annotating Axes for more details.

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes area.
If True, the annotation will only be drawn when the xy is inside the axes. If False, the annotation will
always be drawn regardless of its position. The default is None, which behave as True only if xycoords
is”data”.

Additional kwargs are Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function

Continued on next page

654 Chapter 52. artists

Matplotlib, Release 1.3.1

Table 52.2 – continued from previous page
Property Description
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

contains(event)

draw(artist, renderer, *args, **kwargs)
Draw the Annotation object to the given renderer.

set_figure(fig)

update_bbox_position_size(renderer)
Update the location and the size of the bbox. This method should be used when the position and
size of the bbox needs to be updated before actually drawing the bbox.

update_positions(renderer)
“Update the pixel positions of the annotated point and the text.

52.4. matplotlib.text 655

Matplotlib, Release 1.3.1

class matplotlib.text.OffsetFrom(artist, ref_coord, unit=’points’)
Bases: object

get_unit()

set_unit(unit)

class matplotlib.text.Text(x=0, y=0, text=’‘, color=None, verticalalignment=’baseline’, hori-
zontalalignment=’left’, multialignment=None, fontproperties=None,
rotation=None, linespacing=None, rotation_mode=None,
**kwargs)

Bases: matplotlib.artist.Artist

Handle storing and drawing of text in window or data coordinates.

Create a Text instance at x, y with string text.

Valid kwargs are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown

Continued on next page

656 Chapter 52. artists

Matplotlib, Release 1.3.1

Table 52.3 – continued from previous page
Property Description
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

contains(mouseevent)
Test whether the mouse event occurred in the patch.

In the case of text, a hit is true anywhere in the axis-aligned bounding-box containing the text.

Returns True or False.

draw(artist, renderer, *args, **kwargs)
Draws the Text object to the given renderer.

get_bbox_patch()
Return the bbox Patch object. Returns None if the the FancyBboxPatch is not made.

get_color()
Return the color of the text

get_family()
Return the list of font families used for font lookup

get_font_properties()
alias for get_fontproperties

get_fontfamily()
alias for get_family

get_fontname()
alias for get_name

get_fontproperties()
Return the FontProperties object

get_fontsize()
alias for get_size

get_fontstretch()
alias for get_stretch

52.4. matplotlib.text 657

Matplotlib, Release 1.3.1

get_fontstyle()
alias for get_style

get_fontvariant()
alias for get_variant

get_fontweight()
alias for get_weight

get_ha()
alias for get_horizontalalignment

get_horizontalalignment()
Return the horizontal alignment as string. Will be one of ‘left’, ‘center’ or ‘right’.

get_name()
Return the font name as string

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_rotation()
return the text angle as float in degrees

get_rotation_mode()
get text rotation mode

get_size()
Return the font size as integer

get_stretch()
Get the font stretch as a string or number

get_style()
Return the font style as string

get_text()
Get the text as string

get_va()
alias for getverticalalignment()

get_variant()
Return the font variant as a string

get_verticalalignment()
Return the vertical alignment as string. Will be one of ‘top’, ‘center’, ‘bottom’ or ‘baseline’.

get_weight()
Get the font weight as string or number

658 Chapter 52. artists

Matplotlib, Release 1.3.1

get_window_extent(renderer=None, dpi=None)
Return a Bbox object bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file on
a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent()
prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

dpi defaults to self.figure.dpi; the renderer dpi is irrelevant. For the web application, if figure.dpi
is not the value used when saving the figure, then the value that was used must be specified as the
dpi argument.

static is_math_text(s)
Returns a cleaned string and a boolean flag. The flag indicates if the given string s contains any
mathtext, determined by counting unescaped dollar signs. If no mathtext is present, the cleaned
string has its dollar signs unescaped. If usetex is on, the flag always has the value “TeX”.

set_backgroundcolor(color)
Set the background color of the text by updating the bbox.

See also:

set_bbox() To change the position of the bounding box.

ACCEPTS: any matplotlib color

set_bbox(rectprops)
Draw a bounding box around self. rectprops are any settable properties for a rectangle, eg face-
color=’red’, alpha=0.5.

t.set_bbox(dict(facecolor=’red’, alpha=0.5))
If rectprops has “boxstyle” key. A FancyBboxPatch is initialized with rectprops and will be drawn.
The mutation scale of the FancyBboxPath is set to the fontsize.

ACCEPTS: rectangle prop dict

set_color(color)
Set the foreground color of the text

ACCEPTS: any matplotlib color

set_family(fontname)
Set the font family. May be either a single string, or a list of strings in decreasing priority. Each
string may be either a real font name or a generic font class name. If the latter, the specific font
names will be looked up in the matplotlibrc file.
ACCEPTS: [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

set_font_properties(fp)
alias for set_fontproperties

set_fontname(fontname)
alias for set_family

52.4. matplotlib.text 659

Matplotlib, Release 1.3.1

set_fontproperties(fp)
Set the font properties that control the text. fp must be a
matplotlib.font_manager.FontProperties object.

ACCEPTS: a matplotlib.font_manager.FontProperties instance

set_fontsize(fontsize)
alias for set_size

set_fontstretch(stretch)
alias for set_stretch

set_fontstyle(fontstyle)
alias for set_style

set_fontvariant(variant)
alias for set_variant

set_fontweight(weight)
alias for set_weight

set_ha(align)
alias for set_horizontalalignment

set_horizontalalignment(align)
Set the horizontal alignment to one of

ACCEPTS: [‘center’ | ‘right’ | ‘left’]

set_linespacing(spacing)
Set the line spacing as a multiple of the font size. Default is 1.2.

ACCEPTS: float (multiple of font size)

set_ma(align)
alias for set_verticalalignment

set_multialignment(align)
Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is
determined bu the horizontalalignment and verticalalignment properties, but the multiline text
within that box can be

ACCEPTS: [’left’ | ‘right’ | ‘center’]

set_name(fontname)
alias for set_family

set_position(xy)
Set the (x, y) position of the text

ACCEPTS: (x,y)

set_rotation(s)
Set the rotation of the text

ACCEPTS: [angle in degrees | ‘vertical’ | ‘horizontal’]

660 Chapter 52. artists

Matplotlib, Release 1.3.1

set_rotation_mode(m)
set text rotation mode. If “anchor”, the un-rotated text will first aligned according to their ha and
va, and then will be rotated with the alignement reference point as a origin. If None (default), the
text will be rotated first then will be aligned.

set_size(fontsize)
Set the font size. May be either a size string, relative to the default font size, or an absolute font
size in points.
ACCEPTS: [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-

large’]

set_stretch(stretch)
Set the font stretch (horizontal condensation or expansion).
ACCEPTS: [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘con-

densed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ |

‘ultra-expanded’]

set_style(fontstyle)
Set the font style.

ACCEPTS: [‘normal’ | ‘italic’ | ‘oblique’]

set_text(s)
Set the text string s

It may contain newlines (\n) or math in LaTeX syntax.

ACCEPTS: string or anything printable with ‘%s’ conversion.

set_va(align)
alias for set_verticalalignment

set_variant(variant)
Set the font variant, either ‘normal’ or ‘small-caps’.

ACCEPTS: [‘normal’ | ‘small-caps’]

set_verticalalignment(align)
Set the vertical alignment

ACCEPTS: [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

set_weight(weight)
Set the font weight.
ACCEPTS: [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ |

‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’
| ‘black’]

set_x(x)
Set the x position of the text

ACCEPTS: float

set_y(y)
Set the y position of the text

52.4. matplotlib.text 661

Matplotlib, Release 1.3.1

ACCEPTS: float

update_bbox_position_size(renderer)
Update the location and the size of the bbox. This method should be used when the position and
size of the bbox needs to be updated before actually drawing the bbox.

update_from(other)
Copy properties from other to self

zorder = 3

class matplotlib.text.TextWithDash(x=0, y=0, text=’‘, color=None, verticalalign-
ment=’center’, horizontalalignment=’center’, multi-
alignment=None, fontproperties=None, rotation=None,
linespacing=None, dashlength=0.0, dashdirection=0,
dashrotation=None, dashpad=3, dashpush=0)

Bases: matplotlib.text.Text

This is basically a Textwith a dash (drawn with a Line2D) before/after it. It is intended to be a drop-in
replacement for Text, and should behave identically to it when dashlength = 0.0.

The dash always comes between the point specified by set_position() and the text. When a dash
exists, the text alignment arguments (horizontalalignment, verticalalignment) are ignored.

dashlength is the length of the dash in canvas units. (default = 0.0).

dashdirection is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0).

dashrotation specifies the rotation of the dash, and should generally stay None. In this case
get_dashrotation() returns get_rotation(). (I.e., the dash takes its rotation from the text’s
rotation). Because the text center is projected onto the dash, major deviations in the rotation cause
what may be considered visually unappealing results. (default = None)

dashpad is a padding length to add (or subtract) space between the text and the dash, in canvas units.
(default = 3)

dashpush “pushes” the dash and text away from the point specified by set_position() by the amount
in canvas units. (default = 0)

Note: The alignment of the two objects is based on the bounding box of the Text, as obtained by
get_window_extent(). This, in turn, appears to depend on the font metrics as given by the rendering
backend. Hence the quality of the “centering” of the label text with respect to the dash varies depending
on the backend used.

Note: I’m not sure that I got the get_window_extent() right, or whether that’s sufficient for pro-
viding the object bounding box.

draw(renderer)
Draw the TextWithDash object to the given renderer.

get_dashdirection()
Get the direction dash. 1 is before the text and 0 is after.

662 Chapter 52. artists

Matplotlib, Release 1.3.1

get_dashlength()
Get the length of the dash.

get_dashpad()
Get the extra spacing between the dash and the text, in canvas units.

get_dashpush()
Get the extra spacing between the dash and the specified text position, in canvas units.

get_dashrotation()
Get the rotation of the dash in degrees.

get_figure()
return the figure instance the artist belongs to

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_window_extent(renderer=None)
Return a Bbox object bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file on
a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent()
prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

set_dashdirection(dd)
Set the direction of the dash following the text. 1 is before the text and 0 is after. The default is 0,
which is what you’d want for the typical case of ticks below and on the left of the figure.

ACCEPTS: int (1 is before, 0 is after)

set_dashlength(dl)
Set the length of the dash.

ACCEPTS: float (canvas units)

set_dashpad(dp)
Set the “pad” of the TextWithDash, which is the extra spacing between the dash and the text, in
canvas units.

ACCEPTS: float (canvas units)

set_dashpush(dp)
Set the “push” of the TextWithDash, which is the extra spacing between the beginning of the dash
and the specified position.

ACCEPTS: float (canvas units)

52.4. matplotlib.text 663

Matplotlib, Release 1.3.1

set_dashrotation(dr)
Set the rotation of the dash, in degrees

ACCEPTS: float (degrees)

set_figure(fig)
Set the figure instance the artist belong to.

ACCEPTS: a matplotlib.figure.Figure instance

set_position(xy)
Set the (x, y) position of the TextWithDash.

ACCEPTS: (x, y)

set_transform(t)
Set the matplotlib.transforms.Transform instance used by this artist.

ACCEPTS: a matplotlib.transforms.Transform instance

set_x(x)
Set the x position of the TextWithDash.

ACCEPTS: float

set_y(y)
Set the y position of the TextWithDash.

ACCEPTS: float

update_coords(renderer)
Computes the actual x, y coordinates for text based on the input x, y and the dashlength. Since the
rotation is with respect to the actual canvas’s coordinates we need to map back and forth.

matplotlib.text.get_rotation(rotation)
Return the text angle as float.

rotation may be ‘horizontal’, ‘vertical’, or a numeric value in degrees.

664 Chapter 52. artists

CHAPTER

FIFTYTHREE

AXES

53.1 matplotlib.axes

class matplotlib.axes.Axes(fig, rect, axisbg=None, frameon=True, sharex=None, sharey=None,
label=’‘, xscale=None, yscale=None, **kwargs)

Bases: matplotlib.artist.Artist

The Axes contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets
the coordinate system.

The Axes instance supports callbacks through a callbacks attribute which is a CallbackRegistry
instance. The events you can connect to are ‘xlim_changed’ and ‘ylim_changed’ and the callback will
be called with func(ax) where ax is the Axes instance.

acorr(x, **kwargs)
Plot the autocorrelation of x.

Call signature:

acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, **kwargs)

If normed = True, normalize the data by the autocorrelation at 0-th lag. x is detrended by the
detrend callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:
•lags are a length 2*maxlags+1 lag vector
•c is the 2*maxlags+1 auto correlation vector
•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin
to the acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

The return value is a tuple (lags, c, linecol, b) where

665

Matplotlib, Release 1.3.1

•linecol is the LineCollection
•b is the x-axis.

See also:

plot() or vlines() For documentation on valid kwargs.

Example:

xcorr() is top graph, and acorr() is bottom graph.

60 40 20 0 20 40 60
0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

add_artist(a)
Add any Artist to the axes.

Returns the artist.

add_collection(collection, autolim=True)
Add a Collection instance to the axes.

Returns the collection.

add_container(container)
Add a Container instance to the axes.

Returns the collection.

add_line(line)
Add a Line2D to the list of plot lines

666 Chapter 53. axes

Matplotlib, Release 1.3.1

Returns the line.

add_patch(p)
Add a Patch p to the list of axes patches; the clipbox will be set to the Axes clipping box. If the
transform is not set, it will be set to transData.

Returns the patch.

add_table(tab)
Add a Table instance to the list of axes tables

Returns the table.

annotate(*args, **kwargs)
Create an annotation: a piece of text referring to a data point.

Call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and
if textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for
the arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given
dictionary and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys
for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and
point being annotated. If d is the distance between the text and annotated point,
shrink will shorten the arrow so the tip and base are shink percent of the distance d
away from the endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

53.1. matplotlib.axes 667

Matplotlib, Release 1.3.1

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
frac-
tion’

0,0 is lower left of figure and 1,1 is upper right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
frac-
tion’

0,0 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you
are using a polar axes, you do not need to specify polar for the coordinate system
since that is the native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. e.g.:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

You may use an instance of Transform or Artist. See Annotating Axes for more details.

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes
area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the
annotation will always be drawn regardless of its position. The default is None, which behave as
True only if xycoords is”data”.

668 Chapter 53. axes

Matplotlib, Release 1.3.1

Additional kwargs are Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

53.1. matplotlib.axes 669

Matplotlib, Release 1.3.1

1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

arrowstyle

arc3

arc

arc

angle

angle3

angle

angle

angle

1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

−>

fancy simple

wedge

wedge

wedge

apply_aspect(position=None)
Use _aspect() and _adjustable() to modify the axes box or the view limits.

670 Chapter 53. axes

Matplotlib, Release 1.3.1

arrow(x, y, dx, dy, **kwargs)
Add an arrow to the axes.

Call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy). Uses FancyArrow patch to construct
the arrow.

The resulting arrow is affected by the axes aspect ratio and limits. This may produce an arrow
whose head is not square with its stem. To create an arrow whose head is square with its stem, use
annotate().

Optional kwargs control the arrow construction and properties:
Constructor arguments

width: float (default: 0.001) width of full arrow tail
length_includes_head: [True | False] (default: False) True if head is to be counted in cal-

culating the length.
head_width: float or None (default: 3*width) total width of the full arrow head
head_length: float or None (default: 1.5 * head_width) length of arrow head
shape: [’full’, ‘left’, ‘right’] (default: ‘full’) draw the left-half, right-half, or full arrow
overhang: float (default: 0) fraction that the arrow is swept back (0 overhang means trian-

gular shape). Can be negative or greater than one.
head_starts_at_zero: [True | False] (default: False) if True, the head starts being drawn at

coordinate 0 instead of ending at coordinate 0.
Other valid kwargs (inherited from Patch) are:

53.1. matplotlib.axes 671

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

672 Chapter 53. axes

Matplotlib, Release 1.3.1

A3 T3

G3 C3

r
AC

r
GT

r
AG

r
CA

r
CG

r
GC

r
AT

r
GA

r
CT

r
TG r

TC

r
TA

autoscale(enable=True, axis=’both’, tight=None)
Autoscale the axis view to the data (toggle).

Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if
autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes.
enable: [True | False | None] True (default) turns autoscaling on, False turns it off. None leaves

the autoscaling state unchanged.
axis: [’x’ | ‘y’ | ‘both’] which axis to operate on; default is ‘both’
tight: [True | False | None] If True, set view limits to data limits; if False, let the locator and

margins expand the view limits; if None, use tight scaling if the only artist is an image,
otherwise treat tight as False. The tight setting is retained for future autoscaling until it is
explicitly changed.

Returns None.

autoscale_view(tight=None, scalex=True, scaley=True)
Autoscale the view limits using the data limits. You can selectively autoscale only a single axis,
eg, the xaxis by setting scaley to False. The autoscaling preserves any axis direction reversal that
has already been done.

The data limits are not updated automatically when artist data are changed after the artist has been
added to an Axes instance. In that case, use matplotlib.axes.Axes.relim() prior to calling
autoscale_view.

axhline(y=0, xmin=0, xmax=1, **kwargs)
Add a horizontal line across the axis.

Call signature:

53.1. matplotlib.axes 673

Matplotlib, Release 1.3.1

axhline(y=0, xmin=0, xmax=1, **kwargs)

Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax = 1,
this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if
you change them, e.g., with the set_xlim() command. That is, the horizontal extent is in axes
coords: 0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. e.g.,
•draw a thick red hline at y = 0 that spans the xrange:

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange:

>>> axhline(y=1)

•draw a default hline at y = .5 that spans the the middle half of the xrange:

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color

Continued on next page

674 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.2 – continued from previous page
Property Description
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See also:

axhspan() for example plot and source code

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
Add a horizontal span (rectangle) across the axis.

Call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

y coords are in data units and x coords are in axes (relative 0-1) units.

Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and
xmax = 1, this always spans the xrange, regardless of the xlim settings, even if you change them,
e.g., with the set_xlim() command. That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is a matplotlib.patches.Polygon instance.

Examples:
•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes:

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:

53.1. matplotlib.axes 675

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

676 Chapter 53. axes

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

axis(*v, **kwargs)
Convenience method for manipulating the x and y view limits and the aspect ratio of the plot. For
details, see axis().

kwargs are passed on to set_xlim() and set_ylim()

axvline(x=0, ymin=0, ymax=1, **kwargs)
Add a vertical line across the axes.

Call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax =

1, this line will always span the vertical extent of the axes, regardless of the ylim settings, even
if you change them, e.g., with the set_ylim() command. That is, the vertical extent is in axes
coords: 0=bottom, 0.5=middle, 1.0=top but the x location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. e.g.,
•draw a thick red vline at x = 0 that spans the yrange:

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange:

53.1. matplotlib.axes 677

Matplotlib, Release 1.3.1

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange:

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]

Continued on next page

678 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.3 – continued from previous page
Property Description
xdata 1D array
ydata 1D array
zorder any number

See also:

axhspan() for example plot and source code

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
Add a vertical span (rectangle) across the axes.

Call signature:

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

x coords are in data units and y coords are in axes (relative 0-1) units.

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and
ymax = 1, this always spans the yrange, regardless of the ylim settings, even if you change them,
e.g., with the set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the y location is in data coordinates.

Return value is the matplotlib.patches.Polygon instance.

Examples:
•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the
axes:

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

53.1. matplotlib.axes 679

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See also:

axhspan() for example plot and source code

bar(left, height, width=0.8, bottom=None, **kwargs)
Make a bar plot.

Make a bar plot with rectangles bounded by:
left, left + width, bottom, bottom + height (left, right, bottom and top edges)

Parameters left : sequence of scalars
the x coordinates of the left sides of the bars

height : sequence of scalars
the heights of the bars

width : scalar or array-like, optional, default: 0.8
the width(s) of the bars

bottom : scalar or array-like, optional, default: None
the y coordinate(s) of the bars

color : scalar or array-like, optional
the colors of the bar faces

680 Chapter 53. axes

Matplotlib, Release 1.3.1

edgecolor : scalar or array-like, optional
the colors of the bar edges

linewidth : scalar or array-like, optional, default: None
width of bar edge(s). If None, use default linewidth; If 0, don’t draw edges.

xerr : scalar or array-like, optional, default: None
if not None, will be used to generate errorbar(s) on the bar chart

yerr :scalar or array-like, optional, default: None :
if not None, will be used to generate errorbar(s) on the bar chart

ecolor : scalar or array-like, optional, default: None
specifies the color of errorbar(s)

capsize : integer, optional, default: 3
determines the length in points of the error bar caps

error_kw : :
dictionary of kwargs to be passed to errorbar method. ecolor and capsize may be
specified here rather than as independent kwargs.

align : [’edge’ | ‘center’], optional, default: ‘edge’
If edge, aligns bars by their left edges (for vertical bars) and by their bottom edges
(for horizontal bars). If center, interpret the left argument as the coordinates
of the centers of the bars.

orientation : ‘vertical’ | ‘horizontal’, optional, default: ‘vertical’
The orientation of the bars.

log : boolean, optional, default: False
If true, sets the axis to be log scale

Returns :class:‘matplotlib.patches.Rectangle‘ instances. :

Notes

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars
or sequences of length equal to the number of bars. This enables you to use bar as the ba-
sis for stacked bar charts, or candlestick plots. Detail: xerr and yerr are passed directly to
errorbar(), so they can also have shape 2xN for independent specification of lower and upper
errors.

Other optional kwargs:

53.1. matplotlib.axes 681

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example: A stacked bar chart.

682 Chapter 53. axes

Matplotlib, Release 1.3.1

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80

S
co

re
s

Scores by group and gender

Men
Women

barbs(*args, **kw)
Plot a 2-D field of barbs.

Call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:
X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot

kwarg)
U, V: Give the x and y components of the barb shaft
C: An optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)
and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:
length: Length of the barb in points; the other parts of the barb are scaled against this.

Default is 9

53.1. matplotlib.axes 683

Matplotlib, Release 1.3.1

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow rotates
about this point, hence the name pivot. Default is ‘tip’

barbcolor: [color | color sequence] Specifies the color all parts of the barb except any
flags. This parameter is analagous to the edgecolor parameter for polygons, which can
be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used
instead. However this parameter will override facecolor. If this is not set (and C has
not either) then flagcolor will be set to match barbcolor so that the barb has a uniform
color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length of
the barb. Only those values one wishes to override need to be included. These features
include:
•‘spacing’ - space between features (flags, full/half barbs)
•‘height’ - height (distance from shaft to top) of a flag or full barb
•‘width’ - width of a flag, twice the width of a full barb
•‘emptybarb’ - radius of the circle used for low magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled
with the flag color. If they are not filled, they will be drawn such that no color is
applied to the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when al-
locating barb components. If True, the magnitude is rounded to the nearest multiple of
the half-barb increment. If False, the magnitude is simply truncated to the next lowest
multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with differ-
ent parts of the barb. Only those values one wishes to override need to be included.
•‘half’ - half barbs (Default is 5)
•‘full’ - full barbs (Default is 10)
•‘flag’ - flags (default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indicates
whether the lines and flags should point opposite to normal for all barbs. An array
(which should be the same size as the other data arrays) indicates whether to flip for
each individual barb. Normal behavior is for the barbs and lines to point right (comes
from wind barbs having these features point towards low pressure in the Northern
Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind ob-
servations, but can technically be used to plot any two dimensional vector quantity. As opposed
to arrows, which give vector magnitude by the length of the arrow, the barbs give more quanti-
tative information about the vector magnitude by putting slanted lines or a triangle for various
increments in magnitude, as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs). The

684 Chapter 53. axes

Matplotlib, Release 1.3.1

smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from
the end of the barb so that it can be easily distinguished from barbs with a single full line. The
magnitude for the barb shown above would nominally be 65, using the standard increments of 50,
10, and 5.

linewidths and edgecolors can be used to customize the barb. Additional PolyCollection key-
word arguments:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

53.1. matplotlib.axes 685

Matplotlib, Release 1.3.1

Example:

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

686 Chapter 53. axes

Matplotlib, Release 1.3.1

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

barh(bottom, width, height=0.8, left=None, **kwargs)
Make a horizontal bar plot.

Call signature:

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:
left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:
Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

53.1. matplotlib.axes 687

Matplotlib, Release 1.3.1

Key-
word

Description

height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t
draw edges.

xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it to

log scale
Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ interprets
these values as the y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or se-
quences of length equal to the number of bars. This enables you to use barh as the basis for
stacked bar charts, or candlestick plots.

other optional kwargs:

688 Chapter 53. axes

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

boxplot(x, notch=False, sym=’b+’, vert=True, whis=1.5, positions=None, widths=None,
patch_artist=False, bootstrap=None, usermedians=None, conf_intervals=None)

Make a box and whisker plot.

Call signature:

boxplot(x, notch=False, sym=’+’, vert=True, whis=1.5,
positions=None, widths=None, patch_artist=False,
bootstrap=None, usermedians=None, conf_intervals=None)

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the range of the data. Flier points are those past the end of the whiskers.

Function Arguments:
x : Array or a sequence of vectors.
notch [[False (default) | True]] If False (default), produces a rectangular box plot. If

True, will produce a notched box plot

53.1. matplotlib.axes 689

Matplotlib, Release 1.3.1

sym [[default ‘b+’]] The default symbol for flier points. Enter an empty string (‘’) if you
don’t want to show fliers.

vert [[False | True (default)]] If True (default), makes the boxes vertical. If False, makes
horizontal boxes.

whis [[default 1.5]] Defines the length of the whiskers as a function of the inner quartile
range. They extend to the most extreme data point within (whis*(75%-25%)) data
range.

bootstrap [[None (default) | integer]] Specifies whether to bootstrap the confidence in-
tervals around the median for notched boxplots. If bootstrap==None, no bootstrapping
is performed, and notches are calculated using a Gaussian-based asymptotic approxi-
mation (see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and Kendall and Stuart,
1967). Otherwise, bootstrap specifies the number of times to bootstrap the median to
determine it’s 95% confidence intervals. Values between 1000 and 10000 are recom-
mended.

usermedians [[default None]] An array or sequence whose first dimension (or length)
is compatible with x. This overrides the medians computed by matplotlib for each
element of usermedians that is not None. When an element of usermedians == None,
the median will be computed directly as normal.

conf_intervals [[default None]] Array or sequence whose first dimension (or length)
is compatible with x and whose second dimension is 2. When the current element of
conf_intervals is not None, the notch locations computed by matplotlib are overrid-
den (assuming notch is True). When an element of conf_intervals is None, boxplot
compute notches the method specified by the other kwargs (e.g., bootstrap).

positions [[default 1,2,...,n]] Sets the horizontal positions of the boxes. The ticks and
limits are automatically set to match the positions.

widths [[default 0.5]] Either a scalar or a vector and sets the width of each box. The de-
fault is 0.5, or 0.15*(distance between extreme positions) if that is smaller.

patch_artist [[False (default) | True]] If False produces boxes with the Line2D artist If
True produces boxes with the Patch artist

Returns a dictionary mapping each component of the boxplot to a list of the
matplotlib.lines.Line2D instances created. That dictionary has the following keys
(assuming vertical boxplots):
•boxes: the main body of the boxplot showing the quartiles and the median’s confidence inter-
vals if enabled.
•medians: horizonal lines at the median of each box.
•whiskers: the vertical lines extending to the most extreme, n-outlier data points.
•caps: the horizontal lines at the ends of the whiskers.
•fliers: points representing data that extend beyone the whiskers (outliers).

Example:

690 Chapter 53. axes

Matplotlib, Release 1.3.1

1
100

50

0

50

100

150

200

53.1. matplotlib.axes 691

Matplotlib, Release 1.3.1

1
100

50

0

50

100

150

200

692 Chapter 53. axes

Matplotlib, Release 1.3.1

1
100

50

0

50

100

150

200

53.1. matplotlib.axes 693

Matplotlib, Release 1.3.1

1
40

20

0

20

40

60

80

100

120

140

694 Chapter 53. axes

Matplotlib, Release 1.3.1

100 50 0 50 100 150 200

1

53.1. matplotlib.axes 695

Matplotlib, Release 1.3.1

100 50 0 50 100 150 200

1

696 Chapter 53. axes

Matplotlib, Release 1.3.1

1 2 3
100

50

0

50

100

150

200

broken_barh(xranges, yrange, **kwargs)
Plot horizontal bars.

Call signature:

broken_barh(self, xranges, yrange, **kwargs)

A collection of horizontal bars spanning yrange with a sequence of xranges.

Required arguments:
Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

53.1. matplotlib.axes 697

Matplotlib, Release 1.3.1

Table 53.5 – continued from previous page
Property Description
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

facecolors = (’black’, ’red’, ’green’)

Example:

698 Chapter 53. axes

Matplotlib, Release 1.3.1

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

can_pan()
Return True if this axes supports any pan/zoom button functionality.

can_zoom()
Return True if this axes supports the zoom box button functionality.

cla()
Clear the current axes.

clabel(CS, *args, **kwargs)
Label a contour plot.

Call signature:

clabel(cs, **kwargs)

Adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.

Optional keyword arguments:
fontsize: size in points or relative size eg ‘smaller’, ‘x-large’
colors:
•if None, the color of each label matches the color of the corresponding contour

53.1. matplotlib.axes 699

Matplotlib, Release 1.3.1

•if one string color, e.g., colors = ‘r’ or colors = ‘red’, all labels will be plotted in this
color
•if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be
plotted in different colors in the order specified

inline: controls whether the underlying contour is removed or not. Default is True.
inline_spacing: space in pixels to leave on each side of label when placing inline. De-

faults to 5. This spacing will be exact for labels at locations where the contour is
straight, less so for labels on curved contours.

fmt: a format string for the label. Default is ‘%1.3f’ Alternatively, this can be a dictio-
nary matching contour levels with arbitrary strings to use for each contour level (i.e.,
fmt[level]=string), or it can be any callable, such as a Formatter instance, that returns
a string when called with a numeric contour level.

manual: if True, contour labels will be placed manually using mouse clicks. Click the
first button near a contour to add a label, click the second button (or potentially both
mouse buttons at once) to finish adding labels. The third button can be used to remove
the last label added, but only if labels are not inline. Alternatively, the keyboard can
be used to select label locations (enter to end label placement, delete or backspace act
like the third mouse button, and any other key will select a label location).

manual can be an iterable object of x,y tuples. Contour labels will be created as if
mouse is clicked at each x,y positions.

rightside_up: if True (default), label rotations will always be plus or minus 90 degrees
from level.

use_clabeltext: if True (default is False), ClabelText class (instead of matplotlib.Text)
is used to create labels. ClabelText recalculates rotation angles of texts during the
drawing time, therefore this can be used if aspect of the axes changes.

700 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000
1.500

Simplest default with labels

53.1. matplotlib.axes 701

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500
-1.000

0.000

1.500

1.000

0.500

labels at selected locations

702 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours dashed

53.1. matplotlib.axes 703

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours solid

704 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Crazy lines

53.1. matplotlib.axes 705

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0.2

0.2
0.2

0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

clear()
clear the axes

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x2635de8>,
window=<function window_hanning at 0x2635b90>, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

Plot the coherence between x and y.

Call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

Plot the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(53.1)

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to get
zero padding, or the scaling of the result will be incorrect. Use pad_to for this instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

706 Chapter 53. axes

Matplotlib, Release 1.3.1

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of data
points used. While not increasing the actual resolution of the psd (the minimum dis-
tance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both for
complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’ forces
two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.

kwargs are applied to the lines.

References:
•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley &
Sons (1986)

kwargs control the Line2D properties of the coherence plot:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]

Continued on next page

53.1. matplotlib.axes 707

Matplotlib, Release 1.3.1

Table 53.6 – continued from previous page
Property Description
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

708 Chapter 53. axes

Matplotlib, Release 1.3.1

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

contains(mouseevent)
Test whether the mouse event occured in the axes.

Returns True / False, {}

contains_point(point)
Returns True if the point (tuple of x,y) is inside the axes (the area defined by the its patch). A
pixel coordinate is required.

contour(*args, **kwargs)
Plot contours.

contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour().

Call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

53.1. matplotlib.axes 709

Matplotlib, Release 1.3.1

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the len(V)-1 regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X and Y must both be 2-D with the same shape as Z, or they must both be 1-D such that len(X)
is the number of columns in Z and len(Y) is the number of rows in Z.

C = contour(...) returns a QuadContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be

used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling is
used.

vmin, vmax: [None | scalar] If not None, either or both of these values will be supplied
to the matplotlib.colors.Normalize instance, overriding the default color scaling
based on levels.

levels: [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

710 Chapter 53. axes

Matplotlib, Release 1.3.1

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In this
case, the position of Z[0,0] is the center of the pixel, not a corner. If origin is None,
then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given explic-
itly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour
levels are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

antialiased: [True | False] enable antialiasing, overriding the defaults. For filled
contours, the default is True. For line contours, it is taken from rc-
Params[’lines.antialiased’].

contour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified
linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the

default is ‘solid’ unless the lines are monochrome. In that case, negative contours will
take their linestyle from the matplotlibrc contour.negative_linestyle setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles to be
used. If this iterable is shorter than the number of contour levels it will be repeated as
necessary.

contourf-only keyword arguments:
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to

divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

hatches: A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

53.1. matplotlib.axes 711

Matplotlib, Release 1.3.1

Examples:

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000
1.500

Simplest default with labels

712 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500
-1.000

0.000

1.500

1.000

0.500

labels at selected locations

53.1. matplotlib.axes 713

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours dashed

714 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours solid

53.1. matplotlib.axes 715

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Crazy lines

716 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0.2

0.2
0.2

0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

53.1. matplotlib.axes 717

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
word length anomaly

3

2

1

0

1

2

3

se
n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

718 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

-1.5-1.0

-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

53.1. matplotlib.axes 719

Matplotlib, Release 1.3.1

2 0 2

2

0

2

extend = neither

2 0 2

2

0

2

extend = both

2 0 2

2

0

2

extend = min

2 0 2

2

0

2

extend = max

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

contourf(*args, **kwargs)
Plot contours.

contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour().

Call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

720 Chapter 53. axes

Matplotlib, Release 1.3.1

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the len(V)-1 regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X and Y must both be 2-D with the same shape as Z, or they must both be 1-D such that len(X)
is the number of columns in Z and len(Y) is the number of rows in Z.

C = contour(...) returns a QuadContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be

used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling is
used.

vmin, vmax: [None | scalar] If not None, either or both of these values will be supplied
to the matplotlib.colors.Normalize instance, overriding the default color scaling
based on levels.

levels: [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In this
case, the position of Z[0,0] is the center of the pixel, not a corner. If origin is None,
then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

53.1. matplotlib.axes 721

Matplotlib, Release 1.3.1

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given explic-
itly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour
levels are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

antialiased: [True | False] enable antialiasing, overriding the defaults. For filled
contours, the default is True. For line contours, it is taken from rc-
Params[’lines.antialiased’].

contour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified
linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the

default is ‘solid’ unless the lines are monochrome. In that case, negative contours will
take their linestyle from the matplotlibrc contour.negative_linestyle setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles to be
used. If this iterable is shorter than the number of contour levels it will be repeated as
necessary.

contourf-only keyword arguments:
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to

divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

hatches: A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

Examples:

722 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000
1.500

Simplest default with labels

53.1. matplotlib.axes 723

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500
-1.000

0.000

1.500

1.000

0.500

labels at selected locations

724 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours dashed

53.1. matplotlib.axes 725

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours solid

726 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Crazy lines

53.1. matplotlib.axes 727

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0.2

0.2
0.2

0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

728 Chapter 53. axes

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
word length anomaly

3

2

1

0

1

2

3

se
n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

53.1. matplotlib.axes 729

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

-1.5-1.0

-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

730 Chapter 53. axes

Matplotlib, Release 1.3.1

2 0 2

2

0

2

extend = neither

2 0 2

2

0

2

extend = both

2 0 2

2

0

2

extend = min

2 0 2

2

0

2

extend = max

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x2635de8>,
window=<function window_hanning at 0x2635b90>, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)
Plot cross-spectral density.

Call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The cross spectral density Pxy by Welch’s average periodogram method. The vectors x and y
are divided into NFFT length segments. Each segment is detrended by function detrend and
windowed by function window. The product of the direct FFTs of x and y are averaged over each
segment to compute Pxy, with a scaling to correct for power loss due to windowing.

Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is
plotted.

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to get
zero padding, or the scaling of the result will be incorrect. Use pad_to for this instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

53.1. matplotlib.axes 731

Matplotlib, Release 1.3.1

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of data
points used. While not increasing the actual resolution of the psd (the minimum dis-
tance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both for
complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’ forces
two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John
Wiley & Sons (1986)

kwargs control the Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]

Continued on next page

732 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.7 – continued from previous page
Property Description
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

53.1. matplotlib.axes 733

Matplotlib, Release 1.3.1

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

85

75

65

55

45

C
S
D

 (
d
b
)

drag_pan(button, key, x, y)
Called when the mouse moves during a pan operation.

button is the mouse button number:
•1: LEFT
•2: MIDDLE
•3: RIGHT

key is a “shift” key

x, y are the mouse coordinates in display coords.

Note: Intended to be overridden by new projection types.

draw(artist, renderer, *args, **kwargs)
Draw everything (plot lines, axes, labels)

draw_artist(a)
This method can only be used after an initial draw which caches the renderer. It is used to effi-
ciently update Axes data (axis ticks, labels, etc are not updated)

end_pan()
Called when a pan operation completes (when the mouse button is up.)

Note: Intended to be overridden by new projection types.

734 Chapter 53. axes

Matplotlib, Release 1.3.1

errorbar(x, y, yerr=None, xerr=None, fmt=’-‘, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, er-
rorevery=1, capthick=None, **kwargs)

Plot an errorbar graph.

Call signature:

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, errorevery=1,
capthick=None)

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not None.
Horizontal errorbars are plotted if xerr is not None.

x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.

Optional keyword arguments:
xerr/yerr: [scalar | N, Nx1, or 2xN array-like] If a scalar number, len(N) array-like

object, or an Nx1 array-like object, errorbars are drawn at +/-value relative to the data.

If a sequence of shape 2xN, errorbars are drawn at -row1 and +row2 relative to the
data.

fmt: ‘-‘ The plot format symbol. If fmt is None, only the errorbars are plotted. This is
used for adding errorbars to a bar plot, for example.

ecolor: [None | mpl color] A matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar The linewidth of the errorbar lines. If None, use the linewidth.
capsize: scalar The length of the error bar caps in points
capthick: scalar An alias kwarg to markeredgewidth (a.k.a. - mew). This setting is a

more sensible name for the property that controls the thickness of the error bar cap in
points. For backwards compatibility, if mew or markeredgewidth are given, then they
will over-ride capthick. This may change in future releases.

barsabove: [True | False] if True, will plot the errorbars above the plot symbols. De-
fault is below.

lolims / uplims / xlolims / xuplims: [False | True] These arguments can be used to in-
dicate that a value gives only upper/lower limits. In that case a caret symbol is used to
indicate this. lims-arguments may be of the same type as xerr and yerr.

errorevery: positive integer subsamples the errorbars. e.g., if everyerror=5, errorbars
for every 5-th datapoint will be plotted. The data plot itself still shows all data points.

All other keyword arguments are passed on to the plot command for the markers. For example,
this code makes big red squares with thick green edges:

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, mark-
eredgecolor, markersize and markeredgewith.

53.1. matplotlib.axes 735

Matplotlib, Release 1.3.1

valid kwargs for the marker properties are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Returns (plotline, caplines, barlinecols):

736 Chapter 53. axes

Matplotlib, Release 1.3.1

plotline: Line2D instance x, y plot markers and/or line
caplines: list of error bar cap Line2D instances
barlinecols: list of LineCollection instances for the horizontal and vertical error

ranges.
Example:

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

eventplot(positions, orientation=’horizontal’, lineoffsets=1, linelengths=1, linewidths=None,
colors=None, linestyles=’solid’, **kwargs)

Plot identical parallel lines at specific positions.

Call signature:

eventplot(positions, orientation=’horizontal’, lineoffsets=0,
linelengths=1, linewidths=None, color =None,
linestyles=’solid’

Plot parallel lines at the given positions. positions should be a 1D or 2D array-like object, with
each row corresponding to a row or column of lines.

This type of plot is commonly used in neuroscience for representing neural events, where it is
commonly called a spike raster, dot raster, or raster plot.

However, it is useful in any situation where you wish to show the timing or position of multiple
sets of discrete events, such as the arrival times of people to a business on each day of the month
or the date of hurricanes each year of the last century.

53.1. matplotlib.axes 737

Matplotlib, Release 1.3.1

orientation [[‘horizonal’ | ‘vertical’]] ‘horizonal’ : the lines will be vertical and arranged in rows
“vertical’ : lines will be horizontal and arranged in columns

lineoffsets : A float or array-like containing floats.
linelengths : A float or array-like containing floats.
linewidths : A float or array-like containing floats.
colors must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed) or a list of

such sequences
linestyles : [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] or an array of these values
For linelengths, linewidths, colors, and linestyles, if only a single value is given, that value is
applied to all lines. If an array-like is given, it must have the same length as positions, and each
value will be applied to the corresponding row or column in positions.

Returns a list of matplotlib.collections.EventCollection objects that were added.

kwargs are LineCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
segments unknown

Continued on next page

738 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.9 – continued from previous page
Property Description
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
verts unknown
visible [True | False]
zorder any number

Example:

0.0 0.2 0.4 0.6 0.8 1.0
20

15

10

5

0

5

10

15

20 15 10 5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18
10

0

10

20

30

40

50

60

10 0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

fill(*args, **kwargs)
Plot filled polygons.

Call signature:

fill(*args, **kwargs)

args is a variable length argument, allowing for multiple x, y pairs with an optional color format
string; see plot() for details on the argument parsing. For example, to plot a polygon with
vertices at x, y in blue.:

53.1. matplotlib.axes 739

Matplotlib, Release 1.3.1

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.

The same color strings that plot() supports are supported by the fill format string.

If you would like to fill below a curve, e.g., shade a region between 0 and y along x, use
fill_between()

The closed kwarg will close the polygon when True (default).

kwargs control the Polygon properties:
Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

740 Chapter 53. axes

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fill_between(x, y1, y2=0, where=None, interpolate=False, **kwargs)
Make filled polygons between two curves.

Call signature:

fill_between(x, y1, y2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between y1 and y2 where where==True
x : An N-length array of the x data
y1 : An N-length array (or scalar) of the y data
y2 : An N-length array (or scalar) of the y data
where : If None, default to fill between everywhere. If not None, it is an N-length numpy

boolean array and the fill will only happen over the regions where where==True.
interpolate : If True, interpolate between the two lines to find the precise point of in-

tersection. Otherwise, the start and end points of the filled region will only occur on
explicit values in the x array.

kwargs : Keyword args passed on to the PolyCollection.
kwargs control the Polygon properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]

Continued on next page

53.1. matplotlib.axes 741

Matplotlib, Release 1.3.1

Table 53.10 – continued from previous page
Property Description
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

742 Chapter 53. axes

Matplotlib, Release 1.3.1

1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

0.0 0.5 1.0 1.5 2.0
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

53.1. matplotlib.axes 743

Matplotlib, Release 1.3.1

1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0
Now regions with y2>1 are masked

744 Chapter 53. axes

Matplotlib, Release 1.3.1

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

See also:

fill_betweenx() for filling between two sets of x-values

fill_betweenx(y, x1, x2=0, where=None, **kwargs)
Make filled polygons between two horizontal curves.

Call signature:

fill_betweenx(y, x1, x2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between x1 and x2 where where==True
y : An N-length array of the y data
x1 : An N-length array (or scalar) of the x data
x2 : An N-length array (or scalar) of the x data
where : If None, default to fill between everywhere. If not None, it is a N length numpy

boolean array and the fill will only happen over the regions where where==True
kwargs : keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]

Continued on next page

53.1. matplotlib.axes 745

Matplotlib, Release 1.3.1

Table 53.11 – continued from previous page
Property Description
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

746 Chapter 53. axes

Matplotlib, Release 1.3.1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

53.1. matplotlib.axes 747

Matplotlib, Release 1.3.1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
fill between where

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
Now regions with y2 > 1 are masked

See also:

fill_between() for filling between two sets of y-values

format_coord(x, y)
Return a format string formatting the x, y coord

format_xdata(x)
Return x string formatted. This function will use the attribute self.fmt_xdata if it is callable, else
will fall back on the xaxis major formatter

format_ydata(y)
Return y string formatted. This function will use the fmt_ydata attribute if it is callable, else
will fall back on the yaxis major formatter

get_adjustable()

get_anchor()

get_aspect()

get_autoscale_on()
Get whether autoscaling is applied for both axes on plot commands

748 Chapter 53. axes

Matplotlib, Release 1.3.1

get_autoscalex_on()
Get whether autoscaling for the x-axis is applied on plot commands

get_autoscaley_on()
Get whether autoscaling for the y-axis is applied on plot commands

get_axes_locator()
return axes_locator

get_axis_bgcolor()
Return the axis background color

get_axisbelow()
Get whether axis below is true or not

get_children()
return a list of child artists

get_cursor_props()
Return the cursor propertiess as a (linewidth, color) tuple, where linewidth is a float and color is
an RGBA tuple

get_data_ratio()
Returns the aspect ratio of the raw data.

This method is intended to be overridden by new projection types.

get_data_ratio_log()
Returns the aspect ratio of the raw data in log scale. Will be used when both axis scales are in log.

get_default_bbox_extra_artists()

get_frame_on()
Get whether the axes rectangle patch is drawn

get_images()
return a list of Axes images contained by the Axes

get_legend()
Return the legend.Legend instance, or None if no legend is defined

get_legend_handles_labels(legend_handler_map=None)
Return handles and labels for legend

ax.legend() is equivalent to

h, l = ax.get_legend_handles_labels()
ax.legend(h, l)

get_lines()
Return a list of lines contained by the Axes

get_navigate()
Get whether the axes responds to navigation commands

53.1. matplotlib.axes 749

Matplotlib, Release 1.3.1

get_navigate_mode()
Get the navigation toolbar button status: ‘PAN’, ‘ZOOM’, or None

get_position(original=False)
Return the a copy of the axes rectangle as a Bbox

get_rasterization_zorder()
Get zorder value below which artists will be rasterized

get_renderer_cache()

get_shared_x_axes()
Return a copy of the shared axes Grouper object for x axes

get_shared_y_axes()
Return a copy of the shared axes Grouper object for y axes

get_tightbbox(renderer, call_axes_locator=True)
Return the tight bounding box of the axes. The dimension of the Bbox in canvas coordinate.

If call_axes_locator is False, it does not call the _axes_locator attribute, which is necessary to
get the correct bounding box. call_axes_locator==False can be used if the caller is only
intereted in the relative size of the tightbbox compared to the axes bbox.

get_title(loc=’center’)
Get an axes title.

Get one of the three available axes titles. The available titles are positioned above the axes in the
center, flush with the left edge, and flush with the right edge.

Parameters loc : {‘center’, ‘left’, ‘right’}, str, optional
Which title to get, defaults to ‘center’

Returns title: str :
The title text string.

get_window_extent(*args, **kwargs)
get the axes bounding box in display space; args and kwargs are empty

get_xaxis()
Return the XAxis instance

get_xaxis_text1_transform(pad_points)
Get the transformation used for drawing x-axis labels, which will add the given amount of padding
(in points) between the axes and the label. The x-direction is in data coordinates and the y-
direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by
new kinds of projections that may need to place axis elements in different locations.

750 Chapter 53. axes

Matplotlib, Release 1.3.1

get_xaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary x-axis labels, which will add the given
amount of padding (in points) between the axes and the label. The x-direction is in data
coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by
new kinds of projections that may need to place axis elements in different locations.

get_xaxis_transform(which=’grid’)
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in
data coordinates and the y-direction is in axis coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by
new kinds of projections that may need to place axis elements in different locations.

get_xbound()
Returns the x-axis numerical bounds where:

lowerBound < upperBound

get_xgridlines()
Get the x grid lines as a list of Line2D instances

get_xlabel()
Get the xlabel text string.

get_xlim()
Get the x-axis range [left, right]

get_xmajorticklabels()
Get the xtick labels as a list of Text instances.

get_xminorticklabels()
Get the x minor tick labels as a list of matplotlib.text.Text instances.

get_xscale()
Return the xaxis scale string: linear, log, symlog

get_xticklabels(minor=False)
Get the x tick labels as a list of Text instances.

get_xticklines()
Get the xtick lines as a list of Line2D instances

get_xticks(minor=False)
Return the x ticks as a list of locations

53.1. matplotlib.axes 751

Matplotlib, Release 1.3.1

get_yaxis()
Return the YAxis instance

get_yaxis_text1_transform(pad_points)
Get the transformation used for drawing y-axis labels, which will add the given amount of padding
(in points) between the axes and the label. The x-direction is in axis coordinates and the y-
direction is in data coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by
new kinds of projections that may need to place axis elements in different locations.

get_yaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary y-axis labels, which will add the given
amount of padding (in points) between the axes and the label. The x-direction is in axis
coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by
new kinds of projections that may need to place axis elements in different locations.

get_yaxis_transform(which=’grid’)
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in
axis coordinates and the y-direction is in data coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by
new kinds of projections that may need to place axis elements in different locations.

get_ybound()
Return y-axis numerical bounds in the form of lowerBound < upperBound

get_ygridlines()
Get the y grid lines as a list of Line2D instances

get_ylabel()
Get the ylabel text string.

get_ylim()
Get the y-axis range [bottom, top]

get_ymajorticklabels()
Get the major y tick labels as a list of Text instances.

752 Chapter 53. axes

Matplotlib, Release 1.3.1

get_yminorticklabels()
Get the minor y tick labels as a list of Text instances.

get_yscale()
Return the yaxis scale string: linear, log, symlog

get_yticklabels(minor=False)
Get the y tick labels as a list of Text instances

get_yticklines()
Get the ytick lines as a list of Line2D instances

get_yticks(minor=False)
Return the y ticks as a list of locations

grid(b=None, which=’major’, axis=’both’, **kwargs)
Turn the axes grids on or off.

Call signature:

grid(self, b=None, which=’major’, axis=’both’, **kwargs)

Set the axes grids on or off; b is a boolean. (For MATLAB compatibility, b may also be a string,
‘on’ or ‘off’.)

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed that
you want a grid and b is thus set to True.

which can be ‘major’ (default), ‘minor’, or ‘both’ to control whether major tick grids, minor tick
grids, or both are affected.

axis can be ‘both’ (default), ‘x’, or ‘y’ to control which set of gridlines are drawn.

kwargs are used to set the grid line properties, eg:

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]

Continued on next page

53.1. matplotlib.axes 753

Matplotlib, Release 1.3.1

Table 53.12 – continued from previous page
Property Description
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

has_data()
Return True if any artists have been added to axes.

This should not be used to determine whether the dataLim need to be updated, and may not
actually be useful for anything.

hexbin(x, y, C=None, gridsize=100, bins=None, xscale=’linear’, yscale=’linear’, extent=None,
cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None,
edgecolors=’none’, reduce_C_function=<function mean at 0x16ead70>, mincnt=None,
marginals=False, **kwargs)

Make a hexagonal binning plot.

Call signature:

754 Chapter 53. axes

Matplotlib, Release 1.3.1

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean, mincnt=None, marginals=True
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length, N.
If C is None (the default), this is a histogram of the number of occurences of the observations at
(x[i],y[i]).

If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for
each hexagonal bin and then reduced according to reduce_C_function, which defaults to numpy’s
mean function (np.mean). (If C is specified, it must also be a 1-D sequence of the same length as
x and y.)

x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.

Optional keyword arguments:
gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100. The cor-

responding number of hexagons in the y-direction is chosen such that the hexagons are ap-
proximately regular. Alternatively, gridsize can be a tuple with two elements specifying the
number of hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of each
hexagon directly corresponds to its count value.

If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used to determine
the hexagon color.

If an integer, divide the counts in the specified number of bins, and color the hexagons ac-
cordingly.

If a sequence of values, the values of the lower bound of the bins to be used.
xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.
scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.
mincnt: [None | a positive integer] If not None, only display cells with more than mincnt num-

ber of points in the cell
marginals: [True | False] if marginals is True, plot the marginal density as colormapped recta-

gles along the bottom of the x-axis and left of the y-axis
extent: [None | scalars (left, right, bottom, top)] The limits of the bins. The default assigns the

limits based on gridsize, x, y, xscale and yscale.
Other keyword arguments controlling color mapping and normalization arguments:
cmap: [None | Colormap] a matplotlib.colors.Colormap instance. If None, defaults to rc
image.cmap.

norm: [None | Normalize] matplotlib.colors.Normalize instance is used to scale lumi-
nance data to 0,1.

vmin / vmax: scalar vmin and vmax are used in conjunction with norm to normalize luminance
data. If either are None, the min and max of the color array C is used. Note if you pass a norm
instance, your settings for vmin and vmax will be ignored.

alpha: scalar between 0 and 1, or None the alpha value for the patches

53.1. matplotlib.axes 755

Matplotlib, Release 1.3.1

linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is a tuple, and
if you set the linewidths argument you must set it as a sequence of floats, as required by
RegularPolyCollection.

Other keyword arguments controlling the Collection properties:
edgecolors: [None | ’none’ | mpl color | color sequence] If ’none’, draws the edges in the

same color as the fill color. This is the default, as it avoids unsightly unpainted pixels be-
tween the hexagons.

If None, draws the outlines in the default color.

If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified color.
Here are the standard descriptions of all the Collection kwargs:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown

Continued on next page

756 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.13 – continued from previous page
Property Description
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection
to get the counts in each hexagon. If marginals is True, horizontal bar and vertical bar (both
PolyCollections) will be attached to the return collection as attributes hbar and vbar.

Example:

4 2 0 2 4

15

10

5

0

5

10

15

20

Hexagon binning

0

20

40

60

80

100

120

140

160

co
u
n
ts

4 2 0 2 4

15

10

5

0

5

10

15

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1
0

(N
)

hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bot-
tom=None, histtype=’bar’, align=’mid’, orientation=’vertical’, rwidth=None, log=False,
color=None, label=None, stacked=False, **kwargs)

Plot a histogram.

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1,
...], bins, [patches0, patches1,...]) if the input contains multiple data.

Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1, ...]),
or as a 2-D ndarray in which each column is a dataset. Note that the ndarray form is transposed
relative to the list form.

Masked arrays are not supported at present.

53.1. matplotlib.axes 757

Matplotlib, Release 1.3.1

Parameters x : array_like, shape (n,)
Input values.

bins : integer or array_like, optional, default: 10
If an integer is given, bins + 1 bin edges are returned, consistently with
numpy.histogram() for numpy version >= 1.3.

Unequally spaced bins are supported if bins is a sequence.
range : tuple, optional, default: None

The lower and upper range of the bins. Lower and upper outliers are ignored.
If not provided, range is (x.min(), x.max()). Range has no effect if bins is a
sequence.

If bins is a sequence or range is specified, autoscaling is based on the specified
bin range instead of the range of x.

normed : boolean, optional, default: False
If True, the first element of the return tuple will be the counts normalized to form
a probability density, i.e., n/(len(x)‘dbin), ie the integral of the histogram will
sum to 1. If stacked is also True, the sum of the histograms is normalized to 1.

weights : array_like, shape (n,), optional, default: None
An array of weights, of the same shape as x. Each value in x only contributes
its associated weight towards the bin count (instead of 1). If normed is True, the
weights are normalized, so that the integral of the density over the range remains
1.

cumulative : boolean, optional, default
If True, then a histogram is computed where each bin gives the counts in that bin
plus all bins for smaller values. The last bin gives the total number of datapoints.
If normed is also True then the histogram is normalized such that the last bin
equals 1. If cumulative evaluates to less than 0 (e.g., -1), the direction of accu-
mulation is reversed. In this case, if normed is also True, then the histogram is
normalized such that the first bin equals 1.

histtype : [’bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’], optional
The type of histogram to draw.
•‘bar’ is a traditional bar-type histogram. If multiple data are given the bars are
aranged side by side.
•‘barstacked’ is a bar-type histogram where multiple data are stacked on top of
each other.
•‘step’ generates a lineplot that is by default unfilled.
•‘stepfilled’ generates a lineplot that is by default filled.

align : [’left’ | ‘mid’ | ‘right’], optional, default: ‘mid’
Controls how the histogram is plotted.
•‘left’: bars are centered on the left bin edges.
•‘mid’: bars are centered between the bin edges.
•‘right’: bars are centered on the right bin edges.

orientation : [’horizontal’ | ‘vertical’], optional
If ‘horizontal’, barh will be used for bar-type histograms and the bottom kwarg
will be the left edges.

rwidth : scalar, optional, default: None
The relative width of the bars as a fraction of the bin width. If None, automatically
compute the width. Ignored if histtype = ‘step’ or ‘stepfilled’.

758 Chapter 53. axes

Matplotlib, Release 1.3.1

log : boolean, optional, default
If True, the histogram axis will be set to a log scale. If log is True and x is a 1D
array, empty bins will be filtered out and only the non-empty (n, bins, patches)
will be returned.

color : color or array_like of colors, optional, default: None
Color spec or sequence of color specs, one per dataset. Default (None) uses the
standard line color sequence.

label : string, optional, default: ‘’
String, or sequence of strings to match multiple datasets. Bar charts yield multiple
patches per dataset, but only the first gets the label, so that the legend command
will work as expected.

stacked : boolean, optional, default
If True, multiple data are stacked on top of each other If False multiple data are
aranged side by side if histtype is ‘bar’ or on top of each other if histtype is ‘step’

Returns tuple : (n, bins, patches) or ([n0, n1, ...], bins, [patches0, patches1,...])
Other Parameters kwargs : Patch properties

See also:

hist2d 2D histograms

Notes

Until numpy release 1.5, the underlying numpy histogram function was incorrect with
normed‘=‘True if bin sizes were unequal. MPL inherited that error. It is now corrected within
MPL when using earlier numpy versions.

53.1. matplotlib.axes 759

Matplotlib, Release 1.3.1

Examples

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030
P
ro

b
a
b
ili

ty
Histogram of IQ: µ=100, σ=15

hist2d(x, y, bins=10, range=None, normed=False, weights=None, cmin=None, cmax=None,
**kwargs)

Make a 2D histogram plot.
Parameters x, y: array_like, shape (n,) :

Input values
bins: [None | int | [int, int] | array_like | [array, array]] :

The bin specification:
•If int, the number of bins for the two dimensions (nx=ny=bins).
•If [int, int], the number of bins in each dimension (nx, ny = bins).
•If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).
•If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).

The default value is 10.
range : array_like shape(2, 2), optional, default: None

The leftmost and rightmost edges of the bins along each dimension (if not speci-
fied explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All values
outside of this range will be considered outliers and not tallied in the histogram.

normed : boolean, optional, default: False
Normalize histogram.

weights : array_like, shape (n,), optional, default: None
An array of values w_i weighing each sample (x_i, y_i).

cmin : scalar, optional, default: None

760 Chapter 53. axes

Matplotlib, Release 1.3.1

All bins that has count less than cmin will not be displayed and these count values
in the return value count histogram will also be set to nan upon return

cmax : scalar, optional, default: None
All bins that has count more than cmax will not be displayed (set to none before
passing to imshow) and these count values in the return value count histogram
will also be set to nan upon return

Returns The return value is ‘‘(counts, xedges, yedges, Image)‘‘. :
Other Parameters kwargs : pcolorfast() properties.

See also:

hist 1D histogram

Notes

Rendering the histogram with a logarithmic color scale is accomplished by passing a
colors.LogNorm instance to the norm keyword argument.

Examples

3 2 1 0 1 2

3

4

5

6

7

8

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, label=’‘, **kwargs)
Plot horizontal lines.

53.1. matplotlib.axes 761

Matplotlib, Release 1.3.1

Plot horizontal lines at each y from xmin to xmax.
Parameters y : scalar or 1D array_like

y-indexes where to plot the lines.
xmin, xmax : scalar or 1D array_like

Respective beginning and end of each line. If scalars are provided, all lines will
have same length.

colors : array_like of colors, optional, default: ‘k’

linestyles : [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’], optional

label : string, optional, default: ‘’
Returns lines : LineCollection
Other Parameters kwargs : LineCollection properties.

See also:

vlines vertical lines

Examples

0 1 2 3 4 5
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Vertical lines demo

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (s)

0

1

2

3

4

5
Horizontal lines demo

hold(b=None)
Call signature:

hold(b=None)

Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to boolean
value b.

Examples:

toggle hold
hold()

turn hold on

762 Chapter 53. axes

Matplotlib, Release 1.3.1

hold(True)

turn hold off
hold(False)

When hold is True, subsequent plot commands will be added to the current axes. When hold is
False, the current axes and figure will be cleared on the next plot command

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None,
vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, fil-
terrad=4.0, imlim=None, resample=None, url=None, **kwargs)

Display an image on the axes.
Parameters X : array_like, shape (n, m) or (n, m, 3) or (n, m, 4)

Display the image in X to current axes. X may be a float array, a uint8 array or a
PIL image. If X is an array, it can have the following shapes:
•MxN – luminance (grayscale, float array only)
•MxNx3 – RGB (float or uint8 array)
•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays should be in
the range 0.0 to 1.0; MxN float arrays may be normalised.

cmap : Colormap, optional, default: None
If None, default to rc image.cmap value. cmap is ignored when X has RGB(A)
information

aspect : [’auto’ | ‘equal’ | scalar], optional, default: None
If ‘auto’, changes the image aspect ratio to match that of the axes.

If ‘equal’, and extent is None, changes the axes aspect ratio to match that of the
image. If extent is not None, the axes aspect ratio is changed to match that of
the extent.

If None, default to rc image.aspect value.
interpolation : string, optional, default: None

Acceptable values are ‘none’, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’,
‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’, ‘gaus-
sian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’

If interpolation is None, default to rc image.interpolation. See also the
filternorm and filterrad parameters. If interpolation is ‘none’, then no
interpolation is performed on the Agg, ps and pdf backends. Other backends will
fall back to ‘nearest’.

norm : Normalize, optional, default: None
A Normalize instance is used to scale luminance data to 0, 1. If None, use the
default func:normalize. norm is only used if X is an array of floats.

vmin, vmax : scalar, optional, default: None
vmin and vmax are used in conjunction with norm to normalize luminance data.
Note if you pass a norm instance, your settings for vmin and vmaxwill be ignored.

alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)

origin : [’upper’ | ‘lower’], optional, default: None
Place the [0,0] index of the array in the upper left or lower left corner of the axes.

53.1. matplotlib.axes 763

Matplotlib, Release 1.3.1

If None, default to rc image.origin.
extent : scalars (left, right, bottom, top), optional, default: None

Data limits for the axes. The default assigns zero-based row, column indices to
the x, y centers of the pixels.

shape : scalars (columns, rows), optional, default: None
For raw buffer images

filternorm : scalar, optional, default: 1
A parameter for the antigrain image resize filter. From the antigrain documen-
tation, if filternorm = 1, the filter normalizes integer values and corrects the
rounding errors. It doesn’t do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means that any sum of
pixel weights must be equal to 1.0. So, the filter function must produce a graph of
the proper shape.

filterrad : scalar, optional, default: 4.0
The filter radius for filters that have a radius parameter, i.e. when interpolation is
one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Returns image : AxesImage
Other Parameters kwargs : Artist properties.

See also:

matshow Plot a matrix or an array as an image.

764 Chapter 53. axes

Matplotlib, Release 1.3.1

Examples

3 2 1 0 1 2 3
3

2

1

0

1

2

3

in_axes(mouseevent)
Return True if the given mouseevent (in display coords) is in the Axes

invert_xaxis()
Invert the x-axis.

invert_yaxis()
Invert the y-axis.

ishold()
return the HOLD status of the axes

legend(*args, **kwargs)
Place a legend on the current axes.

Call signature:

legend(*args, **kwargs)

Places legend at location loc. Labels are a sequence of strings and loc can be a string or an integer
specifying the legend location.

To make a legend with existing lines:

53.1. matplotlib.axes 765

Matplotlib, Release 1.3.1

legend()

legend() by itself will try and build a legend using the label property of the
lines/patches/collections. You can set the label of a line by doing:

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.

To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

The location codes are
Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argu-
ment. bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4
floats. For example:

loc = ’upper right’, bbox_to_anchor = (0.5, 0.5)

766 Chapter 53. axes

Matplotlib, Release 1.3.1

will place the legend so that the upper right corner of the legend at the center of the axes.

The legend location can be specified in other coordinate, by using the bbox_transform keyword.

The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords
(bbox_to_anchor is ignored).

Keyword arguments:
prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties

instance. If prop is a dictionary, a new instance will be created with prop. If None, use
rc settings.

fontsize: [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ |

‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
Set the font size. May be either a size string, relative to the default font size, or an
absolute font size in points. This argument is only used if prop is not specified.

numpoints: integer The number of points in the legend for line
scatterpoints: integer The number of points in the legend for scatter plot
scatteryoffsets: list of floats a list of yoffsets for scatter symbols in legend
markerscale: [None | scalar] The relative size of legend markers vs. original. If None,

use rc settings.
frameon: [True | False] if True, draw a frame around the legend. The default is set by

the rcParam ‘legend.frameon’
fancybox: [None | False | True] if True, draw a frame with a round fancybox. If None,

use rc settings
shadow: [None | False | True] If True, draw a shadow behind legend. If None, use rc

settings.
framealpha: [None | float] If not None, alpha channel for legend frame. Default None.
ncol [integer] number of columns. default is 1
mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally expanded

to fill the axes area (or bbox_to_anchor)
bbox_to_anchor: an instance of BboxBase or a tuple of 2 or 4 floats the bbox that the

legend will be anchored.
bbox_transform [[an instance of Transform | None]] the transform for the bbox.

transAxes if None.
title [string] the legend title

Padding and spacing between various elements use following keywords parameters. These val-
ues are measure in font-size units. e.g., a fontsize of 10 points and a handlelength=5 implies a
handlelength of 50 points. Values from rcParams will be used if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Note: Not all kinds of artist are supported by the legend command. See Legend guide for details.

Example:

53.1. matplotlib.axes 767

Matplotlib, Release 1.3.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

Model length
Data length
Total message length

See also:

Legend guide.

locator_params(axis=’both’, tight=None, **kwargs)
Control behavior of tick locators.

Keyword arguments:
axis [’x’ | ‘y’ | ‘both’] Axis on which to operate; default is ‘both’.
tight [True | False | None] Parameter passed to autoscale_view(). Default is None, for no

change.
Remaining keyword arguments are passed to directly to the set_params() method.

Typically one might want to reduce the maximum number of ticks and use tight bounds when
plotting small subplots, for example:

ax.locator_params(tight=True, nbins=4)

Because the locator is involved in autoscaling, autoscale_view() is called automatically after
the parameters are changed.

This presently works only for the MaxNLocator used by default on linear axes, but it may be
generalized.

loglog(*args, **kwargs)
Make a plot with log scaling on both the x and y axis.

768 Chapter 53. axes

Matplotlib, Release 1.3.1

Call signature:

loglog(*args, **kwargs)

loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale() / matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:
basex/basey: scalar > 1 Base of the x/y logarithm
subsx/subsy: [None | sequence] The location of the minor x/y ticks;

None defaults to autosubs, which depend on the number of
decades in the plot; see matplotlib.axes.Axes.set_xscale() /

matplotlib.axes.Axes.set_yscale() for details
nonposx/nonposy: [’mask’ | ‘clip’] Non-positive values in x or y can be masked as in-

valid, or clipped to a very small positive number
The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)

Continued on next page

53.1. matplotlib.axes 769

Matplotlib, Release 1.3.1

Table 53.14 – continued from previous page
Property Description
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

0 5 10 15 20
10-2

10-1

100 semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102 loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105Errorbars go negative

margins(*args, **kw)
Set or retrieve autoscaling margins.

signatures:

770 Chapter 53. axes

Matplotlib, Release 1.3.1

margins()

returns xmargin, ymargin

margins(margin)

margins(xmargin, ymargin)

margins(x=xmargin, y=ymargin)

margins(..., tight=False)

All three forms above set the xmargin and ymargin parameters. All keyword parameters are
optional. A single argument specifies both xmargin and ymargin. The tight parameter is passed to
autoscale_view(), which is executed after a margin is changed; the default here is True, on the
assumption that when margins are specified, no additional padding to match tick marks is usually
desired. Setting tight to None will preserve the previous setting.

Specifying any margin changes only the autoscaling; for example, if xmargin is not None, then
xmargin times the X data interval will be added to each end of that interval before it is used in
autoscaling.

matshow(Z, **kwargs)
Plot a matrix or array as an image.

The matrix will be shown the way it would be printed, with the first row at the top. Row and
column numbering is zero-based.

Parameters Z : array_like shape (n, m)
The matrix to be displayed.

Returns image : AxesImage
Other Parameters kwargs : imshow arguments

Sets origin to ‘upper’, ‘interpolation’ to ‘nearest’ and ‘aspect’ to equal.
See also:

imshow plot an image

53.1. matplotlib.axes 771

Matplotlib, Release 1.3.1

Examples

0 2 4 6 8 10

0

2

4

6

8

10

0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

772 Chapter 53. axes

Matplotlib, Release 1.3.1

0 10 20 30 40 50 60
0

10

20

30

40

50

60

minorticks_off()
Remove minor ticks from the axes.

minorticks_on()
Add autoscaling minor ticks to the axes.

name = ‘rectilinear’

pcolor(*args, **kwargs)
Create a pseudocolor plot of a 2-D array.

Note: pcolor can be very slow for large arrays; consider using the similar but much faster
pcolormesh() instead.

Call signatures:

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

C is the array of color values.

X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral for
C[i,j] has corners at:

53.1. matplotlib.axes 773

Matplotlib, Release 1.3.1

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are the
same, then the last row and column of C will be ignored.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds to
y; for details, see the Grid Orientation section below.

If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed
into the appropriate 2-D arrays, making a rectangular grid.

X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X or
Y at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

Keyword arguments:
cmap: [None | Colormap] A matplotlib.colors.Colormap instance. If None, use

rc settings.
norm: [None | Normalize] An matplotlib.colors.Normalize instance is used to

scale luminance data to 0,1. If None, defaults to normalize().
vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-

malize luminance data. If either is None, it is autoscaled to the respective min or max
of the color array C. If not None, vmin or vmax passed in here override any pre-existing
values supplied in the norm instance.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle; if
‘flat’, edges are not drawn. Default is ‘flat’, contrary to MATLAB.
This kwarg is deprecated; please use ‘edgecolors’ instead:
•shading=’flat’ – edgecolors=’none’
•shading=’faceted – edgecolors=’k’

edgecolors: [None | ’none’ | color | color sequence] If None, the rc setting is used by
default.

If ’none’, edges will not be visible.

An mpl color or sequence of colors will set the edge color
alpha: 0 <= scalar <= 1 or None the alpha blending value

Return value is a matplotlib.collections.Collection instance. The grid orientation fol-
lows the MATLAB convention: an array C with shape (nrows, ncolumns) is plotted with the
column number as X and the row number as Y, increasing up; hence it is plotted the way the array
would be printed, except that the Y axis is reversed. That is, C is taken as C*(*y, x).

Similarly for meshgrid():

x = np.arange(5)
y = np.arange(3)
X, Y = np.meshgrid(x, y)

is equivalent to:

774 Chapter 53. axes

Matplotlib, Release 1.3.1

X = array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])

Y = array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2]])

so if you have:

C = rand(len(x), len(y))

then you need to transpose C:

pcolor(X, Y, C.T)

or:

pcolor(C.T)

MATLAB pcolor() always discards the last row and column of C, but matplotlib displays the
last row and column if X and Y are not specified, or if X and Y have one more row and column
than C.

kwargs can be used to control the PolyCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats

Continued on next page

53.1. matplotlib.axes 775

Matplotlib, Release 1.3.1

Table 53.15 – continued from previous page
Property Description
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Note: The default antialiaseds is False if the default edgecolors*=”none” is used. This elimi-
nates artificial lines at patch boundaries, and works regardless of the value of alpha. If *edge-
colors is not “none”, then the default antialiaseds is taken from rcParams[’patch.antialiased’],
which defaults to True. Stroking the edges may be preferred if alpha is 1, but will cause artifacts
otherwise.

See also:

pcolormesh() For an explanation of the differences between pcolor and pcolormesh.

pcolorfast(*args, **kwargs)
pseudocolor plot of a 2-D array

Experimental; this is a pcolor-type method that provides the fastest possible rendering with the
Agg backend, and that can handle any quadrilateral grid. It supports only flat shading (no out-
lines), it lacks support for log scaling of the axes, and it does not have a pyplot wrapper.

Call signatures:

ax.pcolorfast(C, **kwargs)
ax.pcolorfast(xr, yr, C, **kwargs)
ax.pcolorfast(x, y, C, **kwargs)
ax.pcolorfast(X, Y, C, **kwargs)

C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape. C
may be a masked array.

ax.pcolorfast(C, **kwargs) is equivalent to ax.pcolorfast([0,nc], [0,nr], C,
**kwargs)

xr, yr specify the ranges of x and y corresponding to the rectangular region bounding C. If:

776 Chapter 53. axes

Matplotlib, Release 1.3.1

xr = [x0, x1]

and:

yr = [y0,y1]

then x goes from x0 to x1 as the second index of C goes from 0 to nc, etc. (x0, y0) is the outermost
corner of cell (0,0), and (x1, y1) is the outermost corner of cell (nr-1, nc-1). All cells are rectangles
of the same size. This is the fastest version.

x, y are 1D arrays of length nc +1 and nr +1, respectively, giving the x and y boundaries of the
cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate.
(The grid is checked, and if found to be uniform the fast version is used.)

X and Y are 2D arrays with shape (nr +1, nc +1) that specify the (x,y) coordinates of the
corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]),
(X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectan-
gular. This is the most general, but the slowest to render. It may produce faster and more compact
output using ps, pdf, and svg backends, however.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds to
y; for details, see the “Grid Orientation” section below.

Optional keyword arguments:
cmap: [None | Colormap] A matplotlib.colors.Colormap instance from cm. If

None, use rc settings.
norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to

scale luminance data to 0,1. If None, defaults to normalize()
vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-

malize luminance data. If either are None, the min and max of the color array C is
used. If you pass a norm instance, vmin and vmax will be None.

alpha: 0 <= scalar <= 1 or None the alpha blending value
Return value is an image if a regular or rectangular grid is specified, and a QuadMesh collection
in the general quadrilateral case.

pcolormesh(*args, **kwargs)
Plot a quadrilateral mesh.

Call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

Create a pseudocolor plot of a 2-D array.

pcolormesh is similar to pcolor(), but uses a different mechanism and returns a different object;
pcolor returns a PolyCollection but pcolormesh returns a QuadMesh. It is much faster, so it is
almost always preferred for large arrays.

53.1. matplotlib.axes 777

Matplotlib, Release 1.3.1

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap
and norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or
vertices.

Keyword arguments:
cmap: [None | Colormap] A matplotlib.colors.Colormap instance. If None, use

rc settings.
norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to

scale luminance data to 0,1. If None, defaults to normalize().
vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-

malize luminance data. If either is None, it is autoscaled to the respective min or max
of the color array C. If not None, vmin or vmax passed in here override any pre-existing
values supplied in the norm instance.

shading: [‘flat’ | ‘gouraud’] ‘flat’ indicates a solid color for each quad. When
‘gouraud’, each quad will be Gouraud shaded. When gouraud shading, edgecolors
is ignored.

edgecolors: [None | ’None’ | ’face’ | color |

color sequence]
If None, the rc setting is used by default.

If ’None’, edges will not be visible.

If ’face’, edges will have the same color as the faces.

An mpl color or sequence of colors will set the edge color
alpha: 0 <= scalar <= 1 or None the alpha blending value

Return value is a matplotlib.collections.QuadMesh object.

kwargs can be used to control the matplotlib.collections.QuadMesh properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.

Continued on next page

778 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.16 – continued from previous page
Property Description
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See also:

pcolor() For an explanation of the grid orientation and the expansion of 1-D X and/or Y to 2-D
arrays.

pick(*args)
Call signature:

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6,
shadow=False, labeldistance=1.1, startangle=None, radius=None)
Plot a pie chart.

Call signature:

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, shadow=False,
labeldistance=1.1, startangle=None, radius=None)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x) <=

1, then the values of x give the fractional area directly and the array will not be normalized. The
wedges are plotted counterclockwise, by default starting from the x-axis.

Keyword arguments:

53.1. matplotlib.axes 779

Matplotlib, Release 1.3.1

explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the
fraction of the radius with which to offset each wedge.

colors: [None | color sequence] A sequence of matplotlib color args through which the
pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the labels
for each wedge

autopct: [None | format string | format function] If not None, is a string or function
used to label the wedges with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be fmt%pct. If it is a function, it will be
called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the text
generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn
shadow: [False | True] Draw a shadow beneath the pie.
startangle: [None | Offset angle] If not None, rotates the start of the pie chart by angle

degrees counterclockwise from the x-axis.

radius: [None | scalar] The radius of the pie, if radius is None it will be set to 1.
The pie chart will probably look best if the figure and axes are square, or the Axes aspect is equal.
e.g.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

or:

axes(aspect=1)

Return value: If autopct is None, return the tuple (patches, texts):
•patches is a sequence of matplotlib.patches.Wedge instances
•texts is a list of the label matplotlib.text.Text instances.

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts are
as above, and autotexts is a list of Text instances for the numeric labels.

plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple x,
y pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

An arbitrary number of x, y, fmt groups can be specified, as in:

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

780 Chapter 53. axes

Matplotlib, Release 1.3.1

Return value is a list of lines that were added.

By default, each line is assigned a different color specified by a ‘color cycle’. To change
this behavior, you can edit the axes.color_cycle rcParam. Alternatively, you can use
set_default_color_cycle().

The following format string characters are accepted to control the line style or marker:

character description
’-’ solid line style
’--’ dashed line style
’-.’ dash-dot line style
’:’ dotted line style
’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle_down marker
’^’ triangle_up marker
’<’ triangle_left marker
’>’ triangle_right marker
’1’ tri_down marker
’2’ tri_up marker
’3’ tri_left marker
’4’ tri_right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin_diamond marker
’|’ vline marker
’_’ hline marker

The following color abbreviations are supported:

character color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

In addition, you can specify colors in many weird and wonderful ways, including full names
(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensities
as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group, but the

53.1. matplotlib.axes 781

Matplotlib, Release 1.3.1

tuple forms can be used only as kwargs.

Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.

The kwargs can be used to set line properties (any property that has a set_* method). You can
use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here
is an example:

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

You do not need to use format strings, which are just abbreviations. All of the line properties can
be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and
markercolor with:

plot(x, y, color=’green’, linestyle=’dashed’, marker=’o’,
markerfacecolor=’blue’, markersize=12).

See Line2D for details.

The kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.

Continued on next page

782 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.17 – continued from previous page
Property Description
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether
the x and y axes are autoscaled; the default is True.

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)
Plot with data with dates.

Call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True,
ydate=False, **kwargs)

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and the
axis is labeled accordingly.

x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.

Keyword arguments:
fmt: string The plot format string.
tz: [None | timezone string | tzinfo instance] The time zone to use in labeling dates.

If None, defaults to rc value.
xdate: [True | False] If True, the x-axis will be labeled with dates.
ydate: [False | True] If True, the y-axis will be labeled with dates.

53.1. matplotlib.axes 783

Matplotlib, Release 1.3.1

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.dates.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.dates.DateLocator instance) and the default tick formatter
to matplotlib.dates.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.dates.DateFormatter instance).

Valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string

Continued on next page

784 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.18 – continued from previous page
Property Description
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See also:

dates for helper functions

date2num(), num2date() and drange() for help on creating the required floating point dates.

psd(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x2635de8>,
window=<function window_hanning at 0x2635b90>, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)
Plot the power spectral density.

Call signature:

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The power spectral density by Welch’s average periodogram method. The vector x is divided
into NFFT length segments. Each segment is detrended by function detrend and windowed by
function window. noverlap gives the length of the overlap between segments. The |fft(i)|2 of each
segment i are averaged to compute Pxx, with a scaling to correct for power loss due to windowing.
Fs is the sampling frequency.

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to get
zero padding, or the scaling of the result will be incorrect. Use pad_to for this instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of data

53.1. matplotlib.axes 785

Matplotlib, Release 1.3.1

points used. While not increasing the actual resolution of the psd (the minimum dis-
tance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both for
complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’ forces
two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns the tuple (Pxx, freqs).

For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.
References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John

Wiley & Sons (1986)
kwargs control the Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color

Continued on next page

786 Chapter 53. axes

Matplotlib, Release 1.3.1

Table 53.19 – continued from previous page
Property Description
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

53.1. matplotlib.axes 787

Matplotlib, Release 1.3.1

0 2 4 6 8 10
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

0 10 20 30 40 50
Frequency

90
80
70
60
50
40
30
20
10

P
o
w

e
r

S
p
e
ct

ra
l
D

e
n
si

ty
 (

d
B

/H
z)

quiver(*args, **kw)
Plot a 2-D field of arrows.

call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:
X, Y: The x and y coordinates of the arrow locations (default is tail of arrow; see pivot

kwarg)
U, V: Give the x and y components of the arrow vectors
C: An optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)
and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:
units: [‘width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’ | ‘xy’] Arrow units; the arrow di-

mensions except for length are in multiples of this unit.

788 Chapter 53. axes

Matplotlib, Release 1.3.1

•‘width’ or ‘height’: the width or height of the axes
•‘dots’ or ‘inches’: pixels or inches, based on the figure dpi
•‘x’, ‘y’, or ‘xy’: X, Y, or sqrt(X^2+Y^2) data units

The arrows scale differently depending on the units. For ‘x’ or ‘y’, the arrows get
larger as one zooms in; for other units, the arrow size is independent of the zoom state.
For ‘width or ‘height’, the arrow size increases with the width and height of the axes,
respectively, when the the window is resized; for ‘dots’ or ‘inches’, resizing does not
change the arrows.

angles: [‘uv’ | ‘xy’ | array] With the default ‘uv’, the arrow aspect ratio is 1, so that if
U*==*V the angle of the arrow on the plot is 45 degrees CCW from the x-axis. With
‘xy’, the arrow points from (x,y) to (x+u, y+v). Alternatively, arbitrary angles may be
specified as an array of values in degrees, CCW from the x-axis.

scale: [None | float] Data units per arrow length unit, e.g., m/s per plot width; a smaller
scale parameter makes the arrow longer. If None, a simple autoscaling algorithm is
used, based on the average vector length and the number of vectors. The arrow length
unit is given by the scale_units parameter

scale_units: None, or any of the units options. For example, if scale_units is ‘inches’,
scale is 2.0, and (u,v) = (1,0), then the vector will be 0.5 inches long. If
scale_units is ‘width’, then the vector will be half the width of the axes.

If scale_units is ‘x’ then the vector will be 0.5 x-axis units. To plot vectors in
the x-y plane, with u and v having the same units as x and y, use “angles=’xy’,
scale_units=’xy’, scale=1”.

width: Shaft width in arrow units; default depends on choice of units, above, and number
of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar Head width as multiple of shaft width, default is 3
headlength: scalar Head length as multiple of shaft width, default is 5
headaxislength: scalar Head length at shaft intersection, default is 4.5
minshaft: scalar Length below which arrow scales, in units of head length. Do not set

this to less than 1, or small arrows will look terrible! Default is 1
minlength: scalar Minimum length as a multiple of shaft width; if an arrow length is less

than this, plot a dot (hexagon) of this diameter instead. Default is 1.
pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the arrow

rotates about this point, hence the name pivot.
color: [color | color sequence] This is a synonym for the PolyCollection facecolor

kwarg. If C has been set, color has no effect.
The defaults give a slightly swept-back arrow; to make the head a triangle, make headax-
islength the same as headlength. To make the arrow more pointed, reduce headwidth or increase
headlength and headaxislength. To make the head smaller relative to the shaft, scale down all the
head parameters. You will probably do best to leave minshaft alone.

linewidths and edgecolors can be used to customize the arrow outlines. Additional
PolyCollection keyword arguments:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]

Continued on next page

53.1. matplotlib.axes 789

Matplotlib, Release 1.3.1

Table 53.20 – continued from previous page
Property Description
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

quiverkey(*args, **kw)
Add a key to a quiver plot.

Call signature:

quiverkey(Q, X, Y, U, label, **kw)

Arguments:
Q: The Quiver instance returned by a call to quiver.
X, Y: The location of the key; additional explanation follows.

790 Chapter 53. axes

Matplotlib, Release 1.3.1

U: The length of the key
label: A string with the length and units of the key

Keyword arguments:
coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for X,

Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower left and
1,1 in the upper right; ‘data’ are the axes data coordinates (used for the locations of the
vectors in the quiver plot itself); ‘inches’ is position in the figure in inches, with 0,0 at
the lower left corner.

color: overrides face and edge colors from Q.
labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the left

of the arrow, respectively.
labelsep: Distance in inches between the arrow and the label. Default is 0.1
labelcolor: defaults to default Text color.
fontproperties: A dictionary with keyword arguments accepted by the FontProperties

initializer: family, style, variant, size, weight
Any additional keyword arguments are used to override vector properties taken from Q.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’,
X, Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head,
and if labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in
the middle of the arrow+label key object.

redraw_in_frame()
This method can only be used after an initial draw which caches the renderer. It is used to effi-
ciently update Axes data (axis ticks, labels, etc are not updated)

relim()
Recompute the data limits based on current artists.

At present, Collection instances are not supported.

reset_position()
Make the original position the active position

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, verts=None, **kwargs)

Make a scatter plot of x vs y, where x and y are sequence like objects of the same lengths.
Parameters x, y : array_like, shape (n,)

Input data
s : scalar or array_like, shape (n,), optional, default: 20

size in points^2.
c : color or sequence of color, optional, default
c can be a single color format string, or a sequence of color specifications of
length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values
to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA,
however.

marker : MarkerStyle, optional, default: ‘o’
See markers for more information on the different styles of markers scatter sup-
ports.

53.1. matplotlib.axes 791

Matplotlib, Release 1.3.1

cmap : Colormap, optional, default: None
A Colormap instance or registered name. cmap is only used if c is an array of
floats. If None, defaults to rc image.cmap.

norm : Normalize, optional, default: None
A Normalize instance is used to scale luminance data to 0, 1. norm is only used
if c is an array of floats. If None, use the default normalize().

vmin, vmax : scalar, optional, default: None
vmin and vmax are used in conjunction with norm to normalize luminance data.
If either are None, the min and max of the color array is used. Note if you pass a
norm instance, your settings for vmin and vmax will be ignored.

alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)

linewidths : scalar or array_like, optional, default: None
If None, defaults to (lines.linewidth,). Note that this is a tuple, and if you set
the linewidths argument you must set it as a sequence of floats, as required by
RegularPolyCollection.

Returns paths : PathCollection
Other Parameters kwargs : Collection properties

Notes

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and
only unmasked points will be plotted.

792 Chapter 53. axes

Matplotlib, Release 1.3.1

Examples

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

semilogx(*args, **kwargs)
Make a plot with log scaling on the x axis.

Call signature:

semilogx(*args, **kwargs)

semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().

Notable keyword arguments:
basex: scalar > 1 Base of the x logarithm
subsx: [None | sequence] The location of the minor xticks; None defaults to autosubs,

which depend on the number of decades in the plot; see set_xscale() for details.
nonposx: [‘mask’ | ‘clip’] Non-positive values in x can be masked as invalid, or clipped

to a very small positive number
The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)

Continued on next page

53.1. matplotlib.axes 793

Matplotlib, Release 1.3.1

Table 53.21 – continued from previous page
Property Description
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See also:

loglog() For example code and figure

794 Chapter 53. axes

Matplotlib, Release 1.3.1

semilogy(*args, **kwargs)
Make a plot with log scaling on the y axis.

call signature:

semilogy(*args, **kwargs)

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:
basey: scalar > 1 Base of the y logarithm
subsy: [None | sequence] The location of the minor yticks; None defaults to autosubs,

which depend on the number of decades in the plot; see set_yscale() for details.
nonposy: [‘mask’ | ‘clip’] Non-positive values in y can be masked as invalid, or clipped

to a very small positive number
The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown

Continued on next page

53.1. matplotlib.axes 795

Matplotlib, Release 1.3.1

Table 53.22 – continued from previous page
Property Description
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See also:

loglog() For example code and figure

set_adjustable(adjustable)
ACCEPTS: [‘box’ | ‘datalim’ | ‘box-forced’]

set_anchor(anchor)
anchor

value description
‘C’ Center
‘SW’ bottom left
‘S’ bottom
‘SE’ bottom right
‘E’ right
‘NE’ top right
‘N’ top
‘NW’ top left
‘W’ left

set_aspect(aspect, adjustable=None, anchor=None)
aspect

value description
‘auto’ automatic; fill position rectangle with data
‘nor-
mal’

same as ‘auto’; deprecated

‘equal’ same scaling from data to plot units for x and y
num a circle will be stretched such that the height is num times the width.

aspect=1 is the same as aspect=’equal’.
adjustable

796 Chapter 53. axes

Matplotlib, Release 1.3.1

value description
‘box’ change physical size of axes
‘datalim’ change xlim or ylim
‘box-forced’ same as ‘box’, but axes can be shared

‘box’ does not allow axes sharing, as this can cause unintended side effect. For cases when sharing
axes is fine, use ‘box-forced’.

anchor
value description
‘C’ centered
‘SW’ lower left corner
‘S’ middle of bottom edge
‘SE’ lower right corner
etc.

Deprecated since version 1.2: the option ‘normal’ for aspect is deprecated. Use ‘auto’ instead.

set_autoscale_on(b)
Set whether autoscaling is applied on plot commands

accepts: [True | False]

set_autoscalex_on(b)
Set whether autoscaling for the x-axis is applied on plot commands

accepts: [True | False]

set_autoscaley_on(b)
Set whether autoscaling for the y-axis is applied on plot commands

accepts: [True | False]

set_axes_locator(locator)
set axes_locator
ACCEPT: a callable object which takes an axes instance and renderer and returns a bbox.

set_axis_bgcolor(color)
set the axes background color

ACCEPTS: any matplotlib color - see colors()

set_axis_off()
turn off the axis

set_axis_on()
turn on the axis

set_axisbelow(b)
Set whether the axis ticks and gridlines are above or below most artists

ACCEPTS: [True | False]

set_color_cycle(clist)
Set the color cycle for any future plot commands on this Axes.

clist is a list of mpl color specifiers.

53.1. matplotlib.axes 797

Matplotlib, Release 1.3.1

set_cursor_props(*args)
Set the cursor property as:

ax.set_cursor_props(linewidth, color)

or:

ax.set_cursor_props((linewidth, color))

ACCEPTS: a (float, color) tuple

set_figure(fig)
Set the class:Axes figure

accepts a class:Figure instance

set_frame_on(b)
Set whether the axes rectangle patch is drawn

ACCEPTS: [True | False]

set_navigate(b)
Set whether the axes responds to navigation toolbar commands

ACCEPTS: [True | False]

set_navigate_mode(b)
Set the navigation toolbar button status;

Warning: this is not a user-API function.

set_position(pos, which=’both’)
Set the axes position with:

pos = [left, bottom, width, height]

in relative 0,1 coords, or pos can be a Bbox

There are two position variables: one which is ultimately used, but which may be modified by
apply_aspect(), and a second which is the starting point for apply_aspect().
Optional keyword arguments: which

value description
‘active’ to change the first
‘original’ to change the second
‘both’ to change both

set_rasterization_zorder(z)
Set zorder value below which artists will be rasterized. Set to None to disable rasterizing of artists
below a particular zorder.

set_title(label, fontdict=None, loc=’center’, **kwargs)
Set a title for the axes.

798 Chapter 53. axes

Matplotlib, Release 1.3.1

Set one of the three available axes titles. The available titles are positioned above the axes in the
center, flush with the left edge, and flush with the right edge.

Parameters label : str
Text to use for the title

fontdict : dict
A dictionary controlling the appearance of the title text, the default fontdict is:

{’fontsize’: rcParams[’axes.titlesize’],
’verticalalignment’: ’baseline’,
’horizontalalignment’: loc}

loc : {‘center’, ‘left’, ‘right’}, str, optional
Which title to set, defaults to ‘center’

Returns text : Text
The matplotlib text instance representing the title

Other Parameters Other keyword arguments are text properties, see :

:class:‘~matplotlib.text.Text‘ for a list of valid text :

properties. :

set_xbound(lower=None, upper=None)
Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion
regardless of parameter order. It will not change the _autoscaleXon attribute.

set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)
Set the label for the xaxis.

Parameters xlabel : string
x label

labelpad : scalar, optional, default: None
spacing in points between the label and the x-axis

Other Parameters kwargs : Text properties
See also:

text for information on how override and the optional args work

set_xlim(left=None, right=None, emit=True, auto=False, **kw)
Call signature:

set_xlim(self, *args, **kwargs):

Set the data limits for the xaxis

Examples:

set_xlim((left, right))
set_xlim(left, right)
set_xlim(left=1) # right unchanged
set_xlim(right=1) # left unchanged

Keyword arguments:
left: scalar The left xlim; xmin, the previous name, may still be used

53.1. matplotlib.axes 799

Matplotlib, Release 1.3.1

right: scalar The right xlim; xmax, the previous name, may still be used
emit: [True | False] Notify observers of limit change
auto: [True | False | None] Turn x autoscaling on (True), off (False; default), or leave un-

changed (None)
Note, the left (formerly xmin) value may be greater than the right (formerly xmax). For example,
suppose x is years before present. Then one might use:

set_ylim(5000, 0)

so 5000 years ago is on the left of the plot and the present is on the right.

Returns the current xlimits as a length 2 tuple

ACCEPTS: length 2 sequence of floats

set_xmargin(m)
Set padding of X data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.

accepts: float in range 0 to 1

set_xscale(value, **kwargs)
Call signature:

set_xscale(value)

Set the scaling of the x-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]
Different kwargs are accepted, depending on the scale: ‘linear’

‘log’
basex/basey: The base of the logarithm
nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as in-

valid, or clipped to a very small positive number
subsx/subsy: Where to place the subticks between each major tick. Should be a sequence

of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
‘symlog’

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having the

plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be a sequence

of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to be stretched

relative to the logarithmic range. Its value is the number of decades to use for each half
of the linear range. For example, when linscale == 1.0 (the default), the space used for
the positive and negative halves of the linear range will be equal to one decade in the
logarithmic range.

800 Chapter 53. axes

Matplotlib, Release 1.3.1

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
Call signature:

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)

Set the xtick labels with list of strings labels. Return a list of axis text instances.

kwargs set the Text properties. Valid properties are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]

Continued on next page

53.1. matplotlib.axes 801

Matplotlib, Release 1.3.1

Table 53.23 – continued from previous page
Property Description
x float
y float
zorder any number

ACCEPTS: sequence of strings

set_xticks(ticks, minor=False)
Set the x ticks with list of ticks

ACCEPTS: sequence of floats

set_ybound(lower=None, upper=None)
Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion
regardless of parameter order. It will not change the _autoscaleYon attribute.

set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs)
Set the label for the yaxis

Parameters ylabel : string
y label

labelpad : scalar, optional, default: None
spacing in points between the label and the x-axis

Other Parameters kwargs : Text properties
See also:

text for information on how override and the optional args work

set_ylim(bottom=None, top=None, emit=True, auto=False, **kw)
Call signature:

set_ylim(self, *args, **kwargs):

Set the data limits for the yaxis

Examples:

set_ylim((bottom, top))
set_ylim(bottom, top)
set_ylim(bottom=1) # top unchanged
set_ylim(top=1) # bottom unchanged

Keyword arguments:
bottom: scalar The bottom ylim; the previous name, ymin, may still be used
top: scalar The top ylim; the previous name, ymax, may still be used
emit: [True | False] Notify observers of limit change
auto: [True | False | None] Turn y autoscaling on (True), off (False; default), or leave un-

changed (None)
Note, the bottom (formerly ymin) value may be greater than the top (formerly ymax). For example,
suppose y is depth in the ocean. Then one might use:

802 Chapter 53. axes

Matplotlib, Release 1.3.1

set_ylim(5000, 0)

so 5000 m depth is at the bottom of the plot and the surface, 0 m, is at the top.

Returns the current ylimits as a length 2 tuple

ACCEPTS: length 2 sequence of floats

set_ymargin(m)
Set padding of Y data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.

accepts: float in range 0 to 1

set_yscale(value, **kwargs)
Call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]
Different kwargs are accepted, depending on the scale: ‘linear’

‘log’
basex/basey: The base of the logarithm
nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as in-

valid, or clipped to a very small positive number
subsx/subsy: Where to place the subticks between each major tick. Should be a sequence

of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
‘symlog’

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having the

plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should be a sequence

of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major tick.
linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to be stretched

relative to the logarithmic range. Its value is the number of decades to use for each half
of the linear range. For example, when linscale == 1.0 (the default), the space used for
the positive and negative halves of the linear range will be equal to one decade in the
logarithmic range.

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
Call signature:

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)

53.1. matplotlib.axes 803

Matplotlib, Release 1.3.1

Set the y tick labels with list of strings labels. Return a list of Text instances.

kwargs set Text properties for the labels. Valid properties are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

804 Chapter 53. axes

Matplotlib, Release 1.3.1

ACCEPTS: sequence of strings

set_yticks(ticks, minor=False)
Set the y ticks with list of ticks

ACCEPTS: sequence of floats

Keyword arguments:
minor: [False | True] Sets the minor ticks if True

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x2635de8>, win-
dow=<function window_hanning at 0x2635b90>, noverlap=128, cmap=None, xex-
tent=None, pad_to=None, sides=’default’, scale_by_freq=None, **kwargs)

Plot a spectrogram.

Call signature:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides=’default’,
scale_by_freq=None, **kwargs)

Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the
PSD of each section is computed. The windowing function window is applied to each segment,
and the amount of overlap of each segment is specified with noverlap. The spectrogram is plotted
in decibels as a colormap (using imshow).

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even; a

power 2 is most efficient. The default value is 256. This should NOT be used to get zero
padding, or the scaling of the result will be incorrect. Use pad_to for this instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the Fourier
frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to remove the
mean or linear trend. Unlike in MATLAB, where the detrend parameter is a vector, in mat-
plotlib is it a function. The pylab module defines detrend_none(), detrend_mean(),
and detrend_linear(), but you can use a custom function as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a function
is passed as the argument, it must take a data segment as an argument and return the
windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when perform-
ing the FFT. This can be different from NFFT, which specifies the number of data points
used. While not increasing the actual resolution of the psd (the minimum distance between
resolvable peaks), this can give more points in the plot, allowing for more detail. This
corresponds to the n parameter in the call to fft(). The default is None, which sets pad_to
equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return. De-
fault gives the default behavior, which returns one-sided for real data and both for complex

53.1. matplotlib.axes 805

Matplotlib, Release 1.3.1

data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’ forces two-sided.
scale_by_freq: boolean Specifies whether the resulting density values should be scaled by

the scaling frequency, which gives density in units of Hz^-1. This allows for integration
over the returned frequency values. The default is True for MATLAB compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is 128.
Fc: integer The center frequency of x (defaults to 0), which offsets the y extents of the plot

to reflect the frequency range used when a signal is acquired and then filtered and down-
sampled to baseband.

cmap: A matplotlib.colors.Colormap instance; if None, use default determined by rc
xextent: The image extent along the x-axis. xextent = (xmin,xmax) The default is

(0,max(bins)), where bins is the return value from specgram()

kwargs:
Additional kwargs are passed on to imshow which makes the specgram image

Return value is (Pxx, freqs, bins, im):
•bins are the time points the spectrogram is calculated over
•freqs is an array of frequencies
•Pxx is an array of shape (len(times), len(freqs)) of power
•im is a AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown. This can be overridden using the sides
keyword argument.

Also note that while the plot is in dB, the Pxx array returned is linear in power.

Example:

806 Chapter 53. axes

Matplotlib, Release 1.3.1

0 5 10 15 20
3

2

1

0

1

2

3

0 5 10 15 20
0

200

400

600

800

1000

spy(Z, precision=0, marker=None, markersize=None, aspect=’equal’, **kwargs)
Plot the sparsity pattern on a 2-D array.

Call signature:

spy(Z, precision=0, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.

If precision is 0, any non-zero value will be plotted; else, values of |Z| > precision will be plotted.

For scipy.sparse.spmatrix instances, there is a special case: if precision is ‘present’, any
value present in the array will be plotted, even if it is identically zero.

The array will be plotted as it would be printed, with the first index (row) increasing down and the
second index (column) increasing to the right.

By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect
kwarg to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect
ratio of an array element directly.

Two plotting styles are available: image or marker. Both are available for full arrays, but only the
marker style works for scipy.sparse.spmatrix instances.

If marker and markersize are None, an image will be returned and any remaining kwargs are
passed to imshow(); else, a Line2D object will be returned with the value of marker determining

53.1. matplotlib.axes 807

Matplotlib, Release 1.3.1

the marker type, and any remaining kwargs passed to the plot() method.

If marker and markersize are None, useful kwargs include:
•cmap
•alpha

See also:

imshow() For image options.

For controlling colors, e.g., cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

If marker or markersize is not None, useful kwargs include:
•marker
•markersize
•color

Useful values for marker include:
•‘s’ square (default)
•‘o’ circle
•‘.’ point
•‘,’ pixel

See also:

plot() For plotting options

stackplot(x, *args, **kwargs)
Draws a stacked area plot.

x : 1d array of dimension N
y [2d array of dimension MxN, OR any number 1d arrays each of dimension] 1xN. The data is

assumed to be unstacked. Each of the following calls is legal:

stackplot(x, y) # where y is MxN
stackplot(x, y1, y2, y3, y4) # where y1, y2, y3, y4, are all 1xNm

Keyword arguments:
baseline [[’zero’, ‘sym’, ‘wiggle’, ‘weighted_wiggle’]] Method used to calculate the baseline.

‘zero’ is just a simple stacked plot. ‘sym’ is symmetric around zero and is sometimes called
ThemeRiver. ‘wiggle’ minimizes the sum of the squared slopes. ‘weighted_wiggle’ does the
same but weights to account for size of each layer. It is also called Streamgraph-layout. More
details can be found at http://www.leebyron.com/else/streamgraph/.

colors [A list or tuple of colors. These will be cycled through and] used to colour the stacked
areas. All other keyword arguments are passed to fill_between()

Returns r : A list of PolyCollection, one for each element in the stacked area plot.

Note that Legend does not support PolyCollection objects. To create a legend on a stackplot,
use a proxy artist: http://matplotlib.org/users/legend_guide.html#using-proxy-artist

start_pan(x, y, button)
Called when a pan operation has started.

x, y are the mouse coordinates in display coords. button is the mouse button number:

808 Chapter 53. axes

http://www.leebyron.com/else/streamgraph/
http://matplotlib.org/users/legend_guide.html#using-proxy-artist

Matplotlib, Release 1.3.1

•1: LEFT
•2: MIDDLE
•3: RIGHT

Note: Intended to be overridden by new projection types.

stem(*args, **kwargs)
Create a stem plot.

Call signatures:

stem(y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)
stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and places a
marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.

If no x values are provided, the default is (0, 1, ..., len(y) - 1)

Return value is a tuple (markerline, stemlines, baseline).

See also:

This document for details.

Example:

0 1 2 3 4 5 6 7
1.0

0.5

0.0

0.5

1.0

53.1. matplotlib.axes 809

http://www.mathworks.com/help/techdoc/ref/stem.html

Matplotlib, Release 1.3.1

step(x, y, *args, **kwargs)
Make a step plot.

Call signature:

step(x, y, *args, **kwargs)

Additional keyword args to step() are the same as those for plot().

x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.

Keyword arguments:
where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i+1]

If ‘post’, that interval has level y[i]

If ‘mid’, the jumps in y occur half-way between the x-values.

streamplot(x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrow-
size=1, arrowstyle=’-|>’, minlength=0.1, transform=None)

Draws streamlines of a vector flow.
x, y [1d arrays] an evenly spaced grid.
u, v [2d arrays] x and y-velocities. Number of rows should match length of y, and the number of

columns should match x.
density [float or 2-tuple] Controls the closeness of streamlines. When density = 1, the domain is

divided into a 25x25 grid—density linearly scales this grid. Each cell in the grid can have, at most,
one traversing streamline. For different densities in each direction, use [density_x, density_y].

linewidth [numeric or 2d array] vary linewidth when given a 2d array with the same shape as veloc-
ities.

color [matplotlib color code, or 2d array] Streamline color. When given an array with the same
shape as velocities, color values are converted to colors using cmap.

cmap [Colormap] Colormap used to plot streamlines and arrows. Only necessary when using an
array input for color.

norm [Normalize] Normalize object used to scale luminance data to 0, 1. If None, stretch (min,
max) to (0, 1). Only necessary when color is an array.

arrowsize [float] Factor scale arrow size.
arrowstyle [str] Arrow style specification. See FancyArrowPatch.
minlength [float] Minimum length of streamline in axes coordinates.
Returns:

stream_container [StreamplotSet] Container object with attributes
•lines: matplotlib.collections.LineCollection of streamlines
•arrows: collection of matplotlib.patches.FancyArrowPatch objects representing ar-
rows half-way along stream lines.

This container will probably change in the future to allow changes to the colormap, alpha,
etc. for both lines and arrows, but these changes should be backward compatible.

table(**kwargs)
Add a table to the current axes.

Call signature:

810 Chapter 53. axes

Matplotlib, Release 1.3.1

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

Returns a matplotlib.table.Table instance. For finer grained control over tables, use the Table
class and add it to the axes with add_table().

Thanks to John Gill for providing the class and table.

kwargs control the Table properties:
Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
fontsize a float in points
gid an id string
label string or anything printable with ‘%s’ conversion.
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

text(x, y, s, fontdict=None, withdash=False, **kwargs)
Add text to the axes.

Add text in string s to axis at location x, y, data coordinates.
Parameters s : string

text
x, y : scalars

data coordinates
fontdict : dictionary, optional, default: None

A dictionary to override the default text properties. If fontdict is
None, the defaults are determined by your rc parameters.

withdash : boolean, optional, default: False
Creates a TextWithDash instance instead of a Text instance.

53.1. matplotlib.axes 811

Matplotlib, Release 1.3.1

Other Parameters kwargs : Text properties.
Other miscellaneous text parameters.

Examples

Individual keyword arguments can be used to override any given parameter:

>>> text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in
axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center
of the axes:

>>> text(0.5, 0.5,’matplotlib’, horizontalalignment=’center’,
... verticalalignment=’center’,
... transform=ax.transAxes)

You can put a rectangular box around the text instance (e.g., to set a background color) by using
the keyword bbox. bbox is a dictionary of Rectangle properties. For example:

>>> text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

tick_params(axis=’both’, **kwargs)
Change the appearance of ticks and tick labels.

Keyword arguments:
axis [[’x’ | ‘y’ | ‘both’]] Axis on which to operate; default is ‘both’.
reset [[True | False]] If True, set all parameters to defaults before processing other keyword ar-

guments. Default is False.
which [[’major’ | ‘minor’ | ‘both’]] Default is ‘major’; apply arguments to which ticks.
direction [[’in’ | ‘out’ | ‘inout’]] Puts ticks inside the axes, outside the axes, or both.
length Tick length in points.
width Tick width in points.
color Tick color; accepts any mpl color spec.
pad Distance in points between tick and label.
labelsize Tick label font size in points or as a string (e.g., ‘large’).
labelcolor Tick label color; mpl color spec.
colors Changes the tick color and the label color to the same value: mpl color spec.
zorder Tick and label zorder.
bottom, top, left, right [[bool | ‘on’ | ‘off’]] controls whether to draw the respective ticks.
labelbottom, labeltop, labelleft, labelright Boolean or [’on’ | ‘off’], controls whether to draw the

respective tick labels.
Example:

ax.tick_params(direction=’out’, length=6, width=2, colors=’r’)

This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2
points. Tick labels will also be red.

812 Chapter 53. axes

Matplotlib, Release 1.3.1

ticklabel_format(**kwargs)
Change the ScalarFormatter used by default for linear axes.

Optional keyword arguments:
Key-
word

Description

style [‘sci’ (or ‘scientific’) | ‘plain’] plain turns off scientific notation
scilim-
its

(m, n), pair of integers; if style is ‘sci’, scientific notation will be used for
numbers outside the range 10‘m‘:sup: to 10‘n‘:sup:. Use (0,0) to include
all numbers.

use-
Off-
set

[True | False | offset]; if True, the offset will be calculated as needed; if
False, no offset will be used; if a numeric offset is specified, it will be used.

axis [‘x’ | ‘y’ | ‘both’]
use-
Lo-
cale

If True, format the number according to the current locale. This affects
things such as the character used for the decimal separator. If False, use
C-style (English) formatting. The default setting is controlled by the
axes.formatter.use_locale rcparam.

Only the major ticks are affected. If the method is called when the ScalarFormatter is not the
Formatter being used, an AttributeError will be raised.

tricontour(*args, **kwargs)
Draw contours on an unstructured triangular grid. tricontour() and tricontourf() draw
contour lines and filled contours, respectively. Except as noted, function signatures and return
values are the same for both versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

53.1. matplotlib.axes 813

Matplotlib, Release 1.3.1

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will

be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-

ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel bound-
aries. In this case, the position of Z[0,0] is the center of the pixel, not a
corner. If origin is None, then (x0, y0) is the position of Z[0,0], and (x1,
y1) is the position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour lev-
els if they are not given explicitly via the V argument.

814 Chapter 53. axes

Matplotlib, Release 1.3.1

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an in-
stance of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None,
the ‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less
than 0, then the linestyle specified in contour.negative_linestyle in
matplotlibrc will be used.

tricontourf-only keyword arguments:
antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the
filled region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

Examples:

53.1. matplotlib.axes 815

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

816 Chapter 53. axes

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

tricontourf(*args, **kwargs)
Draw contours on an unstructured triangular grid. tricontour() and tricontourf() draw
contour lines and filled contours, respectively. Except as noted, function signatures and return
values are the same for both versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The remaining arguments may be:

tricontour(..., Z)

53.1. matplotlib.axes 817

Matplotlib, Release 1.3.1

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will

be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-

ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel bound-
aries. In this case, the position of Z[0,0] is the center of the pixel, not a
corner. If origin is None, then (x0, y0) is the position of Z[0,0], and (x1,
y1) is the position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

818 Chapter 53. axes

Matplotlib, Release 1.3.1

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour lev-
els if they are not given explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an in-
stance of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None,
the ‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less
than 0, then the linestyle specified in contour.negative_linestyle in
matplotlibrc will be used.

tricontourf-only keyword arguments:
antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the
filled region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

Examples:

53.1. matplotlib.axes 819

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

820 Chapter 53. axes

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

tripcolor(*args, **kwargs)
Create a pseudocolor plot of an unstructured triangular grid.

The triangulation can be specified in one of two ways; either:

tripcolor(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

tripcolor(x, y, ...)
tripcolor(x, y, triangles, ...)
tripcolor(x, y, triangles=triangles, ...)
tripcolor(x, y, mask=mask, ...)
tripcolor(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The next argument must be C, the array of color values, either one per point in the triangulation
if color values are defined at points, or one per triangle in the triangulation if color values are
defined at triangles. If there are the same number of points and triangles in the triangulation it is
assumed that color values are defined at points; to force the use of color values at triangles use
the kwarg facecolors*=C instead of just *C.

53.1. matplotlib.axes 821

Matplotlib, Release 1.3.1

shading may be ‘flat’ (the default) or ‘gouraud’. If shading is ‘flat’ and C values are defined
at points, the color values used for each triangle are from the mean C of the triangle’s three
points. If shading is ‘gouraud’ then color values must be defined at points. shading of ‘faceted’
is deprecated; please use edgecolors instead.

The remaining kwargs are the same as for pcolor().

Example:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation, flat shading

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

822 Chapter 53. axes

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation, gouraud shading

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

tripcolor of user-specified triangulation

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

53.1. matplotlib.axes 823

Matplotlib, Release 1.3.1

triplot(*args, **kwargs)
Draw a unstructured triangular grid as lines and/or markers.

The triangulation to plot can be specified in one of two ways; either:

triplot(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

triplot(x, y, ...)
triplot(x, y, triangles, ...)
triplot(x, y, triangles=triangles, ...)
triplot(x, y, mask=mask, ...)
triplot(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The remaining args and kwargs are the same as for plot().

Example:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
triplot of Delaunay triangulation

824 Chapter 53. axes

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

triplot of user-specified triangulation

twinx()
Call signature:

ax = twinx()

create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The y-axis
of self will have ticks on left and the returned axes will have ticks on the right.

Note: For those who are ‘picking’ artists while using twinx, pick events are only called for the
artists in the top-most axes.

twiny()
Call signature:

ax = twiny()

create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The x-axis
of self will have ticks on bottom and the returned axes will have ticks on the top.

Note: For those who are ‘picking’ artists while using twiny, pick events are only called for the
artists in the top-most axes.

53.1. matplotlib.axes 825

Matplotlib, Release 1.3.1

update_datalim(xys, updatex=True, updatey=True)
Update the data lim bbox with seq of xy tups or equiv. 2-D array

update_datalim_bounds(bounds)
Update the datalim to include the given Bbox bounds

update_datalim_numerix(x, y)
Update the data lim bbox with seq of xy tups

vlines(x, ymin, ymax, colors=’k’, linestyles=’solid’, label=’‘, **kwargs)
Plot vertical lines.

Plot vertical lines at each x from ymin to ymax.
Parameters x : scalar or 1D array_like

x-indexes where to plot the lines.
xmin, xmax : scalar or 1D array_like

Respective beginning and end of each line. If scalars are provided,
all lines will have same length.

colors : array_like of colors, optional, default: ‘k’

linestyles : [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’], optional

label : string, optional, default: ‘’
Returns lines : LineCollection
Other Parameters kwargs : LineCollection properties.

See also:

hlines horizontal lines

Examples

0 1 2 3 4 5
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Vertical lines demo

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (s)

0

1

2

3

4

5
Horizontal lines demo

xaxis_date(tz=None)
Sets up x-axis ticks and labels that treat the x data as dates.

tz is a timezone string or tzinfo instance. Defaults to rc value.

826 Chapter 53. axes

Matplotlib, Release 1.3.1

xaxis_inverted()
Returns True if the x-axis is inverted.

xcorr(x, y, normed=True, detrend=<function detrend_none at 0x2635de8>, usevlines=True,
maxlags=10, **kwargs)

Plot the cross correlation between x and y.

Call signature:

xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs)

If normed = True, normalize the data by the cross correlation at 0-th lag. x and y are detrended
by the detrend callable (default no normalization). x and y must be equal length.

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:
•lags are a length 2*maxlags+1 lag vector
•c is the 2*maxlags+1 auto correlation vector
•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True:
vlines() rather than plot() is used to draw vertical lines from the origin to the
xcorr. Otherwise the plotstyle is determined by the kwargs, which are Line2D prop-
erties.

The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

Example:

xcorr() is top graph, and acorr() is bottom graph.

53.1. matplotlib.axes 827

Matplotlib, Release 1.3.1

60 40 20 0 20 40 60
0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

yaxis_date(tz=None)
Sets up y-axis ticks and labels that treat the y data as dates.

tz is a timezone string or tzinfo instance. Defaults to rc value.

yaxis_inverted()
Returns True if the y-axis is inverted.

matplotlib.axes.Subplot
alias of AxesSubplot

class matplotlib.axes.SubplotBase(fig, *args, **kwargs)
Base class for subplots, which are Axes instances with additional methods to facilitate generating
and manipulating a set of Axes within a figure.

fig is a matplotlib.figure.Figure instance.

args is the tuple (numRows, numCols, plotNum), where the array of subplots in the figure has dimen-
sions numRows, numCols, and where plotNum is the number of the subplot being created. plotNum
starts at 1 in the upper left corner and increases to the right.

If numRows <= numCols <= plotNum < 10, args can be the decimal integer numRows * 100 +

numCols * 10 + plotNum.

change_geometry(numrows, numcols, num)
change subplot geometry, e.g., from 1,1,1 to 2,2,3

828 Chapter 53. axes

Matplotlib, Release 1.3.1

get_geometry()
get the subplot geometry, eg 2,2,3

get_subplotspec()
get the SubplotSpec instance associated with the subplot

is_first_col()

is_first_row()

is_last_col()

is_last_row()

label_outer()
set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last
row and yticklabels are visible only if the subplot is in the first column

set_subplotspec(subplotspec)
set the SubplotSpec instance associated with the subplot

update_params()
update the subplot position from fig.subplotpars

matplotlib.axes.subplot_class_factory(axes_class=None)

53.1. matplotlib.axes 829

Matplotlib, Release 1.3.1

830 Chapter 53. axes

CHAPTER

FIFTYFOUR

AXIS

54.1 matplotlib.axis

Classes for the ticks and x and y axis

class matplotlib.axis.Axis(axes, pickradius=15)
Bases: matplotlib.artist.Artist

Public attributes
•axes.transData - transform data coords to display coords
•axes.transAxes - transform axis coords to display coords
•labelpad - number of points between the axis and its label

Init the axis with the parent Axes instance

OFFSETTEXTPAD = 3

axis_date(tz=None)
Sets up x-axis ticks and labels that treat the x data as dates. tz is a tzinfo instance or a
timezone string. This timezone is used to create date labels.

cla()
clear the current axis

convert_units(x)

draw(artist, renderer, *args, **kwargs)
Draw the axis lines, grid lines, tick lines and labels

get_children()

get_data_interval()
return the Interval instance for this axis data limits

get_gridlines()
Return the grid lines as a list of Line2D instance

get_label()
Return the axis label as a Text instance

831

Matplotlib, Release 1.3.1

get_label_text()
Get the text of the label

get_major_formatter()
Get the formatter of the major ticker

get_major_locator()
Get the locator of the major ticker

get_major_ticks(numticks=None)
get the tick instances; grow as necessary

get_majorticklabels()
Return a list of Text instances for the major ticklabels

get_majorticklines()
Return the major tick lines as a list of Line2D instances

get_majorticklocs()
Get the major tick locations in data coordinates as a numpy array

get_minor_formatter()
Get the formatter of the minor ticker

get_minor_locator()
Get the locator of the minor ticker

get_minor_ticks(numticks=None)
get the minor tick instances; grow as necessary

get_minorticklabels()
Return a list of Text instances for the minor ticklabels

get_minorticklines()
Return the minor tick lines as a list of Line2D instances

get_minorticklocs()
Get the minor tick locations in data coordinates as a numpy array

get_offset_text()
Return the axis offsetText as a Text instance

get_pickradius()
Return the depth of the axis used by the picker

get_scale()

get_smart_bounds()
get whether the axis has smart bounds

get_ticklabel_extents(renderer)
Get the extents of the tick labels on either side of the axes.

get_ticklabels(minor=False)
Return a list of Text instances for ticklabels

832 Chapter 54. axis

Matplotlib, Release 1.3.1

get_ticklines(minor=False)
Return the tick lines as a list of Line2D instances

get_ticklocs(minor=False)
Get the tick locations in data coordinates as a numpy array

get_tightbbox(renderer)
Return a bounding box that encloses the axis. It only accounts tick labels, axis label, and
offsetText.

get_transform()

get_units()
return the units for axis

get_view_interval()
return the Interval instance for this axis view limits

grid(b=None, which=’major’, **kwargs)
Set the axis grid on or off; b is a boolean. Use which = ‘major’ | ‘minor’ | ‘both’ to set the grid
for major or minor ticks.

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed
you want the grid on and b will be set to True.

kwargs are used to set the line properties of the grids, eg,
xax.grid(color=’r’, linestyle=’-‘, linewidth=2)

have_units()

iter_ticks()
Iterate through all of the major and minor ticks.

limit_range_for_scale(vmin, vmax)

pan(numsteps)
Pan numsteps (can be positive or negative)

reset_ticks()

set_clip_path(clippath, transform=None)

set_data_interval()
set the axis data limits

set_default_intervals()
set the default limits for the axis data and view interval if they are not mutated

set_label_coords(x, y, transform=None)
Set the coordinates of the label. By default, the x coordinate of the y label is determined by the

54.1. matplotlib.axis 833

Matplotlib, Release 1.3.1

tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are
multiple axes. Ditto for the y coodinate of the x label.

You can also specify the coordinate system of the label with the transform. If None, the default
coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle,
etc

set_label_text(label, fontdict=None, **kwargs)
Sets the text value of the axis label

ACCEPTS: A string value for the label

set_major_formatter(formatter)
Set the formatter of the major ticker

ACCEPTS: A Formatter instance

set_major_locator(locator)
Set the locator of the major ticker

ACCEPTS: a Locator instance

set_minor_formatter(formatter)
Set the formatter of the minor ticker

ACCEPTS: A Formatter instance

set_minor_locator(locator)
Set the locator of the minor ticker

ACCEPTS: a Locator instance

set_pickradius(pickradius)
Set the depth of the axis used by the picker

ACCEPTS: a distance in points

set_scale(*args, **kwargs)
Deprecated since version 1.3: The set_scale function was deprecated in version 1.3.

This should be a private function (moved to _set_scale)

set_smart_bounds(value)
set the axis to have smart bounds

set_tick_params(which=’major’, reset=False, **kw)
Set appearance parameters for ticks and ticklabels.

For documentation of keyword arguments, see matplotlib.axes.Axes.tick_params().

set_ticklabels(ticklabels, *args, **kwargs)
Set the text values of the tick labels. Return a list of Text instances. Use kwarg minor=True
to select minor ticks. All other kwargs are used to update the text object properties. As for
get_ticklabels, label1 (left or bottom) is affected for a given tick only if its label1On attribute is
True, and similarly for label2. The list of returned label text objects consists of all such label1
objects followed by all such label2 objects.

834 Chapter 54. axis

Matplotlib, Release 1.3.1

The input ticklabels is assumed to match the set of tick locations, regardless of the state of
label1On and label2On.

ACCEPTS: sequence of strings

set_ticks(ticks, minor=False)
Set the locations of the tick marks from sequence ticks

ACCEPTS: sequence of floats

set_units(u)
set the units for axis

ACCEPTS: a units tag

set_view_interval(vmin, vmax, ignore=False)

update_units(data)
introspect data for units converter and update the axis.converter instance if necessary. Return
True if data is registered for unit conversion.

zoom(direction)
Zoom in/out on axis; if direction is >0 zoom in, else zoom out

class matplotlib.axis.Tick(axes, loc, label, size=None, width=None, color=None, tick-
dir=None, pad=None, labelsize=None, labelcolor=None,
zorder=None, gridOn=None, tick1On=True, tick2On=True,
label1On=True, label2On=False, major=True)

Bases: matplotlib.artist.Artist

Abstract base class for the axis ticks, grid lines and labels

1 refers to the bottom of the plot for xticks and the left for yticks 2 refers to the top of the plot for
xticks and the right for yticks

Publicly accessible attributes:
tick1line a Line2D instance
tick2line a Line2D instance
gridline a Line2D instance
label1 a Text instance
label2 a Text instance
gridOn a boolean which determines whether to draw the tickline
tick1On a boolean which determines whether to draw the 1st tickline
tick2On a boolean which determines whether to draw the 2nd tickline
label1On a boolean which determines whether to draw tick label
label2On a boolean which determines whether to draw tick label

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

apply_tickdir(tickdir)
Calculate self._pad and self._tickmarkers

contains(mouseevent)
Test whether the mouse event occurred in the Tick marks.

54.1. matplotlib.axis 835

Matplotlib, Release 1.3.1

This function always returns false. It is more useful to test if the axis as a whole contains the
mouse rather than the set of tick marks.

draw(artist, renderer, *args, **kwargs)

get_children()

get_loc()
Return the tick location (data coords) as a scalar

get_pad()
Get the value of the tick label pad in points

get_pad_pixels()

get_view_interval()
return the view Interval instance for the axis this tick is ticking

set_clip_path(clippath, transform=None)
Set the artist’s clip path, which may be:

•a Patch (or subclass) instance
•a Path instance, in which case an optional Transform instance may be provided,

which will be applied to the path before using it for clipping.
•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the
clipping box to the corresponding rectangle and set the clipping path to None.

ACCEPTS: [(Path, Transform) | Patch | None]

set_label(s)
Set the text of ticklabel

ACCEPTS: str

set_label1(s)
Set the text of ticklabel

ACCEPTS: str

set_label2(s)
Set the text of ticklabel2

ACCEPTS: str

set_pad(val)
Set the tick label pad in points

ACCEPTS: float

class matplotlib.axis.Ticker

formatter = None

836 Chapter 54. axis

Matplotlib, Release 1.3.1

locator = None

class matplotlib.axis.XAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

axis_name = ‘x’

contains(mouseevent)
Test whether the mouse event occured in the x axis.

get_data_interval()
return the Interval instance for this axis data limits

get_label_position()
Return the label position (top or bottom)

get_minpos()

get_text_heights(renderer)
Returns the amount of space one should reserve for text above and below the axes. Returns a
tuple (above, below)

get_ticks_position()
Return the ticks position (top, bottom, default or unknown)

get_view_interval()
return the Interval instance for this axis view limits

set_data_interval(vmin, vmax, ignore=False)
set the axis data limits

set_default_intervals()
set the default limits for the axis interval if they are not mutated

set_label_position(position)
Set the label position (top or bottom)

ACCEPTS: [‘top’ | ‘bottom’]

set_ticks_position(position)
Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both
positions, but does not change the tick labels. ‘default’ resets the tick positions to the default:
ticks on both positions, labels at bottom. ‘none’ can be used if you don’t want any ticks. ‘none’
and ‘both’ affect only the ticks, not the labels.

ACCEPTS: [‘top’ | ‘bottom’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)
If ignore is False, the order of vmin, vmax does not matter; the original axis orientation will be
preserved. In addition, the view limits can be expanded, but will not be reduced. This method
is for mpl internal use; for normal use, see set_xlim().

54.1. matplotlib.axis 837

Matplotlib, Release 1.3.1

tick_bottom()
use ticks only on bottom

tick_top()
use ticks only on top

class matplotlib.axis.XTick(axes, loc, label, size=None, width=None, color=None, tick-
dir=None, pad=None, labelsize=None, labelcolor=None,
zorder=None, gridOn=None, tick1On=True, tick2On=True,
label1On=True, label2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

apply_tickdir(tickdir)

get_view_interval()
return the Interval instance for this axis view limits

update_position(loc)
Set the location of tick in data coords with scalar loc

class matplotlib.axis.YAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

axis_name = ‘y’

contains(mouseevent)
Test whether the mouse event occurred in the y axis.

Returns True | False

get_data_interval()
return the Interval instance for this axis data limits

get_label_position()
Return the label position (left or right)

get_minpos()

get_text_widths(renderer)

get_ticks_position()
Return the ticks position (left, right, both or unknown)

get_view_interval()
return the Interval instance for this axis view limits

838 Chapter 54. axis

Matplotlib, Release 1.3.1

set_data_interval(vmin, vmax, ignore=False)
set the axis data limits

set_default_intervals()
set the default limits for the axis interval if they are not mutated

set_label_position(position)
Set the label position (left or right)

ACCEPTS: [‘left’ | ‘right’]

set_offset_position(position)

set_ticks_position(position)
Set the ticks position (left, right, both, default or none) ‘both’ sets the ticks to appear on both
positions, but does not change the tick labels. ‘default’ resets the tick positions to the default:
ticks on both positions, labels at left. ‘none’ can be used if you don’t want any ticks. ‘none’
and ‘both’ affect only the ticks, not the labels.

ACCEPTS: [‘left’ | ‘right’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)
If ignore is False, the order of vmin, vmax does not matter; the original axis orientation will be
preserved. In addition, the view limits can be expanded, but will not be reduced. This method
is for mpl internal use; for normal use, see set_ylim().

tick_left()
use ticks only on left

tick_right()
use ticks only on right

class matplotlib.axis.YTick(axes, loc, label, size=None, width=None, color=None, tick-
dir=None, pad=None, labelsize=None, labelcolor=None,
zorder=None, gridOn=None, tick1On=True, tick2On=True,
label1On=True, label2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

apply_tickdir(tickdir)

get_view_interval()
return the Interval instance for this axis view limits

update_position(loc)
Set the location of tick in data coords with scalar loc

54.1. matplotlib.axis 839

Matplotlib, Release 1.3.1

840 Chapter 54. axis

CHAPTER

FIFTYFIVE

BACKENDS

55.1 matplotlib.backend_bases

Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as
a matplotlib backend

RendererBase An abstract base class to handle drawing/rendering operations.

FigureCanvasBase The abstraction layer that separates the matplotlib.figure.Figure from the
backend specific details like a user interface drawing area

GraphicsContextBase An abstract base class that provides color, line styles, etc...

Event The base class for all of the matplotlib event handling. Derived classes suh as KeyEvent and
MouseEvent store the meta data like keys and buttons pressed, x and y locations in pixel and Axes
coordinates.

ShowBase The base class for the Show class of each interactive backend; the ‘show’ callable is then set to
Show.__call__, inherited from ShowBase.

class matplotlib.backend_bases.CloseEvent(name, canvas, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event triggered by a figure being closed

In addition to the Event attributes, the following event attributes are defined:

class matplotlib.backend_bases.Cursors

HAND = 0

MOVE = 3

POINTER = 1

SELECT_REGION = 2

841

Matplotlib, Release 1.3.1

class matplotlib.backend_bases.DrawEvent(name, canvas, renderer)
Bases: matplotlib.backend_bases.Event

An event triggered by a draw operation on the canvas

In addition to the Event attributes, the following event attributes are defined:
renderer the RendererBase instance for the draw event

class matplotlib.backend_bases.Event(name, canvas, guiEvent=None)
A matplotlib event. Attach additional attributes as defined in FigureCanvasBase.mpl_connect().
The following attributes are defined and shown with their default values
name the event name
canvas the FigureCanvas instance generating the event
guiEvent the GUI event that triggered the matplotlib event

class matplotlib.backend_bases.FigureCanvasBase(figure)
Bases: object

The canvas the figure renders into.

Public attributes
figure A matplotlib.figure.Figure instance

blit(bbox=None)
blit the canvas in bbox (default entire canvas)

button_press_event(x, y, button, dblclick=False, guiEvent=None)
Backend derived classes should call this function on any mouse button press. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.

This method will be call all functions connected to the ‘button_press_event’ with a MouseEvent
instance.

button_release_event(x, y, button, guiEvent=None)
Backend derived classes should call this function on any mouse button release.
x the canvas coordinates where 0=left
y the canvas coordinates where 0=bottom
guiEvent the native UI event that generated the mpl event
This method will be call all functions connected to the ‘button_release_event’ with a
MouseEvent instance.

close_event(guiEvent=None)
This method will be called by all functions connected to the ‘close_event’ with a CloseEvent

draw(*args, **kwargs)
Render the Figure

draw_cursor(event)
Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if
possible

draw_event(renderer)
This method will be call all functions connected to the ‘draw_event’ with a DrawEvent

draw_idle(*args, **kwargs)
draw() only if idle; defaults to draw but backends can overrride

842 Chapter 55. backends

Matplotlib, Release 1.3.1

enter_notify_event(guiEvent=None, xy=None)
Backend derived classes should call this function when entering canvas
guiEvent the native UI event that generated the mpl event
xy the coordinate location of the pointer when the canvas is entered

events = [’resize_event’, ‘draw_event’, ‘key_press_event’, ‘key_release_event’, ‘button_press_event’, ‘button_release_event’, ‘scroll_event’, ‘motion_notify_event’, ‘pick_event’, ‘idle_event’, ‘figure_enter_event’, ‘figure_leave_event’, ‘axes_enter_event’, ‘axes_leave_event’, ‘close_event’]

filetypes = {‘pgf’: ‘LaTeX PGF Figure’, ‘svgz’: ‘Scalable Vector Graphics’, ‘tiff’: ‘Tagged Image File Format’, ‘jpg’: ‘Joint Photographic Experts Group’, ‘raw’: ‘Raw RGBA bitmap’, ‘jpeg’: ‘Joint Photographic Experts Group’, ‘png’: ‘Portable Network Graphics’, ‘ps’: ‘Postscript’, ‘svg’: ‘Scalable Vector Graphics’, ‘eps’: ‘Encapsulated Postscript’, ‘rgba’: ‘Raw RGBA bitmap’, ‘pdf’: ‘Portable Document Format’, ‘tif’: ‘Tagged Image File Format’}

flush_events()
Flush the GUI events for the figure. Implemented only for backends with GUIs.

get_default_filename()
Return a string, which includes extension, suitable for use as a default filename.

get_default_filetype()
Get the default savefig file format as specified in rcParam savefig.format. Returned string
excludes period. Overridden in backends that only support a single file type.

get_supported_filetypes()
Return dict of savefig file formats supported by this backend

get_supported_filetypes_grouped()
Return a dict of savefig file formats supported by this backend, where the keys are a file type
name, such as ‘Joint Photographic Experts Group’, and the values are a list of filename
extensions used for that filetype, such as [’jpg’, ‘jpeg’].

get_width_height()
Return the figure width and height in points or pixels (depending on the backend), truncated to
integers

get_window_title()
Get the title text of the window containing the figure. Return None if there is no window (eg, a
PS backend).

grab_mouse(ax)
Set the child axes which are currently grabbing the mouse events. Usually called by the widgets
themselves. It is an error to call this if the mouse is already grabbed by another axes.

idle_event(guiEvent=None)
Called when GUI is idle.

is_saving()
Returns True when the renderer is in the process of saving to a file, rather than rendering for
an on-screen buffer.

key_press_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_press_event’ with a KeyEvent

key_release_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_release_event’ with a KeyEvent

55.1. matplotlib.backend_bases 843

Matplotlib, Release 1.3.1

leave_notify_event(guiEvent=None)
Backend derived classes should call this function when leaving canvas
guiEvent the native UI event that generated the mpl event

motion_notify_event(x, y, guiEvent=None)
Backend derived classes should call this function on any motion-notify-event.
x the canvas coordinates where 0=left
y the canvas coordinates where 0=bottom
guiEvent the native UI event that generated the mpl event
This method will be call all functions connected to the ‘motion_notify_event’ with a
MouseEvent instance.

mpl_connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized
•‘button_press_event’
•‘button_release_event’
•‘draw_event’
•‘key_press_event’
•‘key_release_event’
•‘motion_notify_event’
•‘pick_event’
•‘resize_event’
•‘scroll_event’
•‘figure_enter_event’,
•‘figure_leave_event’,
•‘axes_enter_event’,
•‘axes_leave_event’
•‘close_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables
event.xdata and event.ydata will be defined. This is the mouse location in data coords.
See KeyEvent and MouseEvent for more info.

Return value is a connection id that can be used with mpl_disconnect().

Example usage:

def on_press(event):
print(’you pressed’, event.button, event.xdata, event.ydata)

cid = canvas.mpl_connect(’button_press_event’, on_press)

mpl_disconnect(cid)
Disconnect callback id cid

Example usage:

844 Chapter 55. backends

Matplotlib, Release 1.3.1

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

new_timer(*args, **kwargs)
Creates a new backend-specific subclass of backend_bases.Timer. This is useful for getting
periodic events through the backend’s native event loop. Implemented only for backends with
GUIs.

optional arguments:
interval Timer interval in milliseconds
callbacks Sequence of (func, args, kwargs) where func(args, **kwargs) will be executed by the

timer every *interval.

onHilite(ev)
Mouse event processor which highlights the artists under the cursor. Connect this to the ‘mo-
tion_notify_event’ using:

canvas.mpl_connect(’motion_notify_event’,canvas.onHilite)

onRemove(ev)
Mouse event processor which removes the top artist under the cursor. Connect this to the
‘mouse_press_event’ using:

canvas.mpl_connect(’mouse_press_event’,canvas.onRemove)

pick(mouseevent)

pick_event(mouseevent, artist, **kwargs)
This method will be called by artists who are picked and will fire off PickEvent callbacks
registered listeners

print_bmp(*args, **kwargs)

print_eps(*args, **kwargs)

print_figure(filename, dpi=None, facecolor=’w’, edgecolor=’w’, orientation=’portrait’,
format=None, **kwargs)

Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because
some of the GUIs have a gray figure face color background and you’ll probably want to
override this on hardcopy.

Arguments are:
filename can also be a file object on image backends
orientation only currently applies to PostScript printing.
dpi the dots per inch to save the figure in; if None, use savefig.dpi
facecolor the facecolor of the figure
edgecolor the edgecolor of the figure

55.1. matplotlib.backend_bases 845

Matplotlib, Release 1.3.1

orientation landscape’ | ‘portrait’ (not supported on all backends)
format when set, forcibly set the file format to save to
bbox_inches Bbox in inches. Only the given portion of the figure is saved. If ‘tight’, try to

figure out the tight bbox of the figure. If None, use savefig.bbox
pad_inches Amount of padding around the figure when bbox_inches is ‘tight’. If None, use

savefig.pad_inches
bbox_extra_artists A list of extra artists that will be considered when the tight bbox is calcu-

lated.

print_jpeg(filename_or_obj, *args, **kwargs)
Supported kwargs:
quality: The image quality, on a scale from 1 (worst) to 95 (best). The default is 95, if not

given in the matplotlibrc file in the savefig.jpeg_quality parameter. Values above 95
should be avoided; 100 completely disables the JPEG quantization stage.

optimize: If present, indicates that the encoder should make an extra pass over the image in
order to select optimal encoder settings.

progressive: If present, indicates that this image should be stored as a progressive JPEG file.

print_jpg(filename_or_obj, *args, **kwargs)
Supported kwargs:
quality: The image quality, on a scale from 1 (worst) to 95 (best). The default is 95, if not

given in the matplotlibrc file in the savefig.jpeg_quality parameter. Values above 95
should be avoided; 100 completely disables the JPEG quantization stage.

optimize: If present, indicates that the encoder should make an extra pass over the image in
order to select optimal encoder settings.

progressive: If present, indicates that this image should be stored as a progressive JPEG file.

print_pdf(*args, **kwargs)

print_pgf(*args, **kwargs)

print_png(*args, **kwargs)

print_ps(*args, **kwargs)

print_raw(*args, **kwargs)

print_rgba(*args, **kwargs)

print_svg(*args, **kwargs)

print_svgz(*args, **kwargs)

print_tif(filename_or_obj, *args, **kwargs)

846 Chapter 55. backends

Matplotlib, Release 1.3.1

print_tiff(filename_or_obj, *args, **kwargs)

release_mouse(ax)
Release the mouse grab held by the axes, ax. Usually called by the widgets. It is ok to call this
even if you ax doesn’t have the mouse grab currently.

resize(w, h)
set the canvas size in pixels

resize_event()
This method will be call all functions connected to the ‘resize_event’ with a ResizeEvent

scroll_event(x, y, step, guiEvent=None)
Backend derived classes should call this function on any scroll wheel event. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.

This method will be call all functions connected to the ‘scroll_event’ with a MouseEvent in-
stance.

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect if there is no
window (eg, a PS backend).

start_event_loop(timeout)
Start an event loop. This is used to start a blocking event loop so that interactive functions,
such as ginput and waitforbuttonpress, can wait for events. This should not be confused with
the main GUI event loop, which is always running and has nothing to do with this.

This is implemented only for backends with GUIs.

start_event_loop_default(timeout=0)
Start an event loop. This is used to start a blocking event loop so that interactive functions,
such as ginput and waitforbuttonpress, can wait for events. This should not be confused with
the main GUI event loop, which is always running and has nothing to do with this.

This function provides default event loop functionality based on time.sleep that is meant to be
used until event loop functions for each of the GUI backends can be written. As such, it throws
a deprecated warning.

Call signature:

start_event_loop_default(self,timeout=0)

This call blocks until a callback function triggers stop_event_loop() or timeout is reached. If
timeout is <=0, never timeout.

stop_event_loop()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.

This is implemented only for backends with GUIs.

55.1. matplotlib.backend_bases 847

Matplotlib, Release 1.3.1

stop_event_loop_default()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.

Call signature:

stop_event_loop_default(self)

supports_blit = True

switch_backends(FigureCanvasClass)
Instantiate an instance of FigureCanvasClass

This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvas-
GTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure
size or line props), will be reflected in the other

class matplotlib.backend_bases.FigureManagerBase(canvas, num)
Helper class for pyplot mode, wraps everything up into a neat bundle

Public attibutes:
canvas A FigureCanvasBase instance
num The figure number
destroy()

full_screen_toggle()

get_window_title()
Get the title text of the window containing the figure. Return None for non-GUI backends (eg,
a PS backend).

key_press(event)
Implement the default mpl key bindings defined at Navigation Keyboard Shortcuts

key_press_handler_id = None
The returned id from connecting the default key handler via
FigureCanvasBase.mpl_connnect().

To disable default key press handling:

manager, canvas = figure.canvas.manager, figure.canvas
canvas.mpl_disconnect(manager.key_press_handler_id)

resize(w, h)
“For gui backends, resize the window (in pixels).

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect for non-GUI
backends (eg, a PS backend).

848 Chapter 55. backends

Matplotlib, Release 1.3.1

show()
For GUI backends, show the figure window and redraw. For non-GUI backends, raise an
exception to be caught by show(), for an optional warning.

show_popup(msg)
Display message in a popup – GUI only

class matplotlib.backend_bases.GraphicsContextBase
An abstract base class that provides color, line styles, etc...

copy_properties(gc)
Copy properties from gc to self

dashd = {‘solid’: (None, None), ‘dashed’: (0, (6.0, 6.0)), ‘dotted’: (0, (1.0, 3.0)), ‘dashdot’: (0, (3.0, 5.0, 1.0, 5.0))}

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_antialiased()
Return true if the object should try to do antialiased rendering

get_capstyle()
Return the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

get_clip_path()
Return the clip path in the form (path, transform), where path is a Path instance, and transform
is an affine transform to apply to the path before clipping.

get_clip_rectangle()
Return the clip rectangle as a Bbox instance

get_dashes()
Return the dash information as an offset dashlist tuple.

The dash list is a even size list that gives the ink on, ink off in pixels.

See p107 of to PostScript BLUEBOOK for more info.

Default value is None

get_forced_alpha()
Return whether the value given by get_alpha() should be used to override any other alpha-
channel values.

get_gid()
Return the object identifier if one is set, None otherwise.

get_hatch()
Gets the current hatch style

get_hatch_path(density=6.0)
Returns a Path for the current hatch.

get_joinstyle()
Return the line join style as one of (‘miter’, ‘round’, ‘bevel’)

55.1. matplotlib.backend_bases 849

http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

Matplotlib, Release 1.3.1

get_linestyle(style)
Return the linestyle: one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’).

get_linewidth()
Return the line width in points as a scalar

get_rgb()
returns a tuple of three or four floats from 0-1.

get_sketch_params()
Returns the sketch parameters for the artist.

Returns sketch_params : tuple or None

A 3-tuple with the following elements: :
•scale: The amplitude of the wiggle perpendicular to the source line.
•length: The length of the wiggle along the line.
•randomness: The scale factor by which the length is shrunken or
expanded.

May return ‘None‘ if no sketch parameters were set. :

get_snap()
returns the snap setting which may be:

•True: snap vertices to the nearest pixel center
•False: leave vertices as-is
•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

get_url()
returns a url if one is set, None otherwise

restore()
Restore the graphics context from the stack - needed only for backends that save graphics
contexts on a stack

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends. If alpha=None (the
default), the alpha components of the foreground and fill colors will be used to set their
respective transparencies (where applicable); otherwise, alpha will override them.

set_antialiased(b)
True if object should be drawn with antialiased rendering

set_capstyle(cs)
Set the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

set_clip_path(path)
Set the clip path and transformation. Path should be a TransformedPath instance.

set_clip_rectangle(rectangle)
Set the clip rectangle with sequence (left, bottom, width, height)

set_dashes(dash_offset, dash_list)
Set the dash style for the gc.
dash_offset is the offset (usually 0).

850 Chapter 55. backends

Matplotlib, Release 1.3.1

dash_list specifies the on-off sequence as points. (None, None) specifies a solid line

set_foreground(fg, isRGBA=False)
Set the foreground color. fg can be a MATLAB format string, a html hex color string, an rgb or
rgba unit tuple, or a float between 0 and 1. In the latter case, grayscale is used.

If you know fg is rgba, set isRGBA=True for efficiency.

set_gid(id)
Sets the id.

set_graylevel(frac)
Set the foreground color to be a gray level with frac

set_hatch(hatch)
Sets the hatch style for filling

set_joinstyle(js)
Set the join style to be one of (‘miter’, ‘round’, ‘bevel’)

set_linestyle(style)
Set the linestyle to be one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’). One may specify cus-
tomized dash styles by providing a tuple of (offset, dash pairs). For example, the predefiend
linestyles have following values.:

‘dashed’ : (0, (6.0, 6.0)), ‘dashdot’ : (0, (3.0, 5.0, 1.0, 5.0)), ‘dotted’ : (0, (1.0,
3.0)),

set_linewidth(w)
Set the linewidth in points

set_sketch_params(scale=None, length=None, randomness=None)
Sets the the sketch parameters.

Parameters scale : float, optional
The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be
provided.

length : float, optional
The length of the wiggle along the line, in pixels (default 128.0)

randomness : float, optional
The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Sets the snap setting which may be:

•True: snap vertices to the nearest pixel center
•False: leave vertices as-is
•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

set_url(url)
Sets the url for links in compatible backends

class matplotlib.backend_bases.IdleEvent(name, canvas, guiEvent=None)
Bases: matplotlib.backend_bases.Event

55.1. matplotlib.backend_bases 851

Matplotlib, Release 1.3.1

An event triggered by the GUI backend when it is idle – useful for passive animation

class matplotlib.backend_bases.KeyEvent(name, canvas, key, x=0, y=0, guiEvent=None)
Bases: matplotlib.backend_bases.LocationEvent

A key event (key press, key release).

Attach additional attributes as defined in FigureCanvasBase.mpl_connect().

In addition to the Event and LocationEvent attributes, the following attributes are defined:
key the key(s) pressed. Could be None, a single case sensitive ascii character (“g”, “G”, “#”,

etc.), a special key (“control”, “shift”, “f1”, “up”, etc.) or a combination of the above (e.g.,
“ctrl+alt+g”, “ctrl+alt+G”).

Note: Modifier keys will be prefixed to the pressed key and will be in the order “ctrl”, “alt”, “super”.
The exception to this rule is when the pressed key is itself a modifier key, therefore “ctrl+alt” and
“alt+control” can both be valid key values.

Example usage:

def on_key(event):
print(’you pressed’, event.key, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’key_press_event’, on_key)

class matplotlib.backend_bases.LocationEvent(name, canvas, x, y, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event that has a screen location

The following additional attributes are defined and shown with their default values.

In addition to the Event attributes, the following event attributes are defined:
x x position - pixels from left of canvas
y y position - pixels from bottom of canvas
inaxes the Axes instance if mouse is over axes
xdata x coord of mouse in data coords
ydata y coord of mouse in data coords
x, y in figure coords, 0,0 = bottom, left

inaxes = None

lastevent = None

x = None

xdata = None

y = None

852 Chapter 55. backends

Matplotlib, Release 1.3.1

ydata = None

class matplotlib.backend_bases.MouseEvent(name, canvas, x, y, button=None, key=None,
step=0, dblclick=False, guiEvent=None)

Bases: matplotlib.backend_bases.LocationEvent
A mouse event (‘button_press_event’, ‘button_release_event’, ‘scroll_event’, ‘mo-

tion_notify_event’).
In addition to the Event and LocationEvent attributes, the following attributes are defined:
button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)
key the key depressed when the mouse event triggered (see KeyEvent)
step number of scroll steps (positive for ‘up’, negative for ‘down’)
Example usage:

def on_press(event):
print(’you pressed’, event.button, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’button_press_event’, on_press)

x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, ‘up’, ‘down’

button = None

dblclick = None

inaxes = None

step = None

x = None

xdata = None

y = None

ydata = None

class matplotlib.backend_bases.NavigationToolbar2(canvas)
Bases: object

Base class for the navigation cursor, version 2

backends must implement a canvas that handles connections for ‘button_press_event’ and ‘but-
ton_release_event’. See FigureCanvasBase.mpl_connect() for more information

They must also define
save_figure() save the current figure

55.1. matplotlib.backend_bases 853

Matplotlib, Release 1.3.1

set_cursor() if you want the pointer icon to change
_init_toolbar() create your toolbar widget
draw_rubberband() (optional) draw the zoom to rect “rubberband” rectangle
press() (optional) whenever a mouse button is pressed, you’ll be notified with the event
release() (optional) whenever a mouse button is released, you’ll be notified with the

event
dynamic_update() (optional) dynamically update the window while navigating
set_message() (optional) display message
set_history_buttons() (optional) you can change the history back / forward buttons

to indicate disabled / enabled state.
That’s it, we’ll do the rest!

back(*args)
move back up the view lim stack

drag_pan(event)
the drag callback in pan/zoom mode

drag_zoom(event)
the drag callback in zoom mode

draw()
Redraw the canvases, update the locators

draw_rubberband(event, x0, y0, x1, y1)
Draw a rectangle rubberband to indicate zoom limits

dynamic_update()

forward(*args)
Move forward in the view lim stack

home(*args)
Restore the original view

mouse_move(event)

pan(*args)
Activate the pan/zoom tool. pan with left button, zoom with right

press(event)
Called whenver a mouse button is pressed.

press_pan(event)
the press mouse button in pan/zoom mode callback

press_zoom(event)
the press mouse button in zoom to rect mode callback

push_current()
push the current view limits and position onto the stack

854 Chapter 55. backends

Matplotlib, Release 1.3.1

release(event)
this will be called whenever mouse button is released

release_pan(event)
the release mouse button callback in pan/zoom mode

release_zoom(event)
the release mouse button callback in zoom to rect mode

save_figure(*args)
Save the current figure

set_cursor(cursor)
Set the current cursor to one of the Cursors enums values

set_history_buttons()
Enable or disable back/forward button

set_message(s)
Display a message on toolbar or in status bar

toolitems = ((‘Home’, ‘Reset original view’, ‘home’, ‘home’), (‘Back’, ‘Back to previous view’, ‘back’, ‘back’), (‘Forward’, ‘Forward to next view’, ‘forward’, ‘forward’), (None, None, None, None), (‘Pan’, ‘Pan axes with left mouse, zoom with right’, ‘move’, ‘pan’), (‘Zoom’, ‘Zoom to rectangle’, ‘zoom_to_rect’, ‘zoom’), (None, None, None, None), (‘Subplots’, ‘Configure subplots’, ‘subplots’, ‘configure_subplots’), (‘Save’, ‘Save the figure’, ‘filesave’, ‘save_figure’))

update()
Reset the axes stack

zoom(*args)
Activate zoom to rect mode

exception matplotlib.backend_bases.NonGuiException
Bases: exceptions.Exception

class matplotlib.backend_bases.PickEvent(name, canvas, mouseevent, artist,
guiEvent=None, **kwargs)

Bases: matplotlib.backend_bases.Event

a pick event, fired when the user picks a location on the canvas sufficiently close to an artist.

Attrs: all the Event attributes plus
mouseevent the MouseEvent that generated the pick
artist the Artist picked
other extra class dependent attrs – eg a Line2D pick may define different extra attributes than a

PatchCollection pick event
Example usage:

line, = ax.plot(rand(100), ’o’, picker=5) # 5 points tolerance

def on_pick(event):
thisline = event.artist
xdata, ydata = thisline.get_data()
ind = event.ind
print(’on pick line:’, zip(xdata[ind], ydata[ind]))

cid = fig.canvas.mpl_connect(’pick_event’, on_pick)

55.1. matplotlib.backend_bases 855

Matplotlib, Release 1.3.1

class matplotlib.backend_bases.RendererBase
An abstract base class to handle drawing/rendering operations.

The following methods must be implemented in the backend:
•draw_path()
•draw_image()
•draw_text()
•get_text_width_height_descent()

The following methods should be implemented in the backend for optimization reasons:
•draw_markers()
•draw_path_collection()
•draw_quad_mesh()

close_group(s)
Close a grouping element with label s Is only currently used by backend_svg

draw_gouraud_triangle(gc, points, colors, transform)
Draw a Gouraud-shaded triangle.

points is a 3x2 array of (x, y) points for the triangle.

colors is a 3x4 array of RGBA colors for each point of the triangle.

transform is an affine transform to apply to the points.

draw_gouraud_triangles(gc, triangles_array, colors_array, transform)
Draws a series of Gouraud triangles.

points is a Nx3x2 array of (x, y) points for the trianglex.

colors is a Nx3x4 array of RGBA colors for each point of the triangles.

transform is an affine transform to apply to the points.

draw_image(gc, x, y, im)
Draw the image instance into the current axes;
gc a GraphicsContext containing clipping information
x is the distance in pixels from the left hand side of the canvas.
y the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is

lower, y is the distance from bottom
im the matplotlib._image.Image instance

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draws a marker at each of the vertices in path. This includes all vertices, including control
points on curves. To avoid that behavior, those vertices should be removed before calling this
function.
gc the GraphicsContextBase instance
marker_trans is an affine transform applied to the marker.
trans is an affine transform applied to the path.
This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

draw_path(gc, path, transform, rgbFace=None)
Draws a Path instance using the given affine transform.

856 Chapter 55. backends

Matplotlib, Release 1.3.1

draw_path_collection(gc, master_transform, paths, all_transforms, offsets, offsetTrans,
facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, off-
set_position)

Draws a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths.
The offsets in offsets are first transformed by offsetTrans before being applied. offset_position
may be either “screen” or “data” depending on the space that the offsets are in.

This provides a fallback implementation of draw_path_collection() that makes multiple
calls to draw_path(). Some backends may want to override this in order to render each
set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to help with (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_quad_mesh(gc, master_transform, meshWidth, meshHeight, coordinates, offsets, offset-
Trans, facecolors, antialiased, edgecolors)

This provides a fallback implementation of draw_quad_mesh() that generates paths and then
calls draw_path_collection().

draw_tex(gc, x, y, s, prop, angle, ismath=’TeX!’, mtext=None)

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance
gc the GraphicsContextBase instance
x the x location of the text in display coords
y the y location of the text baseline in display coords
s the text string
prop a matplotlib.font_manager.FontProperties instance
angle the rotation angle in degrees
mtext a matplotlib.text.Text instance
backend implementers note

When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

flipy()
Return true if y small numbers are top for renderer Is used for drawing text (matplotlib.text)
and images (matplotlib.image) only

get_canvas_width_height()
return the canvas width and height in display coords

get_image_magnification()
Get the factor by which to magnify images passed to draw_image(). Allows a backend to
have images at a different resolution to other artists.

55.1. matplotlib.backend_bases 857

Matplotlib, Release 1.3.1

get_texmanager()
return the matplotlib.texmanager.TexManager instance

get_text_width_height_descent(s, prop, ismath)
get the width and height, and the offset from the bottom to the baseline (descent), in display
coords of the string s with FontProperties prop

new_gc()
Return an instance of a GraphicsContextBase

open_group(s, gid=None)
Open a grouping element with label s. If gid is given, use gid as the id of the group. Is only
currently used by backend_svg.

option_image_nocomposite()
override this method for renderers that do not necessarily want to rescale and composite raster
images. (like SVG)

option_scale_image()
override this method for renderers that support arbitrary scaling of image (most of the vector
backend).

points_to_pixels(points)
Convert points to display units
points a float or a numpy array of float
return points converted to pixels

You need to override this function (unless your backend doesn’t have a dpi, eg, postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72.0 * dpi/72.0

start_filter()
Used in AggRenderer. Switch to a temporary renderer for image filtering effects.

start_rasterizing()
Used in MixedModeRenderer. Switch to the raster renderer.

stop_filter(filter_func)
Used in AggRenderer. Switch back to the original renderer. The contents of the temporary
renderer is processed with the filter_func and is drawn on the original renderer as an image.

stop_rasterizing()
Used in MixedModeRenderer. Switch back to the vector renderer and draw the contents of the
raster renderer as an image on the vector renderer.

strip_math(s)

class matplotlib.backend_bases.ResizeEvent(name, canvas)
Bases: matplotlib.backend_bases.Event

An event triggered by a canvas resize

In addition to the Event attributes, the following event attributes are defined:

858 Chapter 55. backends

Matplotlib, Release 1.3.1

width width of the canvas in pixels
height height of the canvas in pixels

class matplotlib.backend_bases.ShowBase
Bases: object

Simple base class to generate a show() callable in backends.

Subclass must override mainloop() method.

mainloop()

class matplotlib.backend_bases.TimerBase(interval=None, callbacks=None)
Bases: object

A base class for providing timer events, useful for things animations. Backends need to implement
a few specific methods in order to use their own timing mechanisms so that the timer events are
integrated into their event loops.

Mandatory functions that must be implemented:
•_timer_start: Contains backend-specific code for starting the timer
•_timer_stop: Contains backend-specific code for stopping the timer

Optional overrides:
•_timer_set_single_shot: Code for setting the timer to single shot operating mode, if sup-
ported by the timer object. If not, the Timer class itself will store the flag and the _on_timer
method should be overridden to support such behavior.
•_timer_set_interval: Code for setting the interval on the timer, if there is a method for
doing so on the timer object.
•_on_timer: This is the internal function that any timer object should call, which will handle
the task of running all callbacks that have been set.

Attributes:
•interval: The time between timer events in milliseconds. Default is 1000 ms.
•single_shot: Boolean flag indicating whether this timer should operate as single shot (run
once and then stop). Defaults to False.
•callbacks: Stores list of (func, args) tuples that will be called upon timer events. This list can
be manipulated directly, or the functions add_callback and remove_callback can be used.

add_callback(func, *args, **kwargs)
Register func to be called by timer when the event fires. Any additional arguments provided
will be passed to func.

interval None

remove_callback(func, *args, **kwargs)
Remove func from list of callbacks. args and kwargs are optional and used to distinguish
between copies of the same function registered to be called with different arguments.

single_shot None

start(interval=None)
Start the timer object. interval is optional and will be used to reset the timer interval first if

55.1. matplotlib.backend_bases 859

Matplotlib, Release 1.3.1

provided.

stop()
Stop the timer.

matplotlib.backend_bases.key_press_handler(event, canvas, toolbar=None)
Implement the default mpl key bindings for the canvas and toolbar described at Navigation Keyboard
Shortcuts
event a KeyEvent instance
canvas a FigureCanvasBase instance
toolbar a NavigationToolbar2 instance

matplotlib.backend_bases.register_backend(format, backend_class)

55.2 matplotlib.backends.backend_gtkagg

TODO We’ll add this later, importing the gtk backends requires an active X-session, which is not compatible
with cron jobs.

55.3 matplotlib.backends.backend_qt4agg

Render to qt from agg

class matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg(figure)
Bases: matplotlib.backends.backend_qt4.FigureCanvasQT,
matplotlib.backends.backend_agg.FigureCanvasAgg

The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc...

Public attribute
figure - A Figure instance

blit(bbox=None)
Blit the region in bbox

draw()
Draw the figure with Agg, and queue a request for a Qt draw.

drawRectangle(rect)

paintEvent(e)
Copy the image from the Agg canvas to the qt.drawable. In Qt, all drawing should be done
inside of here when a widget is shown onscreen.

print_figure(*args, **kwargs)

class matplotlib.backends.backend_qt4agg.FigureManagerQTAgg(canvas, num)
Bases: matplotlib.backends.backend_qt4.FigureManagerQT

860 Chapter 55. backends

Matplotlib, Release 1.3.1

class matplotlib.backends.backend_qt4agg.NavigationToolbar2QTAgg(canvas, par-
ent, coordi-
nates=True)

Bases: matplotlib.backends.backend_qt4.NavigationToolbar2QT

coordinates: should we show the coordinates on the right?

matplotlib.backends.backend_qt4agg.new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

matplotlib.backends.backend_qt4agg.new_figure_manager_given_figure(num, figure)
Create a new figure manager instance for the given figure.

55.4 matplotlib.backends.backend_wxagg

class matplotlib.backends.backend_wxagg.FigureCanvasWxAgg(parent, id, figure)
Bases: matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backends.backend_wx.FigureCanvasWx

The FigureCanvas contains the figure and does event handling.

In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated
by a FigureManagerWx. The parent window probably implements a wxSizer to control the displayed
control size - but we give a hint as to our preferred minimum size.

Initialise a FigureWx instance.
•Initialise the FigureCanvasBase and wxPanel parents.
•Set event handlers for: EVT_SIZE (Resize event) EVT_PAINT (Paint event)

blit(bbox=None)
Transfer the region of the agg buffer defined by bbox to the display. If bbox is None, the entire
buffer is transferred.

draw(drawDC=None)
Render the figure using agg.

filetypes = {‘pgf’: ‘LaTeX PGF Figure’, ‘svgz’: ‘Scalable Vector Graphics’, ‘tiff’: ‘Tagged Image File Format’, ‘jpg’: ‘Joint Photographic Experts Group’, ‘raw’: ‘Raw RGBA bitmap’, ‘jpeg’: ‘Joint Photographic Experts Group’, ‘png’: ‘Portable Network Graphics’, ‘ps’: ‘Postscript’, ‘svg’: ‘Scalable Vector Graphics’, ‘eps’: ‘Encapsulated Postscript’, ‘rgba’: ‘Raw RGBA bitmap’, ‘pdf’: ‘Portable Document Format’, ‘tif’: ‘Tagged Image File Format’}

print_figure(filename, *args, **kwargs)

class matplotlib.backends.backend_wxagg.FigureFrameWxAgg(num, fig)
Bases: matplotlib.backends.backend_wx.FigureFrameWx

get_canvas(fig)

class matplotlib.backends.backend_wxagg.NavigationToolbar2WxAgg(canvas)
Bases: matplotlib.backends.backend_wx.NavigationToolbar2Wx

get_canvas(frame, fig)

55.4. matplotlib.backends.backend_wxagg 861

Matplotlib, Release 1.3.1

matplotlib.backends.backend_wxagg.new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

matplotlib.backends.backend_wxagg.new_figure_manager_given_figure(num, figure)
Create a new figure manager instance for the given figure.

55.5 matplotlib.backends.backend_pdf

A PDF matplotlib backend Author: Jouni K Seppänen <jks@iki.fi>

class matplotlib.backends.backend_pdf.FigureCanvasPdf(figure)
Bases: matplotlib.backend_bases.FigureCanvasBase

The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc...

Public attribute
figure - A Figure instance

class matplotlib.backends.backend_pdf.Name(name)
Bases: object

PDF name object.

class matplotlib.backends.backend_pdf.Operator(op)
Bases: object

PDF operator object.

class matplotlib.backends.backend_pdf.PdfFile(filename)
Bases: object

PDF file object.

alphaState(alpha)
Return name of an ExtGState that sets alpha to the given value

embedTTF(filename, characters)
Embed the TTF font from the named file into the document.

fontName(fontprop)
Select a font based on fontprop and return a name suitable for Op.selectfont. If fontprop is a
string, it will be interpreted as the filename (or dvi name) of the font.

imageObject(image)
Return name of an image XObject representing the given image.

markerObject(path, trans, fillp, strokep, lw, joinstyle, capstyle)
Return name of a marker XObject representing the given path.

reserveObject(name=’‘)
Reserve an ID for an indirect object. The name is used for debugging in case we forget to print
out the object with writeObject.

writeInfoDict()
Write out the info dictionary, checking it for good form

862 Chapter 55. backends

mailto:jks@iki.fi

Matplotlib, Release 1.3.1

writeTrailer()
Write out the PDF trailer.

writeXref()
Write out the xref table.

class matplotlib.backends.backend_pdf.PdfPages(filename)
Bases: object

A multi-page PDF file.

Use like this:

Initialize:
with PdfPages(’foo.pdf’) as pdf:

As many times as you like, create a figure fig and save it:
When no figure is specified the current figure is saved
pdf.savefig(fig)
pdf.savefig()

(In reality PdfPages is a thin wrapper around PdfFile, in order to avoid confusion when using savefig
and forgetting the format argument.)

Create a new PdfPages object that will be written to the file named filename. The file is opened at
once and any older file with the same name is overwritten.

close()
Finalize this object, making the underlying file a complete PDF file.

get_pagecount()
Returns the current number of pages in the multipage pdf file.

infodict()
Return a modifiable information dictionary object (see PDF reference section 10.2.1 ‘Document
Information Dictionary’).

savefig(figure=None, **kwargs)
Save the Figure instance figure to this file as a new page. If figure is a number, the figure
instance is looked up by number, and if figure is None, the active figure is saved. Any other
keyword arguments are passed to Figure.savefig.

class matplotlib.backends.backend_pdf.Reference(id)
Bases: object

PDF reference object. Use PdfFile.reserveObject() to create References.

class matplotlib.backends.backend_pdf.Stream(id, len, file, extra=None)
Bases: object

PDF stream object.

This has no pdfRepr method. Instead, call begin(), then output the contents of the stream by calling
write(), and finally call end().

55.5. matplotlib.backends.backend_pdf 863

Matplotlib, Release 1.3.1

id: object id of stream; len: an unused Reference object for the length of the stream, or None (to use
a memory buffer); file: a PdfFile; extra: a dictionary of extra key-value pairs to include in the stream
header

end()
Finalize stream.

write(data)
Write some data on the stream.

matplotlib.backends.backend_pdf.fill(strings, linelen=75)
Make one string from sequence of strings, with whitespace in between. The whitespace is chosen to
form lines of at most linelen characters, if possible.

matplotlib.backends.backend_pdf.new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

matplotlib.backends.backend_pdf.new_figure_manager_given_figure(num, figure)
Create a new figure manager instance for the given figure.

matplotlib.backends.backend_pdf.pdfRepr(obj)
Map Python objects to PDF syntax.

55.6 matplotlib.dviread

An experimental module for reading dvi files output by TeX. Several limitations make this not (currently)
useful as a general-purpose dvi preprocessor, but it is currently used by the pdf backend for processing
usetex text.

Interface:

dvi = Dvi(filename, 72)
iterate over pages (but only one page is supported for now):
for page in dvi:

w, h, d = page.width, page.height, page.descent
for x,y,font,glyph,width in page.text:

fontname = font.texname
pointsize = font.size
...

for x,y,height,width in page.boxes:
...

class matplotlib.dviread.Dvi(filename, dpi)
Bases: object

A dvi (“device-independent”) file, as produced by TeX. The current implementation only reads the
first page and does not even attempt to verify the postamble.

Initialize the object. This takes the filename as input and opens the file; actually reading the file
happens when iterating through the pages of the file.

close()
Close the underlying file if it is open.

864 Chapter 55. backends

Matplotlib, Release 1.3.1

class matplotlib.dviread.DviFont(scale, tfm, texname, vf)
Bases: object

Object that holds a font’s texname and size, supports comparison, and knows the widths of glyphs in
the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are not
used for comparison.

The size is in Adobe points (converted from TeX points).

texname
Name of the font as used internally by TeX and friends. This is usually very different from any
external font names, and dviread.PsfontsMap can be used to find the external name of the
font.

size
Size of the font in Adobe points, converted from the slightly smaller TeX points.

widths
Widths of glyphs in glyph-space units, typically 1/1000ths of the point size.

size None

texname None

widths None

class matplotlib.dviread.Encoding(filename)
Bases: object

Parses a *.enc file referenced from a psfonts.map style file. The format this class understands is a very
limited subset of PostScript.

Usage (subject to change):

for name in Encoding(filename):
whatever(name)

encoding None

class matplotlib.dviread.PsfontsMap(filename)
Bases: object

A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage:

>>> map = PsfontsMap(find_tex_file(’pdftex.map’))
>>> entry = map[’ptmbo8r’]
>>> entry.texname
’ptmbo8r’
>>> entry.psname
’Times-Bold’
>>> entry.encoding

55.6. matplotlib.dviread 865

Matplotlib, Release 1.3.1

’/usr/local/texlive/2008/texmf-dist/fonts/enc/dvips/base/8r.enc’
>>> entry.effects
{’slant’: 0.16700000000000001}
>>> entry.filename

For historical reasons, TeX knows many Type-1 fonts by different names than the outside world.
(For one thing, the names have to fit in eight characters.) Also, TeX’s native fonts are not Type-1
but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality
conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know
which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed
from internal font names to font file names.

A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, dvipdfm.map.
psfonts.map is used by dvips, pdftex.map by pdfTeX, and dvipdfm.map by dvipdfm. psfonts.map
might avoid embedding the 35 PostScript fonts (i.e., have no filename for them, as in the Times-Bold
example above), while the pdf-related files perhaps only avoid the “Base 14” pdf fonts. But the user
may have configured these files differently.

class matplotlib.dviread.Tfm(filename)
Bases: object

A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class.

checksum
Used for verifying against the dvi file.

design_size
Design size of the font (in what units?)

width
Width of each character, needs to be scaled by the factor specified in the dvi file. This is a dict
because indexing may not start from 0.

height
Height of each character.

depth
Depth of each character.

checksum None

depth None

design_size None

height None

width None

866 Chapter 55. backends

Matplotlib, Release 1.3.1

class matplotlib.dviread.Vf(filename)
Bases: matplotlib.dviread.Dvi

A virtual font (*.vf file) containing subroutines for dvi files.

Usage:

vf = Vf(filename)
glyph = vf[code]
glyph.text, glyph.boxes, glyph.width

matplotlib.dviread.find_tex_file(filename, format=None)
Call kpsewhich to find a file in the texmf tree. If format is not None, it is used as the value for the
--format option.

Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a
popular distribution on Windows) doesn’t use kpathsea, so what do we do? (TODO)

See also:

Kpathsea documentation The library that kpsewhich is part of.

55.7 matplotlib.type1font

This module contains a class representing a Type 1 font.

This version reads pfa and pfb files and splits them for embedding in pdf files. It also supports SlantFont
and ExtendFont transformations, similarly to pdfTeX and friends. There is no support yet for subsetting.

Usage:

>>> font = Type1Font(filename)
>>> clear_part, encrypted_part, finale = font.parts
>>> slanted_font = font.transform({’slant’: 0.167})
>>> extended_font = font.transform({’extend’: 1.2})

Sources:

• Adobe Technical Note #5040, Supporting Downloadable PostScript Language Fonts.

• Adobe Type 1 Font Format, Adobe Systems Incorporated, third printing, v1.1, 1993. ISBN 0-201-
57044-0.

class matplotlib.type1font.Type1Font(input)
Bases: object

A class representing a Type-1 font, for use by backends.

parts
A 3-tuple of the cleartext part, the encrypted part, and the finale of zeros.

prop
A dictionary of font properties.

55.7. matplotlib.type1font 867

http://www.tug.org/kpathsea/

Matplotlib, Release 1.3.1

Initialize a Type-1 font. input can be either the file name of a pfb file or a 3-tuple of already-decoded
Type-1 font parts.

parts None

prop None

transform(effects)
Transform the font by slanting or extending. effects should be a dict where effects[’slant’]
is the tangent of the angle that the font is to be slanted to the right (so negative values slant
to the left) and effects[’extend’] is the multiplier by which the font is to be extended (so
values less than 1.0 condense). Returns a new Type1Font object.

868 Chapter 55. backends

CHAPTER

FIFTYSIX

CBOOK

56.1 matplotlib.cbook

A collection of utility functions and classes. Originally, many (but not all) were from the Python Cookbook
– hence the name cbook.

This module is safe to import from anywhere within matplotlib; it imports matplotlib only at runtime.

class matplotlib.cbook.Bunch(**kwds)
Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary’s
OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to
group a few variables:

>>> point = Bunch(datum=2, squared=4, coord=12)
>>> point.datum

By: Alex Martelli
From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308

class matplotlib.cbook.CallbackRegistry(*args)
Handle registering and disconnecting for a set of signals and callbacks:

>>> def oneat(x):
... print ’eat’, x
>>> def ondrink(x):
... print ’drink’, x

>>> from matplotlib.cbook import CallbackRegistry
>>> callbacks = CallbackRegistry()

>>> id_eat = callbacks.connect(’eat’, oneat)
>>> id_drink = callbacks.connect(’drink’, ondrink)

>>> callbacks.process(’drink’, 123)
drink 123
>>> callbacks.process(’eat’, 456)
eat 456

869

Matplotlib, Release 1.3.1

>>> callbacks.process(’be merry’, 456) # nothing will be called
>>> callbacks.disconnect(id_eat)
>>> callbacks.process(’eat’, 456) # nothing will be called

In practice, one should always disconnect all callbacks when they are no longer needed to avoid
dangling references (and thus memory leaks). However, real code in matplotlib rarely does so, and
due to its design, it is rather difficult to place this kind of code. To get around this, and prevent
this class of memory leaks, we instead store weak references to bound methods only, so when the
destination object needs to die, the CallbackRegistry won’t keep it alive. The Python stdlib weakref
module can not create weak references to bound methods directly, so we need to create a proxy object
to handle weak references to bound methods (or regular free functions). This technique was shared
by Peter Parente on his “Mindtrove” blog.

connect(s, func)
register func to be called when a signal s is generated func will be called

disconnect(cid)
disconnect the callback registered with callback id cid

process(s, *args, **kwargs)
process signal s. All of the functions registered to receive callbacks on s will be called with
*args and **kwargs

class matplotlib.cbook.GetRealpathAndStat

class matplotlib.cbook.Grouper(init=[])
Bases: object

This class provides a lightweight way to group arbitrary objects together into disjoint sets when a
full-blown graph data structure would be overkill.

Objects can be joined using join(), tested for connectedness using joined(), and all disjoint sets
can be retreived by using the object as an iterator.

The objects being joined must be hashable and weak-referenceable.

For example:

>>> from matplotlib.cbook import Grouper
>>> class Foo(object):
... def __init__(self, s):
... self.s = s
... def __repr__(self):
... return self.s
...
>>> a, b, c, d, e, f = [Foo(x) for x in ’abcdef’]
>>> grp = Grouper()
>>> grp.join(a, b)
>>> grp.join(b, c)
>>> grp.join(d, e)
>>> sorted(map(tuple, grp))
[(a, b, c), (d, e)]

870 Chapter 56. cbook

http://mindtrove.info/articles/python-weak-references/

Matplotlib, Release 1.3.1

>>> grp.joined(a, b)
True
>>> grp.joined(a, c)
True
>>> grp.joined(a, d)
False

clean()
Clean dead weak references from the dictionary

get_siblings(a)
Returns all of the items joined with a, including itself.

join(a, *args)
Join given arguments into the same set. Accepts one or more arguments.

joined(a, b)
Returns True if a and b are members of the same set.

class matplotlib.cbook.Idle(func)
Bases: matplotlib.cbook.Scheduler

Schedule callbacks when scheduler is idle

run()

waittime = 0.05

exception matplotlib.cbook.MatplotlibDeprecationWarning
Bases: exceptions.UserWarning

A class for issuing deprecation warnings for Matplotlib users.

In light of the fact that Python builtin DeprecationWarnings are ignored by default as of Python 2.7
(see link below), this class was put in to allow for the signaling of deprecation, but via UserWarnings
which are not ignored by default.

http://docs.python.org/dev/whatsnew/2.7.html#the-future-for-python-2-x

class matplotlib.cbook.MemoryMonitor(nmax=20000)

clear()

plot(i0=0, isub=1, fig=None)

report(segments=4)

xy(i0=0, isub=1)

56.1. matplotlib.cbook 871

http://docs.python.org/dev/whatsnew/2.7.html#the-future-for-python-2-x

Matplotlib, Release 1.3.1

class matplotlib.cbook.Null(*args, **kwargs)
Null objects always and reliably “do nothing.”

class matplotlib.cbook.RingBuffer(size_max)
class that implements a not-yet-full buffer

append(x)
append an element at the end of the buffer

get()
Return a list of elements from the oldest to the newest.

class matplotlib.cbook.Scheduler
Bases: threading.Thread

Base class for timeout and idle scheduling

id = 0

idlelock = <thread.lock object at 0x13bf790>

stop()

class matplotlib.cbook.Sorter
Sort by attribute or item

Example usage:

sort = Sorter()

list = [(1, 2), (4, 8), (0, 3)]
dict = [{’a’: 3, ’b’: 4}, {’a’: 5, ’b’: 2}, {’a’: 0, ’b’: 0},

{’a’: 9, ’b’: 9}]

sort(list) # default sort
sort(list, 1) # sort by index 1
sort(dict, ’a’) # sort a list of dicts by key ’a’

byAttribute(data, attributename, inplace=1)

byItem(data, itemindex=None, inplace=1)

sort(data, itemindex=None, inplace=1)

class matplotlib.cbook.Stack(default=None)
Bases: object

Implement a stack where elements can be pushed on and you can move back and forth. But no pop.
Should mimic home / back / forward in a browser

872 Chapter 56. cbook

Matplotlib, Release 1.3.1

back()
move the position back and return the current element

bubble(o)
raise o to the top of the stack and return o. o must be in the stack

clear()
empty the stack

empty()

forward()
move the position forward and return the current element

home()
push the first element onto the top of the stack

push(o)
push object onto stack at current position - all elements occurring later than the current position
are discarded

remove(o)
remove element o from the stack

class matplotlib.cbook.Timeout(wait, func)
Bases: matplotlib.cbook.Scheduler

Schedule recurring events with a wait time in seconds

run()

class matplotlib.cbook.Xlator
Bases: dict

All-in-one multiple-string-substitution class

Example usage:

text = "Larry Wall is the creator of Perl"
adict = {
"Larry Wall" : "Guido van Rossum",
"creator" : "Benevolent Dictator for Life",
"Perl" : "Python",
}

print multiple_replace(adict, text)

xlat = Xlator(adict)
print xlat.xlat(text)

xlat(text)
Translate text, returns the modified text.

56.1. matplotlib.cbook 873

Matplotlib, Release 1.3.1

matplotlib.cbook.align_iterators(func, *iterables)
This generator takes a bunch of iterables that are ordered by func It sends out ordered tuples:

(func(row), [rows from all iterators matching func(row)])

It is used by matplotlib.mlab.recs_join() to join record arrays

matplotlib.cbook.allequal(seq)
Return True if all elements of seq compare equal. If seq is 0 or 1 length, return True

matplotlib.cbook.allpairs(x)
return all possible pairs in sequence x

Condensed by Alex Martelli from this thread on c.l.python

matplotlib.cbook.alltrue(seq)
Return True if all elements of seq evaluate to True. If seq is empty, return False.

class matplotlib.cbook.converter(missing=’Null’, missingval=None)
Bases: object

Base class for handling string -> python type with support for missing values

is_missing(s)

matplotlib.cbook.dedent(s)
Remove excess indentation from docstring s.

Discards any leading blank lines, then removes up to n whitespace characters from each line, where n
is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its
deletion of leading blank lines and its use of the first non-blank line to determine the indentation.

It is also faster in most cases.

matplotlib.cbook.delete_masked_points(*args)
Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the
unmasked points remaining.

Arguments can be in any of 5 categories:
1.1-D masked arrays
2.1-D ndarrays
3.ndarrays with more than one dimension
4.other non-string iterables
5.anything else

The first argument must be in one of the first four categories; any argument with a length differing from
that of the first argument (and hence anything in category 5) then will be passed through unchanged.

Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if
masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories
2, 3, and 4 if np.isfinite() does not yield a Boolean array.

All input arguments that are not passed unchanged are returned as ndarrays after removing the points
or rows corresponding to masks in any of the arguments.

874 Chapter 56. cbook

http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1

Matplotlib, Release 1.3.1

A vastly simpler version of this function was originally written as a helper for Axes.scatter().

matplotlib.cbook.deprecated(since, message=’‘, name=’‘, alternative=’‘, pending=False,
obj_type=’function’)

Used to mark a function as deprecated.
Parameters since : str

The release at which this API became deprecated. This is required.
message : str, optional

Override the default deprecation message. The format speci-
fier %(func)s may be used for the name of the function, and
%(alternative)s may be used in the deprecation message to insert
the name of an alternative to the deprecated function. %(obj_type)
may be used to insert a friendly name for the type of object being
deprecated.

name : str, optional
The name of the deprecated function; if not provided the name is auto-
matically determined from the passed in function, though this is use-
ful in the case of renamed functions, where the new function is just
assigned to the name of the deprecated function. For example:

def new_function():
...

oldFunction = new_function

alternative : str, optional
An alternative function that the user may use in place of the depre-
cated function. The deprecation warning will tell the user about this
alternative if provided.

pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a Deprecation-
Warning.

matplotlib.cbook.dict_delall(d, keys)
delete all of the keys from the dict d

matplotlib.cbook.exception_to_str(s=None)

matplotlib.cbook.finddir(o, match, case=False)
return all attributes of o which match string in match. if case is True require an exact case match.

matplotlib.cbook.flatten(seq, scalarp=<function is_scalar_or_string at 0x1a27aa0>)
Returns a generator of flattened nested containers

For example:

>>> from matplotlib.cbook import flatten
>>> l = ((’John’, [’Hunter’]), (1, 23), [[([42, (5, 23)],)]])
>>> print list(flatten(l))
[’John’, ’Hunter’, 1, 23, 42, 5, 23]

56.1. matplotlib.cbook 875

Matplotlib, Release 1.3.1

By: Composite of Holger Krekel and Luther Blissett From:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook

matplotlib.cbook.get_recursive_filelist(args)
Recurse all the files and dirs in args ignoring symbolic links and return the files as a list of strings

matplotlib.cbook.get_sample_data(fname, asfileobj=True)
Return a sample data file. fname is a path relative to the mpl-data/sample_data directory. If
asfileobj is True return a file object, otherwise just a file path.

Set the rc parameter examples.directory to the directory where we should look, if sample_data files
are stored in a location different than default (which is ‘mpl-data/sample_data‘ at the same level of
‘matplotlib‘ Python module files).

If the filename ends in .gz, the file is implicitly ungzipped.

matplotlib.cbook.get_split_ind(seq, N)
seq is a list of words. Return the index into seq such that:

len(’ ’.join(seq[:ind])<=N

.

matplotlib.cbook.is_math_text(s)

matplotlib.cbook.is_numlike(obj)
return true if obj looks like a number

matplotlib.cbook.is_scalar(obj)
return true if obj is not string like and is not iterable

matplotlib.cbook.is_scalar_or_string(val)
Return whether the given object is a scalar or string like.

matplotlib.cbook.is_sequence_of_strings(obj)
Returns true if obj is iterable and contains strings

matplotlib.cbook.is_string_like(obj)
Return True if obj looks like a string

matplotlib.cbook.is_writable_file_like(obj)
return true if obj looks like a file object with a write method

matplotlib.cbook.issubclass_safe(x, klass)
return issubclass(x, klass) and return False on a TypeError

matplotlib.cbook.iterable(obj)
return true if obj is iterable

matplotlib.cbook.listFiles(root, patterns=’*’, recurse=1, return_folders=0)
Recursively list files

from Parmar and Martelli in the Python Cookbook

876 Chapter 56. cbook

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294

Matplotlib, Release 1.3.1

class matplotlib.cbook.maxdict(maxsize)
Bases: dict

A dictionary with a maximum size; this doesn’t override all the relevant methods to contrain size, just
setitem, so use with caution

matplotlib.cbook.mkdirs(newdir, mode=511)
make directory newdir recursively, and set mode. Equivalent to

> mkdir -p NEWDIR
> chmod MODE NEWDIR

matplotlib.cbook.mplDeprecation
alias of MatplotlibDeprecationWarning

matplotlib.cbook.onetrue(seq)
Return True if one element of seq is True. It seq is empty, return False.

matplotlib.cbook.pieces(seq, num=2)
Break up the seq into num tuples

matplotlib.cbook.popall(seq)
empty a list

matplotlib.cbook.print_cycles(objects, outstream=<open file ‘<stdout>’, mode ‘w’ at
0x7fa33f6a5150>, show_progress=False)

objects A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that
are preventing some objects from being garbage collected.

outstream The stream for output.
show_progress If True, print the number of objects reached as they are found.

matplotlib.cbook.recursive_remove(path)

matplotlib.cbook.report_memory(i=0)
return the memory consumed by process

matplotlib.cbook.restrict_dict(d, keys)
Return a dictionary that contains those keys that appear in both d and keys, with values from d.

matplotlib.cbook.reverse_dict(d)
reverse the dictionary – may lose data if values are not unique!

matplotlib.cbook.safe_masked_invalid(x)

matplotlib.cbook.safezip(*args)
make sure args are equal len before zipping

class matplotlib.cbook.silent_list(type, seq=None)
Bases: list

override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is
meant to be used for a homogeneous list of a given type

56.1. matplotlib.cbook 877

Matplotlib, Release 1.3.1

matplotlib.cbook.simple_linear_interpolation(a, steps)

matplotlib.cbook.soundex(name, len=4)
soundex module conforming to Odell-Russell algorithm

matplotlib.cbook.strip_math(s)
remove latex formatting from mathtext

matplotlib.cbook.to_filehandle(fname, flag=’rU’, return_opened=False)
fname can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends
in .gz. flag is a read/write flag for file()

class matplotlib.cbook.todate(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a date or None

use a time.strptime() format string for conversion

class matplotlib.cbook.todatetime(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a datetime or None

use a time.strptime() format string for conversion

class matplotlib.cbook.tofloat(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a float or None

class matplotlib.cbook.toint(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to an int or None

class matplotlib.cbook.tostr(missing=’Null’, missingval=’‘)
Bases: matplotlib.cbook.converter

convert to string or None

matplotlib.cbook.unicode_safe(s)

matplotlib.cbook.unique(x)
Return a list of unique elements of x

matplotlib.cbook.unmasked_index_ranges(mask, compressed=True)
Find index ranges where mask is False.

mask will be flattened if it is not already 1-D.

Returns Nx2 numpy.ndarray with each row the start and stop indices for slices of the compressed
numpy.ndarray corresponding to each of N uninterrupted runs of unmasked values. If optional
argument compressed is False, it returns the start and stop indices into the original numpy.ndarray,
not the compressed numpy.ndarray. Returns None if there are no unmasked values.

878 Chapter 56. cbook

Matplotlib, Release 1.3.1

Example:

y = ma.array(np.arange(5), mask = [0,0,1,0,0])
ii = unmasked_index_ranges(ma.getmaskarray(y))
returns array [[0,2,] [2,4,]]

y.compressed()[ii[1,0]:ii[1,1]]
returns array [3,4,]

ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False)
returns array [[0, 2], [3, 5]]

y.filled()[ii[1,0]:ii[1,1]]
returns array [3,4,]

Prior to the transforms refactoring, this was used to support masked arrays in Line2D.

matplotlib.cbook.warn_deprecated(since, message=’‘, name=’‘, alternative=’‘, pend-
ing=False, obj_type=’attribute’)

Used to display deprecation warning in a standard way.
Parameters since : str

The release at which this API became deprecated.
message : str, optional

Override the default deprecation message. The format speci-
fier %(func)s may be used for the name of the function, and
%(alternative)s may be used in the deprecation message to insert
the name of an alternative to the deprecated function. %(obj_type)
may be used to insert a friendly name for the type of object being
deprecated.

name : str, optional
The name of the deprecated function; if not provided the name is auto-
matically determined from the passed in function, though this is use-
ful in the case of renamed functions, where the new function is just
assigned to the name of the deprecated function. For example:

def new_function():
...

oldFunction = new_function

alternative : str, optional
An alternative function that the user may use in place of the depre-
cated function. The deprecation warning will tell the user about this
alternative if provided.

pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a Deprecation-
Warning.

obj_type : str, optional
The object type being deprecated.

matplotlib.cbook.wrap(prefix, text, cols)
wrap text with prefix at length cols

56.1. matplotlib.cbook 879

Matplotlib, Release 1.3.1

880 Chapter 56. cbook

CHAPTER

FIFTYSEVEN

CM (COLORMAP)

57.1 matplotlib.cm

This module provides a large set of colormaps, functions for registering new colormaps and for getting a
colormap by name, and a mixin class for adding color mapping functionality.

class matplotlib.cm.ScalarMappable(norm=None, cmap=None)
This is a mixin class to support scalar data to RGBA mapping. The ScalarMappable makes use of
data normalization before returning RGBA colors from the given colormap.

Parameters norm : matplotlib.colors.Normalize instance
The normalizing object which scales data, typically into the interval
[0, 1].

cmap : str or Colormap instance
The colormap used to map normalized data values to RGBA colors.

add_checker(checker)
Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed.

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits
that are None

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the
‘changed’ signal

check_update(checker)
If mappable has changed since the last check, return True; else return False

cmap = None
The Colormap instance of this ScalarMappable.

colorbar = None
The last colorbar associated with this ScalarMappable. May be None.

get_array()
Return the array

881

Matplotlib, Release 1.3.1

get_clim()
return the min, max of the color limits for image scaling

get_cmap()
return the colormap

norm = None
The Normalization instance of this ScalarMappable.

set_array(A)
Set the image array from numpy array A

set_clim(vmin=None, vmax=None)
set the norm limits for image scaling; if vmin is a length2 sequence, interpret it as (vmin,
vmax) which is used to support setp

ACCEPTS: a length 2 sequence of floats

set_cmap(cmap)
set the colormap for luminance data

ACCEPTS: a colormap or registered colormap name

set_colorbar(*args, **kwargs)
Deprecated since version 1.3: The set_colorbar function was deprecated in version 1.3. Use
the colorbar attribute instead.

set the colorbar and axes instances associated with mappable

set_norm(norm)
set the normalization instance

to_rgba(x, alpha=None, bytes=False)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1-D or 2-D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. If the
last dimension is 3, the alpha kwarg (defaulting to 1) will be used to fill in the transparency. If
the last dimension is 4, the alpha kwarg is ignored; it does not replace the pre-existing alpha. A
ValueError will be raised if the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is
True, the returned rgba array will be uint8 in the 0 to 255 range.

Note: this method assumes the input is well-behaved; it does not check for anomalies such as x
being a masked rgba array, or being an integer type other than uint8, or being a floating point
rgba array with values outside the 0-1 range.

matplotlib.cm.get_cmap(name=None, lut=None)
Get a colormap instance, defaulting to rc values if name is None.

Colormaps added with register_cmap() take precedence over built-in colormaps.

882 Chapter 57. cm (colormap)

Matplotlib, Release 1.3.1

If name is a matplotlib.colors.Colormap instance, it will be returned.

If lut is not None it must be an integer giving the number of entries desired in the lookup table, and
name must be a standard mpl colormap name with a corresponding data dictionary in datad.

matplotlib.cm.register_cmap(name=None, cmap=None, data=None, lut=None)
Add a colormap to the set recognized by get_cmap().

It can be used in two ways:

register_cmap(name=’swirly’, cmap=swirly_cmap)

register_cmap(name=’choppy’, data=choppydata, lut=128)

In the first case, cmap must be a matplotlib.colors.Colormap instance. The name is optional; if
absent, the name will be the name attribute of the cmap.

In the second case, the three arguments are passed to the LinearSegmentedColormap initializer, and
the resulting colormap is registered.

matplotlib.cm.revcmap(data)
Can only handle specification data in dictionary format.

57.1. matplotlib.cm 883

Matplotlib, Release 1.3.1

884 Chapter 57. cm (colormap)

CHAPTER

FIFTYEIGHT

COLLECTIONS

collections.CircleCollection

collections.Collection

collections.QuadMesh

collections.RegularPolyCollection

collections.PolyCollection

collections.PathCollection

collections.LineCollection

collections.TriMesh

collections.EllipseCollection

collections.PatchCollection

collections.StarPolygonCollection

collections.AsteriskPolygonCollection

collections.BrokenBarHCollection

collections.EventCollection

artist.Artist

cm.ScalarMappable

58.1 matplotlib.collections

Classes for the efficient drawing of large collections of objects that share most properties, e.g., a large
number of line segments or polygons.

The classes are not meant to be as flexible as their single element counterparts (e.g., you may not be able
to select all line styles) but they are meant to be fast for common use cases (e.g., a large set of solid line
segemnts)

class matplotlib.collections.AsteriskPolygonCollection(numsides, rotation=0,
sizes=(1,), **kwargs)

Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular asterisks with numsides points.
numsides the number of sides of the polygon
rotation the rotation of the polygon in radians
sizes gives the area of the circle circumscribing the regular polygon in points^2

Valid Collection keyword arguments:

885

Matplotlib, Release 1.3.1

•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

class matplotlib.collections.BrokenBarHCollection(xranges, yrange, **kwargs)
Bases: matplotlib.collections.PolyCollection

A collection of horizontal bars spanning yrange with a sequence of xranges.
xranges sequence of (xmin, xwidth)
yrange ymin, ywidth

Valid Collection keyword arguments:
•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

static span_where(x, ymin, ymax, where, **kwargs)
Create a BrokenBarHCollection to plot horizontal bars from over the regions in x where where
is True. The bars range on the y-axis from ymin to ymax

886 Chapter 58. collections

Matplotlib, Release 1.3.1

A BrokenBarHCollection is returned. kwargs are passed on to the collection.

class matplotlib.collections.CircleCollection(sizes, **kwargs)
Bases: matplotlib.collections.Collection

A collection of circles, drawn using splines.

sizes Gives the area of the circle in points^2

Valid Collection keyword arguments:
•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(artist, renderer, *args, **kwargs)

get_sizes()
return sizes of circles

class matplotlib.collections.Collection(edgecolors=None, facecolors=None,
linewidths=None, linestyles=’solid’, an-
tialiaseds=None, offsets=None, transOffset=None,
norm=None, cmap=None, pickradius=5.0,
hatch=None, urls=None, offset_position=’screen’,
zorder=1, **kwargs)

Bases: matplotlib.artist.Artist, matplotlib.cm.ScalarMappable

Base class for Collections. Must be subclassed to be usable.

All properties in a collection must be sequences or scalars; if scalars, they will be converted to se-
quences. The property of the ith element of the collection is:

prop[i % len(props)]

Keyword arguments and default values:
•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•offset_position: ‘screen’ (default) or ‘data’
•norm: None (optional for matplotlib.cm.ScalarMappable)

58.1. matplotlib.collections 887

Matplotlib, Release 1.3.1

•cmap: None (optional for matplotlib.cm.ScalarMappable)
•hatch: None
•zorder: 1

offsets and transOffset are used to translate the patch after rendering (default no offsets). If off-
set_position is ‘screen’ (default) the offset is applied after the master transform has been applied, that
is, the offsets are in screen coordinates. If offset_position is ‘data’, the offset is applied before the
master transform, i.e., the offsets are in data coordinates.

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

Create a Collection

%(Collection)s

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns True | False, dict(ind=itemlist), where every item in itemlist contains the event.

draw(artist, renderer, *args, **kwargs)

get_dashes()

get_datalim(transData)

get_edgecolor()

get_edgecolors()

get_facecolor()

get_facecolors()

get_hatch()
Return the current hatching pattern

get_linestyle()

get_linestyles()

get_linewidth()

888 Chapter 58. collections

Matplotlib, Release 1.3.1

get_linewidths()

get_offset_position()
Returns how offsets are applied for the collection. If offset_position is ‘screen’, the offset is
applied after the master transform has been applied, that is, the offsets are in screen coordinates.
If offset_position is ‘data’, the offset is applied before the master transform, i.e., the offsets are
in data coordinates.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_paths()

get_pickradius()

get_transforms()

get_urls()

get_window_extent(renderer)

set_alpha(alpha)
Set the alpha tranparencies of the collection. alpha must be a float or None.

ACCEPTS: float or None

set_antialiased(aa)
Set the antialiasing state for rendering.

ACCEPTS: Boolean or sequence of booleans

set_antialiaseds(aa)
alias for set_antialiased

set_color(c)
Set both the edgecolor and the facecolor.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

See also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_dashes(ls)
alias for set_linestyle

set_edgecolor(c)
Set the edgecolor(s) of the collection. c can be a matplotlib color arg (all patches have same

58.1. matplotlib.collections 889

Matplotlib, Release 1.3.1

color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the
sequence.

If c is ‘face’, the edge color will always be the same as the face color. If it is ‘none’, the patch
boundary will not be drawn.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_edgecolors(c)
alias for set_edgecolor

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the
sequence.

If c is ‘none’, the patch will not be filled.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_facecolors(c)
alias for set_facecolor

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter
repeats, it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the
collection as a whole, not separately for each member.

ACCEPTS: [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]

set_linestyle(ls)
Set the linestyle(s) for the collection.

ACCEPTS: [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]

set_linestyles(ls)
alias for set_linestyle

890 Chapter 58. collections

Matplotlib, Release 1.3.1

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

ACCEPTS: float or sequence of floats

set_linewidths(lw)
alias for set_linewidth

set_lw(lw)
alias for set_linewidth

set_offset_position(offset_position)
Set how offsets are applied. If offset_position is ‘screen’ (default) the offset is applied after
the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is ‘data’, the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

set_offsets(offsets)
Set the offsets for the collection. offsets can be a scalar or a sequence.

ACCEPTS: float or sequence of floats

set_paths()

set_pickradius(pr)

set_urls(urls)

update_from(other)
copy properties from other to self

update_scalarmappable()
If the scalar mappable array is not none, update colors from scalar data

class matplotlib.collections.EllipseCollection(widths, heights, angles, units=’points’,
**kwargs)

Bases: matplotlib.collections.Collection

A collection of ellipses, drawn using splines.
widths: sequence lengths of first axes (e.g., major axis lengths)
heights: sequence lengths of second axes
angles: sequence angles of first axes, degrees CCW from the X-axis
units: [’points’ | ‘inches’ | ‘dots’ | ‘width’ | ‘height’ | ‘x’ | ‘y’ | ‘xy’]

units in which majors and minors are given; ‘width’ and ‘height’ refer to the dimensions
of the axes, while ‘x’ and ‘y’ refer to the offsets data units. ‘xy’ differs from all others
in that the angle as plotted varies with the aspect ratio, and equals the specified angle
only when the aspect ratio is unity. Hence it behaves the same as the Ellipse with
axes.transData as its transform.

Additional kwargs inherited from the base Collection:
Valid Collection keyword arguments:

58.1. matplotlib.collections 891

Matplotlib, Release 1.3.1

•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(artist, renderer, *args, **kwargs)

class matplotlib.collections.EventCollection(positions, orientation=None, lineoffset=0,
linelength=1, linewidth=None, color=None,
linestyle=’solid’, antialiased=None,
**kwargs)

Bases: matplotlib.collections.LineCollection

A collection of discrete events.

An event is a 1-dimensional value, usually the position of something along an axis, such as time or
length. Events do not have an amplitude. They are displayed as v
positions a sequence of numerical values or a 1D numpy array. Can be None
orientation [‘horizontal’ | ‘vertical’ | None] defaults to ‘horizontal’ if not specified or None
lineoffset a single numerical value, corresponding to the offset of the center of the markers from the

origin
linelength a single numerical value, corresponding to the total height of the marker (i.e. the marker

stretches from lineoffset+linelength/2 to lineoffset-linelength/2). Defaults to 1
linewidth a single numerical value
color must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed).
linestyle [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
antialiased 1 or 2
If linewidth, color, or antialiased is None, they default to their rcParams setting, in sequence form.
norm None (optional for matplotlib.cm.ScalarMappable)
cmap None (optional for matplotlib.cm.ScalarMappable)
pickradius is the tolerance for mouse clicks picking a line. The default is 5 pt.

The use of ScalarMappable is optional. If the ScalarMappable array _A is not None (ie a call to
set_array() has been made), at draw time a call to scalar mappable will be made to set the colors.

Example:

892 Chapter 58. collections

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
line plot with data points

add_positions(position)
add one or more events at the specified positions

append_positions(position)
add one or more events at the specified positions

extend_positions(position)
add one or more events at the specified positions

get_color()
get the color of the lines used to mark each event

get_linelength()
get the length of the lines used to mark each event

get_lineoffset()
get the offset of the lines used to mark each event

get_linestyle()
get the style of the lines used to mark each event [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_linewidth()
get the width of the lines used to mark each event

get_orientation()
get the orientation of the event line, may be: [‘horizontal’ | ‘vertical’]

58.1. matplotlib.collections 893

Matplotlib, Release 1.3.1

get_positions()
return an array containing the floating-point values of the positions

is_horizontal()
True if the eventcollection is horizontal, False if vertical

set_linelength(linelength)
set the length of the lines used to mark each event

set_lineoffset(lineoffset)
set the offset of the lines used to mark each event

set_orientation(orientation=None)
set the orientation of the event line [‘horizontal’ | ‘vertical’ | None] defaults to ‘horizontal’ if
not specified or None

set_positions(positions)
set the positions of the events to the specified value

switch_orientation()
switch the orientation of the event line, either from vertical to horizontal or vice versus

class matplotlib.collections.LineCollection(segments, linewidths=None, colors=None,
antialiaseds=None, linestyles=’solid’, off-
sets=None, transOffset=None, norm=None,
cmap=None, pickradius=5, zorder=2,
**kwargs)

Bases: matplotlib.collections.Collection

All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The
property of the ith line segment is:

prop[i % len(props)]

i.e., the properties cycle if the len of props is less than the number of segments.
segments a sequence of (line0, line1, line2), where:

linen = (x0, y0), (x1, y1), ... (xm, ym)

or the equivalent numpy array with two columns. Each line can be a different length.
colors must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed).
antialiaseds must be a sequence of ones or zeros
linestyles [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] a string or dash tuple. The dash tuple is:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.
If linewidths, colors, or antialiaseds is None, they default to their rcParams setting, in sequence form.

If offsets and transOffset are not None, then offsets are transformed by transOffset and applied after
the segments have been transformed to display coordinates.

894 Chapter 58. collections

Matplotlib, Release 1.3.1

If offsets is not None but transOffset is None, then the offsets are added to the segments before any
transformation. In this case, a single offset can be specified as:

offsets=(xo,yo)

and this value will be added cumulatively to each successive segment, so as to produce a set of
successively offset curves.
norm None (optional for matplotlib.cm.ScalarMappable)
cmap None (optional for matplotlib.cm.ScalarMappable)
pickradius is the tolerance for mouse clicks picking a line. The default is 5 pt.
zorder The zorder of the LineCollection. Default is 2
The use of ScalarMappable is optional. If the ScalarMappable array _A is not None (ie a call to
set_array() has been made), at draw time a call to scalar mappable will be made to set the colors.

color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the
sequence

ACCEPTS: matplotlib color arg or sequence of rgba tuples

get_color()

get_colors()

get_segments()

set_color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the
sequence.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_paths(segments)

set_segments(segments)

set_verts(segments)

class matplotlib.collections.PatchCollection(patches, match_original=False, **kwargs)
Bases: matplotlib.collections.Collection

A generic collection of patches.

This makes it easier to assign a color map to a heterogeneous collection of patches.

This also may improve plotting speed, since PatchCollection will draw faster than a large number of
patches.

58.1. matplotlib.collections 895

Matplotlib, Release 1.3.1

patches a sequence of Patch objects. This list may include a heterogeneous assortment of different
patch types.

match_original If True, use the colors and linewidths of the original patches. If False, new colors may
be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths,
norm or cmap.

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

set_paths(patches)

class matplotlib.collections.PathCollection(paths, sizes=None, **kwargs)
Bases: matplotlib.collections.Collection

This is the most basic Collection subclass.

paths is a sequence of matplotlib.path.Path instances.
Valid Collection keyword arguments:

•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(artist, renderer, *args, **kwargs)

get_paths()

get_sizes()

set_paths(paths)

class matplotlib.collections.PolyCollection(verts, sizes=None, closed=True, **kwargs)
Bases: matplotlib.collections.Collection

verts is a sequence of (verts0, verts1, ...) where verts_i is a sequence of xy tuples of vertices, or an
equivalent numpy array of shape (nv, 2).

sizes is None (default) or a sequence of floats that scale the corresponding verts_i. The scaling is
applied before the Artist master transform; if the latter is an identity transform, then the overall scaling

896 Chapter 58. collections

Matplotlib, Release 1.3.1

is such that if verts_i specify a unit square, then sizes_i is the area of that square in points^2. If
len(sizes) < nv, the additional values will be taken cyclically from the array.

closed, when True, will explicitly close the polygon.
Valid Collection keyword arguments:

•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(artist, renderer, *args, **kwargs)

set_paths(verts, closed=True)
This allows one to delay initialization of the vertices.

set_verts(verts, closed=True)
This allows one to delay initialization of the vertices.

class matplotlib.collections.QuadMesh(meshWidth, meshHeight, coordinates, an-
tialiased=True, shading=’flat’, **kwargs)

Bases: matplotlib.collections.Collection

Class for the efficient drawing of a quadrilateral mesh.

A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (meshWidth + 1,
meshHeight + 1). Each vertex in the mesh has a different set of “mesh coordinates” representing its
position in the topology of the mesh. For any values (m, n) such that 0 <= m <= meshWidth and 0 <=

n <= meshHeight, the vertices at mesh coordinates (m, n), (m, n + 1), (m + 1, n + 1), and (m + 1, n)
form one of the quadrilaterals in the mesh. There are thus (meshWidth * meshHeight) quadrilaterals
in the mesh. The mesh need not be regular and the polygons need not be convex.

A quadrilateral mesh is represented by a (2 x ((meshWidth + 1) * (meshHeight + 1))) numpy array
coordinates, where each row is the x and y coordinates of one of the vertices. To define the function
that maps from a data point to its corresponding color, use the set_cmap() method. Each of these
arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates
of the lower left vertex, in the case of the colors).

For example, the first entry in coordinates is the coordinates of the vertex at mesh coordinates (0, 0),
then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on.

shading may be ‘flat’, or ‘gouraud’

static convert_mesh_to_paths(meshWidth, meshHeight, coordinates)
Converts a given mesh into a sequence of matplotlib.path.Path objects for easier rendering
by backends that do not directly support quadmeshes.

58.1. matplotlib.collections 897

Matplotlib, Release 1.3.1

This function is primarily of use to backend implementers.

convert_mesh_to_triangles(meshWidth, meshHeight, coordinates)
Converts a given mesh into a sequence of triangles, each point with its own color. This is useful
for experiments using draw_qouraud_triangle.

draw(artist, renderer, *args, **kwargs)

get_datalim(transData)

get_paths()

set_paths()

class matplotlib.collections.RegularPolyCollection(numsides, rotation=0, sizes=(1,),
**kwargs)

Bases: matplotlib.collections.Collection

Draw a collection of regular polygons with numsides.
numsides the number of sides of the polygon
rotation the rotation of the polygon in radians
sizes gives the area of the circle circumscribing the regular polygon in points^2

Valid Collection keyword arguments:
•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,

898 Chapter 58. collections

Matplotlib, Release 1.3.1

transOffset = ax.transData,
)

draw(artist, renderer, *args, **kwargs)

get_numsides()

get_rotation()

get_sizes()

class matplotlib.collections.StarPolygonCollection(numsides, rotation=0, sizes=(1,),
**kwargs)

Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular stars with numsides points.
numsides the number of sides of the polygon
rotation the rotation of the polygon in radians
sizes gives the area of the circle circumscribing the regular polygon in points^2

Valid Collection keyword arguments:
•edgecolors: None
•facecolors: None
•linewidths: None
•antialiaseds: None
•offsets: None
•transOffset: transforms.IdentityTransform()
•norm: None (optional for matplotlib.cm.ScalarMappable)
•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

58.1. matplotlib.collections 899

Matplotlib, Release 1.3.1

class matplotlib.collections.TriMesh(triangulation, **kwargs)
Bases: matplotlib.collections.Collection

Class for the efficient drawing of a triangular mesh using Gouraud shading.

A triangular mesh is a Triangulation object.

static convert_mesh_to_paths(tri)
Converts a given mesh into a sequence of matplotlib.path.Path objects for easier rendering
by backends that do not directly support meshes.

This function is primarily of use to backend implementers.

draw(artist, renderer, *args, **kwargs)

get_paths()

set_paths()

900 Chapter 58. collections

CHAPTER

FIFTYNINE

COLORBAR

59.1 matplotlib.colorbar

Colorbar toolkit with two classes and a function:

ColorbarBase the base class with full colorbar drawing functionality. It can be used as-is to
make a colorbar for a given colormap; a mappable object (e.g., image) is not needed.

Colorbar the derived class for use with images or contour plots.

make_axes() a function for resizing an axes and adding a second axes suitable for a colorbar

The colorbar() method uses make_axes() and Colorbar; the colorbar() function is a thin wrapper
over colorbar().

class matplotlib.colorbar.Colorbar(ax, mappable, **kw)
Bases: matplotlib.colorbar.ColorbarBase

This class connects a ColorbarBase to a ScalarMappable such as a AxesImage generated via
imshow().

It is not intended to be instantiated directly; instead, use colorbar() or colorbar() to make your
colorbar.

add_lines(CS, erase=True)
Add the lines from a non-filled ContourSet to the colorbar.

Set erase to False if these lines should be added to any pre-existing lines.

on_mappable_changed(mappable)
Updates this colorbar to match the mappable’s properties.

Typically this is automatically registered as an event handler by colorbar_factory() and
should not be called manually.

update_bruteforce(mappable)
Destroy and rebuild the colorbar. This is intended to become obsolete, and will probably
be deprecated and then removed. It is not called when the pyplot.colorbar function or the
Figure.colorbar method are used to create the colorbar.

901

Matplotlib, Release 1.3.1

update_normal(mappable)
update solid, lines, etc. Unlike update_bruteforce, it does not clear the axes. This is meant to
be called when the image or contour plot to which this colorbar belongs is changed.

class matplotlib.colorbar.ColorbarBase(ax, cmap=None, norm=None, alpha=None,
values=None, boundaries=None, orien-
tation=’vertical’, ticklocation=’auto’, ex-
tend=’neither’, spacing=’uniform’, ticks=None,
format=None, drawedges=False, filled=True,
extendfrac=None, extendrect=False, label=’‘)

Bases: matplotlib.cm.ScalarMappable

Draw a colorbar in an existing axes.

This is a base class for the Colorbar class, which is the basis for the colorbar() function and the
colorbar() method, which are the usual ways of creating a colorbar.

It is also useful by itself for showing a colormap. If the cmap kwarg is given but boundaries and
values are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and
over-value colors, specify the norm as:

colors.Normalize(clip=False)

To show the colors versus index instead of on the 0-1 scale, use:

norm=colors.NoNorm.

Useful attributes:
ax the Axes instance in which the colorbar is drawn
lines a list of LineCollection if lines were drawn, otherwise an empty list
dividers a LineCollection if drawedges is True, otherwise None

Useful public methods are set_label() and add_lines().

add_lines(levels, colors, linewidths, erase=True)
Draw lines on the colorbar.

colors and linewidths must be scalars or sequences the same length as levels.

Set erase to False to add lines without first removing any previously added lines.

ax = None
The axes that this colorbar lives in.

config_axis()

draw_all()
Calculate any free parameters based on the current cmap and norm, and do all the drawing.

set_alpha(alpha)

set_label(label, **kw)
Label the long axis of the colorbar

902 Chapter 59. colorbar

Matplotlib, Release 1.3.1

set_ticklabels(ticklabels, update_ticks=True)
set tick labels. Tick labels are updated immediately unless update_ticks is False. To manually
update the ticks, call update_ticks method explicitly.

set_ticks(ticks, update_ticks=True)
set tick locations. Tick locations are updated immediately unless update_ticks is False. To
manually update the ticks, call update_ticks method explicitly.

update_ticks()
Force the update of the ticks and ticklabels. This must be called whenever the tick locator
and/or tick formatter changes.

class matplotlib.colorbar.ColorbarPatch(ax, mappable, **kw)
Bases: matplotlib.colorbar.Colorbar

A Colorbar which is created using Patch rather than the default pcolor().

It uses a list of Patch instances instead of a PatchCollection because the latter does not allow the
hatch pattern to vary among the members of the collection.

matplotlib.colorbar.colorbar_factory(cax, mappable, **kwargs)
Creates a colorbar on the given axes for the given mappable.

Typically, for automatic colorbar placement given only a mappable use colorbar().

matplotlib.colorbar.make_axes(parents, location=None, orientation=None, fraction=0.15,
shrink=1.0, aspect=20, **kw)

Resize and reposition parent axes, and return a child axes suitable for a colorbar:

cax, kw = make_axes(parent, **kw)

Keyword arguments may include the following (with defaults):
location [[‘None‘|’left’|’right’|’top’|’bottom’]] The position, relative to parents, where

the colorbar axes should be created. If None, the value will either come from the
given orientation, else it will default to ‘right’.

orientation [[‘None‘|’vertical’|’horizontal’]] The orientation of the colorbar. Typically,
this keyword shouldn’t be used, as it can be derived from the location keyword.

Prop-
erty

Description

orien-
tation

vertical or horizontal

frac-
tion

0.15; fraction of original axes to use for colorbar

pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new
image axes

shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions
an-
chor

(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal; the anchor point of the colorbar axes

pan-
chor

(1.0, 0.5) if vertical; (0.5, 0.0) if horizontal; the anchor point of the colorbar parent axes.
If False, the parent axes’ anchor will be unchanged

59.1. matplotlib.colorbar 903

Matplotlib, Release 1.3.1

Returns (cax, kw), the child axes and the reduced kw dictionary to be passed when creating the
colorbar instance.

matplotlib.colorbar.make_axes_gridspec(parent, **kw)
Resize and reposition a parent axes, and return a child axes suitable for a colorbar. This function is
similar to make_axes. Prmary differences are

•make_axes_gridspec only handles the orientation keyword and cannot handle the “location”
keyword.
•make_axes_gridspec should only be used with a subplot parent.
•make_axes creates an instance of Axes. make_axes_gridspec creates an instance of Subplot.
•make_axes updates the position of the parent. make_axes_gridspec replaces the grid_spec at-

tribute of the parent with a new one.
While this function is meant to be compatible with make_axes, there could be some minor differences.:

cax, kw = make_axes_gridspec(parent, **kw)

Keyword arguments may include the following (with defaults):
orientation ‘vertical’ or ‘horizontal’

Prop-
erty

Description

orien-
tation

vertical or horizontal

frac-
tion

0.15; fraction of original axes to use for colorbar

pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new
image axes

shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions
an-
chor

(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal; the anchor point of the colorbar axes

pan-
chor

(1.0, 0.5) if vertical; (0.5, 0.0) if horizontal; the anchor point of the colorbar parent axes.
If False, the parent axes’ anchor will be unchanged

All but the first of these are stripped from the input kw set.

Returns (cax, kw), the child axes and the reduced kw dictionary to be passed when creating the
colorbar instance.

904 Chapter 59. colorbar

CHAPTER

SIXTY

COLORS

For a visual representation of the matplotlib colormaps, see the “Color” section in the gallery.

60.1 matplotlib.colors

A module for converting numbers or color arguments to RGB or RGBA

RGB and RGBA are sequences of, respectively, 3 or 4 floats in the range 0-1.

This module includes functions and classes for color specification conversions, and for mapping numbers
to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data
array is first mapped onto the range 0-1 using an instance of Normalize or of a subclass; then this number
in the 0-1 range is mapped to a color using an instance of a subclass of Colormap. Two are provided
here: LinearSegmentedColormap, which is used to generate all the built-in colormap instances, but is
also useful for making custom colormaps, and ListedColormap, which is used for generating a custom
colormap from a list of color specifications.

The module also provides a single instance, colorConverter, of the ColorConverter class providing meth-
ods for converting single color specifications or sequences of them to RGB or RGBA.

Commands which take color arguments can use several formats to specify the colors. For the basic built-in
colors, you can use a single letter

• b: blue

• g: green

• r: red

• c: cyan

• m: magenta

• y: yellow

• k: black

• w: white

Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:

905

Matplotlib, Release 1.3.1

color = ’0.75’

For a greater range of colors, you have two options. You can specify the color using an html hex string, as
in:

color = ’#eeefff’

or you can pass an R , G , B tuple, where each of R , G , B are in the range [0,1].

Finally, legal html names for colors, like ‘red’, ‘burlywood’ and ‘chartreuse’ are supported.

class matplotlib.colors.BoundaryNorm(boundaries, ncolors, clip=False)
Bases: matplotlib.colors.Normalize

Generate a colormap index based on discrete intervals.

Unlike Normalize or LogNorm, BoundaryNormmaps values to integers instead of to the interval 0-1.

Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using in-
tegers seems simpler, and reduces the number of conversions back and forth between integer and
floating point.
boundaries a monotonically increasing sequence
ncolors number of colors in the colormap to be used
If:

b[i] <= v < b[i+1]

then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1.

Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices
by Colormap.__call__() .

inverse(value)

class matplotlib.colors.ColorConverter
Bases: object

Provides methods for converting color specifications to RGB or RGBA

Caching is used for more efficient conversion upon repeated calls with the same argument.

Ordinarily only the single instance instantiated in this module, colorConverter, is needed.

cache = {}

colors = {‘c’: (0.0, 0.75, 0.75), ‘b’: (0.0, 0.0, 1.0), ‘w’: (1.0, 1.0, 1.0), ‘g’: (0.0, 0.5, 0.0), ‘y’: (0.75, 0.75, 0), ‘k’: (0.0, 0.0, 0.0), ‘r’: (1.0, 0.0, 0.0), ‘m’: (0.75, 0, 0.75)}

to_rgb(arg)
Returns an RGB tuple of three floats from 0-1.

arg can be an RGB or RGBA sequence or a string in any of several forms:
1.a letter from the set ‘rgbcmykw’

906 Chapter 60. colors

Matplotlib, Release 1.3.1

2.a hex color string, like ‘#00FFFF’
3.a standard name, like ‘aqua’
4.a float, like ‘0.4’, indicating gray on a 0-1 scale

if arg is RGBA, the A will simply be discarded.

to_rgba(arg, alpha=None)
Returns an RGBA tuple of four floats from 0-1.

For acceptable values of arg, see to_rgb(). In addition, if arg is “none” (case-insensitive),
then (0,0,0,0) will be returned. If arg is an RGBA sequence and alpha is not None, alpha will
replace the original A.

to_rgba_array(c, alpha=None)
Returns a numpy array of RGBA tuples.

Accepts a single mpl color spec or a sequence of specs.

Special case to handle “no color”: if c is “none” (case-insensitive), then an empty array will be
returned. Same for an empty list.

class matplotlib.colors.Colormap(name, N=256)
Bases: object

Baseclass for all scalar to RGBA mappings.

Typically Colormap instances are used to convert data values (floats) from the interval [0, 1] to the
RGBA color that the respective Colormap represents. For scaling of data into the [0, 1] interval
see matplotlib.colors.Normalize. It is worth noting that matplotlib.cm.ScalarMappable
subclasses make heavy use of this data->normalize->map-to-color processing chain.

Parameters name : str
The name of the colormap.

N : int
The number of rgb quantization levels.

colorbar_extend = None
When this colormap exists on a scalar mappable and colorbar_extend is not False, colorbar
creation will pick up colorbar_extend as the default value for the extend keyword in the
matplotlib.colorbar.Colorbar constructor.

is_gray()

set_bad(color=’k’, alpha=None)
Set color to be used for masked values.

set_over(color=’k’, alpha=None)
Set color to be used for high out-of-range values. Requires norm.clip = False

set_under(color=’k’, alpha=None)
Set color to be used for low out-of-range values. Requires norm.clip = False

class matplotlib.colors.LightSource(azdeg=315, altdeg=45, hsv_min_val=0,
hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0)

Bases: object

60.1. matplotlib.colors 907

Matplotlib, Release 1.3.1

Create a light source coming from the specified azimuth and elevation. Angles are in degrees, with
the azimuth measured clockwise from north and elevation up from the zero plane of the surface. The
shade() is used to produce rgb values for a shaded relief image given a data array.

Specify the azimuth (measured clockwise from south) and altitude (measured up from the plane of
the surface) of the light source in degrees.

The color of the resulting image will be darkened by moving the (s,v) values (in hsv colorspace)
toward (hsv_min_sat, hsv_min_val) in the shaded regions, or lightened by sliding (s,v) toward
(hsv_max_sat hsv_max_val) in regions that are illuminated. The default extremes are chose so that
completely shaded points are nearly black (s = 1, v = 0) and completely illuminated points are nearly
white (s = 0, v = 1).

shade(data, cmap)
Take the input data array, convert to HSV values in the given colormap, then adjust those color
values to given the impression of a shaded relief map with a specified light source. RGBA
values are returned, which can then be used to plot the shaded image with imshow.

shade_rgb(rgb, elevation, fraction=1.0)
Take the input RGB array (ny*nx*3) adjust their color values to given the impression of a
shaded relief map with a specified light source using the elevation (ny*nx). A new RGB array
((ny*nx*3)) is returned.

class matplotlib.colors.LinearSegmentedColormap(name, segmentdata, N=256,
gamma=1.0)

Bases: matplotlib.colors.Colormap

Colormap objects based on lookup tables using linear segments.

The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain
divided into any number of segments.

Create color map from linear mapping segments

segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of
x, y0, y1 tuples, forming rows in a table. Entries for alpha are optional.

Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same
over the middle half, and blue over the top half. Then you would use:

cdict = {’red’: [(0.0, 0.0, 0.0),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],

’green’: [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],

’blue’: [(0.0, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 1.0, 1.0)]}

908 Chapter 60. colors

Matplotlib, Release 1.3.1

Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must
increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output
value of a given color will be linearly interpolated between y1[i] and y0[i+1]:

row i: x y0 y1
/
/

row i+1: x y0 y1

Hence y0 in the first row and y1 in the last row are never used.

See also:

LinearSegmentedColormap.from_list() Static method; factory function for generating a
smoothly-varying LinearSegmentedColormap.

makeMappingArray() For information about making a mapping array.

static from_list(name, colors, N=256, gamma=1.0)
Make a linear segmented colormap with name from a sequence of colors which evenly transi-
tions from colors[0] at val=0 to colors[-1] at val=1. N is the number of rgb quantization levels.
Alternatively, a list of (value, color) tuples can be given to divide the range unevenly.

set_gamma(gamma)
Set a new gamma value and regenerate color map.

class matplotlib.colors.ListedColormap(colors, name=’from_list’, N=None)
Bases: matplotlib.colors.Colormap

Colormap object generated from a list of colors.

This may be most useful when indexing directly into a colormap, but it can also be used to generate
special colormaps for ordinary mapping.

Make a colormap from a list of colors.
colors a list of matplotlib color specifications, or an equivalent Nx3 or Nx4 floating point array (N rgb

or rgba values)
name a string to identify the colormap
N the number of entries in the map. The default is None, in which case there is one colormap entry

for each element in the list of colors. If:

N < len(colors)

the list will be truncated at N. If:

N > len(colors)

the list will be extended by repetition.

class matplotlib.colors.LogNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Normalize a given value to the 0-1 range on a log scale

60.1. matplotlib.colors 909

Matplotlib, Release 1.3.1

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

class matplotlib.colors.NoNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Dummy replacement for Normalize, for the case where we want to use indices directly in a
ScalarMappable .

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

inverse(value)

class matplotlib.colors.Normalize(vmin=None, vmax=None, clip=False)
Bases: object

A class which, when called, can normalize data into the [0.0, 1.0] interval.

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and

910 Chapter 60. colors

Matplotlib, Release 1.3.1

masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

static process_value(value)
Homogenize the input value for easy and efficient normalization.

value can be a scalar or sequence.

Returns result, is_scalar, where result is a masked array matching value. Float dtypes are
preserved; integer types with two bytes or smaller are converted to np.float32, and larger types
are converted to np.float. Preserving float32 when possible, and using in-place operations, can
greatly improve speed for large arrays.

Experimental; we may want to add an option to force the use of float32.

scaled()
return true if vmin and vmax set

class matplotlib.colors.SymLogNorm(linthresh, linscale=1.0, vmin=None, vmax=None,
clip=False)

Bases: matplotlib.colors.Normalize

The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the
origin.

Since the values close to zero tend toward infinity, there is a need to have a range around zero that is
linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).

linthresh: The range within which the plot is linear (to avoid having the plot go to infinity around
zero).

linscale: This allows the linear range (-linthresh to linthresh) to be stretched relative to the logarithmic
range. Its value is the number of decades to use for each half of the linear range. For example, when
linscale == 1.0 (the default), the space used for the positive and negative halves of the linear range
will be equal to one decade in the logarithmic range. Defaults to 1.

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

matplotlib.colors.from_levels_and_colors(levels, colors, extend=’neither’)
A helper routine to generate a cmap and a norm instance which behave similar to contourf’s levels

60.1. matplotlib.colors 911

Matplotlib, Release 1.3.1

and colors arguments.
Parameters levels : sequence of numbers

The quantization levels used to construct the BoundaryNorm. Values
v are quantizized to level i if lev[i] <= v < lev[i+1].

colors : sequence of colors
The fill color to use for each level. If extend is “neither” there must
be n_level - 1 colors. For an extend of “min” or “max” add one
extra color, and for an extend of “both” add two colors.

extend : {‘neither’, ‘min’, ‘max’, ‘both’}, optional
The behaviour when a value falls out of range of the given levels. See
contourf() for details.

Returns (cmap, norm) : tuple containing a Colormap and a Normalize instance

matplotlib.colors.hex2color(s)
Take a hex string s and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725,
0.93725)

matplotlib.colors.hsv_to_rgb(hsv)
convert hsv values in a numpy array to rgb values both input and output arrays have shape (M,N,3)

matplotlib.colors.is_color_like(c)
Return True if c can be converted to RGB

matplotlib.colors.makeMappingArray(N, data, gamma=1.0)
Create an N -element 1-d lookup table

data represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents
how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between
0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as
might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and
y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all
values of x must be in increasing order. Values between the given mapping points are determined by
simple linear interpolation.

Alternatively, data can be a function mapping values between 0 - 1 to 0 - 1.

The function returns an array “result” where result[x*(N-1)] gives the closest value for values of
x between 0 and 1.

matplotlib.colors.no_norm(*args, **kwargs)
Deprecated since version 1.3: The no_norm class alias was deprecated in version 1.3. Use NoNorm
instead.

Dummy replacement for Normalize, for the case where we want to use indices directly in a
ScalarMappable .

matplotlib.colors.normalize(*args, **kwargs)
Deprecated since version 1.3: The normalize class alias was deprecated in version 1.3. Use Normalize
instead.

A class which, when called, can normalize data into the [0.0, 1.0] interval.

matplotlib.colors.rgb2hex(rgb)
Given an rgb or rgba sequence of 0-1 floats, return the hex string

912 Chapter 60. colors

Matplotlib, Release 1.3.1

matplotlib.colors.rgb_to_hsv(arr)
convert rgb values in a numpy array to hsv values input and output arrays should have shape (M,N,3)

60.1. matplotlib.colors 913

Matplotlib, Release 1.3.1

914 Chapter 60. colors

CHAPTER

SIXTYONE

DATES

WeekdayLocator

RRuleLocator

MonthLocator

SecondLocator

MinuteLocator

HourLocator

DayLocator

DateConverterConversionInterface

AutoDateFormatter

Formatter

DateFormatter

IndexDateFormatter

YearLocator

DateLocator

MicrosecondLocator

AutoDateLocator

TickHelper

Locator

rrulewrapper

strpdate2num

61.1 matplotlib.dates

Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python datetime,
the add-on modules pytz and dateutils. datetime objects are converted to floating point numbers which
represent time in days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, not 0.25.
The helper functions date2num(), num2date() and drange() are used to facilitate easy conversion to and
from datetime and numeric ranges.

Note: Like Python’s datetime, mpl uses the Gregorian calendar for all conversions between dates and
floating point numbers. This practice is not universal, and calendar differences can cause confusing differ-
ences between what Python and mpl give as the number of days since 0001-01-01 and what other software
and databases yield. For example, the US Naval Observatory uses a calendar that switches from Julian to
Gregorian in October, 1582. Hence, using their calculator, the number of days between 0001-01-01 and
2006-04-01 is 732403, whereas using the Gregorian calendar via the datetime module we find:

In [31]:date(2006,4,1).toordinal() - date(1,1,1).toordinal()
Out[31]:732401

915

Matplotlib, Release 1.3.1

A wide range of specific and general purpose date tick locators and formatters are provided in this module.
See matplotlib.ticker for general information on tick locators and formatters. These are described
below.

All the matplotlib date converters, tickers and formatters are timezone aware, and the default timezone is
given by the timezone parameter in your matplotlibrc file. If you leave out a tz timezone instance, the
default from your rc file will be assumed. If you want to use a custom time zone, pass a pytz.timezone
instance with the tz keyword argument to num2date(), plot_date(), and any custom date tickers or
locators you create. See pytz for information on pytz and timezone handling.

The dateutil module provides additional code to handle date ticking, making it easy to place ticks on any
kinds of dates. See examples below.

61.1.1 Date tickers

Most of the date tickers can locate single or multiple values. For example:

tick on mondays every week
loc = WeekdayLocator(byweekday=MO, tz=tz)

tick on mondays and saturdays
loc = WeekdayLocator(byweekday=(MO, SA))

In addition, most of the constructors take an interval argument:

tick on mondays every second week
loc = WeekdayLocator(byweekday=MO, interval=2)

The rrule locator allows completely general date ticking:

tick every 5th easter
rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
loc = RRuleLocator(rule)

Here are all the date tickers:

• MinuteLocator: locate minutes

• HourLocator: locate hours

• DayLocator: locate specifed days of the month

• WeekdayLocator: Locate days of the week, eg MO, TU

• MonthLocator: locate months, eg 7 for july

• YearLocator: locate years that are multiples of base

• RRuleLocator: locate using a matplotlib.dates.rrulewrapper. The rrulewrapper is a sim-
ple wrapper around a dateutil.rrule (dateutil) which allow almost arbitrary date tick specifica-
tions. See rrule example.

916 Chapter 61. dates

http://pytz.sourceforge.net
http://labix.org/python-dateutil
http://labix.org/python-dateutil

Matplotlib, Release 1.3.1

• AutoDateLocator: On autoscale, this class picks the best MultipleDateLocator to set the view
limits and the tick locations.

61.1.2 Date formatters

Here all all the date formatters:

• AutoDateFormatter: attempts to figure out the best format to use. This is most useful when used
with the AutoDateLocator.

• DateFormatter: use strftime() format strings

• IndexDateFormatter: date plots with implicit x indexing.

matplotlib.dates.date2num(d)
d is either a datetime instance or a sequence of datetimes.

Return value is a floating point number (or sequence of floats) which gives the number of days (frac-
tion part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, plus one. The addition
of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not
universal practice. For details, see the module docstring.

matplotlib.dates.num2date(x, tz=None)
x is a float value which gives the number of days (fraction part represents hours, minutes, seconds)
since 0001-01-01 00:00:00 UTC plus one. The addition of one here is a historical artifact. Also, note
that the Gregorian calendar is assumed; this is not universal practice. For details, see the module
docstring.

Return value is a datetime instance in timezone tz (default to rcparams TZ value).

If x is a sequence, a sequence of datetime objects will be returned.

matplotlib.dates.drange(dstart, dend, delta)
Return a date range as float Gregorian ordinals. dstart and dend are datetime instances. delta is a
datetime.timedelta instance.

matplotlib.dates.epoch2num(e)
Convert an epoch or sequence of epochs to the new date format, that is days since 0001.

matplotlib.dates.num2epoch(d)
Convert days since 0001 to epoch. d can be a number or sequence.

matplotlib.dates.mx2num(mxdates)
Convert mx datetime instance (or sequence of mx instances) to the new date format.

class matplotlib.dates.DateFormatter(fmt, tz=None)
Bases: matplotlib.ticker.Formatter

Tick location is seconds since the epoch. Use a strftime() format string.

Python only supports datetime strftime() formatting for years greater than 1900. Thanks to
Andrew Dalke, Dalke Scientific Software who contributed the strftime() code below to include
dates earlier than this year.
fmt is an strftime() format string; tz is the tzinfo instance.

61.1. matplotlib.dates 917

Matplotlib, Release 1.3.1

illegal_s = <_sre.SRE_Pattern object at 0x299ac30>

set_tzinfo(tz)

strftime(dt, fmt)

class matplotlib.dates.IndexDateFormatter(t, fmt, tz=None)
Bases: matplotlib.ticker.Formatter

Use with IndexLocator to cycle format strings by index.

t is a sequence of dates (floating point days). fmt is a strftime() format string.

class matplotlib.dates.AutoDateFormatter(locator, tz=None, defaultfmt=’%Y-%m-%d’)
Bases: matplotlib.ticker.Formatter

This class attempts to figure out the best format to use. This is most useful when used with the
AutoDateLocator.

The AutoDateFormatter has a scale dictionary that maps the scale of the tick (the distance in days
between one major tick) and a format string. The default looks like this:

self.scaled = {
365.0 : ’%Y’,
30. : ’%b %Y’,
1.0 : ’%b %d %Y’,
1./24. : ’%H:%M:%D’,
1. / (24. * 60.): ’%H:%M:%S.%f’,
}

The algorithm picks the key in the dictionary that is >= the current scale and uses that format string.
You can customize this dictionary by doing:

formatter = AutoDateFormatter()
formatter.scaled[1/(24.*60.)] = ’%M:%S’ # only show min and sec

Autofmt the date labels. The default format is the one to use if none of the times in scaled match

class matplotlib.dates.DateLocator(tz=None)
Bases: matplotlib.ticker.Locator

tz is a tzinfo instance.

datalim_to_dt()

hms0d = {‘byminute’: 0, ‘byhour’: 0, ‘bysecond’: 0}

nonsingular(vmin, vmax)
Given the proposed upper and lower extent, adjust the range if it is too close to being singular
(i.e. a range of ~0).

918 Chapter 61. dates

Matplotlib, Release 1.3.1

set_tzinfo(tz)

viewlim_to_dt()

class matplotlib.dates.RRuleLocator(o, tz=None)
Bases: matplotlib.dates.DateLocator

autoscale()
Set the view limits to include the data range.

static get_unit_generic(freq)

class matplotlib.dates.AutoDateLocator(tz=None, minticks=5, maxticks=None, inter-
val_multiples=False)

Bases: matplotlib.dates.DateLocator

On autoscale, this class picks the best DateLocator to set the view limits and the tick locations.

minticks is the minimum number of ticks desired, which is used to select the type of ticking (yearly,
monthly, etc.).

maxticks is the maximum number of ticks desired, which controls any interval between ticks (ticking
every other, every 3, etc.). For really fine-grained control, this can be a dictionary mapping individual
rrule frequency constants (YEARLY, MONTHLY, etc.) to their own maximum number of ticks. This
can be used to keep the number of ticks appropriate to the format chosen in AutoDateFormatter.
Any frequency not specified in this dictionary is given a default value.

tz is a tzinfo instance.

interval_multiples is a boolean that indicates whether ticks should be chosen to be multiple of the
interval. This will lock ticks to ‘nicer’ locations. For example, this will force the ticks to be at hours
0,6,12,18 when hourly ticking is done at 6 hour intervals.

The AutoDateLocator has an interval dictionary that maps the frequency of the tick (a constant from
dateutil.rrule) and a multiple allowed for that ticking. The default looks like this:

self.intervald = {
YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,

1000, 2000, 4000, 5000, 10000],
MONTHLY : [1, 2, 3, 4, 6],
DAILY : [1, 2, 3, 7, 14],
HOURLY : [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30],
MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,

5000, 10000, 20000, 50000, 100000, 200000, 500000,
1000000],

}

The interval is used to specify multiples that are appropriate for the frequency of ticking. For instance,
every 7 days is sensible for daily ticks, but for minutes/seconds, 15 or 30 make sense. You can
customize this dictionary by doing:

61.1. matplotlib.dates 919

Matplotlib, Release 1.3.1

locator = AutoDateLocator()
locator.intervald[HOURLY] = [3] # only show every 3 hours

autoscale()
Try to choose the view limits intelligently.

get_locator(dmin, dmax)
Pick the best locator based on a distance.

nonsingular(vmin, vmax)

refresh()
Refresh internal information based on current limits.

set_axis(axis)

class matplotlib.dates.YearLocator(base=1, month=1, day=1, tz=None)
Bases: matplotlib.dates.DateLocator

Make ticks on a given day of each year that is a multiple of base.

Examples:

Tick every year on Jan 1st
locator = YearLocator()

Tick every 5 years on July 4th
locator = YearLocator(5, month=7, day=4)

Mark years that are multiple of base on a given month and day (default jan 1).

autoscale()
Set the view limits to include the data range.

class matplotlib.dates.MonthLocator(bymonth=None, bymonthday=1, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each month month, eg 1, 3, 12.

Mark every month in bymonth; bymonth can be an int or sequence. Default is range(1,13), i.e.
every month.

interval is the interval between each iteration. For example, if interval=2, mark every second
occurance.

class matplotlib.dates.WeekdayLocator(byweekday=1, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each weekday.

Mark every weekday in byweekday; byweekday can be a number or sequence.

Elements of byweekday must be one of MO, TU, WE, TH, FR, SA, SU, the constants from
dateutils.rrule.

920 Chapter 61. dates

Matplotlib, Release 1.3.1

interval specifies the number of weeks to skip. For example, interval=2 plots every second week.

class matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each day of the month. For example, 1, 15, 30.

Mark every day in bymonthday; bymonthday can be an int or sequence.

Default is to tick every day of the month: bymonthday=range(1,32)

class matplotlib.dates.HourLocator(byhour=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each hour.

Mark every hour in byhour; byhour can be an int or sequence. Default is to tick every hour:
byhour=range(24)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.MinuteLocator(byminute=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each minute.

Mark every minute in byminute; byminute can be an int or sequence. Default is to tick every minute:
byminute=range(60)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.SecondLocator(bysecond=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each second.

Mark every second in bysecond; bysecond can be an int or sequence. Default is to tick every second:
bysecond = range(60)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.MicrosecondLocator(interval=1, tz=None)
Bases: matplotlib.dates.DateLocator

Make ticks on occurances of each microsecond.

interval is the interval between each iteration. For example, if interval=2, mark every second
microsecond.

set_axis(axis)

set_data_interval(vmin, vmax)

61.1. matplotlib.dates 921

Matplotlib, Release 1.3.1

set_view_interval(vmin, vmax)

class matplotlib.dates.rrule(freq, dtstart=None, interval=1, wkst=None, count=None, un-
til=None, bysetpos=None, bymonth=None, bymonthday=None,
byyearday=None, byeaster=None, byweekno=None, byweek-
day=None, byhour=None, byminute=None, bysecond=None,
cache=False)

Bases: dateutil.rrule.rrulebase

class matplotlib.dates.relativedelta(dt1=None, dt2=None, years=0, months=0, days=0,
leapdays=0, weeks=0, hours=0, minutes=0, sec-
onds=0, microseconds=0, year=None, month=None,
day=None, weekday=None, yearday=None, nlyear-
day=None, hour=None, minute=None, second=None,
microsecond=None)

The relativedelta type is based on the specification of the excelent work done by M.-A. Lemburg in
his mx.DateTime extension. However, notice that this type does NOT implement the same algorithm
as his work. Do NOT expect it to behave like mx.DateTime’s counterpart.

There’s two different ways to build a relativedelta instance. The first one is passing it two date/datetime
classes:

relativedelta(datetime1, datetime2)
And the other way is to use the following keyword arguments:

year, month, day, hour, minute, second, microsecond: Absolute information.
years, months, weeks, days, hours, minutes, seconds, microseconds: Relative infor-

mation, may be negative.
weekday: One of the weekday instances (MO, TU, etc). These instances may receive a

parameter N, specifying the Nth weekday, which could be positive or negative (like
MO(+1) or MO(-2). Not specifying it is the same as specifying +1. You can also
use an integer, where 0=MO.

leapdays: Will add given days to the date found, if year is a leap year, and the date found
is post 28 of february.

yearday, nlyearday: Set the yearday or the non-leap year day (jump leap days). These
are converted to day/month/leapdays information.

Here is the behavior of operations with relativedelta:
1.Calculate the absolute year, using the ‘year’ argument, or the original datetime year, if the

argument is not present.
2.Add the relative ‘years’ argument to the absolute year.
3.Do steps 1 and 2 for month/months.
4.Calculate the absolute day, using the ‘day’ argument, or the original datetime day, if the argu-

ment is not present. Then, subtract from the day until it fits in the year and month found after
their operations.

5.Add the relative ‘days’ argument to the absolute day. Notice that the ‘weeks’ argument is
multiplied by 7 and added to ‘days’.

6.Do steps 1 and 2 for hour/hours, minute/minutes, second/seconds, microsecond/microseconds.
7.If the ‘weekday’ argument is present, calculate the weekday, with the given (wday, nth) tuple.

wday is the index of the weekday (0-6, 0=Mon), and nth is the number of weeks to add forward
or backward, depending on its signal. Notice that if the calculated date is already Monday, for
example, using (0, 1) or (0, -1) won’t change the day.

922 Chapter 61. dates

Matplotlib, Release 1.3.1

matplotlib.dates.seconds(s)
Return seconds as days.

matplotlib.dates.minutes(m)
Return minutes as days.

matplotlib.dates.hours(h)
Return hours as days.

matplotlib.dates.weeks(w)
Return weeks as days.

61.1. matplotlib.dates 923

Matplotlib, Release 1.3.1

924 Chapter 61. dates

CHAPTER

SIXTYTWO

FIGURE

62.1 matplotlib.figure

The figure module provides the top-level Artist, the Figure, which contains all the plot elements. The
following classes are defined

SubplotParams control the default spacing of the subplots

Figure top level container for all plot elements

class matplotlib.figure.AxesStack
Bases: matplotlib.cbook.Stack

Specialization of the Stack to handle all tracking of Axes in a Figure. This stack stores key, (ind,
axes) pairs, where:

•key should be a hash of the args and kwargs used in generating the Axes.
•ind is a serial number for tracking the order in which axes were added.

The AxesStack is a callable, where ax_stack() returns the current axes. Alternatively the
current_key_axes() will return the current key and associated axes.

add(key, a)
Add Axes a, with key key, to the stack, and return the stack.

If a is already on the stack, don’t add it again, but return None.

as_list()
Return a list of the Axes instances that have been added to the figure

bubble(a)
Move the given axes, which must already exist in the stack, to the top.

current_key_axes()
Return a tuple of (key, axes) for the active axes.

If no axes exists on the stack, then returns (None, None).

get(key)
Return the Axes instance that was added with key. If it is not present, return None.

remove(a)
Remove the axes from the stack.

925

Matplotlib, Release 1.3.1

class matplotlib.figure.Figure(figsize=None, dpi=None, facecolor=None, edgecolor=None,
linewidth=0.0, frameon=None, subplotpars=None,
tight_layout=None)

Bases: matplotlib.artist.Artist

The Figure instance supports callbacks through a callbacks attribute which is a
matplotlib.cbook.CallbackRegistry instance. The events you can connect to are
‘dpi_changed’, and the callback will be called with func(fig) where fig is the Figure instance.
patch The figure patch is drawn by a matplotlib.patches.Rectangle instance
suppressComposite For multiple figure images, the figure will make composite images depending on

the renderer option_image_nocomposite function. If suppressComposite is True|False, this will
override the renderer.

figsize w,h tuple in inches
dpi Dots per inch
facecolor The figure patch facecolor; defaults to rc figure.facecolor
edgecolor The figure patch edge color; defaults to rc figure.edgecolor
linewidth The figure patch edge linewidth; the default linewidth of the frame
frameon If False, suppress drawing the figure frame
subplotpars A SubplotParams instance, defaults to rc
tight_layout If False use subplotpars; if True adjust subplot parameters using tight_layout() with

default padding. When providing a dict containing the keys pad, w_pad, h_pad and rect, the
default tight_layout() paddings will be overridden. Defaults to rc figure.autolayout.

add_axes(*args, **kwargs)
Add an axes at position rect [left, bottom, width, height] where all quantities are in fractions of
figure width and height. kwargs are legal Axes kwargs plus projection which sets the projection
type of the axes. (For backward compatibility, polar=True may also be provided, which is
equivalent to projection=’polar’). Valid values for projection are: [’aitoff’, ‘hammer’,
‘lambert’, ‘mollweide’, ‘polar’, ‘rectilinear’]. Some of these projections support additional
kwargs, which may be provided to add_axes(). Typical usage:

rect = l,b,w,h
fig.add_axes(rect)
fig.add_axes(rect, frameon=False, axisbg=’g’)
fig.add_axes(rect, polar=True)
fig.add_axes(rect, projection=’polar’)
fig.add_axes(ax)

If the figure already has an axes with the same parameters, then it will simply make that axes
current and return it. If you do not want this behavior, e.g., you want to force the creation of a
new Axes, you must use a unique set of args and kwargs. The axes label attribute has been
exposed for this purpose. e.g., if you want two axes that are otherwise identical to be added to
the figure, make sure you give them unique labels:

fig.add_axes(rect, label=’axes1’)
fig.add_axes(rect, label=’axes2’)

In rare circumstances, add_axes may be called with a single argument, an Axes instance already
created in the present figure but not in the figure’s list of axes. For example, if an axes has been
removed with delaxes(), it can be restored with:

926 Chapter 62. figure

Matplotlib, Release 1.3.1

fig.add_axes(ax)

In all cases, the Axes instance will be returned.

In addition to projection, the following kwargs are supported:

Property Description
adjustable [‘box’ | ‘datalim’ | ‘box-forced’]
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
figure unknown
frame_on [True | False]
gid an id string
label string or anything printable with ‘%s’ conversion.
lod [True | False]
navigate [True | False]
navigate_mode unknown
path_effects unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
title unknown
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel unknown
xlim length 2 sequence of floats
xmargin unknown

Continued on next page

62.1. matplotlib.figure 927

Matplotlib, Release 1.3.1

Table 62.1 – continued from previous page
Property Description
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats
ybound unknown
ylabel unknown
ylim length 2 sequence of floats
ymargin unknown
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

add_axobserver(func)
whenever the axes state change, func(self) will be called

add_subplot(*args, **kwargs)
Add a subplot. Examples:

fig.add_subplot(111)

equivalent but more general
fig.add_subplot(1,1,1)

add subplot with red background
fig.add_subplot(212, axisbg=’r’)

add a polar subplot
fig.add_subplot(111, projection=’polar’)

add Subplot instance sub
fig.add_subplot(sub)

kwargs are legal Axes kwargs plus projection, which chooses a projection type for the axes.
(For backward compatibility, polar=True may also be provided, which is equivalent to pro-
jection=’polar’). Valid values for projection are: [’aitoff’, ‘hammer’, ‘lambert’, ‘mollweide’,
‘polar’, ‘rectilinear’]. Some of these projections support additional kwargs, which may be pro-
vided to add_axes().

The Axes instance will be returned.

If the figure already has a subplot with key (args, kwargs) then it will simply make that subplot
current and return it.

The following kwargs are supported:

Property Description
adjustable [‘box’ | ‘datalim’ | ‘box-forced’]

Continued on next page

928 Chapter 62. figure

Matplotlib, Release 1.3.1

Table 62.2 – continued from previous page
Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
figure unknown
frame_on [True | False]
gid an id string
label string or anything printable with ‘%s’ conversion.
lod [True | False]
navigate [True | False]
navigate_mode unknown
path_effects unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
title unknown
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel unknown
xlim length 2 sequence of floats
xmargin unknown
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats
ybound unknown
ylabel unknown
ylim length 2 sequence of floats

Continued on next page

62.1. matplotlib.figure 929

Matplotlib, Release 1.3.1

Table 62.2 – continued from previous page
Property Description
ymargin unknown
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

autofmt_xdate(bottom=0.2, rotation=30, ha=’right’)
Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common
use case is a number of subplots with shared xaxes where the x-axis is date data. The ticklabels
are often long, and it helps to rotate them on the bottom subplot and turn them off on other
subplots, as well as turn off xlabels.
bottom The bottom of the subplots for subplots_adjust()
rotation The rotation of the xtick labels
ha The horizontal alignment of the xticklabels

axes None
Read-only: list of axes in Figure

clear()
Clear the figure – synonym for clf().

clf(keep_observers=False)
Clear the figure.

Set keep_observers to True if, for example, a gui widget is tracking the axes in the figure.

colorbar(mappable, cax=None, ax=None, use_gridspec=True, **kw)
Create a colorbar for a ScalarMappable instance, mappable.

Documentation for the pylab thin wrapper:

Add a colorbar to a plot.

Function signatures for the pyplot interface; all but the first are also method signatures for the
colorbar() method:

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

arguments:
mappable the Image, ContourSet, etc. to which the colorbar applies; this ar-

gument is mandatory for the colorbar() method but optional for the
colorbar() function, which sets the default to the current image.

keyword arguments:
cax None | axes object into which the colorbar will be drawn

930 Chapter 62. figure

Matplotlib, Release 1.3.1

ax None | parent axes object(s) from which space for a new colorbar axes will be
stolen. If a list of axes is given they will all be resized to make room for the
colorbar axes.

use_gridspec False | If cax is None, a new cax is created as an instance of Axes.
If ax is an instance of Subplot and use_gridspec is True, cax is created as an
instance of Subplot using the grid_spec module.

Additional keyword arguments are of two kinds:
axes properties:

Prop-
erty

Description

ori-
en-
ta-
tion

vertical or horizontal

frac-
tion

0.15; fraction of original axes to use for colorbar

pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes
between colorbar and new image axes

shrink 1.0; fraction by which to shrink the colorbar
as-
pect

20; ratio of long to short dimensions

an-
chor

(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal; the anchor
point of the colorbar axes

pan-
chor

(1.0, 0.5) if vertical; (0.5, 0.0) if horizontal; the anchor
point of the colorbar parent axes. If False, the parent axes’
anchor will be unchanged

colorbar properties:

62.1. matplotlib.figure 931

Matplotlib, Release 1.3.1

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make
pointed end(s) for out-of- range values. These are set for a
given colormap using the colormap set_under and set_over
methods.

ex-
tend-
frac

[None | ‘auto’ | length | lengths] If set to None, both the
minimum and maximum triangular colorbar extensions
with have a length of 5% of the interior colorbar length (this
is the default setting). If set to ‘auto’, makes the triangular
colorbar extensions the same lengths as the interior boxes
(when spacing is set to ‘uniform’) or the same lengths as
the respective adjacent interior boxes (when spacing is set
to ‘proportional’). If a scalar, indicates the length of both
the minimum and maximum triangular colorbar extensions
as a fraction of the interior colorbar length. A two-element
sequence of fractions may also be given, indicating the
lengths of the minimum and maximum colorbar extensions
respectively as a fraction of the interior colorbar length.

ex-
ten-
drect

[False | True] If False the minimum and maximum
colorbar extensions will be triangular (the default). If True
the extensions will be rectangular.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each
discrete color the same space; proportional makes the space
proportional to the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are
determined automatically from the input.

for-
mat

[None | format string | Formatter object] If None, the
ScalarFormatter is used. If a format string is given, e.g.,
‘%.3f’, that is used. An alternative Formatter object may
be given instead.

drawedges[False | True] If true, draw lines at color boundaries.

The following will probably be useful only in the context of indexed
colors (that is, when the mappable has norm=NoNorm()), or other
unusual circumstances.

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the
sequence of boundaries. For each region delimited by
adjacent entries in boundaries, the color mapped to the
corresponding value in values will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from
being taller than the axes of the mappable to which the colorbar is attached; but it is a manual

932 Chapter 62. figure

Matplotlib, Release 1.3.1

method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too
wide) use a smaller value of shrink.

For more precise control, you can manually specify the positions of the axes objects in which
the mappable and the colorbar are drawn. In this case, do not use any of the axes properties
kwargs.

It is known that some vector graphics viewer (svg and pdf) renders white gaps between segments
of the colorbar. This is due to bugs in the viewers not matplotlib. As a workaround the colorbar
can be rendered with overlapping segments:

cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()

However this has negative consequences in other circumstances. Particularly with semi trans-
parent images (alpha < 1) and colorbar extensions and is not enabled by default see (issue
#1188).
returns: Colorbar instance; see also its base class, ColorbarBase. Call the set_label()

method to label the colorbar.

contains(mouseevent)
Test whether the mouse event occurred on the figure.

Returns True,{}

delaxes(a)
remove a from the figure and update the current axes

dpi None

draw(artist, renderer, *args, **kwargs)
Render the figure using matplotlib.backend_bases.RendererBase instance renderer.

draw_artist(a)
draw matplotlib.artist.Artist instance a only – this is available only after the figure is
drawn

figimage(X, xo=0, yo=0, alpha=None, norm=None, cmap=None, vmin=None, vmax=None,
origin=None, **kwargs)

Adds a non-resampled image to the figure.

call signatures:

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

figimage(X, xo, yo)

with pixel offsets xo, yo,

X must be a float array:

62.1. matplotlib.figure 933

Matplotlib, Release 1.3.1

•If X is MxN, assume luminance (grayscale)
•If X is MxNx3, assume RGB
•If X is MxNx4, assume RGBA

Optional keyword arguments:
Key-
word

Description

xo
or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.colors.Colormap instance, eg cm.jet. If None,
default to the rc image.cmap value

norm a matplotlib.colors.Normalize instance. The default is
normalization(). This scales luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min
and max of the luminance values will be used. Note if you pass a norm
instance, the settings for vmin and vmax will be ignored.

al-
pha

the alpha blending value, default is None

ori-
gin

[‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the
upper left or lower left corner of the axes. Defaults to the rc
image.origin value

figimage complements the axes image (imshow()) which will be resampled to fit the current
axes. If you want a resampled image to fill the entire figure, you can define an Axes with size
[0,1,0,1].

An matplotlib.image.FigureImage instance is returned.

934 Chapter 62. figure

Matplotlib, Release 1.3.1

Additional kwargs are Artist kwargs passed on to FigureImage

gca(**kwargs)
Return the current axes, creating one if necessary

The following kwargs are supported for ensuring the returned axes adheres to the given projec-
tion etc., and for axes creation if the active axes does not exist:

Property Description
adjustable [‘box’ | ‘datalim’ | ‘box-forced’]
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]

Continued on next page

62.1. matplotlib.figure 935

Matplotlib, Release 1.3.1

Table 62.3 – continued from previous page
Property Description
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
figure unknown
frame_on [True | False]
gid an id string
label string or anything printable with ‘%s’ conversion.
lod [True | False]
navigate [True | False]
navigate_mode unknown
path_effects unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
title unknown
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel unknown
xlim length 2 sequence of floats
xmargin unknown
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats
ybound unknown
ylabel unknown
ylim length 2 sequence of floats
ymargin unknown
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

get_axes()

get_children()
get a list of artists contained in the figure

get_default_bbox_extra_artists()

936 Chapter 62. figure

Matplotlib, Release 1.3.1

get_dpi()
Return the dpi as a float

get_edgecolor()
Get the edge color of the Figure rectangle

get_facecolor()
Get the face color of the Figure rectangle

get_figheight()
Return the figheight as a float

get_figwidth()
Return the figwidth as a float

get_frameon()
get the boolean indicating frameon

get_size_inches()

get_tight_layout()
Return the Boolean flag, True to use :meth‘tight_layout‘ when drawing.

get_tightbbox(renderer)
Return a (tight) bounding box of the figure in inches.

It only accounts axes title, axis labels, and axis ticklabels. Needs improvement.

get_window_extent(*args, **kwargs)
get the figure bounding box in display space; kwargs are void

ginput(n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3, mouse_stop=2)
Call signature:

ginput(self, n=1, timeout=30, show_clicks=True,
mouse_add=1, mouse_pop=3, mouse_stop=2)

Blocking call to interact with the figure.

This will wait for n clicks from the user and return a list of the coordinates of each click.

If timeout is zero or negative, does not timeout.

If n is zero or negative, accumulate clicks until a middle click (or potentially both mouse buttons
at once) terminates the input.

Right clicking cancels last input.

The buttons used for the various actions (adding points, removing points, terminating the in-
puts) can be overriden via the arguments mouse_add, mouse_pop and mouse_stop, that give the
associated mouse button: 1 for left, 2 for middle, 3 for right.

The keyboard can also be used to select points in case your mouse does not have one or more of
the buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the

62.1. matplotlib.figure 937

Matplotlib, Release 1.3.1

enter key terminates input and any other key (not already used by the window manager) selects
a point.

hold(b=None)
Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to
boolean value b.

e.g.:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

legend(handles, labels, *args, **kwargs)
Place a legend in the figure. Labels are a sequence of strings, handles is a sequence of Line2D
or Patch instances, and loc can be a string or an integer specifying the legend location

USAGE:

legend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

The loc location codes are:

’best’ : 0, (currently not supported for figure legends)
’upper right’ : 1,
’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,
’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

loc can also be an (x,y) tuple in figure coords, which specifies the lower left of the legend box.
figure coords are (0,0) is the left, bottom of the figure and 1,1 is the right, top.

Keyword arguments:
prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties

instance. If prop is a dictionary, a new instance will be created with prop. If
None, use rc settings.

numpoints: integer The number of points in the legend line, default is 4
scatterpoints: integer The number of points in the legend line, default is 4
scatteryoffsets: list of floats a list of yoffsets for scatter symbols in legend
markerscale: [None | scalar] The relative size of legend markers vs. original. If

None, use rc settings.
fancybox: [None | False | True] if True, draw a frame with a round fancybox. If

None, use rc

938 Chapter 62. figure

Matplotlib, Release 1.3.1

shadow: [None | False | True] If True, draw a shadow behind legend. If None,
use rc settings.

ncol [integer] number of columns. default is 1
mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally

expanded to fill the axes area (or bbox_to_anchor)
title [string] the legend title

Padding and spacing between various elements use following keywords parameters. The di-
mensions of these values are given as a fraction of the fontsize. Values from rcParams will be
used if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Note: Not all kinds of artist are supported by the legend. See LINK (FIXME) for details.

Example:

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Line 1
Line 2

Line 3
Line 4

savefig(*args, **kwargs)
Save the current figure.

62.1. matplotlib.figure 939

Matplotlib, Release 1.3.1

Call signature:

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1,
frameon=None)

The output formats available depend on the backend being used.

Arguments:
fname: A string containing a path to a filename, or a Python file-like object, or

possibly some backend-dependent object such as PdfPages.

If format is None and fname is a string, the output format is deduced from
the extension of the filename. If the filename has no extension, the value of
the rc parameter savefig.format is used.

If fname is not a string, remember to specify format to ensure that the correct
backend is used.

Keyword arguments:
dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default

to the value savefig.dpi in the matplotlibrc file.
facecolor, edgecolor: the colors of the figure rectangle
orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently

only on postscript output
papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’

through ‘b10’. Only supported for postscript output.
format: One of the file extensions supported by the active backend. Most backends

support png, pdf, ps, eps and svg.
transparent: If True, the axes patches will all be transparent; the figure patch

will also be transparent unless facecolor and/or edgecolor are specified via
kwargs. This is useful, for example, for displaying a plot on top of a col-
ored background on a web page. The transparency of these patches will be
restored to their original values upon exit of this function.

frameon: If True, the figure patch will be colored, if False, the figure background
will be transparent. If not provided, the rcParam ‘savefig.frameon’ will be
used.

bbox_inches: Bbox in inches. Only the given portion of the figure is saved. If
‘tight’, try to figure out the tight bbox of the figure.

pad_inches: Amount of padding around the figure when bbox_inches is ‘tight’.
bbox_extra_artists: A list of extra artists that will be considered when the tight

bbox is calculated.

sca(a)
Set the current axes to be a and return a

set_canvas(canvas)
Set the canvas the contains the figure

ACCEPTS: a FigureCanvas instance

940 Chapter 62. figure

Matplotlib, Release 1.3.1

set_dpi(val)
Set the dots-per-inch of the figure

ACCEPTS: float

set_edgecolor(color)
Set the edge color of the Figure rectangle

ACCEPTS: any matplotlib color - see help(colors)

set_facecolor(color)
Set the face color of the Figure rectangle

ACCEPTS: any matplotlib color - see help(colors)

set_figheight(val)
Set the height of the figure in inches

ACCEPTS: float

set_figwidth(val)
Set the width of the figure in inches

ACCEPTS: float

set_frameon(b)
Set whether the figure frame (background) is displayed or invisible

ACCEPTS: boolean

set_size_inches(w, h, forward=False)
Set the figure size in inches

Usage:

fig.set_size_inches(w,h) # OR
fig.set_size_inches((w,h))

optional kwarg forward=True will cause the canvas size to be automatically updated; eg you
can resize the figure window from the shell

ACCEPTS: a w,h tuple with w,h in inches

set_tight_layout(tight)
Set whether tight_layout() is used upon drawing. If None, the rc-
Params[’figure.autolayout’] value will be set.

When providing a dict containing the keys pad, w_pad, h_pad and rect, the default
tight_layout() paddings will be overridden.

ACCEPTS: [True | False | dict | None]

show(warn=True)
If using a GUI backend with pyplot, display the figure window.

If the figure was not created using figure(), it will lack a FigureManagerBase, and will
raise an AttributeError.

62.1. matplotlib.figure 941

Matplotlib, Release 1.3.1

For non-GUI backends, this does nothing, in which case a warning will be issued if warn is
True (default).

subplots_adjust(*args, **kwargs)
Call signature:

subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

Update the SubplotParams with kwargs (defaulting to rc when None) and update the subplot
locations

suptitle(t, **kwargs)
Add a centered title to the figure.

kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:
x [0.5] The x location of the text in figure coords
y [0.98] The y location of the text in figure coords
horizontalalignment [‘center’] The horizontal alignment of the text
verticalalignment [‘top’] The vertical alignment of the text

A matplotlib.text.Text instance is returned.

Example:

fig.suptitle(’this is the figure title’, fontsize=12)

text(x, y, s, *args, **kwargs)
Add text to figure.

Call signature:

text(x, y, s, fontdict=None, **kwargs)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.

kwargs control the Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

Continued on next page

942 Chapter 62. figure

Matplotlib, Release 1.3.1

Table 62.4 – continued from previous page
Property Description
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

tight_layout(renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None)
Adjust subplot parameters to give specified padding.

Parameters:
pad [float] padding between the figure edge and the edges of subplots, as a fraction

of the font-size.
h_pad, w_pad [float] padding (height/width) between edges of adjacent subplots.

Defaults to pad_inches.
rect [if rect is given, it is interpreted as a rectangle] (left, bottom, right, top) in the

normalized figure coordinate that the whole subplots area (including labels)
will fit into. Default is (0, 0, 1, 1).

waitforbuttonpress(timeout=-1)
Call signature:

62.1. matplotlib.figure 943

Matplotlib, Release 1.3.1

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.

This will return True is a key was pressed, False if a mouse button was pressed and None if
timeout was reached without either being pressed.

If timeout is negative, does not timeout.

class matplotlib.figure.SubplotParams(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

A class to hold the parameters for a subplot

All dimensions are fraction of the figure width or height. All values default to their rc params

The following attributes are available
left [0.125] The left side of the subplots of the figure
right [0.9] The right side of the subplots of the figure
bottom [0.1] The bottom of the subplots of the figure
top [0.9] The top of the subplots of the figure
wspace [0.2] The amount of width reserved for blank space between subplots
hspace [0.2] The amount of height reserved for white space between subplots
update(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)

Update the current values. If any kwarg is None, default to the current value, if set, otherwise
to rc

matplotlib.figure.figaspect(arg)
Create a figure with specified aspect ratio. If arg is a number, use that aspect ratio. If arg is an array,
figaspect will determine the width and height for a figure that would fit array preserving aspect ratio.
The figure width, height in inches are returned. Be sure to create an axes with equal with and height,
eg

Example usage:

make a figure twice as tall as it is wide
w, h = figaspect(2.)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

make a figure with the proper aspect for an array
A = rand(5,3)
w, h = figaspect(A)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

Thanks to Fernando Perez for this function

944 Chapter 62. figure

CHAPTER

SIXTYTHREE

FONT_MANAGER

63.1 matplotlib.font_manager

A module for finding, managing, and using fonts across platforms.

This module provides a single FontManager instance that can be shared across backends and platforms. The
findfont() function returns the best TrueType (TTF) font file in the local or system font path that matches
the specified FontProperties instance. The FontManager also handles Adobe Font Metrics (AFM) font
files for use by the PostScript backend.

The design is based on the W3C Cascading Style Sheet, Level 1 (CSS1) font specification. Future versions
may implement the Level 2 or 2.1 specifications.

Experimental support is included for using fontconfig on Unix variant platforms (Linux, OS X, Solaris).
To enable it, set the constant USE_FONTCONFIG in this file to True. Fontconfig has the advantage that it is
the standard way to look up fonts on X11 platforms, so if a font is installed, it is much more likely to be
found.

class matplotlib.font_manager.FontEntry(fname=’‘, name=’‘, style=’normal’,
variant=’normal’, weight=’normal’,
stretch=’normal’, size=’medium’)

Bases: object

A class for storing Font properties. It is used when populating the font lookup dictionary.

class matplotlib.font_manager.FontManager(size=None, weight=’normal’)
On import, the FontManager singleton instance creates a list of TrueType fonts based on the font
properties: name, style, variant, weight, stretch, and size. The findfont() method does a nearest
neighbor search to find the font that most closely matches the specification. If no good enough match
is found, a default font is returned.

findfont(prop, fontext=’ttf’, directory=None, fallback_to_default=True, re-
build_if_missing=True)

Search the font list for the font that most closely matches the FontProperties prop.

findfont() performs a nearest neighbor search. Each font is given a similarity score to the
target font properties. The first font with the highest score is returned. If no matches below a
certain threshold are found, the default font (usually Vera Sans) is returned.

directory, is specified, will only return fonts from the given directory (or subdirectory of that
directory).

945

http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 1.3.1

The result is cached, so subsequent lookups don’t have to perform the O(n) nearest neighbor
search.

If fallback_to_default is True, will fallback to the default font family (usually “Bitstream
Vera Sans” or “Helvetica”) if the first lookup hard-fails.

See the W3C Cascading Style Sheet, Level 1 documentation for a description of the font finding
algorithm.

static get_default_size()
Return the default font size.

get_default_weight()
Return the default font weight.

score_family(families, family2)
Returns a match score between the list of font families in families and the font family name
family2.

An exact match anywhere in the list returns 0.0.

A match by generic font name will return 0.1.

No match will return 1.0.

score_size(size1, size2)
Returns a match score between size1 and size2.

If size2 (the size specified in the font file) is ‘scalable’, this function always returns 0.0, since
any font size can be generated.

Otherwise, the result is the absolute distance between size1 and size2, normalized so that the
usual range of font sizes (6pt - 72pt) will lie between 0.0 and 1.0.

score_stretch(stretch1, stretch2)
Returns a match score between stretch1 and stretch2.

The result is the absolute value of the difference between the CSS numeric values of stretch1
and stretch2, normalized between 0.0 and 1.0.

score_style(style1, style2)
Returns a match score between style1 and style2.

An exact match returns 0.0.

A match between ‘italic’ and ‘oblique’ returns 0.1.

No match returns 1.0.

score_variant(variant1, variant2)
Returns a match score between variant1 and variant2.

An exact match returns 0.0, otherwise 1.0.

score_weight(weight1, weight2)
Returns a match score between weight1 and weight2.

946 Chapter 63. font_manager

http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 1.3.1

The result is the absolute value of the difference between the CSS numeric values of weight1
and weight2, normalized between 0.0 and 1.0.

set_default_weight(weight)
Set the default font weight. The initial value is ‘normal’.

update_fonts(filenames)
Update the font dictionary with new font files. Currently not implemented.

class matplotlib.font_manager.FontProperties(family=None, style=None, variant=None,
weight=None, stretch=None, size=None,
fname=None, _init=None)

Bases: object

A class for storing and manipulating font properties.

The font properties are those described in the W3C Cascading Style Sheet, Level 1 font specification.
The six properties are:

•family: A list of font names in decreasing order of priority. The items may include a generic
font family name, either ‘serif’, ‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’. In that case,
the actual font to be used will be looked up from the associated rcParam in matplotlibrc.
•style: Either ‘normal’, ‘italic’ or ‘oblique’.
•variant: Either ‘normal’ or ‘small-caps’.
•stretch: A numeric value in the range 0-1000 or one of ‘ultra-condensed’, ‘extra-condensed’,
‘condensed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’ or
‘ultra-expanded’
•weight: A numeric value in the range 0-1000 or one of ‘ultralight’, ‘light’, ‘normal’, ‘regu-
lar’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra bold’,
‘black’
•size: Either an relative value of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’,
‘xx-large’ or an absolute font size, e.g., 12

The default font property for TrueType fonts (as specified in the default matplotlibrc file) is:

sans-serif, normal, normal, normal, normal, scalable.

Alternatively, a font may be specified using an absolute path to a .ttf file, by using the fname kwarg.

The preferred usage of font sizes is to use the relative values, e.g., ‘large’, instead of absolute font
sizes, e.g., 12. This approach allows all text sizes to be made larger or smaller based on the font
manager’s default font size.

This class will also accept a fontconfig pattern, if it is the only argument provided. See the documen-
tation on fontconfig patterns. This support does not require fontconfig to be installed. We are merely
borrowing its pattern syntax for use here.

Note that matplotlib’s internal font manager and fontconfig use a different algorithm to lookup fonts,
so the results of the same pattern may be different in matplotlib than in other applications that use
fontconfig.

copy()
Return a deep copy of self

63.1. matplotlib.font_manager 947

http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.fontconfig.org/
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 1.3.1

get_family()
Return a list of font names that comprise the font family.

get_file()
Return the filename of the associated font.

get_fontconfig_pattern()
Get a fontconfig pattern suitable for looking up the font as specified with fontconfig’s fc-match
utility.

See the documentation on fontconfig patterns.

This support does not require fontconfig to be installed or support for it to be enabled. We are
merely borrowing its pattern syntax for use here.

get_name()
Return the name of the font that best matches the font properties.

get_size()
Return the font size.

get_size_in_points()

get_slant()
Return the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

get_stretch()
Return the font stretch or width. Options are: ‘ultra-condensed’, ‘extra-condensed’, ‘con-
densed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’,
‘ultra-expanded’.

get_style()
Return the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

get_variant()
Return the font variant. Values are: ‘normal’ or ‘small-caps’.

get_weight()
Set the font weight. Options are: A numeric value in the range 0-1000 or one of ‘light’, ‘nor-
mal’, ‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’,
‘extra bold’, ‘black’

set_family(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: ‘serif’,
‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’, a real font name or a list of real font names.
Real font names are not supported when text.usetex is True.

set_file(file)
Set the filename of the fontfile to use. In this case, all other properties will be ignored.

set_fontconfig_pattern(pattern)
Set the properties by parsing a fontconfig pattern.

See the documentation on fontconfig patterns.

948 Chapter 63. font_manager

http://www.fontconfig.org/fontconfig-user.html
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 1.3.1

This support does not require fontconfig to be installed or support for it to be enabled. We are
merely borrowing its pattern syntax for use here.

set_name(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: ‘serif’,
‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’, a real font name or a list of real font names.
Real font names are not supported when text.usetex is True.

set_size(size)
Set the font size. Either an relative value of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’,
‘x-large’, ‘xx-large’ or an absolute font size, e.g., 12.

set_slant(style)
Set the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

set_stretch(stretch)
Set the font stretch or width. Options are: ‘ultra-condensed’, ‘extra-condensed’, ‘condensed’,
‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’ or ‘ultra-
expanded’, or a numeric value in the range 0-1000.

set_style(style)
Set the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

set_variant(variant)
Set the font variant. Values are: ‘normal’ or ‘small-caps’.

set_weight(weight)
Set the font weight. May be either a numeric value in the range 0-1000 or one of ‘ultralight’,
‘light’, ‘normal’, ‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’,
‘heavy’, ‘extra bold’, ‘black’

matplotlib.font_manager.OSXInstalledFonts(directories=None, fontext=’ttf’)
Get list of font files on OS X - ignores font suffix by default.

matplotlib.font_manager.afmFontProperty(fontpath, font)
A function for populating a FontKey instance by extracting information from the AFM font file.

font is a class:AFM instance.

matplotlib.font_manager.createFontList(fontfiles, fontext=’ttf’)
A function to create a font lookup list. The default is to create a list of TrueType fonts. An AFM font
list can optionally be created.

matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext=’ttf’)
Search for fonts in the specified font paths. If no paths are given, will use a standard set of system
paths, as well as the list of fonts tracked by fontconfig if fontconfig is installed and available. A list
of TrueType fonts are returned by default with AFM fonts as an option.

matplotlib.font_manager.findfont(prop, **kw)

matplotlib.font_manager.get_fontconfig_fonts(fontext=’ttf’)
Grab a list of all the fonts that are being tracked by fontconfig by making a system call to fc-list.
This is an easy way to grab all of the fonts the user wants to be made available to applications,
without needing knowing where all of them reside.

63.1. matplotlib.font_manager 949

Matplotlib, Release 1.3.1

matplotlib.font_manager.get_fontext_synonyms(fontext)
Return a list of file extensions extensions that are synonyms for the given file extension fileext.

matplotlib.font_manager.is_opentype_cff_font(filename)
Returns True if the given font is a Postscript Compact Font Format Font embedded in an OpenType
wrapper. Used by the PostScript and PDF backends that can not subset these fonts.

matplotlib.font_manager.list_fonts(directory, extensions)
Return a list of all fonts matching any of the extensions, possibly upper-cased, found recursively
under the directory.

matplotlib.font_manager.pickle_dump(data, filename)
Equivalent to pickle.dump(data, open(filename, ‘w’)) but closes the file to prevent filehandle leakage.

matplotlib.font_manager.pickle_load(filename)
Equivalent to pickle.load(open(filename, ‘r’)) but closes the file to prevent filehandle leakage.

matplotlib.font_manager.ttfFontProperty(font)
A function for populating the FontKey by extracting information from the TrueType font file.

font is a FT2Font instance.

matplotlib.font_manager.ttfdict_to_fnames(d)
flatten a ttfdict to all the filenames it contains

matplotlib.font_manager.weight_as_number(weight)
Return the weight property as a numeric value. String values are converted to their corresponding
numeric value.

matplotlib.font_manager.win32FontDirectory()
Return the user-specified font directory for Win32. This is looked up from the registry key:

\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Fonts

If the key is not found, $WINDIR/Fonts will be returned.

matplotlib.font_manager.win32InstalledFonts(directory=None, fontext=’ttf’)
Search for fonts in the specified font directory, or use the system directories if none given. A list of
TrueType font filenames are returned by default, or AFM fonts if fontext == ‘afm’.

63.2 matplotlib.fontconfig_pattern

A module for parsing and generating fontconfig patterns.

See the fontconfig pattern specification for more information.

class matplotlib.fontconfig_pattern.FontconfigPatternParser
A simple pyparsing-based parser for fontconfig-style patterns.

See the fontconfig pattern specification for more information.

950 Chapter 63. font_manager

http://www.fontconfig.org/fontconfig-user.html
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 1.3.1

parse(pattern)
Parse the given fontconfig pattern and return a dictionary of key/value pairs useful for initializ-
ing a font_manager.FontProperties object.

matplotlib.fontconfig_pattern.family_escape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost
non-overlapping occurrences of pattern in string by the replacement repl.

matplotlib.fontconfig_pattern.family_unescape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost
non-overlapping occurrences of pattern in string by the replacement repl.

matplotlib.fontconfig_pattern.generate_fontconfig_pattern(d)
Given a dictionary of key/value pairs, generates a fontconfig pattern string.

matplotlib.fontconfig_pattern.value_escape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost
non-overlapping occurrences of pattern in string by the replacement repl.

matplotlib.fontconfig_pattern.value_unescape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost
non-overlapping occurrences of pattern in string by the replacement repl.

63.2. matplotlib.fontconfig_pattern 951

Matplotlib, Release 1.3.1

952 Chapter 63. font_manager

CHAPTER

SIXTYFOUR

GRIDSPEC

64.1 matplotlib.gridspec

gridspec is a module which specifies the location of the subplot in the figure.

GridSpec specifies the geometry of the grid that a subplot will be placed. The number of
rows and number of columns of the grid need to be set. Optionally, the subplot layout
parameters (e.g., left, right, etc.) can be tuned.

SubplotSpec specifies the location of the subplot in the given GridSpec.

class matplotlib.gridspec.GridSpec(nrows, ncols, left=None, bottom=None, right=None,
top=None, wspace=None, hspace=None,
width_ratios=None, height_ratios=None)

Bases: matplotlib.gridspec.GridSpecBase

A class that specifies the geometry of the grid that a subplot will be placed. The location of grid is
determined by similar way as the SubplotParams.

The number of rows and number of columns of the grid need to be set. Optionally, the subplot layout
parameters (e.g., left, right, etc.) can be tuned.

get_subplot_params(fig=None)
return a dictionary of subplot layout parameters. The default parameters are from rcParams
unless a figure attribute is set.

locally_modified_subplot_params()

tight_layout(fig, renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None)
Adjust subplot parameters to give specified padding.

Parameters:
pad [float] padding between the figure edge and the edges of subplots, as a fraction of the

font-size.
h_pad, w_pad [float] padding (height/width) between edges of adjacent subplots. Defaults to

pad_inches.
rect [if rect is given, it is interpreted as a rectangle] (left, bottom, right, top) in the normalized

figure coordinate that the whole subplots area (including labels) will fit into. Default is
(0, 0, 1, 1).

953

Matplotlib, Release 1.3.1

update(**kwargs)
Update the current values. If any kwarg is None, default to the current value, if set, otherwise
to rc.

class matplotlib.gridspec.GridSpecBase(nrows, ncols, height_ratios=None,
width_ratios=None)

Bases: object

A base class of GridSpec that specifies the geometry of the grid that a subplot will be placed.

The number of rows and number of columns of the grid need to be set. Optionally, the ratio of heights
and widths of rows and columns can be specified.

get_geometry()
get the geometry of the grid, eg 2,3

get_grid_positions(fig)
return lists of bottom and top position of rows, left and right positions of columns.

get_height_ratios()

get_subplot_params(fig=None)

get_width_ratios()

new_subplotspec(loc, rowspan=1, colspan=1)
create and return a SuplotSpec instance.

set_height_ratios(height_ratios)

set_width_ratios(width_ratios)

class matplotlib.gridspec.GridSpecFromSubplotSpec(nrows, ncols, subplot_spec,
wspace=None, hspace=None,
height_ratios=None,
width_ratios=None)

Bases: matplotlib.gridspec.GridSpecBase

GridSpec whose subplot layout parameters are inherited from the location specified by a given Sub-
plotSpec.

The number of rows and number of columns of the grid need to be set. An instance of SubplotSpec is
also needed to be set from which the layout parameters will be inherited. The wspace and hspace of
the layout can be optionally specified or the default values (from the figure or rcParams) will be used.

get_subplot_params(fig=None)
return a dictionary of subplot layout parameters.

get_topmost_subplotspec()
get the topmost SubplotSpec instance associated with the subplot

954 Chapter 64. gridspec

Matplotlib, Release 1.3.1

class matplotlib.gridspec.SubplotSpec(gridspec, num1, num2=None)
Bases: object

specifies the location of the subplot in the given GridSpec.

The subplot will occupy the num1-th cell of the given gridspec. If num2 is provided, the subplot will
span between num1-th cell and num2-th cell.

The index stars from 0.

get_geometry()
get the subplot geometry, eg 2,2,3. Unlike SuplorParams, index is 0-based

get_gridspec()

get_position(fig, return_all=False)
update the subplot position from fig.subplotpars

get_topmost_subplotspec()
get the topmost SubplotSpec instance associated with the subplot

64.1. matplotlib.gridspec 955

Matplotlib, Release 1.3.1

956 Chapter 64. gridspec

CHAPTER

SIXTYFIVE

LEGEND

65.1 matplotlib.legend

The legend module defines the Legend class, which is responsible for drawing legends associated with axes
and/or figures.

The Legend class can be considered as a container of legend handles and legend texts. Creation of corre-
sponding legend handles from the plot elements in the axes or figures (e.g., lines, patches, etc.) are specified
by the handler map, which defines the mapping between the plot elements and the legend handlers to be
used (the default legend handlers are defined in the legend_handler module). Note that not all kinds of
artist are supported by the legend yet (See Legend guide for more information).

class matplotlib.legend.DraggableLegend(legend, use_blit=False, update=’loc’)
Bases: matplotlib.offsetbox.DraggableOffsetBox
update [If “loc”, update loc parameter of] legend upon finalizing. If “bbox”, update bbox_to_anchor

parameter.
artist_picker(legend, evt)

finalize_offset()

class matplotlib.legend.Legend(parent, handles, labels, loc=None, numpoints=None, mark-
erscale=None, scatterpoints=None, scatteryoffsets=None,
prop=None, fontsize=None, borderpad=None, labelspac-
ing=None, handlelength=None, handleheight=None, handle-
textpad=None, borderaxespad=None, columnspacing=None,
ncol=1, mode=None, fancybox=None, shadow=None,
title=None, framealpha=None, bbox_to_anchor=None,
bbox_transform=None, frameon=None, handler_map=None)

Bases: matplotlib.artist.Artist

Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or
an integer specifying the legend location

The location codes are:

’best’ : 0, (only implemented for axis legends)
’upper right’ : 1,

957

Matplotlib, Release 1.3.1

’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,
’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

loc can be a tuple of the normalized coordinate values with respect its parent.
•parent: the artist that contains the legend
•handles: a list of artists (lines, patches) to be added to the legend
•labels: a list of strings to label the legend

Optional keyword arguments:

Keyword Description
loc a location code
prop the font property
fontsize the font size (used only if prop is not specified)
markerscale the relative size of legend markers vs. original
numpoints the number of points in the legend for line
scatterpoints the number of points in the legend for scatter plot
scatteryoffsets a list of yoffsets for scatter symbols in legend
frameon if True, draw a frame around the legend. If None, use rc
fancybox if True, draw a frame with a round fancybox. If None, use rc
shadow if True, draw a shadow behind legend
framealpha If not None, alpha channel for the frame.
ncol number of columns
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handleheight the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns
title the legend title
bbox_to_anchor the bbox that the legend will be anchored.
bbox_transform the transform for the bbox. transAxes if None.

The pad and spacing parameters are measured in font-size units. e.g., a fontsize of 10 points and a
handlelength=5 implies a handlelength of 50 points. Values from rcParams will be used if None.

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argument.
bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. See
set_bbox_to_anchor() for more detail.

The legend location can be specified by setting loc with a tuple of 2 floats, which is interpreted as the
lower-left corner of the legend in the normalized axes coordinate.

codes = {‘right’: 5, ‘center left’: 6, ‘upper right’: 1, ‘lower right’: 4, ‘best’: 0, ‘center’: 10, ‘lower left’: 3, ‘center right’: 7, ‘upper left’: 2, ‘upper center’: 9, ‘lower center’: 8}

958 Chapter 65. legend

Matplotlib, Release 1.3.1

contains(event)

draggable(state=None, use_blit=False, update=’loc’)
Set the draggable state – if state is

•None : toggle the current state
•True : turn draggable on
•False : turn draggable off

If draggable is on, you can drag the legend on the canvas with the mouse. The DraggableLegend
helper instance is returned if draggable is on.

The update parameter control which parameter of the legend changes when dragged. If update
is “loc”, the loc paramter of the legend is changed. If “bbox”, the bbox_to_anchor parameter is
changed.

draw(artist, renderer, *args, **kwargs)
Draw everything that belongs to the legend

draw_frame(b)
b is a boolean. Set draw frame to b

get_bbox_to_anchor()
return the bbox that the legend will be anchored

get_children()
return a list of child artists

classmethod get_default_handler_map()
A class method that returns the default handler map.

get_frame()
return the Rectangle instance used to frame the legend

get_frame_on()
Get whether the legend box patch is drawn

static get_legend_handler(legend_handler_map, orig_handle)
return a legend handler from legend_handler_map that corresponds to orig_handler.

legend_handler_map should be a dictionary object (that is returned by the
get_legend_handler_map method).

It first checks if the orig_handle itself is a key in the legend_hanler_map and return the asso-
ciated value. Otherwise, it checks for each of the classes in its method-resolution-order. If no
matching key is found, it returns None.

get_legend_handler_map()
return the handler map.

get_lines()
return a list of lines.Line2D instances in the legend

get_patches()
return a list of patch instances in the legend

65.1. matplotlib.legend 959

Matplotlib, Release 1.3.1

get_texts()
return a list of text.Text instance in the legend

get_title()
return Text instance for the legend title

get_window_extent(*args, **kwargs)
return a extent of the the legend

set_bbox_to_anchor(bbox, transform=None)
set the bbox that the legend will be anchored.

bbox can be a BboxBase instance, a tuple of [left, bottom, width, height] in the given transform
(normalized axes coordinate if None), or a tuple of [left, bottom] where the width and height
will be assumed to be zero.

classmethod set_default_handler_map(handler_map)
A class method to set the default handler map.

set_frame_on(b)
Set whether the legend box patch is drawn

ACCEPTS: [True | False]

set_title(title, prop=None)
set the legend title. Fontproperties can be optionally set with prop parameter.

classmethod update_default_handler_map(handler_map)
A class method to update the default handler map.

zorder = 5

960 Chapter 65. legend

CHAPTER

SIXTYSIX

MARKERS

66.1 matplotlib.markers

This module contains functions to handle markers. Used by both the marker functionality of plot and
scatter.

All possible markers are defined here:

marker description
”.” point
”,” pixel
“o” circle
“v” triangle_down
“^” triangle_up
“<” triangle_left
“>” triangle_right
“1” tri_down
“2” tri_up
“3” tri_left
“4” tri_right
“8” octagon
“s” square
“p” pentagon
“*” star
“h” hexagon1
“H” hexagon2
“+” plus
“x” x
“D” diamond
“d” thin_diamond
“|” vline
“_” hline
TICKLEFT tickleft
TICKRIGHT tickright
TICKUP tickup
TICKDOWN tickdown

Continued on next page

961

Matplotlib, Release 1.3.1

Table 66.1 – continued from previous page
marker description
CARETLEFT caretleft
CARETRIGHT caretright
CARETUP caretup
CARETDOWN caretdown
“None” nothing
None nothing
” “ nothing
“” nothing
’$...$’ render the string using mathtext.
verts a list of (x, y) pairs used for Path vertices.
path a Path instance.
(numsides, style, angle) see below

The marker can also be a tuple (numsides, style, angle), which will create a custom, regular symbol.

numsides: the number of sides

style: the style of the regular symbol:

Value Description
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (numsides and angle is ignored)

angle: the angle of rotation of the symbol, in degrees

For backward compatibility, the form (verts, 0) is also accepted, but it is equivalent to just verts for giving
a raw set of vertices that define the shape.

class matplotlib.markers.MarkerStyle(marker=None, fillstyle=’full’)
Bases: object

MarkerStyle
Parameters marker : string or array_like, optional, default: None

See the descriptions of possible markers in the module docstring.
fillstyle : string, optional, default: ‘full’

‘full’, ‘left”, ‘right’, ‘bottom’, ‘top’, ‘none’

Attributes

markers
fillstyles tuple() -> empty tuple
filled_markers tuple() -> empty tuple

filled_markers = (‘o’, ‘v’, ‘^’, ‘<’, ‘>’, ‘8’, ‘s’, ‘p’, ‘*’, ‘h’, ‘H’, ‘D’, ‘d’)

962 Chapter 66. Markers

Matplotlib, Release 1.3.1

fillstyles = (‘full’, ‘left’, ‘right’, ‘bottom’, ‘top’, ‘none’)

get_alt_path()

get_alt_transform()

get_capstyle()

get_fillstyle()

get_joinstyle()

get_marker()

get_path()

get_snap_threshold()

get_transform()

is_filled()

markers = {0: ‘tickleft’, 1: ‘tickright’, 2: ‘tickup’, 3: ‘tickdown’, 4: ‘caretleft’, ‘D’: ‘diamond’, 6: ‘caretup’, 7: ‘caretdown’, ‘s’: ‘square’, ‘|’: ‘vline’, ‘’: ‘nothing’, ‘None’: ‘nothing’, ‘x’: ‘x’, 5: ‘caretright’, ‘_’: ‘hline’, ‘^’: ‘triangle_up’, None: ‘nothing’, ‘d’: ‘thin_diamond’, ‘ ‘: ‘nothing’, ‘h’: ‘hexagon1’, ‘+’: ‘plus’, ‘*’: ‘star’, ‘,’: ‘pixel’, ‘o’: ‘circle’, ‘.’: ‘point’, ‘1’: ‘tri_down’, ‘p’: ‘pentagon’, ‘3’: ‘tri_left’, ‘2’: ‘tri_up’, ‘4’: ‘tri_right’, ‘H’: ‘hexagon2’, ‘v’: ‘triangle_down’, ‘8’: ‘octagon’, ‘<’: ‘triangle_left’, ‘>’: ‘triangle_right’}

set_fillstyle(fillstyle)
Sets fillstyle

Parameters fillstyle : string amongst known fillstyles

set_marker(marker)

66.1. matplotlib.markers 963

Matplotlib, Release 1.3.1

964 Chapter 66. Markers

965

Matplotlib, Release 1.3.1

CHAPTER

SIXTYSEVEN

MATHTEXT

StixFonts StixSansFontsUnicodeFonts
TruetypeFonts

BakomaFonts

MathtextBackendSvg

MathtextBackend

MathtextBackendPath

MathtextBackendPdf

MathtextBackendCairo

MathtextBackendPs

MathtextBackendAgg

MathTextWarning

Node

Glue

Box

Kern

Char

Hrule

Rule
Vrule

AutoHeightChar

Hlist

AutoWidthChar

SubSuperCluster

HCentered

VCentered

Fil

NegFill

NegFil

Fill

Filll

NegFilll

SsGlue

Vbox

List

Hbox
Vlist

GlueSpec

MathTextParser

Fonts

StandardPsFonts

Accent

Parser

MathtextBackendBitmap

Ship

966 Chapter 67. mathtext

Matplotlib, Release 1.3.1

67.1 matplotlib.mathtext

mathtext is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib
backend.

For a tutorial of its usage see Writing mathematical expressions. This document is primarily concerned with
implementation details.

The module uses pyparsing to parse the TeX expression.

The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is
experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for
those fonts.

If you find TeX expressions that don’t parse or render properly, please email mdroe@stsci.edu, but please
check KNOWN ISSUES below first.

class matplotlib.mathtext.Accent(c, state)
Bases: matplotlib.mathtext.Char

The font metrics need to be dealt with differently for accents, since they are already offset correctly
from the baseline in TrueType fonts.

grow()

render(x, y)
Render the character to the canvas.

shrink()

class matplotlib.mathtext.AutoHeightChar(c, height, depth, state, always=False, fac-
tor=None)

Bases: matplotlib.mathtext.Hlist

AutoHeightChar will create a character as close to the given height and depth as possible. When
using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct
glyph will be selected, otherwise this will always just return a scaled version of the glyph.

class matplotlib.mathtext.AutoWidthChar(c, width, state, always=False, char_class=<class
‘matplotlib.mathtext.Char’>)

Bases: matplotlib.mathtext.Hlist

AutoWidthChar will create a character as close to the given width as possible. When using a font
with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will
be selected, otherwise this will always just return a scaled version of the glyph.

class matplotlib.mathtext.BakomaFonts(*args, **kwargs)
Bases: matplotlib.mathtext.TruetypeFonts

Use the Bakoma TrueType fonts for rendering.

Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding.

67.1. matplotlib.mathtext 967

http://pyparsing.wikispaces.com/
mailto:mdroe@stsci.edu

Matplotlib, Release 1.3.1

alias = ‘\\]’

get_sized_alternatives_for_symbol(fontname, sym)

target = ‘]’

class matplotlib.mathtext.Box(width, height, depth)
Bases: matplotlib.mathtext.Node

Represents any node with a physical location.

grow()

render(x1, y1, x2, y2)

shrink()

class matplotlib.mathtext.Char(c, state)
Bases: matplotlib.mathtext.Node

Represents a single character. Unlike TeX, the font information and metrics are stored with each
Char to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width,
height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the
x-direction. The metrics must be converted to the TeX way, and the advance (if different from width)
must be converted into a Kern node when the Char is added to its parent Hlist.

get_kerning(next)
Return the amount of kerning between this and the given character. Called when characters are
strung together into Hlist to create Kern nodes.

grow()

is_slanted()

render(x, y)
Render the character to the canvas

shrink()

matplotlib.mathtext.Error(msg)
Helper class to raise parser errors.

class matplotlib.mathtext.Fil
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.Fill
Bases: matplotlib.mathtext.Glue

968 Chapter 67. mathtext

Matplotlib, Release 1.3.1

class matplotlib.mathtext.Filll
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.Fonts(default_font_prop, mathtext_backend)
Bases: object

An abstract base class for a system of fonts to use for mathtext.

The class must be able to take symbol keys and font file names and return the character metrics. It
also delegates to a backend class to do the actual drawing.

default_font_prop: A FontProperties object to use for the default non-math font, or the base font
for Unicode (generic) font rendering.

mathtext_backend: A subclass of MathTextBackend used to delegate the actual rendering.

destroy()
Fix any cyclical references before the object is about to be destroyed.

get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi)
Get the kerning distance for font between sym1 and sym2.

fontX: one of the TeX font names:

tt, it, rm, cal, sf, bf or default/regular (non-math)

fontclassX: TODO

symX: a symbol in raw TeX form. e.g., ‘1’, ‘x’ or ‘sigma’

fontsizeX: the fontsize in points

dpi: the current dots-per-inch

get_metrics(font, font_class, sym, fontsize, dpi)
font: one of the TeX font names:

tt, it, rm, cal, sf, bf or default/regular (non-math)

font_class: TODO

sym: a symbol in raw TeX form. e.g., ‘1’, ‘x’ or ‘sigma’

fontsize: font size in points

dpi: current dots-per-inch

Returns an object with the following attributes:
•advance: The advance distance (in points) of the glyph.
•height: The height of the glyph in points.
•width: The width of the glyph in points.
•xmin, xmax, ymin, ymax - the ink rectangle of the glyph
•iceberg - the distance from the baseline to the top of the glyph. This corresponds to TeX’s
definition of “height”.

67.1. matplotlib.mathtext 969

Matplotlib, Release 1.3.1

get_results(box)
Get the data needed by the backend to render the math expression. The return value is backend-
specific.

get_sized_alternatives_for_symbol(fontname, sym)
Override if your font provides multiple sizes of the same symbol. Should return a list of sym-
bols matching sym in various sizes. The expression renderer will select the most appropriate
size for a given situation from this list.

get_underline_thickness(font, fontsize, dpi)
Get the line thickness that matches the given font. Used as a base unit for drawing lines such
as in a fraction or radical.

get_used_characters()
Get the set of characters that were used in the math expression. Used by backends that need to
subset fonts so they know which glyphs to include.

get_xheight(font, fontsize, dpi)
Get the xheight for the given font and fontsize.

render_glyph(ox, oy, facename, font_class, sym, fontsize, dpi)
Draw a glyph at

•ox, oy: position
•facename: One of the TeX face names
•font_class:
•sym: TeX symbol name or single character
•fontsize: fontsize in points
•dpi: The dpi to draw at.

render_rect_filled(x1, y1, x2, y2)
Draw a filled rectangle from (x1, y1) to (x2, y2).

set_canvas_size(w, h, d)
Set the size of the buffer used to render the math expression. Only really necessary for the
bitmap backends.

class matplotlib.mathtext.Glue(glue_type, copy=False)
Bases: matplotlib.mathtext.Node

Most of the information in this object is stored in the underlying GlueSpec class, which is shared be-
tween multiple glue objects. (This is a memory optimization which probably doesn’t matter anymore,
but it’s easier to stick to what TeX does.)

grow()

shrink()

class matplotlib.mathtext.GlueSpec(width=0.0, stretch=0.0, stretch_order=0, shrink=0.0,
shrink_order=0)

Bases: object

See Glue.

970 Chapter 67. mathtext

Matplotlib, Release 1.3.1

copy()

classmethod factory(glue_type)

class matplotlib.mathtext.HCentered(elements)
Bases: matplotlib.mathtext.Hlist

A convenience class to create an Hlist whose contents are centered within its enclosing box.

class matplotlib.mathtext.Hbox(width)
Bases: matplotlib.mathtext.Box

A box with only width (zero height and depth).

class matplotlib.mathtext.Hlist(elements, w=0.0, m=’additional’, do_kern=True)
Bases: matplotlib.mathtext.List

A horizontal list of boxes.

hpack(w=0.0, m=’additional’)
The main duty of hpack() is to compute the dimensions of the resulting boxes, and to adjust
the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all
of the material inside the new box; but some items may stick out if negative glue is used, if the
box is overfull, or if a \vbox includes other boxes that have been shifted left.

•w: specifies a width
•m: is either ‘exactly’ or ‘additional’.

Thus, hpack(w, ’exactly’) produces a box whose width is exactly w, while hpack(w,
’additional’) yields a box whose width is the natural width plus w. The default values
produce a box with the natural width.

kern()
Insert Kern nodes between Char nodes to set kerning. The Char nodes themselves determine
the amount of kerning they need (in get_kerning()), and this function just creates the linked
list in the correct way.

class matplotlib.mathtext.Hrule(state, thickness=None)
Bases: matplotlib.mathtext.Rule

Convenience class to create a horizontal rule.

class matplotlib.mathtext.Kern(width)
Bases: matplotlib.mathtext.Node

A Kern node has a width field to specify a (normally negative) amount of spacing. This spacing
correction appears in horizontal lists between letters like A and V when the font designer said that it
looks better to move them closer together or further apart. A kern node can also appear in a vertical
list, when its width denotes additional spacing in the vertical direction.

depth = 0

grow()

67.1. matplotlib.mathtext 971

Matplotlib, Release 1.3.1

height = 0

shrink()

class matplotlib.mathtext.List(elements)
Bases: matplotlib.mathtext.Box

A list of nodes (either horizontal or vertical).

grow()

shrink()

class matplotlib.mathtext.MathTextParser(output)
Bases: object

Create a MathTextParser for the given backend output.

get_depth(texstr, dpi=120, fontsize=14)
Returns the offset of the baseline from the bottom of the image in pixels.
texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’
dpi The dots-per-inch to render the text
fontsize The font size in points

parse(s, dpi=72, prop=None)
Parse the given math expression s at the given dpi. If prop is provided, it is a FontProperties
object specifying the “default” font to use in the math expression, used for all non-math text.

The results are cached, so multiple calls to parse() with the same expression should be fast.

to_mask(texstr, dpi=120, fontsize=14)

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’
dpi The dots-per-inch to render the text
fontsize The font size in points
Returns a tuple (array, depth)

•array is an NxM uint8 alpha ubyte mask array of rasterized tex.
•depth is the offset of the baseline from the bottom of the image in pixels.

to_png(filename, texstr, color=’black’, dpi=120, fontsize=14)
Writes a tex expression to a PNG file.

Returns the offset of the baseline from the bottom of the image in pixels.
filename A writable filename or fileobject
texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’
color A valid matplotlib color argument
dpi The dots-per-inch to render the text
fontsize The font size in points
Returns the offset of the baseline from the bottom of the image in pixels.

972 Chapter 67. mathtext

Matplotlib, Release 1.3.1

to_rgba(texstr, color=’black’, dpi=120, fontsize=14)

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’
color Any matplotlib color argument
dpi The dots-per-inch to render the text
fontsize The font size in points
Returns a tuple (array, depth)

•array is an NxM uint8 alpha ubyte mask array of rasterized tex.
•depth is the offset of the baseline from the bottom of the image in pixels.

exception matplotlib.mathtext.MathTextWarning
Bases: exceptions.Warning

class matplotlib.mathtext.MathtextBackend
Bases: object

The base class for the mathtext backend-specific code. The purpose of MathtextBackend subclasses
is to interface between mathtext and a specific matplotlib graphics backend.

Subclasses need to override the following:
•render_glyph()
•render_filled_rect()
•get_results()

And optionally, if you need to use a Freetype hinting style:
•get_hinting_type()

get_hinting_type()
Get the Freetype hinting type to use with this particular backend.

get_results(box)
Return a backend-specific tuple to return to the backend after all processing is done.

render_filled_rect(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

set_canvas_size(w, h, d)
Dimension the drawing canvas

class matplotlib.mathtext.MathtextBackendAgg
Bases: matplotlib.mathtext.MathtextBackend

Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by
the Agg backend.

get_hinting_type()

get_results(box, used_characters)

render_glyph(ox, oy, info)

67.1. matplotlib.mathtext 973

Matplotlib, Release 1.3.1

render_rect_filled(x1, y1, x2, y2)

set_canvas_size(w, h, d)

class matplotlib.mathtext.MathtextBackendBitmap
Bases: matplotlib.mathtext.MathtextBackendAgg

get_results(box, used_characters)

class matplotlib.mathtext.MathtextBackendCairo
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the Cairo backend.

get_results(box, used_characters)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.MathtextBackendPath
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the text path machinery.

get_results(box, used_characters)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.MathtextBackendPdf
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the PDF backend.

get_results(box, used_characters)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.MathtextBackendPs
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the PostScript backend.

974 Chapter 67. mathtext

Matplotlib, Release 1.3.1

get_results(box, used_characters)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.MathtextBackendSvg
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the SVG backend.

get_results(box, used_characters)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.NegFil
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.NegFill
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.NegFilll
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.Node
Bases: object

A node in the TeX box model

get_kerning(next)

grow()
Grows one level larger. There is no limit to how big something can get.

render(x, y)

shrink()
Shrinks one level smaller. There are only three levels of sizes, after which things will no longer
get smaller.

class matplotlib.mathtext.Parser
Bases: object

This is the pyparsing-based parser for math expressions. It actually parses full strings containing math
expressions, in that raw text may also appear outside of pairs of $.

The grammar is based directly on that in TeX, though it cuts a few corners.

67.1. matplotlib.mathtext 975

Matplotlib, Release 1.3.1

class State(font_output, font, font_class, fontsize, dpi)
Bases: object

Stores the state of the parser.

States are pushed and popped from a stack as necessary, and the “current” state is always at the
top of the stack.

copy()

font None

Parser.accent(s, loc, toks)

Parser.auto_delim(s, loc, toks)

Parser.binom(s, loc, toks)

Parser.c_over_c(s, loc, toks)

Parser.customspace(s, loc, toks)

Parser.end_group(s, loc, toks)

Parser.font(s, loc, toks)

Parser.frac(s, loc, toks)

Parser.function(s, loc, toks)

Parser.genfrac(s, loc, toks)

Parser.get_state()
Get the current State of the parser.

Parser.group(s, loc, toks)

Parser.is_dropsub(nucleus)

Parser.is_overunder(nucleus)

976 Chapter 67. mathtext

Matplotlib, Release 1.3.1

Parser.is_slanted(nucleus)

Parser.main(s, loc, toks)

Parser.math(s, loc, toks)

Parser.math_string(s, loc, toks)

Parser.non_math(s, loc, toks)

Parser.operatorname(s, loc, toks)

Parser.overline(s, loc, toks)

Parser.parse(s, fonts_object, fontsize, dpi)
Parse expression s using the given fonts_object for output, at the given fontsize and dpi.

Returns the parse tree of Node instances.

Parser.pop_state()
Pop a State off of the stack.

Parser.push_state()
Push a new State onto the stack which is just a copy of the current state.

Parser.required_group(s, loc, toks)

Parser.simple_group(s, loc, toks)

Parser.space(s, loc, toks)

Parser.sqrt(s, loc, toks)

Parser.stackrel(s, loc, toks)

Parser.start_group(s, loc, toks)

Parser.subsuper(s, loc, toks)

Parser.symbol(s, loc, toks)

67.1. matplotlib.mathtext 977

Matplotlib, Release 1.3.1

Parser.unknown_symbol(s, loc, toks)

class matplotlib.mathtext.Rule(width, height, depth, state)
Bases: matplotlib.mathtext.Box

A Rule node stands for a solid black rectangle; it has width, depth, and height fields just as in an
Hlist. However, if any of these dimensions is inf, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The
width is never running in an Hlist; the height and depth are never running in a Vlist.

render(x, y, w, h)

class matplotlib.mathtext.Ship
Bases: object

Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes
inside of boxes, the main work of Ship is done by two mutually recursive routines, hlist_out()
and vlist_out(), which traverse the Hlist nodes and Vlist nodes inside of horizontal and vertical
boxes. The global variables used in TeX to store state as it processes have become member variables
here.

static clamp(value)

hlist_out(box)

vlist_out(box)

class matplotlib.mathtext.SsGlue
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.StandardPsFonts(default_font_prop)
Bases: matplotlib.mathtext.Fonts

Use the standard postscript fonts for rendering to backend_ps

Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend.

basepath = ‘/home/mdboom/python/lib/python2.7/site-packages/matplotlib-1.3.1-py2.7-linux-x86_64.egg/matplotlib/mpl-data/fonts/afm’

fontmap = {‘bf’: ‘pncb8a’, ‘tt’: ‘pcrr8a’, ‘it’: ‘pncri8a’, None: ‘psyr’, ‘cal’: ‘pzcmi8a’, ‘rm’: ‘pncr8a’, ‘sf’: ‘phvr8a’}

get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi)

get_underline_thickness(font, fontsize, dpi)

get_xheight(font, fontsize, dpi)

978 Chapter 67. mathtext

Matplotlib, Release 1.3.1

class matplotlib.mathtext.StixFonts(*args, **kwargs)
Bases: matplotlib.mathtext.UnicodeFonts

A font handling class for the STIX fonts.

In addition to what UnicodeFonts provides, this class:
•supports “virtual fonts” which are complete alpha numeric character sets with different font
styles at special Unicode code points, such as “Blackboard”.
•handles sized alternative characters for the STIXSizeX fonts.

cm_fallback = False

get_sized_alternatives_for_symbol(fontname, sym)

use_cmex = False

class matplotlib.mathtext.StixSansFonts(*args, **kwargs)
Bases: matplotlib.mathtext.StixFonts

A font handling class for the STIX fonts (that uses sans-serif characters by default).

class matplotlib.mathtext.SubSuperCluster
Bases: matplotlib.mathtext.Hlist

SubSuperCluster is a sort of hack to get around that fact that this code do a two-pass parse like TeX.
This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such
that if another script follows that needs to be attached, it can be reconfigured on the fly.

class matplotlib.mathtext.TruetypeFonts(default_font_prop, mathtext_backend)
Bases: matplotlib.mathtext.Fonts

A generic base class for all font setups that use Truetype fonts (through FT2Font).

class CachedFont(font)

TruetypeFonts.destroy()

TruetypeFonts.get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, font-
size2, dpi)

TruetypeFonts.get_underline_thickness(font, fontsize, dpi)

TruetypeFonts.get_xheight(font, fontsize, dpi)

class matplotlib.mathtext.UnicodeFonts(*args, **kwargs)
Bases: matplotlib.mathtext.TruetypeFonts

An abstract base class for handling Unicode fonts.

67.1. matplotlib.mathtext 979

Matplotlib, Release 1.3.1

While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the
only Unicode font I’m aware of with a complete set of math symbols is STIX.

This class will “fallback” on the Bakoma fonts when a required symbol can not be found in the font.

get_sized_alternatives_for_symbol(fontname, sym)

use_cmex = True

class matplotlib.mathtext.VCentered(elements)
Bases: matplotlib.mathtext.Hlist

A convenience class to create a Vlist whose contents are centered within its enclosing box.

class matplotlib.mathtext.Vbox(height, depth)
Bases: matplotlib.mathtext.Box

A box with only height (zero width).

class matplotlib.mathtext.Vlist(elements, h=0.0, m=’additional’)
Bases: matplotlib.mathtext.List

A vertical list of boxes.

vpack(h=0.0, m=’additional’, l=inf)
The main duty of vpack() is to compute the dimensions of the resulting boxes, and to adjust
the glue if one of those dimensions is pre-specified.

•h: specifies a height
•m: is either ‘exactly’ or ‘additional’.
•l: a maximum height

Thus, vpack(h, ’exactly’) produces a box whose height is exactly h, while vpack(h,
’additional’) yields a box whose height is the natural height plus h. The default values
produce a box with the natural width.

class matplotlib.mathtext.Vrule(state)
Bases: matplotlib.mathtext.Rule

Convenience class to create a vertical rule.

matplotlib.mathtext.get_unicode_index(symbol)→ integer
Return the integer index (from the Unicode table) of symbol. symbol can be a single unicode character,
a TeX command (i.e. r’pi’), or a Type1 symbol name (i.e. ‘phi’).

matplotlib.mathtext.math_to_image(s, filename_or_obj, prop=None, dpi=None, for-
mat=None)

Given a math expression, renders it in a closely-clipped bounding box to an image file.
s A math expression. The math portion should be enclosed in dollar signs.
filename_or_obj A filepath or writable file-like object to write the image data to.
prop If provided, a FontProperties() object describing the size and style of the text.
dpi Override the output dpi, otherwise use the default associated with the output format.
format The output format, e.g., ‘svg’, ‘pdf’, ‘ps’ or ‘png’. If not provided, will be deduced from the

filename.

980 Chapter 67. mathtext

Matplotlib, Release 1.3.1

matplotlib.mathtext.unichr_safe(index)
Return the Unicode character corresponding to the index, or the replacement character if this is a
narrow build of Python and the requested character is outside the BMP.

67.1. matplotlib.mathtext 981

Matplotlib, Release 1.3.1

982 Chapter 67. mathtext

CHAPTER

SIXTYEIGHT

MLAB

68.1 matplotlib.mlab

Numerical python functions written for compatability with MATLAB commands with the same names.

68.1.1 MATLAB compatible functions

cohere() Coherence (normalized cross spectral density)

csd() Cross spectral density uing Welch’s average periodogram

detrend() Remove the mean or best fit line from an array

find()

Return the indices where some condition is true; numpy.nonzero is similar but more general.

griddata()

interpolate irregularly distributed data to a regular grid.

prctile() find the percentiles of a sequence

prepca() Principal Component Analysis

psd() Power spectral density uing Welch’s average periodogram

rk4() A 4th order runge kutta integrator for 1D or ND systems

specgram() Spectrogram (power spectral density over segments of time)

68.1.2 Miscellaneous functions

Functions that don’t exist in MATLAB, but are useful anyway:

cohere_pairs() Coherence over all pairs. This is not a MATLAB function, but we compute coherence
a lot in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently
by caching the direct FFTs.

rk4() A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and
the far superior scipy.integrate tools)

983

Matplotlib, Release 1.3.1

contiguous_regions() return the indices of the regions spanned by some logical mask

cross_from_below() return the indices where a 1D array crosses a threshold from below

cross_from_above() return the indices where a 1D array crosses a threshold from above

68.1.3 record array helper functions

A collection of helper methods for numpyrecord arrays

See misc-examples-index

rec2txt() pretty print a record array

rec2csv() store record array in CSV file

csv2rec() import record array from CSV file with type inspection

rec_append_fields() adds field(s)/array(s) to record array

rec_drop_fields() drop fields from record array

rec_join() join two record arrays on sequence of fields

recs_join() a simple join of multiple recarrays using a single column as a key

rec_groupby() summarize data by groups (similar to SQL GROUP BY)

rec_summarize() helper code to filter rec array fields into new fields

For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions
that will do things like color negative values red, set percent formatting and scaling, etc.

Example usage:

r = csv2rec(’somefile.csv’, checkrows=0)

formatd = dict(
weight = FormatFloat(2),
change = FormatPercent(2),
cost = FormatThousands(2),
)

rec2excel(r, ’test.xls’, formatd=formatd)
rec2csv(r, ’test.csv’, formatd=formatd)
scroll = rec2gtk(r, formatd=formatd)

win = gtk.Window()
win.set_size_request(600,800)
win.add(scroll)
win.show_all()
gtk.main()

984 Chapter 68. mlab

Matplotlib, Release 1.3.1

68.1.4 Deprecated functions

The following are deprecated; please import directly from numpy (with care–function signatures may differ):

load() load ASCII file - use numpy.loadtxt

save() save ASCII file - use numpy.savetxt

class matplotlib.mlab.FIFOBuffer(*args, **kwargs)
A FIFO queue to hold incoming x, y data in a rotating buffer using numpy arrays under the hood. It is
assumed that you will call asarrays much less frequently than you add data to the queue – otherwise
another data structure will be faster.

This can be used to support plots where data is added from a real time feed and the plot object wants
to grab data from the buffer and plot it to screen less freqeuently than the incoming.

If you set the dataLim attr to BBox (eg matplotlib.Axes.dataLim), the dataLim will be updated
as new data come in.

TODO: add a grow method that will extend nmax

Note: mlab seems like the wrong place for this class.

Deprecated since version 1.3: The FIFOBuffer class was deprecated in version 1.3.

Buffer up to nmax points.

add(x, y)
Add scalar x and y to the queue.

asarrays()
Return x and y as arrays; their length will be the len of data added or nmax.

last()
Get the last x, y or None. None if no data set.

register(func, N)
Call func every time N events are passed; func signature is func(fifo).

update_datalim_to_current()
Update the datalim in the current data in the fifo.

class matplotlib.mlab.FormatBool
Bases: matplotlib.mlab.FormatObj

fromstr(s)

toval(x)

class matplotlib.mlab.FormatDate(fmt)
Bases: matplotlib.mlab.FormatObj

fromstr(x)

68.1. matplotlib.mlab 985

Matplotlib, Release 1.3.1

toval(x)

class matplotlib.mlab.FormatDatetime(fmt=’%Y-%m-%d %H:%M:%S’)
Bases: matplotlib.mlab.FormatDate

fromstr(x)

class matplotlib.mlab.FormatFloat(precision=4, scale=1.0)
Bases: matplotlib.mlab.FormatFormatStr

fromstr(s)

toval(x)

class matplotlib.mlab.FormatFormatStr(fmt)
Bases: matplotlib.mlab.FormatObj

tostr(x)

class matplotlib.mlab.FormatInt
Bases: matplotlib.mlab.FormatObj

fromstr(s)

tostr(x)

toval(x)

class matplotlib.mlab.FormatMillions(precision=4)
Bases: matplotlib.mlab.FormatFloat

class matplotlib.mlab.FormatObj

fromstr(s)

tostr(x)

toval(x)

class matplotlib.mlab.FormatPercent(precision=4)
Bases: matplotlib.mlab.FormatFloat

class matplotlib.mlab.FormatString
Bases: matplotlib.mlab.FormatObj

986 Chapter 68. mlab

Matplotlib, Release 1.3.1

tostr(x)

class matplotlib.mlab.FormatThousands(precision=4)
Bases: matplotlib.mlab.FormatFloat

class matplotlib.mlab.PCA(a)
compute the SVD of a and store data for PCA. Use project to project the data onto a reduced set of
dimensions

Inputs:
a: a numobservations x numdims array

Attrs:
a a centered unit sigma version of input a

numrows, numcols: the dimensions of a

mu : a numdims array of means of a

sigma : a numdims array of atandard deviation of a

fracs : the proportion of variance of each of the principal components

Wt : the weight vector for projecting a numdims point or array into PCA space

Y : a projected into PCA space
The factor loadings are in the Wt factor, ie the factor loadings for the 1st principal component are
given by Wt[0]

center(x)
center the data using the mean and sigma from training set a

project(x, minfrac=0.0)
project x onto the principle axes, dropping any axes where fraction of variance<minfrac

matplotlib.mlab.amap(function, sequence[, sequence, ...]) → array.
Works like map(), but it returns an array. This is just a convenient shorthand for
numpy.array(map(...)).

matplotlib.mlab.base_repr(number, base=2, padding=0)
Return the representation of a number in any given base.

matplotlib.mlab.binary_repr(number, max_length=1025)
Return the binary representation of the input number as a string.

This is more efficient than using base_repr() with base 2.

Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is
the largest integer power of 2 which can be converted to a Python float.

matplotlib.mlab.bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sig-
maxy=0.0)

Bivariate Gaussian distribution for equal shape X, Y.

See bivariate normal at mathworld.

68.1. matplotlib.mlab 987

http://mathworld.wolfram.com/BivariateNormalDistribution.html

Matplotlib, Release 1.3.1

matplotlib.mlab.center_matrix(M, dim=0)
Return the matrix M with each row having zero mean and unit std.

If dim = 1 operate on columns instead of rows. (dim is opposite to the numpy axis kwarg.)

matplotlib.mlab.cohere(x, y, NFFT=256, Fs=2, detrend=<function detrend_none at
0x2635de8>, window=<function window_hanning at 0x2635b90>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None)

The coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(68.1)

x, y Array or sequence containing the data
Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for
integration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

The return value is the tuple (Cxy, f), where f are the frequencies of the coherence vector. For cohere,
scaling the individual densities by the sampling frequency has no effect, since the factors cancel out.

988 Chapter 68. mlab

Matplotlib, Release 1.3.1

See also:

psd() and csd() For information about the methods used to compute Pxy, Pxx and Pyy.

matplotlib.mlab.cohere_pairs(X, ij, NFFT=256, Fs=2, detrend=<function detrend_none
at 0x2635de8>, window=<function window_hanning
at 0x2635b90>, noverlap=0, preferSpeedOverMem-
ory=True, progressCallback=<function donothing_callback at
0x263b398>, returnPxx=False)

Call signature:

Cxy, Phase, freqs = cohere_pairs(X, ij, ...)

Compute the coherence and phase for all pairs ij, in X.

X is a numSamples * numCols array

ij is a list of tuples. Each tuple is a pair of indexes into the columns of X for which you want to
compute coherence. For example, if X has 64 columns, and you want to compute all nonredundant
pairs, define ij as:

ij = []
for i in range(64):

for j in range(i+1,64):
ij.append((i,j))

preferSpeedOverMemory is an optional bool. Defaults to true. If False, limits the caching by only
making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even
when preferSpeedOverMemory is False, cohere_pairs() will still give significant performace gains
over calling cohere() for each pair, and will use subtantially less memory than if preferSpeedOver-
Memory is True. In my tests with a 43000,64 array over all nonredundant pairs, preferSpeedOverMem-
ory = True delivered a 33% performance boost on a 1.7GHZ Athlon with 512MB RAM compared
with preferSpeedOverMemory = False. But both solutions were more than 10x faster than naively
crunching all possible pairs through cohere().

Returns:

(Cxy, Phase, freqs)

where:
•Cxy: dictionary of (i, j) tuples -> coherence vector for that pair. I.e., Cxy[(i,j) =
cohere(X[:,i], X[:,j]). Number of dictionary keys is len(ij).
•Phase: dictionary of phases of the cross spectral density at each frequency for each pair. Keys
are (i, j).
•freqs: vector of frequencies, equal in length to either the coherence or phase vectors for any

(i, j) key.
e.g., to make a coherence Bode plot:

subplot(211)
plot(freqs, Cxy[(12,19)])

68.1. matplotlib.mlab 989

Matplotlib, Release 1.3.1

subplot(212)
plot(freqs, Phase[(12,19)])

For a large number of pairs, cohere_pairs() can be much more efficient than just calling cohere()
for each pair, because it caches most of the intensive computations. If N is the number of pairs, this
function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N2). However,
because of the caching, it is also more memory intensive, making 2 additional complex arrays with
approximately the same number of elements as X.

See test/cohere_pairs_test.py in the src tree for an example script that shows that this
cohere_pairs() and cohere() give the same results for a given pair.

See also:

psd() For information about the methods used to compute Pxy, Pxx and Pyy.

matplotlib.mlab.contiguous_regions(mask)
return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions

TODO: this is a pure python implementation which probably has a much faster numpy impl

matplotlib.mlab.cross_from_above(x, threshold)
return the indices into x where x crosses some threshold from below, eg the i’s where:

x[i-1]>threshold and x[i]<=threshold

See also:

cross_from_below() and contiguous_regions()

matplotlib.mlab.cross_from_below(x, threshold)
return the indices into x where x crosses some threshold from below, eg the i’s where:

x[i-1]<threshold and x[i]>=threshold

Example code:

import matplotlib.pyplot as plt

t = np.arange(0.0, 2.0, 0.1)
s = np.sin(2*np.pi*t)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t, s, ’-o’)
ax.axhline(0.5)
ax.axhline(-0.5)

ind = cross_from_below(s, 0.5)
ax.vlines(t[ind], -1, 1)

ind = cross_from_above(s, -0.5)
ax.vlines(t[ind], -1, 1)

990 Chapter 68. mlab

Matplotlib, Release 1.3.1

plt.show()

See also:

cross_from_above() and contiguous_regions()

matplotlib.mlab.csd(x, y, NFFT=256, Fs=2, detrend=<function detrend_none at 0x2635de8>,
window=<function window_hanning at 0x2635b90>, noverlap=0,
pad_to=None, sides=’default’, scale_by_freq=None)

The cross power spectral density by Welch’s average periodogram method. The vectors x and y are
divided into NFFT length blocks. Each block is detrended by the function detrend and windowed by
the function window. noverlap gives the length of the overlap between blocks. The product of the
direct FFTs of x and y are averaged over each segment to compute Pxy, with a scaling to correct for
power loss due to windowing.

If len(x) < NFFT or len(y) < NFFT, they will be zero padded to NFFT.
x, y Array or sequence containing the data
Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for
integration over the returned frequency values. The default is True for MATLAB
compatibility.

68.1. matplotlib.mlab 991

Matplotlib, Release 1.3.1

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Returns the tuple (Pxy, freqs).
Refs: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley & Sons

(1986)

matplotlib.mlab.csv2rec(fname, comments=’#’, skiprows=0, checkrows=0, delimiter=’,
‘, converterd=None, names=None, missing=’‘, missingd=None,
use_mrecords=False, dayfirst=False, yearfirst=False)

Load data from comma/space/tab delimited file in fname into a numpy record array and return the
record array.

If names is None, a header row is required to automatically assign the recarray names. The headers
will be lower cased, spaces will be converted to underscores, and illegal attribute name characters
removed. If names is not None, it is a sequence of names to use for the column names. In this case, it
is assumed there is no header row.

•fname: can be a filename or a file handle. Support for gzipped files is automatic, if the filename
ends in ‘.gz’
•comments: the character used to indicate the start of a comment in the file, or None to switch
off the removal of comments
•skiprows: is the number of rows from the top to skip
•checkrows: is the number of rows to check to validate the column data type. When set to zero
all rows are validated.
•converterd: if not None, is a dictionary mapping column number or munged column name to a
converter function.
•names: if not None, is a list of header names. In this case, no header will be read from the file
•missingd is a dictionary mapping munged column names to field values which signify that the
field does not contain actual data and should be masked, e.g., ‘0000-00-00’ or ‘unused’
•missing: a string whose value signals a missing field regardless of the column it appears in
•use_mrecords: if True, return an mrecords.fromrecords record array if any of the data are miss-
ing
•dayfirst: default is False so that MM-DD-YY has precedence over DD-MM-YY. See
http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47 for fur-
ther information.
•yearfirst: default is False so that MM-DD-YY has precedence over YY-MM-DD. See
http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47 for fur-
ther information.

If no rows are found, None is returned – see examples/loadrec.py

matplotlib.mlab.csvformat_factory(format)

matplotlib.mlab.demean(x, axis=0)
Return x minus its mean along the specified axis

matplotlib.mlab.detrend(x, key=None)

matplotlib.mlab.detrend_linear(y)
Return y minus best fit line; ‘linear’ detrending

992 Chapter 68. mlab

http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47
http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47

Matplotlib, Release 1.3.1

matplotlib.mlab.detrend_mean(x)
Return x minus the mean(x)

matplotlib.mlab.detrend_none(x)
Return x: no detrending

matplotlib.mlab.dist(x, y)
Return the distance between two points.

matplotlib.mlab.dist_point_to_segment(p, s0, s1)
Get the distance of a point to a segment.

p, s0, s1 are xy sequences
This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment

matplotlib.mlab.distances_along_curve(X)
Computes the distance between a set of successive points in N dimensions.

Where X is an M x N array or matrix. The distances between successive rows is computed. Distance
is the standard Euclidean distance.

matplotlib.mlab.donothing_callback(*args)

matplotlib.mlab.entropy(y, bins)
Return the entropy of the data in y. ∑

pi log2(pi) (68.2)

where pi is the probability of observing y in the ith bin of bins. bins can be a number of bins or a range
of bins; see numpy.histogram().

Compare S with analytic calculation for a Gaussian:

x = mu + sigma * randn(200000)
Sanalytic = 0.5 * (1.0 + log(2*pi*sigma**2.0))

matplotlib.mlab.exp_safe(x)
Compute exponentials which safely underflow to zero.

Slow, but convenient to use. Note that numpy provides proper floating point exception handling with
access to the underlying hardware.

matplotlib.mlab.fftsurr(x, detrend=<function detrend_none at 0x2635de8>, win-
dow=<function window_none at 0x2635c08>)

Compute an FFT phase randomized surrogate of x.

matplotlib.mlab.find(condition)
Return the indices where ravel(condition) is true

matplotlib.mlab.frange([start], stop[, step, keywords])→ array of floats
Return a numpy ndarray containing a progression of floats. Similar to numpy.arange(), but defaults
to a closed interval.

frange(x0, x1) returns [x0, x0+1, x0+2, ..., x1]; start defaults to 0, and the endpoint is
included. This behavior is different from that of range() and numpy.arange(). This is deliberate,
since frange() will probably be more useful for generating lists of points for function evaluation,

68.1. matplotlib.mlab 993

http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment

Matplotlib, Release 1.3.1

and endpoints are often desired in this use. The usual behavior of range() can be obtained by setting
the keyword closed = 0, in this case, frange() basically becomes :func:numpy.arange‘.

When step is given, it specifies the increment (or decrement). All arguments can be floating point
numbers.

frange(x0,x1,d) returns [x0,x0+d,x0+2d,...,xfin] where xfin <= x1.

frange() can also be called with the keyword npts. This sets the number of points the list should
contain (and overrides the value step might have been given). numpy.arange() doesn’t offer this
option.

Examples:

>>> frange(3)
array([0., 1., 2., 3.])
>>> frange(3,closed=0)
array([0., 1., 2.])
>>> frange(1,6,2)
array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries
>>> frange(1,6.5,npts=5)
array([1. , 2.375, 3.75 , 5.125, 6.5])

matplotlib.mlab.get_formatd(r, formatd=None)
build a formatd guaranteed to have a key for every dtype name

matplotlib.mlab.get_sparse_matrix(M, N, frac=0.1)
Return a M x N sparse matrix with frac elements randomly filled.

matplotlib.mlab.get_xyz_where(Z, Cond)
Z and Cond are M x N matrices. Z are data and Cond is a boolean matrix where some condition is
satisfied. Return value is (x, y, z) where x and y are the indices into Z and z are the values of Z at
those indices. x, y, and z are 1D arrays.

matplotlib.mlab.griddata(x, y, z, xi, yi, interp=’nn’)
zi = griddata(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually)
nonuniformly spaced vectors (x, y, z). griddata() interpolates this surface at the points specified
by (xi, yi) to produce zi. xi and yi must describe a regular grid, can be either 1D or 2D, but must be
monotonically increasing.

A masked array is returned if any grid points are outside convex hull defined by input data (no extrap-
olation is done).

If interp keyword is set to ‘nn‘ (default), uses natural neighbor interpolation based on Delaunay trian-
gulation. By default, this algorithm is provided by the matplotlib.delaunay package, written by
Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological
cases. For this reason, a separate toolkit (mpl_tookits.natgrid) has been created that provides a
more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR nat-
grid library, which contains code that is not redistributable under a BSD-compatible license. When
installed, this function will use the mpl_toolkits.natgrid algorithm, otherwise it will use the
built-in matplotlib.delaunay package.

If the interp keyword is set to ‘linear‘, then linear interpolation is used instead of natural neigh-
bor. In this case, the output grid is assumed to be regular with a constant grid spacing in both the

994 Chapter 68. mlab

Matplotlib, Release 1.3.1

x and y directions. For regular grids with nonconstant grid spacing, you must use natural neigh-
bor interpolation. Linear interpolation is only valid if matplotlib.delaunay package is used -
mpl_tookits.natgrid only provides natural neighbor interpolation.

The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

matplotlib.mlab.identity(n, rank=2, dtype=’l’, typecode=None)
Returns the identity matrix of shape (n, n, ..., n) (rank r).

For ranks higher than 2, this object is simply a multi-index Kronecker delta:

/ 1 if i0=i1=...=iR,
id[i0,i1,...,iR] = -|

\ 0 otherwise.

Optionally a dtype (or typecode) may be given (it defaults to ‘l’).

Since rank defaults to 2, this function behaves in the default case (when only n is given) like
numpy.identity(n) – but surprisingly, it is much faster.

matplotlib.mlab.inside_poly(points, verts)
points is a sequence of x, y points. verts is a sequence of x, y vertices of a polygon.

Return value is a sequence of indices into points for the points that are inside the polygon.

matplotlib.mlab.is_closed_polygon(X)
Tests whether first and last object in a sequence are the same. These are presumably coordinates on a
polygonal curve, in which case this function tests if that curve is closed.

matplotlib.mlab.ispower2(n)
Returns the log base 2 of n if n is a power of 2, zero otherwise.

Note the potential ambiguity if n == 1: 2**0 == 1, interpret accordingly.

matplotlib.mlab.isvector(X)
Like the MATLAB function with the same name, returns True if the supplied numpy array or matrix
X looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all
must have length 1, except for one of them).

If you just want to see if the array has 1 axis, use X.ndim == 1.

matplotlib.mlab.l1norm(a)
Return the l1 norm of a, flattened out.

Implemented as a separate function (not a call to norm() for speed).

matplotlib.mlab.l2norm(a)
Return the l2 norm of a, flattened out.

Implemented as a separate function (not a call to norm() for speed).

matplotlib.mlab.less_simple_linear_interpolation(x, y, xi, extrap=False)
This function provides simple (but somewhat less so than
cbook.simple_linear_interpolation()) linear interpolation.
simple_linear_interpolation() will give a list of point between a start and an end, while this
does true linear interpolation at an arbitrary set of points.

68.1. matplotlib.mlab 995

http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

Matplotlib, Release 1.3.1

This is very inefficient linear interpolation meant to be used only for a small number of points in
relatively non-intensive use cases. For real linear interpolation, use scipy.

matplotlib.mlab.levypdf(x, gamma, alpha)
Returm the levy pdf evaluated at x for params gamma, alpha

matplotlib.mlab.log2(x, ln2=0.6931471805599453)
Return the log(x) in base 2.

This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an
integer exact power of 2.

matplotlib.mlab.logspace(xmin, xmax, N)

matplotlib.mlab.longest_contiguous_ones(x)
Return the indices of the longest stretch of contiguous ones in x, assuming x is a vector of zeros and
ones. If there are two equally long stretches, pick the first.

matplotlib.mlab.longest_ones(x)
alias for longest_contiguous_ones

matplotlib.mlab.movavg(x, n)
Compute the len(n) moving average of x.

matplotlib.mlab.norm_flat(a, p=2)
norm(a,p=2) -> l-p norm of a.flat

Return the l-p norm of a, considered as a flat array. This is NOT a true matrix norm, since arrays of
arbitrary rank are always flattened.

p can be a number or the string ‘Infinity’ to get the L-infinity norm.

matplotlib.mlab.normpdf(x, *args)
Return the normal pdf evaluated at x; args provides mu, sigma

matplotlib.mlab.offset_line(y, yerr)
Offsets an array y by +/- an error and returns a tuple (y - err, y + err).

The error term can be:
•A scalar. In this case, the returned tuple is obvious.
•A vector of the same length as y. The quantities y +/- err are computed component-wise.
•A tuple of length 2. In this case, yerr[0] is the error below y and yerr[1] is error above y. For
example:

from pylab import *
x = linspace(0, 2*pi, num=100, endpoint=True)
y = sin(x)
y_minus, y_plus = mlab.offset_line(y, 0.1)
plot(x, y)
fill_between(x, ym, y2=yp)
show()

matplotlib.mlab.path_length(X)
Computes the distance travelled along a polygonal curve in N dimensions.

996 Chapter 68. mlab

Matplotlib, Release 1.3.1

Where X is an M x N array or matrix. Returns an array of length M consisting of the distance along
the curve at each point (i.e., the rows of X).

matplotlib.mlab.poly_below(xmin, xs, ys)
Given a sequence of xs and ys, return the vertices of a polygon that has a horizontal base at xmin and
an upper bound at the ys. xmin is a scalar.

Intended for use with matplotlib.axes.Axes.fill(), eg:

xv, yv = poly_below(0, x, y)
ax.fill(xv, yv)

matplotlib.mlab.poly_between(x, ylower, yupper)
Given a sequence of x, ylower and yupper, return the polygon that fills the regions between them.
ylower or yupper can be scalar or iterable. If they are iterable, they must be equal in length to x.

Return value is x, y arrays for use with matplotlib.axes.Axes.fill().

matplotlib.mlab.prctile(x, p=(0.0, 25.0, 50.0, 75.0, 100.0))
Return the percentiles of x. p can either be a sequence of percentile values or a scalar. If p is a
sequence, the ith element of the return sequence is the p*(i)-th percentile of *x. If p is a scalar, the
largest value of x less than or equal to the p percentage point in the sequence is returned.

matplotlib.mlab.prctile_rank(x, p)
Return the rank for each element in x, return the rank 0..len(p). e.g., if p = (25, 50, 75), the return
value will be a len(x) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th
percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is
above the 75th percentile cutoff.

p is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data
you want ranked.

matplotlib.mlab.prepca(P, frac=0)
WARNING: this function is deprecated – please see class PCA instead

Compute the principal components of P. P is a (numVars, numObs) array. frac is the minimum fraction
of variance that a component must contain to be included.

Return value is a tuple of the form (Pcomponents, Trans, fracVar) where:
•Pcomponents : a (numVars, numObs) array
•Trans [the weights matrix, ie, Pcomponents = Trans *] P
•fracVar [the fraction of the variance accounted for by each] component returned

A similar function of the same name was in the MATLAB R13 Neural Network Toolbox but is not
found in later versions; its successor seems to be called “processpcs”.

matplotlib.mlab.psd(x, NFFT=256, Fs=2, detrend=<function detrend_none at 0x2635de8>,
window=<function window_hanning at 0x2635b90>, noverlap=0,
pad_to=None, sides=’default’, scale_by_freq=None)

The power spectral density by Welch’s average periodogram method. The vector x is divided into
NFFT length blocks. Each block is detrended by the function detrend and windowed by the function
window. noverlap gives the length of the overlap between blocks. The absolute(fft(block))**2 of
each segment are averaged to compute Pxx, with a scaling to correct for power loss due to windowing.

If len(x) < NFFT, it will be zero padded to NFFT.

68.1. matplotlib.mlab 997

Matplotlib, Release 1.3.1

x Array or sequence containing the data
Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for
integration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Returns the tuple (Pxx, freqs).

Refs:
Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley &
Sons (1986)

matplotlib.mlab.quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y)
Converts a quadratic Bezier curve to a cubic approximation.

The inputs are the x and y coordinates of the three control points of a quadratic curve, and the output
is a tuple of x and y coordinates of the four control points of the cubic curve.

matplotlib.mlab.rec2csv(r, fname, delimiter=’, ‘, formatd=None, missing=’‘, missingd=None,
withheader=True)

Save the data from numpy recarray r into a comma-/space-/tab-delimited file. The record array dtype

998 Chapter 68. mlab

Matplotlib, Release 1.3.1

names will be used for column headers.
fname: can be a filename or a file handle. Support for gzipped files is automatic, if the filename

ends in ‘.gz’
withheader: if withheader is False, do not write the attribute names in the first row
for formatd type FormatFloat, we override the precision to store full precision floats in the CSV file

See also:

csv2rec() For information about missing and missingd, which can be used to fill in masked values
into your CSV file.

matplotlib.mlab.rec2txt(r, header=None, padding=3, precision=3, fields=None)
Returns a textual representation of a record array.

r: numpy recarray

header: list of column headers

padding: space between each column
precision: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to

a list of integers to apply precision individually. Precision for non-floats is simply ignored.
fields : if not None, a list of field names to print. fields can be a list of strings like [’field1’, ‘field2’]
or a single comma separated string like ‘field1,field2’

Example:

precision=[0,2,3]

Output:

ID Price Return
ABC 12.54 0.234
XYZ 6.32 -0.076

matplotlib.mlab.rec_append_fields(rec, names, arrs, dtypes=None)
Return a new record array with field names populated with data from arrays in arrs. If appending
a single field, then names, arrs and dtypes do not have to be lists. They can just be the values
themselves.

matplotlib.mlab.rec_drop_fields(rec, names)
Return a new numpy record array with fields in names dropped.

matplotlib.mlab.rec_groupby(r, groupby, stats)
r is a numpy record array

groupby is a sequence of record array attribute names that together form the grouping key. eg (‘date’,
‘productcode’)

stats is a sequence of (attr, func, outname) tuples which will call x = func(attr) and assign x to
the record array output with attribute outname. For example:

stats = ((’sales’, len, ’numsales’), (’sales’, np.mean, ’avgsale’))

68.1. matplotlib.mlab 999

Matplotlib, Release 1.3.1

Return record array has dtype names for each attribute name in the the groupby argument, with the
associated group values, and for each outname name in the stats argument, with the associated stat
summary output.

matplotlib.mlab.rec_join(key, r1, r2, jointype=’inner’, defaults=None, r1postfix=‘1’,
r2postfix=‘2’)

Join record arrays r1 and r2 on key; key is a tuple of field names – if key is a string it is assumed to be
a single attribute name. If r1 and r2 have equal values on all the keys in the key tuple, then their fields
will be merged into a new record array containing the intersection of the fields of r1 and r2.

r1 (also r2) must not have any duplicate keys.

The jointype keyword can be ‘inner’, ‘outer’, ‘leftouter’. To do a rightouter join just reverse r1 and
r2.

The defaults keyword is a dictionary filled with {column_name:default_value} pairs.

The keywords r1postfix and r2postfix are postfixed to column names (other than keys) that are both in
r1 and r2.

matplotlib.mlab.rec_keep_fields(rec, names)
Return a new numpy record array with only fields listed in names

matplotlib.mlab.rec_summarize(r, summaryfuncs)
r is a numpy record array

summaryfuncs is a list of (attr, func, outname) tuples which will apply func to the the array r*[attr]
and assign the output to a new attribute name *outname. The returned record array is identical to r,
with extra arrays for each element in summaryfuncs.

matplotlib.mlab.recs_join(key, name, recs, jointype=’outer’, missing=0.0, postfixes=None)
Join a sequence of record arrays on single column key.

This function only joins a single column of the multiple record arrays
key is the column name that acts as a key
name is the name of the column that we want to join
recs is a list of record arrays to join
jointype is a string ‘inner’ or ‘outer’
missing is what any missing field is replaced by
postfixes if not None, a len recs sequence of postfixes
returns a record array with columns [rowkey, name0, name1, ... namen-1]. or if postfixes [PF0, PF1,
..., PFN-1] are supplied, [rowkey, namePF0, namePF1, ... namePFN-1].

Example:

r = recs_join("date", "close", recs=[r0, r1], missing=0.)

matplotlib.mlab.rk4(derivs, y0, t)
Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementation
which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use
scipy.integrate().
y0 initial state vector
t sample times

1000 Chapter 68. mlab

Matplotlib, Release 1.3.1

derivs returns the derivative of the system and has the signature dy = derivs(yi, ti)
Example 1

2D system

def derivs6(x,t):
d1 = x[0] + 2*x[1]
d2 = -3*x[0] + 4*x[1]
return (d1, d2)

dt = 0.0005
t = arange(0.0, 2.0, dt)
y0 = (1,2)
yout = rk4(derivs6, y0, t)

Example 2:

1D system
alpha = 2
def derivs(x,t):

return -alpha*x + exp(-t)

y0 = 1
yout = rk4(derivs, y0, t)

If you have access to scipy, you should probably be using the scipy.integrate tools rather than this
function.

matplotlib.mlab.rms_flat(a)
Return the root mean square of all the elements of a, flattened out.

matplotlib.mlab.safe_isinf(x)
numpy.isinf() for arbitrary types

matplotlib.mlab.safe_isnan(x)
numpy.isnan() for arbitrary types

matplotlib.mlab.segments_intersect(s1, s2)
Return True if s1 and s2 intersect. s1 and s2 are defined as:

s1: (x1, y1), (x2, y2)
s2: (x3, y3), (x4, y4)

matplotlib.mlab.slopes(x, y)
slopes() calculates the slope y‘(x)

The slope is estimated using the slope obtained from that of a parabola through any three consecutive
points.

This method should be superior to that described in the appendix of A CONSISTENTLY WELL
BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July
1980) in at least one aspect:

68.1. matplotlib.mlab 1001

Matplotlib, Release 1.3.1

Circles for interpolation demand a known aspect ratio between x- and y-values. For many
functions, however, the abscissa are given in different dimensions, so an aspect ratio is
completely arbitrary.

The parabola method gives very similar results to the circle method for most regular cases but behaves
much better in special cases.

Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Nor-
bert.Nemec at physik.uni-regensburg.de

(inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March
2006 halldor at vedur.is)

matplotlib.mlab.specgram(x, NFFT=256, Fs=2, detrend=<function detrend_none
at 0x2635de8>, window=<function window_hanning at
0x2635b90>, noverlap=128, pad_to=None, sides=’default’,
scale_by_freq=None)

Compute a spectrogram of data in x. Data are split into NFFT length segments and the PSD of each
section is computed. The windowing function window is applied to each segment, and the amount of
overlap of each segment is specified with noverlap.

If x is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If x is complex
then the complete spectrum is returned.

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while

1002 Chapter 68. mlab

Matplotlib, Release 1.3.1

‘twosided’ forces two-sided.
scale_by_freq: boolean Specifies whether the resulting density values should be scaled

by the scaling frequency, which gives density in units of Hz^-1. This allows for
integration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is
128.

Returns a tuple (Pxx, freqs, t):
•Pxx: 2-D array, columns are the periodograms of successive segments
•freqs: 1-D array of frequencies corresponding to the rows in Pxx
•t: 1-D array of times corresponding to midpoints of segments.

See also:

psd() psd() differs in the default overlap; in returning the mean of the segment periodograms; and
in not returning times.

matplotlib.mlab.stineman_interp(xi, x, y, yp=None)
Given data vectors x and y, the slope vector yp and a new abscissa vector xi, the function
stineman_interp() uses Stineman interpolation to calculate a vector yi corresponding to xi.

Here’s an example that generates a coarse sine curve, then interpolates over a finer abscissa:

x = linspace(0,2*pi,20); y = sin(x); yp = cos(x)
xi = linspace(0,2*pi,40);
yi = stineman_interp(xi,x,y,yp);
plot(x,y,’o’,xi,yi)

The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED
METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980
issue of Creative Computing with a note from the editor stating that while they were:

not an academic journal but once in a while something serious and original comes in
adding that this was “apparently a real solution” to a well known problem.

For yp = None, the routine automatically determines the slopes using the slopes() routine.

x is assumed to be sorted in increasing order.

For values xi[j] < x[0] or xi[j] > x[-1], the routine tries an extrapolation. The relevance of
the data obtained from this, of course, is questionable...

Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor
at vedur.is

Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics,
University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de

matplotlib.mlab.vector_lengths(X, P=2.0, axis=None)
Finds the length of a set of vectors in n dimensions. This is like the numpy.norm() function for
vectors, but has the ability to work over a particular axis of the supplied array or matrix.

Computes (sum((x_i)^P))^(1/P) for each {x_i} being the elements of X along the given axis. If
axis is None, compute over all elements of X.

68.1. matplotlib.mlab 1003

Matplotlib, Release 1.3.1

matplotlib.mlab.window_hanning(x)
return x times the hanning window of len(x)

matplotlib.mlab.window_none(x)
No window function; simply return x

1004 Chapter 68. mlab

CHAPTER

SIXTYNINE

PATH

69.1 matplotlib.path

A module for dealing with the polylines used throughout matplotlib.

The primary class for polyline handling in matplotlib is Path. Almost all vector drawing makes use of Paths
somewhere in the drawing pipeline.

Whilst a Path instance itself cannot be drawn, there exists Artist subclasses which can be used for con-
venient Path visualisation - the two most frequently used of these are PathPatch and PathCollection.

class matplotlib.path.Path(vertices, codes=None, _interpolation_steps=1, closed=False, read-
only=False)

Bases: object

Path represents a series of possibly disconnected, possibly closed, line and curve segments.
The underlying storage is made up of two parallel numpy arrays:

•vertices: an Nx2 float array of vertices
•codes: an N-length uint8 array of vertex types

These two arrays always have the same length in the first dimension. For example, to represent a
cubic curve, you must provide three vertices as well as three codes CURVE3.

The code types are:
•STOP [1 vertex (ignored)] A marker for the end of the entire path (currently not required and

ignored)
•MOVETO [1 vertex] Pick up the pen and move to the given vertex.
•LINETO [1 vertex] Draw a line from the current position to the given vertex.
•CURVE3 [1 control point, 1 endpoint] Draw a quadratic Bezier curve from the current position,

with the given control point, to the given end point.
•CURVE4 [2 control points, 1 endpoint] Draw a cubic Bezier curve from the current position, with

the given control points, to the given end point.
•CLOSEPOLY [1 vertex (ignored)] Draw a line segment to the start point of the current polyline.

Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use
iter_segments() or cleaned() to get the vertex/code pairs. This is important, since many Path
objects, as an optimization, do not store a codes at all, but have a default one provided for them by
iter_segments().

Note: The vertices and codes arrays should be treated as immutable – there are a number of optimiza-

1005

Matplotlib, Release 1.3.1

tions and assumptions made up front in the constructor that will not change when the data changes.

Create a new path with the given vertices and codes.
Parameters vertices : array_like

The (n, 2) float array, masked array or sequence of pairs represent-
ing the vertices of the path.

If vertices contains masked values, they will be converted to NaNs
which are then handled correctly by the Agg PathIterator and other
consumers of path data, such as iter_segments().

codes : {None, array_like}, optional
n-length array integers representing the codes of the path. If not None,
codes must be the same length as vertices. If None, vertices will be
treated as a series of line segments.

_interpolation_steps : int, optional
Used as a hint to certain projections, such as Polar, that this path should
be linearly interpolated immediately before drawing. This attribute is
primarily an implementation detail and is not intended for public use.

closed : bool, optional
If codes is None and closed is True, vertices will be treated as line
segments of a closed polygon.

readonly : bool, optional
Makes the path behave in an immutable way and sets the vertices and
codes as read-only arrays.

CLOSEPOLY = 79

CURVE3 = 3

CURVE4 = 4

LINETO = 2

MOVETO = 1

NUM_VERTICES_FOR_CODE = {0: 1, 1: 1, 2: 1, 3: 2, 4: 3, 79: 1}
A dictionary mapping Path codes to the number of vertices that the code expects.

STOP = 0

classmethod arc(theta1, theta2, n=None, is_wedge=False)
Return an arc on the unit circle from angle theta1 to angle theta2 (in degrees).

If n is provided, it is the number of spline segments to make. If n is not provided, the number
of spline segments is determined based on the delta between theta1 and theta2.

Masionobe, L. 2003. Drawing an elliptical arc using polylines, quadratic or cubic
Bezier curves.

1006 Chapter 69. path

http://www.spaceroots.org/documents/ellipse/index.html
http://www.spaceroots.org/documents/ellipse/index.html

Matplotlib, Release 1.3.1

cleaned(transform=None, remove_nans=False, clip=None, quantize=False, simplify=False,
curves=False, stroke_width=1.0, snap=False, sketch=None)

Cleans up the path according to the parameters returning a new Path instance.

See also:

See iter_segments() for details of the keyword arguments.

Returns Path instance with cleaned up vertices and codes. :

clip_to_bbox(bbox, inside=True)
Clip the path to the given bounding box.

The path must be made up of one or more closed polygons. This algorithm will not behave
correctly for unclosed paths.

If inside is True, clip to the inside of the box, otherwise to the outside of the box.

code_type
alias of uint8

codes None
The list of codes in the Path as a 1-D numpy array. Each code is one of STOP, MOVETO,
LINETO, CURVE3, CURVE4 or CLOSEPOLY. For codes that correspond to more than one vertex
(CURVE3 and CURVE4), that code will be repeated so that the length of self.vertices and
self.codes is always the same.

contains_path(path, transform=None)
Returns True if this path completely contains the given path.

If transform is not None, the path will be transformed before performing the test.

contains_point(point, transform=None, radius=0.0)
Returns True if the path contains the given point.

If transform is not None, the path will be transformed before performing the test.

radius allows the path to be made slightly larger or smaller.

contains_points(points, transform=None, radius=0.0)
Returns a bool array which is True if the path contains the corresponding point.

If transform is not None, the path will be transformed before performing the test.

radius allows the path to be made slightly larger or smaller.

copy()
Returns a shallow copy of the Path, which will share the vertices and codes with the source
Path.

deepcopy()
Returns a deepcopy of the Path. The Path will not be readonly, even if the source Path is.

get_extents(transform=None)
Returns the extents (xmin, ymin, xmax, ymax) of the path.

Unlike computing the extents on the vertices alone, this algorithm will take into account the
curves and deal with control points appropriately.

69.1. matplotlib.path 1007

Matplotlib, Release 1.3.1

has_nonfinite None
True if the vertices array has nonfinite values.

classmethod hatch(hatchpattern, density=6)
Given a hatch specifier, hatchpattern, generates a Path that can be used in a repeated hatching
pattern. density is the number of lines per unit square.

interpolated(steps)
Returns a new path resampled to length N x steps. Does not currently handle interpolating
curves.

intersects_bbox(bbox, filled=True)
Returns True if this path intersects a given Bbox.

filled, when True, treats the path as if it was filled. That is, if one path completely encloses the
other, intersects_path() will return True.

intersects_path(other, filled=True)
Returns True if this path intersects another given path.

filled, when True, treats the paths as if they were filled. That is, if one path completely encloses
the other, intersects_path() will return True.

iter_segments(transform=None, remove_nans=True, clip=None, snap=False,
stroke_width=1.0, simplify=None, curves=True, sketch=None)

Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (vertices,
code), where vertices is a sequence of 1 - 3 coordinate pairs, and code is one of the Path codes.

Additionally, this method can provide a number of standard cleanups and conversions to the
path.

Parameters transform : None or Transform instance
If not None, the given affine transformation will be applied to
the path.

remove_nans : {False, True}, optional
If True, will remove all NaNs from the path and insert
MOVETO commands to skip over them.

clip : None or sequence, optional
If not None, must be a four-tuple (x1, y1, x2, y2) defining a
rectangle in which to clip the path.

snap : None or bool, optional
If None, auto-snap to pixels, to reduce fuzziness of rectilinear
lines. If True, force snapping, and if False, don’t snap.

stroke_width : float, optional
The width of the stroke being drawn. Needed as a hint for

the snapping algorithm.
simplify : None or bool, optional

If True, perform simplification, to remove vertices that do
not affect the appearance of the path. If False, perform
no simplification. If None, use the should_simplify mem-
ber variable.

curves : {True, False}, optional

1008 Chapter 69. path

Matplotlib, Release 1.3.1

If True, curve segments will be returned as curve segments. If
False, all curves will be converted to line segments.

sketch : None or sequence, optional
If not None, must be a 3-tuple of the form (scale, length, ran-
domness), representing the sketch parameters.

classmethod make_compound_path(*args)
Make a compound path from a list of Path objects.

classmethod make_compound_path_from_polys(XY)
Make a compound path object to draw a number of polygons with equal numbers of sides XY
is a (numpolys x numsides x 2) numpy array of vertices. Return object is a Path

3 2 1 0 1 2 3
0

10

20

30

40

50

readonly None
True if the Path is read-only.

should_simplify None
True if the vertices array should be simplified.

simplify_threshold None
The fraction of a pixel difference below which vertices will be simplified out.

to_polygons(transform=None, width=0, height=0)
Convert this path to a list of polygons. Each polygon is an Nx2 array of vertices. In other
words, each polygon has no MOVETO instructions or curves. This is useful for displaying in
backends that do not support compound paths or Bezier curves, such as GDK.

69.1. matplotlib.path 1009

Matplotlib, Release 1.3.1

If width and height are both non-zero then the lines will be simplified so that vertices outside of
(0, 0), (width, height) will be clipped.

transformed(transform)
Return a transformed copy of the path.

See also:

matplotlib.transforms.TransformedPath A specialized path class that will cache the
transformed result and automatically update when the transform changes.

classmethod unit_circle()
Return a Path of the unit circle. The circle is approximated using cubic Bezier curves. This
uses 8 splines around the circle using the approach presented here:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

classmethod unit_circle_righthalf()
Return a Path of the right half of a unit circle. The circle is approximated using cubic Bezier
curves. This uses 4 splines around the circle using the approach presented here:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

classmethod unit_rectangle()
Return a Path instance of the unit rectangle from (0, 0) to (1, 1).

classmethod unit_regular_asterisk(numVertices)
Return a Path for a unit regular asterisk with the given numVertices and radius of 1.0, centered
at (0, 0).

classmethod unit_regular_polygon(numVertices)
Return a Path instance for a unit regular polygon with the given numVertices and radius of 1.0,
centered at (0, 0).

classmethod unit_regular_star(numVertices, innerCircle=0.5)
Return a Path for a unit regular star with the given numVertices and radius of 1.0, centered at
(0, 0).

vertices None
The list of vertices in the Path as an Nx2 numpy array.

classmethod wedge(theta1, theta2, n=None)
Return a wedge of the unit circle from angle theta1 to angle theta2 (in degrees).

If n is provided, it is the number of spline segments to make. If n is not provided, the number
of spline segments is determined based on the delta between theta1 and theta2.

matplotlib.path.cleanup_path(*args, **kwargs)
Deprecated since version 1.3: The cleanup_path function was deprecated in version 1.3. Use
path.Path.cleaned instead.

cleanup_path(path, trans, remove_nans, clip, snap, simplify, curves, sketch_params)

matplotlib.path.clip_path_to_rect(*args, **kwargs)
Deprecated since version 1.3: The clip_path_to_rect function was deprecated in version 1.3. Use

1010 Chapter 69. path

http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 1.3.1

path.Path.clip_to_bbox instead.

clip_path_to_rect(path, bbox, inside)

matplotlib.path.convert_path_to_polygons(*args, **kwargs)
Deprecated since version 1.3: The convert_path_to_polygons function was deprecated in version 1.3.
Use path.Path.to_polygons instead.

convert_path_to_polygons(path, trans, width, height)

matplotlib.path.get_path_collection_extents(master_transform, paths, transforms, off-
sets, offset_transform)

Given a sequence of Path objects, Transform objects and offsets, as found in a PathCollection,
returns the bounding box that encapsulates all of them.

master_transform is a global transformation to apply to all paths

paths is a sequence of Path instances.

transforms is a sequence of Affine2D instances.

offsets is a sequence of (x, y) offsets (or an Nx2 array)

offset_transform is a Affine2D to apply to the offsets before applying the offset to the path.

The way that paths, transforms and offsets are combined follows the same method as for collections.
Each is iterated over independently, so if you have 3 paths, 2 transforms and 1 offset, their combina-
tions are as follows:

(A, A, A), (B, B, A), (C, A, A)

matplotlib.path.get_path_extents(*args, **kwargs)
Deprecated since version 1.3: The get_path_extents function was deprecated in version 1.3. Use
path.Path.get_extents instead.

get_path_extents(path, trans)

matplotlib.path.get_paths_extents(paths, transforms=[])
Given a sequence of Path objects and optional Transform objects, returns the bounding box that
encapsulates all of them.

paths is a sequence of Path instances.

transforms is an optional sequence of Affine2D instances to apply to each path.

matplotlib.path.path_in_path(*args, **kwargs)
Deprecated since version 1.3: The path_in_path function was deprecated in version 1.3. Use
path.Path.contains_path instead.

path_in_path(a, atrans, b, btrans)

matplotlib.path.path_intersects_path(*args, **kwargs)
Deprecated since version 1.3: The path_intersects_path function was deprecated in version 1.3. Use
path.Path.intersects_path instead.

path_intersects_path(p1, p2)

69.1. matplotlib.path 1011

Matplotlib, Release 1.3.1

matplotlib.path.point_in_path(*args, **kwargs)
Deprecated since version 1.3: The point_in_path function was deprecated in version 1.3. Use
path.Path.contains_point instead.

point_in_path(x, y, path, trans)

matplotlib.path.point_in_path_collection(*args, **kwargs)
Deprecated since version 1.3: The point_in_path_collection function was deprecated in version 1.3.
Use collection.Collection.contains instead.

point_in_path_collection(x, y, r, trans, paths, transforms, offsets, offsetTrans, filled)

matplotlib.path.points_in_path(*args, **kwargs)
Deprecated since version 1.3: The points_in_path function was deprecated in version 1.3. Use
path.Path.contains_points instead.

points_in_path(points, path, trans)

1012 Chapter 69. path

CHAPTER

SEVENTY

PYPLOT

70.1 matplotlib.pyplot

Provides a MATLAB-like plotting framework.

pylab combines pyplot with numpy into a single namespace. This is convenient for interactive work, but
for programming it is recommended that the namespaces be kept separate, e.g.:

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 5, 0.1);
y = np.sin(x)
plt.plot(x, y)

matplotlib.pyplot.acorr(x, hold=None, **kwargs)
Plot the autocorrelation of x.

Call signature:

acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, **kwargs)

If normed = True, normalize the data by the autocorrelation at 0-th lag. x is detrended by the detrend
callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:
•lags are a length 2*maxlags+1 lag vector
•c is the 2*maxlags+1 auto correlation vector
•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin to the
acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

1013

Matplotlib, Release 1.3.1

The return value is a tuple (lags, c, linecol, b) where
•linecol is the LineCollection
•b is the x-axis.

See also:

plot() or vlines() For documentation on valid kwargs.

Example:

xcorr() is top graph, and acorr() is bottom graph.

60 40 20 0 20 40 60
0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.annotate(*args, **kwargs)
Create an annotation: a piece of text referring to a data point.

Call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

1014 Chapter 70. pyplot

Matplotlib, Release 1.3.1

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given dictionary
and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and
point being annotated. If d is the distance between the text and annotated point, shrink
will shorten the arrow so the tip and base are shink percent of the distance d away from
the endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

70.1. matplotlib.pyplot 1015

Matplotlib, Release 1.3.1

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
frac-
tion’

0,0 is lower left of figure and 1,1 is upper right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
frac-
tion’

0,0 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since
that is the native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. e.g.:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

You may use an instance of Transform or Artist. See Annotating Axes for more details.

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes
area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the annotation
will always be drawn regardless of its position. The default is None, which behave as True only if
xycoords is”data”.

Additional kwargs are Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]

Continued on next page

1016 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.1 – continued from previous page
Property Description
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

70.1. matplotlib.pyplot 1017

Matplotlib, Release 1.3.1

1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

arrowstyle

arc3

arc

arc

angle

angle3

angle

angle

angle

1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

−>

fancy simple

wedge

wedge

wedge

matplotlib.pyplot.arrow(x, y, dx, dy, hold=None, **kwargs)
Add an arrow to the axes.

1018 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy). Uses FancyArrow patch to construct the
arrow.

The resulting arrow is affected by the axes aspect ratio and limits. This may produce an arrow
whose head is not square with its stem. To create an arrow whose head is square with its stem,
use annotate().

Optional kwargs control the arrow construction and properties:
Constructor arguments

width: float (default: 0.001) width of full arrow tail
length_includes_head: [True | False] (default: False) True if head is to be counted in calcu-

lating the length.
head_width: float or None (default: 3*width) total width of the full arrow head
head_length: float or None (default: 1.5 * head_width) length of arrow head
shape: [’full’, ‘left’, ‘right’] (default: ‘full’) draw the left-half, right-half, or full arrow
overhang: float (default: 0) fraction that the arrow is swept back (0 overhang means triangular

shape). Can be negative or greater than one.
head_starts_at_zero: [True | False] (default: False) if True, the head starts being drawn at co-

ordinate 0 instead of ending at coordinate 0.
Other valid kwargs (inherited from Patch) are:

70.1. matplotlib.pyplot 1019

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

1020 Chapter 70. pyplot

Matplotlib, Release 1.3.1

A3 T3

G3 C3

r
AC

r
GT

r
AG

r
CA

r
CG

r
GC

r
AT

r
GA

r
CT

r
TG r

TC

r
TA

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.autoscale(enable=True, axis=’both’, tight=None)
Autoscale the axis view to the data (toggle).

Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if
autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes.
enable: [True | False | None] True (default) turns autoscaling on, False turns it off. None leaves the

autoscaling state unchanged.
axis: [’x’ | ‘y’ | ‘both’] which axis to operate on; default is ‘both’
tight: [True | False | None] If True, set view limits to data limits; if False, let the locator and margins

expand the view limits; if None, use tight scaling if the only artist is an image, otherwise treat
tight as False. The tight setting is retained for future autoscaling until it is explicitly changed.

Returns None.

matplotlib.pyplot.autumn()
set the default colormap to autumn and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.axes(*args, **kwargs)
Add an axes to the figure.

The axes is added at position rect specified by:
•axes() by itself creates a default full subplot(111) window axis.
•axes(rect, axisbg=’w’) where rect = [left, bottom, width, height] in normalized (0, 1)
units. axisbg is the background color for the axis, default white.
•axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.

70.1. matplotlib.pyplot 1021

Matplotlib, Release 1.3.1

kwarg Accepts Description
axisbg color the axes background color
frameon [True|False] display the frame?
sharex otherax current axes shares xaxis attribute with otherax
sharey otherax current axes shares yaxis attribute with otherax
polar [True|False] use a polar axes?

Examples:
•examples/pylab_examples/axes_demo.py places custom axes.
•examples/pylab_examples/shared_axis_demo.py uses sharex and sharey.

matplotlib.pyplot.axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs)
Add a horizontal line across the axis.

Call signature:

axhline(y=0, xmin=0, xmax=1, **kwargs)

Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax = 1,
this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you
change them, e.g., with the set_xlim() command. That is, the horizontal extent is in axes coords:
0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. e.g.,

•draw a thick red hline at y = 0 that spans the xrange:

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange:

>>> axhline(y=1)

•draw a default hline at y = .5 that spans the the middle half of the xrange:

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]

Continued on next page

1022 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.2 – continued from previous page
Property Description
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs)
Add a horizontal span (rectangle) across the axis.

Call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

y coords are in data units and x coords are in axes (relative 0-1) units.

70.1. matplotlib.pyplot 1023

Matplotlib, Release 1.3.1

Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and xmax
= 1, this always spans the xrange, regardless of the xlim settings, even if you change them, e.g.,
with the set_xlim() command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle,
1.0=right but the y location is in data coordinates.

Return value is a matplotlib.patches.Polygon instance.

Examples:
•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes:

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:
Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

1024 Chapter 70. pyplot

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.axis(*v, **kwargs)
Convenience method to get or set axis properties.

Calling with no arguments:

>>> axis()

returns the current axes limits [xmin, xmax, ymin, ymax].:

>>> axis(v)

sets the min and max of the x and y axes, with v = [xmin, xmax, ymin, ymax].:

>>> axis(’off’)

turns off the axis lines and labels.:

>>> axis(’equal’)

changes limits of x or y axis so that equal increments of x and y have the same length; a circle is
circular.:

70.1. matplotlib.pyplot 1025

Matplotlib, Release 1.3.1

>>> axis(’scaled’)

achieves the same result by changing the dimensions of the plot box instead of the axis data limits.:

>>> axis(’tight’)

changes x and y axis limits such that all data is shown. If all data is already shown, it will move it
to the center of the figure without modifying (xmax - xmin) or (ymax - ymin). Note this is slightly
different than in MATLAB.:

>>> axis(’image’)

is ‘scaled’ with the axis limits equal to the data limits.:

>>> axis(’auto’)

and:

>>> axis(’normal’)

are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit
comfortably within the plot box.

if len(*v)==0, you can pass in xmin, xmax, ymin, ymax as kwargs selectively to alter just those limits
without changing the others.

The xmin, xmax, ymin, ymax tuple is returned

See also:

xlim(), ylim() For setting the x- and y-limits individually.

matplotlib.pyplot.axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs)
Add a vertical line across the axes.

Call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax = 1, this
line will always span the vertical extent of the axes, regardless of the ylim settings, even if you change
them, e.g., with the set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the x location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. e.g.,

•draw a thick red vline at x = 0 that spans the yrange:

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange:

1026 Chapter 70. pyplot

Matplotlib, Release 1.3.1

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange:

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]

Continued on next page

70.1. matplotlib.pyplot 1027

Matplotlib, Release 1.3.1

Table 70.3 – continued from previous page
Property Description
xdata 1D array
ydata 1D array
zorder any number

See also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs)
Add a vertical span (rectangle) across the axes.

Call signature:

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

x coords are in data units and y coords are in axes (relative 0-1) units.

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and ymax =

1, this always spans the yrange, regardless of the ylim settings, even if you change them, e.g., with the
set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top
but the y location is in data coordinates.

Return value is the matplotlib.patches.Polygon instance.

Examples:
•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the
axes:

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

1028 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.bar(left, height, width=0.8, bottom=None, hold=None, **kwargs)
Make a bar plot.

Make a bar plot with rectangles bounded by:
left, left + width, bottom, bottom + height (left, right, bottom and top edges)

Parameters left : sequence of scalars
the x coordinates of the left sides of the bars

height : sequence of scalars
the heights of the bars

width : scalar or array-like, optional, default: 0.8
the width(s) of the bars

bottom : scalar or array-like, optional, default: None
the y coordinate(s) of the bars

70.1. matplotlib.pyplot 1029

Matplotlib, Release 1.3.1

color : scalar or array-like, optional
the colors of the bar faces

edgecolor : scalar or array-like, optional
the colors of the bar edges

linewidth : scalar or array-like, optional, default: None
width of bar edge(s). If None, use default linewidth; If 0, don’t draw
edges.

xerr : scalar or array-like, optional, default: None
if not None, will be used to generate errorbar(s) on the bar chart

yerr :scalar or array-like, optional, default: None :
if not None, will be used to generate errorbar(s) on the bar chart

ecolor : scalar or array-like, optional, default: None
specifies the color of errorbar(s)

capsize : integer, optional, default: 3
determines the length in points of the error bar caps

error_kw : :
dictionary of kwargs to be passed to errorbar method. ecolor and cap-
size may be specified here rather than as independent kwargs.

align : [’edge’ | ‘center’], optional, default: ‘edge’
If edge, aligns bars by their left edges (for vertical bars) and by their
bottom edges (for horizontal bars). If center, interpret the left ar-
gument as the coordinates of the centers of the bars.

orientation : ‘vertical’ | ‘horizontal’, optional, default: ‘vertical’
The orientation of the bars.

log : boolean, optional, default: False
If true, sets the axis to be log scale

Returns :class:‘matplotlib.patches.Rectangle‘ instances. :

Notes

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or
sequences of length equal to the number of bars. This enables you to use bar as the basis for stacked
bar charts, or candlestick plots. Detail: xerr and yerr are passed directly to errorbar(), so they
can also have shape 2xN for independent specification of lower and upper errors.

Other optional kwargs:

1030 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example: A stacked bar chart.

70.1. matplotlib.pyplot 1031

Matplotlib, Release 1.3.1

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80
S
co

re
s

Scores by group and gender

Men
Women

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.barbs(*args, **kw)
Plot a 2-D field of barbs.

Call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:
X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot

kwarg)
U, V: Give the x and y components of the barb shaft
C: An optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match
the column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

1032 Chapter 70. pyplot

Matplotlib, Release 1.3.1

length: Length of the barb in points; the other parts of the barb are scaled against this.
Default is 9

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow rotates
about this point, hence the name pivot. Default is ‘tip’

barbcolor: [color | color sequence] Specifies the color all parts of the barb except any
flags. This parameter is analagous to the edgecolor parameter for polygons, which
can be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used
instead. However this parameter will override facecolor. If this is not set (and C
has not either) then flagcolor will be set to match barbcolor so that the barb has a
uniform color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length of
the barb. Only those values one wishes to override need to be included. These
features include:

•‘spacing’ - space between features (flags, full/half barbs)
•‘height’ - height (distance from shaft to top) of a flag or full barb
•‘width’ - width of a flag, twice the width of a full barb
•‘emptybarb’ - radius of the circle used for low magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled
with the flag color. If they are not filled, they will be drawn such that no color is
applied to the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when allo-
cating barb components. If True, the magnitude is rounded to the nearest multiple
of the half-barb increment. If False, the magnitude is simply truncated to the next
lowest multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with differ-
ent parts of the barb. Only those values one wishes to override need to be included.

•‘half’ - half barbs (Default is 5)
•‘full’ - full barbs (Default is 10)
•‘flag’ - flags (default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indicates
whether the lines and flags should point opposite to normal for all barbs. An array
(which should be the same size as the other data arrays) indicates whether to flip
for each individual barb. Normal behavior is for the barbs and lines to point right
(comes from wind barbs having these features point towards low pressure in the
Northern Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observa-
tions, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows,
which give vector magnitude by the length of the arrow, the barbs give more quantitative information
about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude,
as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

70.1. matplotlib.pyplot 1033

Matplotlib, Release 1.3.1

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the
end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude
for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

linewidths and edgecolors can be used to customize the barb. Additional PolyCollection keyword
arguments:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

1034 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Example:

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

70.1. matplotlib.pyplot 1035

Matplotlib, Release 1.3.1

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.barh(bottom, width, height=0.8, left=None, hold=None, **kwargs)
Make a horizontal bar plot.

Call signature:

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:
left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:
Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

1036 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Key-
word

Description

height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t
draw edges.

xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it to

log scale
Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ interprets
these values as the y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or sequences
of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts,
or candlestick plots.

other optional kwargs:

70.1. matplotlib.pyplot 1037

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.bone()
set the default colormap to bone and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.box(on=None)
Turn the axes box on or off. on may be a boolean or a string, ‘on’ or ‘off’.

If on is None, toggle state.

matplotlib.pyplot.boxplot(x, notch=False, sym=’b+’, vert=True, whis=1.5, positions=None,
widths=None, patch_artist=False, bootstrap=None, usermedi-
ans=None, conf_intervals=None, hold=None)

Make a box and whisker plot.

Call signature:

boxplot(x, notch=False, sym=’+’, vert=True, whis=1.5,
positions=None, widths=None, patch_artist=False,

1038 Chapter 70. pyplot

Matplotlib, Release 1.3.1

bootstrap=None, usermedians=None, conf_intervals=None)

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the range of the data. Flier points are those past the end of the whiskers.

Function Arguments:
x : Array or a sequence of vectors.
notch [[False (default) | True]] If False (default), produces a rectangular box plot. If

True, will produce a notched box plot
sym [[default ‘b+’]] The default symbol for flier points. Enter an empty string (‘’) if

you don’t want to show fliers.
vert [[False | True (default)]] If True (default), makes the boxes vertical. If False, makes

horizontal boxes.
whis [[default 1.5]] Defines the length of the whiskers as a function of the inner quartile

range. They extend to the most extreme data point within (whis*(75%-25%))
data range.

bootstrap [[None (default) | integer]] Specifies whether to bootstrap the confidence in-
tervals around the median for notched boxplots. If bootstrap==None, no bootstrap-
ping is performed, and notches are calculated using a Gaussian-based asymptotic
approximation (see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and Kendall
and Stuart, 1967). Otherwise, bootstrap specifies the number of times to bootstrap
the median to determine it’s 95% confidence intervals. Values between 1000 and
10000 are recommended.

usermedians [[default None]] An array or sequence whose first dimension (or length)
is compatible with x. This overrides the medians computed by matplotlib for each
element of usermedians that is not None. When an element of usermedians ==

None, the median will be computed directly as normal.
conf_intervals [[default None]] Array or sequence whose first dimension (or length) is

compatible with x and whose second dimension is 2. When the current element of
conf_intervals is not None, the notch locations computed by matplotlib are overrid-
den (assuming notch is True). When an element of conf_intervals is None, boxplot
compute notches the method specified by the other kwargs (e.g., bootstrap).

positions [[default 1,2,...,n]] Sets the horizontal positions of the boxes. The ticks and
limits are automatically set to match the positions.

widths [[default 0.5]] Either a scalar or a vector and sets the width of each box. The
default is 0.5, or 0.15*(distance between extreme positions) if that is
smaller.

patch_artist [[False (default) | True]] If False produces boxes with the Line2D artist If
True produces boxes with the Patch artist

Returns a dictionary mapping each component of the boxplot to a list of the
matplotlib.lines.Line2D instances created. That dictionary has the following keys (assuming
vertical boxplots):

•boxes: the main body of the boxplot showing the quartiles and the median’s confidence intervals
if enabled.
•medians: horizonal lines at the median of each box.
•whiskers: the vertical lines extending to the most extreme, n-outlier data points.
•caps: the horizontal lines at the ends of the whiskers.

70.1. matplotlib.pyplot 1039

Matplotlib, Release 1.3.1

•fliers: points representing data that extend beyone the whiskers (outliers).
Example:

1
100

50

0

50

100

150

200

1040 Chapter 70. pyplot

Matplotlib, Release 1.3.1

1
100

50

0

50

100

150

200

70.1. matplotlib.pyplot 1041

Matplotlib, Release 1.3.1

1
100

50

0

50

100

150

200

1042 Chapter 70. pyplot

Matplotlib, Release 1.3.1

1
40

20

0

20

40

60

80

100

120

140

70.1. matplotlib.pyplot 1043

Matplotlib, Release 1.3.1

100 50 0 50 100 150 200

1

1044 Chapter 70. pyplot

Matplotlib, Release 1.3.1

100 50 0 50 100 150 200

1

70.1. matplotlib.pyplot 1045

Matplotlib, Release 1.3.1

1 2 3
100

50

0

50

100

150

200

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.broken_barh(xranges, yrange, hold=None, **kwargs)
Plot horizontal bars.

Call signature:

broken_barh(self, xranges, yrange, **kwargs)

A collection of horizontal bars spanning yrange with a sequence of xranges.

Required arguments:
Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance

Continued on next page

1046 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.5 – continued from previous page
Property Description
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

facecolors = (’black’, ’red’, ’green’)

Example:

70.1. matplotlib.pyplot 1047

Matplotlib, Release 1.3.1

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.cla()
Clear the current axes.

matplotlib.pyplot.clabel(CS, *args, **kwargs)
Label a contour plot.

Call signature:

clabel(cs, **kwargs)

Adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.

Optional keyword arguments:
fontsize: size in points or relative size eg ‘smaller’, ‘x-large’
colors:

•if None, the color of each label matches the color of the corresponding con-
tour
•if one string color, e.g., colors = ‘r’ or colors = ‘red’, all labels will be plotted
in this color

1048 Chapter 70. pyplot

Matplotlib, Release 1.3.1

•if a tuple of matplotlib color args (string, float, rgb, etc), different labels will
be plotted in different colors in the order specified

inline: controls whether the underlying contour is removed or not. Default is True.
inline_spacing: space in pixels to leave on each side of label when placing inline. De-

faults to 5. This spacing will be exact for labels at locations where the contour is
straight, less so for labels on curved contours.

fmt: a format string for the label. Default is ‘%1.3f’ Alternatively, this can be a dictionary
matching contour levels with arbitrary strings to use for each contour level (i.e.,
fmt[level]=string), or it can be any callable, such as a Formatter instance, that
returns a string when called with a numeric contour level.

manual: if True, contour labels will be placed manually using mouse clicks. Click the
first button near a contour to add a label, click the second button (or potentially
both mouse buttons at once) to finish adding labels. The third button can be used
to remove the last label added, but only if labels are not inline. Alternatively, the
keyboard can be used to select label locations (enter to end label placement, delete
or backspace act like the third mouse button, and any other key will select a label
location).

manual can be an iterable object of x,y tuples. Contour labels will be created as if
mouse is clicked at each x,y positions.

rightside_up: if True (default), label rotations will always be plus or minus 90 degrees
from level.

use_clabeltext: if True (default is False), ClabelText class (instead of matplotlib.Text) is
used to create labels. ClabelText recalculates rotation angles of texts during the
drawing time, therefore this can be used if aspect of the axes changes.

70.1. matplotlib.pyplot 1049

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000
1.500

Simplest default with labels

1050 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

-1.000

0.000

1.500

1.000

0.500

labels at selected locations

70.1. matplotlib.pyplot 1051

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours dashed

1052 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours solid

70.1. matplotlib.pyplot 1053

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Crazy lines

1054 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0.2

0.2
0.2

0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.clf()
Clear the current figure.

matplotlib.pyplot.clim(vmin=None, vmax=None)
Set the color limits of the current image.

To apply clim to all axes images do:

clim(0, 0.5)

If either vmin or vmax is None, the image min/max respectively will be used for color scaling.

If you want to set the clim of multiple images, use, for example:

for im in gca().get_images():
im.set_clim(0, 0.05)

matplotlib.pyplot.close(*args)
Close a figure window.

close() by itself closes the current figure

close(h) where h is a Figure instance, closes that figure

close(num) closes figure number num

70.1. matplotlib.pyplot 1055

Matplotlib, Release 1.3.1

close(name) where name is a string, closes figure with that label

close(’all’) closes all the figure windows

matplotlib.pyplot.cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at
0x2635de8>, window=<function window_hanning at 0x2635b90>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)

Plot the coherence between x and y.

Call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

Plot the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(70.1)

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for

1056 Chapter 70. pyplot

Matplotlib, Release 1.3.1

integration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.

kwargs are applied to the lines.

References:
•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley & Sons
(1986)

kwargs control the Line2D properties of the coherence plot:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points

Continued on next page

70.1. matplotlib.pyplot 1057

Matplotlib, Release 1.3.1

Table 70.6 – continued from previous page
Property Description
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.colorbar(mappable=None, cax=None, ax=None, **kw)
Add a colorbar to a plot.

Function signatures for the pyplot interface; all but the first are also method signatures for the
colorbar() method:

1058 Chapter 70. pyplot

Matplotlib, Release 1.3.1

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

arguments:
mappable the Image, ContourSet, etc. to which the colorbar applies; this argument is

mandatory for the colorbar()method but optional for the colorbar() function,
which sets the default to the current image.

keyword arguments:
cax None | axes object into which the colorbar will be drawn
ax None | parent axes object(s) from which space for a new colorbar axes will be stolen.

If a list of axes is given they will all be resized to make room for the colorbar axes.
use_gridspec False | If cax is None, a new cax is created as an instance of Axes. If ax is

an instance of Subplot and use_gridspec is True, cax is created as an instance of
Subplot using the grid_spec module.

Additional keyword arguments are of two kinds:
axes properties:

Prop-
erty

Description

ori-
enta-
tion

vertical or horizontal

frac-
tion

0.15; fraction of original axes to use for colorbar

pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes
between colorbar and new image axes

shrink 1.0; fraction by which to shrink the colorbar
as-
pect

20; ratio of long to short dimensions

an-
chor

(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal; the anchor point of
the colorbar axes

pan-
chor

(1.0, 0.5) if vertical; (0.5, 0.0) if horizontal; the anchor point of
the colorbar parent axes. If False, the parent axes’ anchor will be
unchanged

colorbar properties:

70.1. matplotlib.pyplot 1059

Matplotlib, Release 1.3.1

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make pointed
end(s) for out-of- range values. These are set for a given
colormap using the colormap set_under and set_over methods.

ex-
tend-
frac

[None | ‘auto’ | length | lengths] If set to None, both the
minimum and maximum triangular colorbar extensions with have
a length of 5% of the interior colorbar length (this is the default
setting). If set to ‘auto’, makes the triangular colorbar extensions
the same lengths as the interior boxes (when spacing is set to
‘uniform’) or the same lengths as the respective adjacent interior
boxes (when spacing is set to ‘proportional’). If a scalar, indicates
the length of both the minimum and maximum triangular colorbar
extensions as a fraction of the interior colorbar length. A
two-element sequence of fractions may also be given, indicating
the lengths of the minimum and maximum colorbar extensions
respectively as a fraction of the interior colorbar length.

ex-
ten-
drect

[False | True] If False the minimum and maximum colorbar
extensions will be triangular (the default). If True the extensions
will be rectangular.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each discrete
color the same space; proportional makes the space proportional
to the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are
determined automatically from the input.

for-
mat

[None | format string | Formatter object] If None, the
ScalarFormatter is used. If a format string is given, e.g.,
‘%.3f’, that is used. An alternative Formatter object may be
given instead.

drawedges[False | True] If true, draw lines at color boundaries.

The following will probably be useful only in the context of indexed colors
(that is, when the mappable has norm=NoNorm()), or other unusual circum-
stances.

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the
sequence of boundaries. For each region delimited by adjacent
entries in boundaries, the color mapped to the corresponding
value in values will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from being
taller than the axes of the mappable to which the colorbar is attached; but it is a manual method
requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a
smaller value of shrink.

1060 Chapter 70. pyplot

Matplotlib, Release 1.3.1

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

It is known that some vector graphics viewer (svg and pdf) renders white gaps between segments of
the colorbar. This is due to bugs in the viewers not matplotlib. As a workaround the colorbar can be
rendered with overlapping segments:

cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()

However this has negative consequences in other circumstances. Particularly with semi transparent
images (alpha < 1) and colorbar extensions and is not enabled by default see (issue #1188).
returns: Colorbar instance; see also its base class, ColorbarBase. Call the set_label() method

to label the colorbar.

matplotlib.pyplot.colors()
This is a do-nothing function to provide you with help on how matplotlib handles colors.

Commands which take color arguments can use several formats to specify the colors. For the basic
built-in colors, you can use a single letter

Alias Color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

For a greater range of colors, you have two options. You can specify the color using an html hex
string, as in:

color = ’#eeefff’

or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1].

You can also use any legal html name for a color, for example:

color = ’red’
color = ’burlywood’
color = ’chartreuse’

The example below creates a subplot with a dark slate gray background:

subplot(111, axisbg=(0.1843, 0.3098, 0.3098))

Here is an example that creates a pale turquoise title:

title(’Is this the best color?’, color=’#afeeee’)

70.1. matplotlib.pyplot 1061

Matplotlib, Release 1.3.1

matplotlib.pyplot.connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized
•‘button_press_event’
•‘button_release_event’
•‘draw_event’
•‘key_press_event’
•‘key_release_event’
•‘motion_notify_event’
•‘pick_event’
•‘resize_event’
•‘scroll_event’
•‘figure_enter_event’,
•‘figure_leave_event’,
•‘axes_enter_event’,
•‘axes_leave_event’
•‘close_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables
event.xdata and event.ydata will be defined. This is the mouse location in data coords. See
KeyEvent and MouseEvent for more info.

Return value is a connection id that can be used with mpl_disconnect().

Example usage:

def on_press(event):
print(’you pressed’, event.button, event.xdata, event.ydata)

cid = canvas.mpl_connect(’button_press_event’, on_press)

matplotlib.pyplot.contour(*args, **kwargs)
Plot contours.

contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To draw
edges, add line contours with calls to contour().

Call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

1062 Chapter 70. pyplot

Matplotlib, Release 1.3.1

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the len(V)-1 regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X and Y must both be 2-D with the same shape as Z, or they must both be 1-D such that len(X) is the
number of columns in Z and len(Y) is the number of rows in Z.

C = contour(...) returns a QuadContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be

used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling
is used.

vmin, vmax: [None | scalar] If not None, either or both of these values will be supplied
to the matplotlib.colors.Normalize instance, overriding the default color
scaling based on levels.

levels: [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will corre-
spond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

70.1. matplotlib.pyplot 1063

Matplotlib, Release 1.3.1

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

antialiased: [True | False] enable antialiasing, overriding the defaults. For filled
contours, the default is True. For line contours, it is taken from rc-
Params[’lines.antialiased’].

contour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
default is ‘solid’ unless the lines are monochrome. In that case, negative contours
will take their linestyle from the matplotlibrc contour.negative_linestyle
setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

contourf-only keyword arguments:
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

hatches: A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and
Agg backends only.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

1064 Chapter 70. pyplot

Matplotlib, Release 1.3.1

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000
1.500

Simplest default with labels

70.1. matplotlib.pyplot 1065

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

-1.000

0.000

1.500

1.000

0.500

labels at selected locations

1066 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours dashed

70.1. matplotlib.pyplot 1067

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours solid

1068 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Crazy lines

70.1. matplotlib.pyplot 1069

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0.2

0.2
0.2

0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

1070 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
word length anomaly

3

2

1

0

1

2

3
se

n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

70.1. matplotlib.pyplot 1071

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

-1.5-1.0

-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

1072 Chapter 70. pyplot

Matplotlib, Release 1.3.1

2 0 2

2

0

2

extend = neither

2 0 2

2

0

2

extend = both

2 0 2

2

0

2

extend = min

2 0 2

2

0

2

extend = max

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.contourf(*args, **kwargs)
Plot contours.

contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To draw
edges, add line contours with calls to contour().

Call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

70.1. matplotlib.pyplot 1073

Matplotlib, Release 1.3.1

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the len(V)-1 regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X and Y must both be 2-D with the same shape as Z, or they must both be 1-D such that len(X) is the
number of columns in Z and len(Y) is the number of rows in Z.

C = contour(...) returns a QuadContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be

used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling
is used.

vmin, vmax: [None | scalar] If not None, either or both of these values will be supplied
to the matplotlib.colors.Normalize instance, overriding the default color
scaling based on levels.

levels: [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will corre-
spond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

1074 Chapter 70. pyplot

Matplotlib, Release 1.3.1

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

antialiased: [True | False] enable antialiasing, overriding the defaults. For filled
contours, the default is True. For line contours, it is taken from rc-
Params[’lines.antialiased’].

contour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
default is ‘solid’ unless the lines are monochrome. In that case, negative contours
will take their linestyle from the matplotlibrc contour.negative_linestyle
setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

contourf-only keyword arguments:
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

hatches: A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and
Agg backends only.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

70.1. matplotlib.pyplot 1075

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000
1.500

Simplest default with labels

1076 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

-1.000

0.000

1.500

1.000

0.500

labels at selected locations

70.1. matplotlib.pyplot 1077

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours dashed

1078 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Single color - negative contours solid

70.1. matplotlib.pyplot 1079

Matplotlib, Release 1.3.1

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500 1.000

1.500

Crazy lines

1080 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0.2

0.2
0.2

0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

70.1. matplotlib.pyplot 1081

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
word length anomaly

3

2

1

0

1

2

3
se

n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

1082 Chapter 70. pyplot

Matplotlib, Release 1.3.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

-1.5-1.0

-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

70.1. matplotlib.pyplot 1083

Matplotlib, Release 1.3.1

2 0 2

2

0

2

extend = neither

2 0 2

2

0

2

extend = both

2 0 2

2

0

2

extend = min

2 0 2

2

0

2

extend = max

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.cool()
set the default colormap to cool and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.copper()
set the default colormap to copper and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at
0x2635de8>, window=<function window_hanning at 0x2635b90>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)

Plot cross-spectral density.

Call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The cross spectral density Pxy by Welch’s average periodogram method. The vectors x and y are
divided into NFFT length segments. Each segment is detrended by function detrend and windowed
by function window. The product of the direct FFTs of x and y are averaged over each segment to
compute Pxy, with a scaling to correct for power loss due to windowing.

1084 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is plotted.

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for
integration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley
& Sons (1986)

kwargs control the Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

Continued on next page

70.1. matplotlib.pyplot 1085

Matplotlib, Release 1.3.1

Table 70.7 – continued from previous page
Property Description
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

1086 Chapter 70. pyplot

Matplotlib, Release 1.3.1

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

85

75

65

55

45

C
S
D

 (
d
b
)

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.delaxes(*args)
Remove an axes from the current figure. If ax doesn’t exist, an error will be raised.

delaxes(): delete the current axes

matplotlib.pyplot.disconnect(cid)
Disconnect callback id cid

Example usage:

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

matplotlib.pyplot.draw()
Redraw the current figure.

This is used in interactive mode to update a figure that has been altered using one or more plot object
method calls; it is not needed if figure modification is done entirely with pyplot functions, if a sequence
of modifications ends with a pyplot function, or if matplotlib is in non-interactive mode and the
sequence of modifications ends with show() or savefig().

A more object-oriented alternative, given any Figure instance, fig, that was created using a pyplot
function, is:

70.1. matplotlib.pyplot 1087

Matplotlib, Release 1.3.1

fig.canvas.draw()

matplotlib.pyplot.errorbar(x, y, yerr=None, xerr=None, fmt=’-‘, ecolor=None,
elinewidth=None, capsize=3, barsabove=False, lolims=False,
uplims=False, xlolims=False, xuplims=False, errorevery=1,
capthick=None, hold=None, **kwargs)

Plot an errorbar graph.

Call signature:

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, errorevery=1,
capthick=None)

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not None.
Horizontal errorbars are plotted if xerr is not None.

x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.

Optional keyword arguments:
xerr/yerr: [scalar | N, Nx1, or 2xN array-like] If a scalar number, len(N) array-like

object, or an Nx1 array-like object, errorbars are drawn at +/-value relative to the
data.

If a sequence of shape 2xN, errorbars are drawn at -row1 and +row2 relative to the
data.

fmt: ‘-‘ The plot format symbol. If fmt is None, only the errorbars are plotted. This is
used for adding errorbars to a bar plot, for example.

ecolor: [None | mpl color] A matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar The linewidth of the errorbar lines. If None, use the linewidth.
capsize: scalar The length of the error bar caps in points
capthick: scalar An alias kwarg to markeredgewidth (a.k.a. - mew). This setting is a

more sensible name for the property that controls the thickness of the error bar cap
in points. For backwards compatibility, if mew or markeredgewidth are given, then
they will over-ride capthick. This may change in future releases.

barsabove: [True | False] if True, will plot the errorbars above the plot symbols. De-
fault is below.

lolims / uplims / xlolims / xuplims: [False | True] These arguments can be used to in-
dicate that a value gives only upper/lower limits. In that case a caret symbol is
used to indicate this. lims-arguments may be of the same type as xerr and yerr.

errorevery: positive integer subsamples the errorbars. e.g., if everyerror=5, errorbars
for every 5-th datapoint will be plotted. The data plot itself still shows all data
points.

All other keyword arguments are passed on to the plot command for the markers. For example, this
code makes big red squares with thick green edges:

1088 Chapter 70. pyplot

Matplotlib, Release 1.3.1

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, markeredge-
color, markersize and markeredgewith.

valid kwargs for the marker properties are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance

Continued on next page

70.1. matplotlib.pyplot 1089

Matplotlib, Release 1.3.1

Table 70.8 – continued from previous page
Property Description
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Returns (plotline, caplines, barlinecols):
plotline: Line2D instance x, y plot markers and/or line
caplines: list of error bar cap Line2D instances
barlinecols: list of LineCollection instances for the horizontal and vertical error

ranges.
Example:

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.eventplot(positions, orientation=’horizontal’, lineoffsets=1, line-
lengths=1, linewidths=None, colors=None, linestyles=’solid’,
hold=None, **kwargs)

Plot identical parallel lines at specific positions.

Call signature:

1090 Chapter 70. pyplot

Matplotlib, Release 1.3.1

eventplot(positions, orientation=’horizontal’, lineoffsets=0,
linelengths=1, linewidths=None, color =None,
linestyles=’solid’

Plot parallel lines at the given positions. positions should be a 1D or 2D array-like object, with each
row corresponding to a row or column of lines.

This type of plot is commonly used in neuroscience for representing neural events, where it is com-
monly called a spike raster, dot raster, or raster plot.

However, it is useful in any situation where you wish to show the timing or position of multiple sets
of discrete events, such as the arrival times of people to a business on each day of the month or the
date of hurricanes each year of the last century.
orientation [[‘horizonal’ | ‘vertical’]] ‘horizonal’ : the lines will be vertical and arranged in rows

“vertical’ : lines will be horizontal and arranged in columns
lineoffsets : A float or array-like containing floats.
linelengths : A float or array-like containing floats.
linewidths : A float or array-like containing floats.
colors must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed) or a list of

such sequences
linestyles : [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] or an array of these values
For linelengths, linewidths, colors, and linestyles, if only a single value is given, that value is applied
to all lines. If an array-like is given, it must have the same length as positions, and each value will be
applied to the corresponding row or column in positions.

Returns a list of matplotlib.collections.EventCollection objects that were added.

kwargs are LineCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.

Continued on next page

70.1. matplotlib.pyplot 1091

Matplotlib, Release 1.3.1

Table 70.9 – continued from previous page
Property Description
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
segments unknown
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
verts unknown
visible [True | False]
zorder any number

Example:

1092 Chapter 70. pyplot

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
20

15

10

5

0

5

10

15

20 15 10 5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18
10

0

10

20

30

40

50

60

10 0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.figimage(*args, **kwargs)
Adds a non-resampled image to the figure.

call signatures:

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

figimage(X, xo, yo)

with pixel offsets xo, yo,

X must be a float array:
•If X is MxN, assume luminance (grayscale)
•If X is MxNx3, assume RGB
•If X is MxNx4, assume RGBA

Optional keyword arguments:

70.1. matplotlib.pyplot 1093

Matplotlib, Release 1.3.1

Key-
word

Description

xo or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.colors.Colormap instance, eg cm.jet. If None, default to
the rc image.cmap value

norm a matplotlib.colors.Normalize instance. The default is
normalization(). This scales luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min and
max of the luminance values will be used. Note if you pass a norm instance,
the settings for vmin and vmax will be ignored.

al-
pha

the alpha blending value, default is None

ori-
gin

[‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper
left or lower left corner of the axes. Defaults to the rc image.origin value

figimage complements the axes image (imshow()) which will be resampled to fit the current axes. If
you want a resampled image to fill the entire figure, you can define an Axes with size [0,1,0,1].

An matplotlib.image.FigureImage instance is returned.

Additional kwargs are Artist kwargs passed on to :class:‘~matplotlib.image.FigureImage‘Addition
kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.figlegend(handles, labels, loc, **kwargs)

1094 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Place a legend in the figure.
labels a sequence of strings
handles a sequence of Line2D or Patch instances
loc can be a string or an integer specifying the legend location
A matplotlib.legend.Legend instance is returned.

Example:

figlegend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

See also:

legend()

matplotlib.pyplot.figtext(*args, **kwargs)
Add text to figure.

Call signature:

text(x, y, s, fontdict=None, **kwargs)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.

kwargs control the Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label string or anything printable with ‘%s’ conversion.
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown

Continued on next page

70.1. matplotlib.pyplot 1095

Matplotlib, Release 1.3.1

Table 70.10 – continued from previous page
Property Description
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
sketch_params unknown
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edge-
color=None, frameon=True, FigureClass=<class ‘mat-
plotlib.figure.Figure’>, **kwargs)

Creates a new figure.
Parameters num : integer or string, optional, default: none

If not provided, a new figure will be created, and a the figure number
will be increamted. The figure objects holds this number in a number
attribute. If num is provided, and a figure with this id already exists,
make it active, and returns a reference to it. If this figure does not
exists, create it and returns it. If num is a string, the window title will
be set to this figure’s num.

figsize : tuple of integers, optional, default
width, height in inches. If not provided, defaults to rc figure.figsize.

dpi : integer, optional, default ; None
resolution of the figure. If not provided, defaults to rc figure.dpi.

facecolor : :
the background color; If not provided, defaults to rc figure.facecolor

edgecolor : :
the border color. If not provided, defaults to rc figure.edgecolor

Returns figure : Figure
The Figure instance returned will also be passed to
new_figure_manager in the backends, which allows to hook custom
Figure classes into the pylab interface. Additional kwargs will be

1096 Chapter 70. pyplot

Matplotlib, Release 1.3.1

passed to the figure init function.

matplotlib.pyplot.fill(*args, **kwargs)
Plot filled polygons.

Call signature:

fill(*args, **kwargs)

args is a variable length argument, allowing for multiple x, y pairs with an optional color format string;
see plot() for details on the argument parsing. For example, to plot a polygon with vertices at x, y
in blue.:

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.

The same color strings that plot() supports are supported by the fill format string.

If you would like to fill below a curve, e.g., shade a region between 0 and y along x, use
fill_between()

The closed kwarg will close the polygon when True (default).

kwargs control the Polygon properties:

70.1. matplotlib.pyplot 1097

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

1098 Chapter 70. pyplot

Matplotlib, Release 1.3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.fill_between(x, y1, y2=0, where=None, interpolate=False, hold=None,
**kwargs)

Make filled polygons between two curves.

Call signature:

fill_between(x, y1, y2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between y1 and y2 where where==True
x : An N-length array of the x data
y1 : An N-length array (or scalar) of the y data
y2 : An N-length array (or scalar) of the y data
where : If None, default to fill between everywhere. If not None, it is an N-length numpy

boolean array and the fill will only happen over the regions where where==True.
interpolate : If True, interpolate between the two lines to find the precise point of inter-

section. Otherwise, the start and end points of the filled region will only occur on
explicit values in the x array.

kwargs : Keyword args passed on to the PolyCollection.
kwargs control the Polygon properties:

Property Description
agg_filter unknown

Continued on next page

70.1. matplotlib.pyplot 1099

Matplotlib, Release 1.3.1

Table 70.11 – continued from previous page
Property Description
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

1100 Chapter 70. pyplot

Matplotlib, Release 1.3.1

1.0

0.5

0.0

0.5

1.0
b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

0.0 0.5 1.0 1.5 2.0
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

70.1. matplotlib.pyplot 1101

Matplotlib, Release 1.3.1

1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0
Now regions with y2>1 are masked

1102 Chapter 70. pyplot

Matplotlib, Release 1.3.1

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

See also:

fill_betweenx() for filling between two sets of x-values

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.fill_betweenx(y, x1, x2=0, where=None, hold=None, **kwargs)
Make filled polygons between two horizontal curves.

Call signature:

fill_betweenx(y, x1, x2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between x1 and x2 where where==True
y : An N-length array of the y data
x1 : An N-length array (or scalar) of the x data
x2 : An N-length array (or scalar) of the x data
where : If None, default to fill between everywhere. If not None, it is a N length numpy

boolean array and the fill will only happen over the regions where where==True
kwargs : keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

Property Description
agg_filter unknown
alpha float or None

Continued on next page

70.1. matplotlib.pyplot 1103

Matplotlib, Release 1.3.1

Table 70.12 – continued from previous page
Property Description
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

1104 Chapter 70. pyplot

Matplotlib, Release 1.3.1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

70.1. matplotlib.pyplot 1105

Matplotlib, Release 1.3.1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
fill between where

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
Now regions with y2 > 1 are masked

See also:

fill_between() for filling between two sets of y-values

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.findobj(o=None, match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in self.

match can be
•None: return all objects contained in artist.
•function with signature boolean = match(artist) used to filter matches
•class instance: e.g., Line2D. Only return artists of class type.

If include_self is True (default), include self in the list to be checked for a match.

matplotlib.pyplot.flag()
set the default colormap to flag and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.gca(**kwargs)
Return the current axis instance. This can be used to control axis properties either using set or the
Axes methods, for example, setting the xaxis range:

1106 Chapter 70. pyplot

Matplotlib, Release 1.3.1

plot(t,s)
set(gca(), ’xlim’, [0,10])

or:

plot(t,s)
a = gca()
a.set_xlim([0,10])

matplotlib.pyplot.gcf()
Return a reference to the current figure.

matplotlib.pyplot.gci()
Get the current colorable artist. Specifically, returns the current ScalarMappable instance (image
or patch collection), or None if no images or patch collections have been defined. The commands
imshow() and figimage() create Image instances, and the commands pcolor() and scatter()
create Collection instances. The current image is an attribute of the current axes, or the nearest
earlier axes in the current figure that contains an image.

matplotlib.pyplot.get_current_fig_manager()

matplotlib.pyplot.get_figlabels()
Return a list of existing figure labels.

matplotlib.pyplot.get_fignums()
Return a list of existing figure numbers.

matplotlib.pyplot.get_plot_commands()
Get a sorted list of all of the plotting commands.

matplotlib.pyplot.ginput(*args, **kwargs)
Call signature:

ginput(self, n=1, timeout=30, show_clicks=True,
mouse_add=1, mouse_pop=3, mouse_stop=2)

Blocking call to interact with the figure.

This will wait for n clicks from the user and return a list of the coordinates of each click.

If timeout is zero or negative, does not timeout.

If n is zero or negative, accumulate clicks until a middle click (or potentially both mouse buttons at
once) terminates the input.

Right clicking cancels last input.

The buttons used for the various actions (adding points, removing points, terminating the inputs)
can be overriden via the arguments mouse_add, mouse_pop and mouse_stop, that give the associated
mouse button: 1 for left, 2 for middle, 3 for right.

70.1. matplotlib.pyplot 1107

Matplotlib, Release 1.3.1

The keyboard can also be used to select points in case your mouse does not have one or more of the
buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the enter key
terminates input and any other key (not already used by the window manager) selects a point.

matplotlib.pyplot.gray()
set the default colormap to gray and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.grid(b=None, which=’major’, axis=’both’, **kwargs)
Turn the axes grids on or off.

Call signature:

grid(self, b=None, which=’major’, axis=’both’, **kwargs)

Set the axes grids on or off; b is a boolean. (For MATLAB compatibility, b may also be a string, ‘on’
or ‘off’.)

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed that
you want a grid and b is thus set to True.

which can be ‘major’ (default), ‘minor’, or ‘both’ to control whether major tick grids, minor tick grids,
or both are affected.

axis can be ‘both’ (default), ‘x’, or ‘y’ to control which set of gridlines are drawn.

kwargs are used to set the grid line properties, eg:

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.

Continued on next page

1108 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.13 – continued from previous page
Property Description
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

matplotlib.pyplot.hexbin(x, y, C=None, gridsize=100, bins=None, xscale=’linear’,
yscale=’linear’, extent=None, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None, edgecol-
ors=’none’, reduce_C_function=<function mean at 0x16ead70>,
mincnt=None, marginals=False, hold=None, **kwargs)

Make a hexagonal binning plot.

Call signature:

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean, mincnt=None, marginals=True
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length, N. If C
is None (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]).

If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each

70.1. matplotlib.pyplot 1109

Matplotlib, Release 1.3.1

hexagonal bin and then reduced according to reduce_C_function, which defaults to numpy’s mean
function (np.mean). (If C is specified, it must also be a 1-D sequence of the same length as x and y.)

x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.

Optional keyword arguments:
gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100. The correspond-

ing number of hexagons in the y-direction is chosen such that the hexagons are approximately
regular. Alternatively, gridsize can be a tuple with two elements specifying the number of
hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of each hexagon
directly corresponds to its count value.

If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used to determine
the hexagon color.

If an integer, divide the counts in the specified number of bins, and color the hexagons accord-
ingly.

If a sequence of values, the values of the lower bound of the bins to be used.
xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.
scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.
mincnt: [None | a positive integer] If not None, only display cells with more than mincnt number

of points in the cell
marginals: [True | False] if marginals is True, plot the marginal density as colormapped rectagles

along the bottom of the x-axis and left of the y-axis
extent: [None | scalars (left, right, bottom, top)] The limits of the bins. The default assigns the

limits based on gridsize, x, y, xscale and yscale.
Other keyword arguments controlling color mapping and normalization arguments:
cmap: [None | Colormap] a matplotlib.colors.Colormap instance. If None, defaults to rc

image.cmap.
norm: [None | Normalize] matplotlib.colors.Normalize instance is used to scale luminance

data to 0,1.
vmin / vmax: scalar vmin and vmax are used in conjunction with norm to normalize luminance data.

If either are None, the min and max of the color array C is used. Note if you pass a norm
instance, your settings for vmin and vmax will be ignored.

alpha: scalar between 0 and 1, or None the alpha value for the patches
linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is a tuple, and

if you set the linewidths argument you must set it as a sequence of floats, as required by
RegularPolyCollection.

Other keyword arguments controlling the Collection properties:
edgecolors: [None | ’none’ | mpl color | color sequence] If ’none’, draws the edges in the same

color as the fill color. This is the default, as it avoids unsightly unpainted pixels between the
hexagons.

If None, draws the outlines in the default color.

If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified color.
Here are the standard descriptions of all the Collection kwargs:

1110 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection to get
the counts in each hexagon. If marginals is True, horizontal bar and vertical bar (both PolyCollections)
will be attached to the return collection as attributes hbar and vbar.

Example:

70.1. matplotlib.pyplot 1111

Matplotlib, Release 1.3.1

4 2 0 2 4

15

10

5

0

5

10

15

20

Hexagon binning

0

20

40

60

80

100

120

140

160

co
u
n
ts

4 2 0 2 4

15

10

5

0

5

10

15

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1
0

(N
)

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.hist(x, bins=10, range=None, normed=False, weights=None, cumu-
lative=False, bottom=None, histtype=’bar’, align=’mid’, orienta-
tion=’vertical’, rwidth=None, log=False, color=None, label=None,
stacked=False, hold=None, **kwargs)

Plot a histogram.

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...],
bins, [patches0, patches1,...]) if the input contains multiple data.

Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1, ...]), or
as a 2-D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative
to the list form.

Masked arrays are not supported at present.
Parameters x : array_like, shape (n,)

Input values.
bins : integer or array_like, optional, default: 10

If an integer is given, bins + 1 bin edges are returned, consistently
with numpy.histogram() for numpy version >= 1.3.

Unequally spaced bins are supported if bins is a sequence.
range : tuple, optional, default: None

The lower and upper range of the bins. Lower and upper outliers are
ignored. If not provided, range is (x.min(), x.max()). Range has no

1112 Chapter 70. pyplot

Matplotlib, Release 1.3.1

effect if bins is a sequence.

If bins is a sequence or range is specified, autoscaling is based on
the specified bin range instead of the range of x.

normed : boolean, optional, default: False
If True, the first element of the return tuple will be the counts nor-
malized to form a probability density, i.e., n/(len(x)‘dbin), ie the
integral of the histogram will sum to 1. If stacked is also True, the sum
of the histograms is normalized to 1.

weights : array_like, shape (n,), optional, default: None
An array of weights, of the same shape as x. Each value in x only
contributes its associated weight towards the bin count (instead of 1).
If normed is True, the weights are normalized, so that the integral of
the density over the range remains 1.

cumulative : boolean, optional, default
If True, then a histogram is computed where each bin gives the counts
in that bin plus all bins for smaller values. The last bin gives the total
number of datapoints. If normed is also True then the histogram is
normalized such that the last bin equals 1. If cumulative evaluates
to less than 0 (e.g., -1), the direction of accumulation is reversed. In
this case, if normed is also True, then the histogram is normalized
such that the first bin equals 1.

histtype : [’bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’], optional
The type of histogram to draw.

•‘bar’ is a traditional bar-type histogram. If multiple data are
given the bars are aranged side by side.
•‘barstacked’ is a bar-type histogram where multiple data are
stacked on top of each other.
•‘step’ generates a lineplot that is by default unfilled.
•‘stepfilled’ generates a lineplot that is by default filled.

align : [’left’ | ‘mid’ | ‘right’], optional, default: ‘mid’
Controls how the histogram is plotted.

•‘left’: bars are centered on the left bin edges.
•‘mid’: bars are centered between the bin edges.
•‘right’: bars are centered on the right bin edges.

orientation : [’horizontal’ | ‘vertical’], optional
If ‘horizontal’, barh will be used for bar-type histograms and the bot-
tom kwarg will be the left edges.

rwidth : scalar, optional, default: None
The relative width of the bars as a fraction of the bin width. If None,
automatically compute the width. Ignored if histtype = ‘step’ or
‘stepfilled’.

log : boolean, optional, default
If True, the histogram axis will be set to a log scale. If log is True
and x is a 1D array, empty bins will be filtered out and only the non-
empty (n, bins, patches) will be returned.

color : color or array_like of colors, optional, default: None
Color spec or sequence of color specs, one per dataset. Default (None)

70.1. matplotlib.pyplot 1113

Matplotlib, Release 1.3.1

uses the standard line color sequence.
label : string, optional, default: ‘’

String, or sequence of strings to match multiple datasets. Bar charts
yield multiple patches per dataset, but only the first gets the label, so
that the legend command will work as expected.

stacked : boolean, optional, default
If True, multiple data are stacked on top of each other If False mul-
tiple data are aranged side by side if histtype is ‘bar’ or on top of each
other if histtype is ‘step’

Returns tuple : (n, bins, patches) or ([n0, n1, ...], bins, [patches0, patches1,...])
Other Parameters kwargs : Patch properties

See also:

hist2d 2D histograms

Notes

Until numpy release 1.5, the underlying numpy histogram function was incorrect with
normed‘=‘True if bin sizes were unequal. MPL inherited that error. It is now corrected within
MPL when using earlier numpy versions.

1114 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Examples

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty

Histogram of IQ: µ=100, σ=15

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.hist2d(x, y, bins=10, range=None, normed=False, weights=None,
cmin=None, cmax=None, hold=None, **kwargs)

Make a 2D histogram plot.
Parameters x, y: array_like, shape (n,) :

Input values
bins: [None | int | [int, int] | array_like | [array, array]] :

The bin specification:
•If int, the number of bins for the two dimensions (nx=ny=bins).
•If [int, int], the number of bins in each dimension (nx, ny =

bins).
•If array_like, the bin edges for the two dimensions
(x_edges=y_edges=bins).
•If [array, array], the bin edges in each dimension (x_edges,
y_edges = bins).

The default value is 10.
range : array_like shape(2, 2), optional, default: None

The leftmost and rightmost edges of the bins along each dimension (if
not specified explicitly in the bins parameters): [[xmin, xmax], [ymin,
ymax]]. All values outside of this range will be considered outliers

70.1. matplotlib.pyplot 1115

Matplotlib, Release 1.3.1

and not tallied in the histogram.
normed : boolean, optional, default: False

Normalize histogram.
weights : array_like, shape (n,), optional, default: None

An array of values w_i weighing each sample (x_i, y_i).
cmin : scalar, optional, default: None

All bins that has count less than cmin will not be displayed and these
count values in the return value count histogram will also be set to nan
upon return

cmax : scalar, optional, default: None
All bins that has count more than cmax will not be displayed (set to
none before passing to imshow) and these count values in the return
value count histogram will also be set to nan upon return

Returns The return value is ‘‘(counts, xedges, yedges, Image)‘‘. :
Other Parameters kwargs : pcolorfast() properties.

See also:

hist 1D histogram

Notes

Rendering the histogram with a logarithmic color scale is accomplished by passing a
colors.LogNorm instance to the norm keyword argument.

1116 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Examples

3 2 1 0 1 2

3

4

5

6

7

8

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, label=’‘, hold=None,
**kwargs)

Plot horizontal lines.

Plot horizontal lines at each y from xmin to xmax.
Parameters y : scalar or 1D array_like

y-indexes where to plot the lines.
xmin, xmax : scalar or 1D array_like

Respective beginning and end of each line. If scalars are provided, all
lines will have same length.

colors : array_like of colors, optional, default: ‘k’

linestyles : [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’], optional

label : string, optional, default: ‘’
Returns lines : LineCollection
Other Parameters kwargs : LineCollection properties.

See also:

vlines vertical lines

70.1. matplotlib.pyplot 1117

Matplotlib, Release 1.3.1

Examples

0 1 2 3 4 5
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Vertical lines demo

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (s)

0

1

2

3

4

5
Horizontal lines demo

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.hold(b=None)
Set the hold state. If b is None (default), toggle the hold state, else set the hold state to boolean value
b:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

When hold is True, subsequent plot commands will be added to the current axes. When hold is False,
the current axes and figure will be cleared on the next plot command.

matplotlib.pyplot.hot()
set the default colormap to hot and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.hsv()
set the default colormap to hsv and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.imread(*args, **kwargs)
Read an image from a file into an array.

fname may be a string path or a Python file-like object. If using a file object, it must be opened in
binary mode.

If format is provided, will try to read file of that type, otherwise the format is deduced from the
filename. If nothing can be deduced, PNG is tried.

Return value is a numpy.array. For grayscale images, the return array is MxN. For RGB images, the
return value is MxNx3. For RGBA images the return value is MxNx4.

1118 Chapter 70. pyplot

Matplotlib, Release 1.3.1

matplotlib can only read PNGs natively, but if PIL is installed, it will use it to load the image and
return an array (if possible) which can be used with imshow().

matplotlib.pyplot.imsave(*args, **kwargs)
Save an array as in image file.

The output formats available depend on the backend being used.
Arguments:

fname: A string containing a path to a filename, or a Python file-like object. If format is None
and fname is a string, the output format is deduced from the extension of the filename.

arr: An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.
Keyword arguments:

vmin/vmax: [None | scalar] vmin and vmax set the color scaling for the image by fixing the
values that map to the colormap color limits. If either vmin or vmax is None, that limit is
determined from the arr min/max value.

cmap: cmap is a colors.Colormap instance, eg cm.jet. If None, default to the rc image.cmap
value.

format: One of the file extensions supported by the active backend. Most backends support
png, pdf, ps, eps and svg.

origin [‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper left or
lower left corner of the axes. Defaults to the rc image.origin value.

dpi The DPI to store in the metadata of the file. This does not affect the resolution of the output
image.

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, al-
pha=None, vmin=None, vmax=None, origin=None, extent=None,
shape=None, filternorm=1, filterrad=4.0, imlim=None, resam-
ple=None, url=None, hold=None, **kwargs)

Display an image on the axes.
Parameters X : array_like, shape (n, m) or (n, m, 3) or (n, m, 4)

Display the image in X to current axes. X may be a float array, a uint8
array or a PIL image. If X is an array, it can have the following shapes:

•MxN – luminance (grayscale, float array only)
•MxNx3 – RGB (float or uint8 array)
•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays
should be in the range 0.0 to 1.0; MxN float arrays may be normalised.

cmap : Colormap, optional, default: None
If None, default to rc image.cmap value. cmap is ignored when X has
RGB(A) information

aspect : [’auto’ | ‘equal’ | scalar], optional, default: None
If ‘auto’, changes the image aspect ratio to match that of the axes.

If ‘equal’, and extent is None, changes the axes aspect ratio to match
that of the image. If extent is not None, the axes aspect ratio is
changed to match that of the extent.

If None, default to rc image.aspect value.
interpolation : string, optional, default: None

Acceptable values are ‘none’, ‘nearest’, ‘bilinear’, ‘bicubic’,

70.1. matplotlib.pyplot 1119

http://www.pythonware.com/products/pil/

Matplotlib, Release 1.3.1

‘spline16’, ‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’,
‘quadric’, ‘catrom’, ‘gaussian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’

If interpolation is None, default to rc image.interpolation.
See also the filternorm and filterrad parameters. If
interpolation is ‘none’, then no interpolation is performed on the
Agg, ps and pdf backends. Other backends will fall back to ‘nearest’.

norm : Normalize, optional, default: None
A Normalize instance is used to scale luminance data to 0, 1. If None,
use the default func:normalize. norm is only used if X is an array of
floats.

vmin, vmax : scalar, optional, default: None
vmin and vmax are used in conjunction with norm to normalize lumi-
nance data. Note if you pass a norm instance, your settings for vmin
and vmax will be ignored.

alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)

origin : [’upper’ | ‘lower’], optional, default: None
Place the [0,0] index of the array in the upper left or lower left corner
of the axes. If None, default to rc image.origin.

extent : scalars (left, right, bottom, top), optional, default: None
Data limits for the axes. The default assigns zero-based row, column
indices to the x, y centers of the pixels.

shape : scalars (columns, rows), optional, default: None
For raw buffer images

filternorm : scalar, optional, default: 1
A parameter for the antigrain image resize filter. From the antigrain
documentation, if filternorm = 1, the filter normalizes integer val-
ues and corrects the rounding errors. It doesn’t do anything with the
source floating point values, it corrects only integers according to the
rule of 1.0 which means that any sum of pixel weights must be equal to
1.0. So, the filter function must produce a graph of the proper shape.

filterrad : scalar, optional, default: 4.0
The filter radius for filters that have a radius parameter, i.e. when
interpolation is one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Returns image : AxesImage
Other Parameters kwargs : Artist properties.

See also:

matshow Plot a matrix or an array as an image.

1120 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Examples

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.ioff()
Turn interactive mode off.

matplotlib.pyplot.ion()
Turn interactive mode on.

matplotlib.pyplot.ishold()
Return the hold status of the current axes.

matplotlib.pyplot.isinteractive()
Return status of interactive mode.

matplotlib.pyplot.jet()
set the default colormap to jet and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.legend(*args, **kwargs)
Place a legend on the current axes.

Call signature:

70.1. matplotlib.pyplot 1121

Matplotlib, Release 1.3.1

legend(*args, **kwargs)

Places legend at location loc. Labels are a sequence of strings and loc can be a string or an integer
specifying the legend location.

To make a legend with existing lines:

legend()

legend() by itself will try and build a legend using the label property of the lines/patches/collections.
You can set the label of a line by doing:

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.

To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

The location codes are
Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

1122 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argument.
bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. For
example:

loc = ’upper right’, bbox_to_anchor = (0.5, 0.5)

will place the legend so that the upper right corner of the legend at the center of the axes.

The legend location can be specified in other coordinate, by using the bbox_transform keyword.

The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords
(bbox_to_anchor is ignored).

Keyword arguments:
prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties

instance. If prop is a dictionary, a new instance will be created with prop. If None,
use rc settings.

fontsize: [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ |

‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
Set the font size. May be either a size string, relative to the default font size, or an
absolute font size in points. This argument is only used if prop is not specified.

numpoints: integer The number of points in the legend for line
scatterpoints: integer The number of points in the legend for scatter plot
scatteryoffsets: list of floats a list of yoffsets for scatter symbols in legend
markerscale: [None | scalar] The relative size of legend markers vs. original. If None,

use rc settings.
frameon: [True | False] if True, draw a frame around the legend. The default is set by

the rcParam ‘legend.frameon’
fancybox: [None | False | True] if True, draw a frame with a round fancybox. If None,

use rc settings
shadow: [None | False | True] If True, draw a shadow behind legend. If None, use rc

settings.
framealpha: [None | float] If not None, alpha channel for legend frame. Default None.
ncol [integer] number of columns. default is 1
mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally expanded

to fill the axes area (or bbox_to_anchor)
bbox_to_anchor: an instance of BboxBase or a tuple of 2 or 4 floats the bbox that the

legend will be anchored.
bbox_transform [[an instance of Transform | None]] the transform for the bbox.

transAxes if None.
title [string] the legend title

Padding and spacing between various elements use following keywords parameters. These values are
measure in font-size units. e.g., a fontsize of 10 points and a handlelength=5 implies a handlelength
of 50 points. Values from rcParams will be used if None.

70.1. matplotlib.pyplot 1123

Matplotlib, Release 1.3.1

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Note: Not all kinds of artist are supported by the legend command. See Legend guide for details.

Example:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

Model length
Data length
Total message length

See also:

Legend guide.

matplotlib.pyplot.locator_params(axis=’both’, tight=None, **kwargs)
Control behavior of tick locators.

Keyword arguments:
axis [’x’ | ‘y’ | ‘both’] Axis on which to operate; default is ‘both’.
tight [True | False | None] Parameter passed to autoscale_view(). Default is None, for no change.
Remaining keyword arguments are passed to directly to the set_params() method.

Typically one might want to reduce the maximum number of ticks and use tight bounds when plotting
small subplots, for example:

1124 Chapter 70. pyplot

Matplotlib, Release 1.3.1

ax.locator_params(tight=True, nbins=4)

Because the locator is involved in autoscaling, autoscale_view() is called automatically after the
parameters are changed.

This presently works only for the MaxNLocator used by default on linear axes, but it may be gener-
alized.

matplotlib.pyplot.loglog(*args, **kwargs)
Make a plot with log scaling on both the x and y axis.

Call signature:

loglog(*args, **kwargs)

loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale() / matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:
basex/basey: scalar > 1 Base of the x/y logarithm
subsx/subsy: [None | sequence] The location of the minor x/y ticks;

None defaults to autosubs, which depend on the number of
decades in the plot; see matplotlib.axes.Axes.set_xscale() /

matplotlib.axes.Axes.set_yscale() for details
nonposx/nonposy: [’mask’ | ‘clip’] Non-positive values in x or y can be masked as in-

valid, or clipped to a very small positive number
The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points

Continued on next page

70.1. matplotlib.pyplot 1125

Matplotlib, Release 1.3.1

Table 70.15 – continued from previous page
Property Description
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

1126 Chapter 70. pyplot

Matplotlib, Release 1.3.1

0 5 10 15 20
10-2

10-1

100 semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102 loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105Errorbars go negative

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.margins(*args, **kw)
Set or retrieve autoscaling margins.

signatures:

margins()

returns xmargin, ymargin

margins(margin)

margins(xmargin, ymargin)

margins(x=xmargin, y=ymargin)

margins(..., tight=False)

All three forms above set the xmargin and ymargin parameters. All keyword parameters are op-
tional. A single argument specifies both xmargin and ymargin. The tight parameter is passed to
autoscale_view(), which is executed after a margin is changed; the default here is True, on the
assumption that when margins are specified, no additional padding to match tick marks is usually
desired. Setting tight to None will preserve the previous setting.

70.1. matplotlib.pyplot 1127

Matplotlib, Release 1.3.1

Specifying any margin changes only the autoscaling; for example, if xmargin is not None, then xmar-
gin times the X data interval will be added to each end of that interval before it is used in autoscaling.

matplotlib.pyplot.matshow(A, fignum=None, **kw)
Display an array as a matrix in a new figure window.

The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed
horizontally. The aspect ratio of the figure window is that of the array, unless this would make an
excessively short or narrow figure.

Tick labels for the xaxis are placed on top.

With the exception of fignum, keyword arguments are passed to imshow(). You may set the origin
kwarg to “lower” if you want the first row in the array to be at the bottom instead of the top.
fignum: [None | integer | False] By default, matshow() creates a new figure window with auto-

matic numbering. If fignum is given as an integer, the created figure will use this figure number.
Because of how matshow() tries to set the figure aspect ratio to be the one of the array, if you
provide the number of an already existing figure, strange things may happen.

If fignum is False or 0, a new figure window will NOT be created.

matplotlib.pyplot.minorticks_off()
Remove minor ticks from the current plot.

matplotlib.pyplot.minorticks_on()
Display minor ticks on the current plot.

Displaying minor ticks reduces performance; turn them off using minorticks_off() if drawing speed is
a problem.

matplotlib.pyplot.over(func, *args, **kwargs)
Call a function with hold(True).

Calls:

func(*args, **kwargs)

with hold(True) and then restores the hold state.

matplotlib.pyplot.pause(interval)
Pause for interval seconds.

If there is an active figure it will be updated and displayed, and the GUI event loop will run during the
pause.

If there is no active figure, or if a non-interactive backend is in use, this executes time.sleep(interval).

This can be used for crude animation. For more complex animation, see matplotlib.animation.

This function is experimental; its behavior may be changed or extended in a future release.

matplotlib.pyplot.pcolor(*args, **kwargs)
Create a pseudocolor plot of a 2-D array.

Note: pcolor can be very slow for large arrays; consider using the similar but much faster
pcolormesh() instead.

1128 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Call signatures:

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

C is the array of color values.

X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral for
C[i,j] has corners at:

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are the
same, then the last row and column of C will be ignored.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y;
for details, see the Grid Orientation section below.

If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed into
the appropriate 2-D arrays, making a rectangular grid.

X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X or Y at
[i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

Keyword arguments:
cmap: [None | Colormap] A matplotlib.colors.Colormap instance. If None, use

rc settings.
norm: [None | Normalize] An matplotlib.colors.Normalize instance is used to

scale luminance data to 0,1. If None, defaults to normalize().
vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-

malize luminance data. If either is None, it is autoscaled to the respective min or
max of the color array C. If not None, vmin or vmax passed in here override any
pre-existing values supplied in the norm instance.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle; if
‘flat’, edges are not drawn. Default is ‘flat’, contrary to MATLAB.
This kwarg is deprecated; please use ‘edgecolors’ instead:

•shading=’flat’ – edgecolors=’none’
•shading=’faceted – edgecolors=’k’

edgecolors: [None | ’none’ | color | color sequence] If None, the rc setting is used by
default.

If ’none’, edges will not be visible.

An mpl color or sequence of colors will set the edge color
alpha: 0 <= scalar <= 1 or None the alpha blending value

Return value is a matplotlib.collections.Collection instance. The grid orientation follows
the MATLAB convention: an array C with shape (nrows, ncolumns) is plotted with the column number

70.1. matplotlib.pyplot 1129

Matplotlib, Release 1.3.1

as X and the row number as Y, increasing up; hence it is plotted the way the array would be printed,
except that the Y axis is reversed. That is, C is taken as C*(*y, x).

Similarly for meshgrid():

x = np.arange(5)
y = np.arange(3)
X, Y = np.meshgrid(x, y)

is equivalent to:

X = array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])

Y = array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2]])

so if you have:

C = rand(len(x), len(y))

then you need to transpose C:

pcolor(X, Y, C.T)

or:

pcolor(C.T)

MATLAB pcolor() always discards the last row and column of C, but matplotlib displays the last
row and column if X and Y are not specified, or if X and Y have one more row and column than C.

kwargs can be used to control the PolyCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function

Continued on next page

1130 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.16 – continued from previous page
Property Description
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Note: The default antialiaseds is False if the default edgecolors*=”none” is used. This eliminates
artificial lines at patch boundaries, and works regardless of the value of alpha. If *edgecolors is not
“none”, then the default antialiaseds is taken from rcParams[’patch.antialiased’], which defaults to
True. Stroking the edges may be preferred if alpha is 1, but will cause artifacts otherwise.

See also:

pcolormesh() For an explanation of the differences between pcolor and pcolormesh.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.pcolormesh(*args, **kwargs)
Plot a quadrilateral mesh.

Call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

Create a pseudocolor plot of a 2-D array.

70.1. matplotlib.pyplot 1131

Matplotlib, Release 1.3.1

pcolormesh is similar to pcolor(), but uses a different mechanism and returns a different object;
pcolor returns a PolyCollection but pcolormesh returns a QuadMesh. It is much faster, so it is
almost always preferred for large arrays.

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap and
norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or vertices.

Keyword arguments:
cmap: [None | Colormap] A matplotlib.colors.Colormap instance. If None, use

rc settings.
norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to

scale luminance data to 0,1. If None, defaults to normalize().
vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-

malize luminance data. If either is None, it is autoscaled to the respective min or
max of the color array C. If not None, vmin or vmax passed in here override any
pre-existing values supplied in the norm instance.

shading: [‘flat’ | ‘gouraud’] ‘flat’ indicates a solid color for each quad. When
‘gouraud’, each quad will be Gouraud shaded. When gouraud shading, edgecolors
is ignored.

edgecolors: [None | ’None’ | ’face’ | color |

color sequence]
If None, the rc setting is used by default.

If ’None’, edges will not be visible.

If ’face’, edges will have the same color as the faces.

An mpl color or sequence of colors will set the edge color
alpha: 0 <= scalar <= 1 or None the alpha blending value

Return value is a matplotlib.collections.QuadMesh object.

kwargs can be used to control the matplotlib.collections.QuadMesh properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance

Continued on next page

1132 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.17 – continued from previous page
Property Description
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See also:

pcolor() For an explanation of the grid orientation and the expansion of 1-D X and/or Y to 2-D
arrays.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdis-
tance=0.6, shadow=False, labeldistance=1.1, startangle=None, ra-
dius=None, hold=None)

Plot a pie chart.

Call signature:

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, shadow=False,
labeldistance=1.1, startangle=None, radius=None)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1,
then the values of x give the fractional area directly and the array will not be normalized. The wedges
are plotted counterclockwise, by default starting from the x-axis.

Keyword arguments:
explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the

fraction of the radius with which to offset each wedge.

70.1. matplotlib.pyplot 1133

Matplotlib, Release 1.3.1

colors: [None | color sequence] A sequence of matplotlib color args through which the
pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the labels
for each wedge

autopct: [None | format string | format function] If not None, is a string or function
used to label the wedges with their numeric value. The label will be placed inside
the wedge. If it is a format string, the label will be fmt%pct. If it is a function, it
will be called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the text
generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn
shadow: [False | True] Draw a shadow beneath the pie.
startangle: [None | Offset angle] If not None, rotates the start of the pie chart by angle

degrees counterclockwise from the x-axis.

radius: [None | scalar] The radius of the pie, if radius is None it will be set to 1.
The pie chart will probably look best if the figure and axes are square, or the Axes aspect is equal.
e.g.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

or:

axes(aspect=1)

Return value: If autopct is None, return the tuple (patches, texts):
•patches is a sequence of matplotlib.patches.Wedge instances
•texts is a list of the label matplotlib.text.Text instances.

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts are
as above, and autotexts is a list of Text instances for the numeric labels.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.pink()
set the default colormap to pink and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple x, y
pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

An arbitrary number of x, y, fmt groups can be specified, as in:

1134 Chapter 70. pyplot

Matplotlib, Release 1.3.1

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

Return value is a list of lines that were added.

By default, each line is assigned a different color specified by a ‘color cycle’. To
change this behavior, you can edit the axes.color_cycle rcParam. Alternatively, you can use
set_default_color_cycle().

The following format string characters are accepted to control the line style or marker:

character description
’-’ solid line style
’--’ dashed line style
’-.’ dash-dot line style
’:’ dotted line style
’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle_down marker
’^’ triangle_up marker
’<’ triangle_left marker
’>’ triangle_right marker
’1’ tri_down marker
’2’ tri_up marker
’3’ tri_left marker
’4’ tri_right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin_diamond marker
’|’ vline marker
’_’ hline marker

The following color abbreviations are supported:

character color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

70.1. matplotlib.pyplot 1135

Matplotlib, Release 1.3.1

In addition, you can specify colors in many weird and wonderful ways, including full names
(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensities
as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group, but the
tuple forms can be used only as kwargs.

Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.

The kwargs can be used to set line properties (any property that has a set_* method). You can use
this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an
example:

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

You do not need to use format strings, which are just abbreviations. All of the line properties can
be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and
markercolor with:

plot(x, y, color=’green’, linestyle=’dashed’, marker=’o’,
markerfacecolor=’blue’, markersize=12).

See Line2D for details.

The kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]

Continued on next page

1136 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.18 – continued from previous page
Property Description
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether the
x and y axes are autoscaled; the default is True.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, hold=None,
**kwargs)

Plot with data with dates.

Call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True,
ydate=False, **kwargs)

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and the
axis is labeled accordingly.

x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.

Keyword arguments:

70.1. matplotlib.pyplot 1137

Matplotlib, Release 1.3.1

fmt: string The plot format string.
tz: [None | timezone string | tzinfo instance] The time zone to use in labeling dates.

If None, defaults to rc value.
xdate: [True | False] If True, the x-axis will be labeled with dates.
ydate: [False | True] If True, the y-axis will be labeled with dates.

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.dates.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.dates.DateLocator instance) and the default tick formatter
to matplotlib.dates.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.dates.DateFormatter instance).

Valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown

Continued on next page

1138 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.19 – continued from previous page
Property Description
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See also:

dates for helper functions

date2num(), num2date() and drange() for help on creating the required floating point dates.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.plotfile(fname, cols=(0,), plotfuncs=None, comments=’#’, skiprows=0,
checkrows=5, delimiter=’, ‘, names=None, subplots=True, new-
fig=True, **kwargs)

Plot the data in in a file.

cols is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an
int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will
make column headers lower case, replace spaces with underscores, and remove all illegal characters;
so ’Adj Close*’ will have name ’adj_close’.

•If len(cols) == 1, only that column will be plotted on the y axis.
•If len(cols) > 1, the first element will be an identifier for data for the x axis and the remaining
elements will be the column indexes for multiple subplots if subplots is True (the default), or
for lines in a single subplot if subplots is False.

plotfuncs, if not None, is a dictionary mapping identifier to an Axes plotting function as a string.
Default is ‘plot’, other choices are ‘semilogy’, ‘fill’, ‘bar’, etc. You must use the same type of identifier
in the cols vector as you use in the plotfuncs dictionary, e.g., integer column numbers in both or
column names in both. If subplots is False, then including any function such as ‘semilogy’ that
changes the axis scaling will set the scaling for all columns.

comments, skiprows, checkrows, delimiter, and names are all passed on to
matplotlib.pylab.csv2rec() to load the data into a record array.

If newfig is True, the plot always will be made in a new figure; if False, it will be made in the current
figure if one exists, else in a new figure.

kwargs are passed on to plotting functions.

Example usage:

plot the 2nd and 4th column against the 1st in two subplots
plotfile(fname, (0,1,3))

70.1. matplotlib.pyplot 1139

Matplotlib, Release 1.3.1

plot using column names; specify an alternate plot type for volume
plotfile(fname, (’date’, ’volume’, ’adj_close’),

plotfuncs={’volume’: ’semilogy’})

Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended
as an alternative interface to general plotting with pyplot or matplotlib.

matplotlib.pyplot.polar(*args, **kwargs)
Make a polar plot.

call signature:

polar(theta, r, **kwargs)

Multiple theta, r arguments are supported, with format strings, as in plot().

matplotlib.pyplot.prism()
set the default colormap to prism and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.psd(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at
0x2635de8>, window=<function window_hanning at 0x2635b90>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)

Plot the power spectral density.

Call signature:

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The power spectral density by Welch’s average periodogram method. The vector x is divided into
NFFT length segments. Each segment is detrended by function detrend and windowed by function
window. noverlap gives the length of the overlap between segments. The |fft(i)|2 of each segment i
are averaged to compute Pxx, with a scaling to correct for power loss due to windowing. Fs is the
sampling frequency.

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

1140 Chapter 70. pyplot

Matplotlib, Release 1.3.1

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for
integration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

Returns the tuple (Pxx, freqs).

For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.
References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley

& Sons (1986)
kwargs control the Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance

Continued on next page

70.1. matplotlib.pyplot 1141

Matplotlib, Release 1.3.1

Table 70.20 – continued from previous page
Property Description
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

1142 Chapter 70. pyplot

Matplotlib, Release 1.3.1

0 2 4 6 8 10
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

0 10 20 30 40 50
Frequency

90
80
70
60
50
40
30
20
10

P
o
w

e
r

S
p
e
ct

ra
l
D

e
n
si

ty
 (

d
B

/H
z)

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.quiver(*args, **kw)
Plot a 2-D field of arrows.

call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:
X, Y: The x and y coordinates of the arrow locations (default is tail of arrow; see pivot

kwarg)
U, V: Give the x and y components of the arrow vectors
C: An optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match
the column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

70.1. matplotlib.pyplot 1143

Matplotlib, Release 1.3.1

units: [‘width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’ | ‘xy’] Arrow units; the arrow di-
mensions except for length are in multiples of this unit.

•‘width’ or ‘height’: the width or height of the axes
•‘dots’ or ‘inches’: pixels or inches, based on the figure dpi
•‘x’, ‘y’, or ‘xy’: X, Y, or sqrt(X^2+Y^2) data units

The arrows scale differently depending on the units. For ‘x’ or ‘y’, the arrows get
larger as one zooms in; for other units, the arrow size is independent of the zoom
state. For ‘width or ‘height’, the arrow size increases with the width and height
of the axes, respectively, when the the window is resized; for ‘dots’ or ‘inches’,
resizing does not change the arrows.

angles: [‘uv’ | ‘xy’ | array] With the default ‘uv’, the arrow aspect ratio is 1, so that
if U*==*V the angle of the arrow on the plot is 45 degrees CCW from the x-axis.
With ‘xy’, the arrow points from (x,y) to (x+u, y+v). Alternatively, arbitrary angles
may be specified as an array of values in degrees, CCW from the x-axis.

scale: [None | float] Data units per arrow length unit, e.g., m/s per plot width; a smaller
scale parameter makes the arrow longer. If None, a simple autoscaling algorithm
is used, based on the average vector length and the number of vectors. The arrow
length unit is given by the scale_units parameter

scale_units: None, or any of the units options. For example, if scale_units is ‘inches’,
scale is 2.0, and (u,v) = (1,0), then the vector will be 0.5 inches long. If
scale_units is ‘width’, then the vector will be half the width of the axes.

If scale_units is ‘x’ then the vector will be 0.5 x-axis units. To plot vectors in
the x-y plane, with u and v having the same units as x and y, use “angles=’xy’,
scale_units=’xy’, scale=1”.

width: Shaft width in arrow units; default depends on choice of units, above, and number
of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar Head width as multiple of shaft width, default is 3
headlength: scalar Head length as multiple of shaft width, default is 5
headaxislength: scalar Head length at shaft intersection, default is 4.5
minshaft: scalar Length below which arrow scales, in units of head length. Do not set

this to less than 1, or small arrows will look terrible! Default is 1
minlength: scalar Minimum length as a multiple of shaft width; if an arrow length is less

than this, plot a dot (hexagon) of this diameter instead. Default is 1.
pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the arrow

rotates about this point, hence the name pivot.
color: [color | color sequence] This is a synonym for the PolyCollection facecolor

kwarg. If C has been set, color has no effect.
The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the
same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and
headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters.
You will probably do best to leave minshaft alone.

linewidths and edgecolors can be used to customize the arrow outlines. Additional PolyCollection
keyword arguments:

Property Description
agg_filter unknown

Continued on next page

1144 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.21 – continued from previous page
Property Description
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offset_position unknown
offsets float or sequence of floats
path_effects unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.quiverkey(*args, **kw)
Add a key to a quiver plot.

Call signature:

quiverkey(Q, X, Y, U, label, **kw)

70.1. matplotlib.pyplot 1145

Matplotlib, Release 1.3.1

Arguments:
Q: The Quiver instance returned by a call to quiver.
X, Y: The location of the key; additional explanation follows.
U: The length of the key
label: A string with the length and units of the key

Keyword arguments:
coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for X,

Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower
left and 1,1 in the upper right; ‘data’ are the axes data coordinates (used for the
locations of the vectors in the quiver plot itself); ‘inches’ is position in the figure in
inches, with 0,0 at the lower left corner.

color: overrides face and edge colors from Q.
labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the left

of the arrow, respectively.
labelsep: Distance in inches between the arrow and the label. Default is 0.1
labelcolor: defaults to default Text color.
fontproperties: A dictionary with keyword arguments accepted by the FontProperties

initializer: family, style, variant, size, weight
Any additional keyword arguments are used to override vector properties taken from Q.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’, X,
Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head, and if
labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle
of the arrow+label key object.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.rc(*args, **kwargs)
Set the current rc params. Group is the grouping for the rc, e.g., for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, e.g., (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

The following aliases are available to save typing for interactive users:

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

1146 Chapter 70. pyplot

Matplotlib, Release 1.3.1

rc(’lines’, lw=2, c=’r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. e.g.,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

matplotlib.pyplot.rc_context(rc=None, fname=None)
Return a context manager for managing rc settings.

This allows one to do:

with mpl.rc_context(fname=’screen.rc’):
plt.plot(x, a)
with mpl.rc_context(fname=’print.rc’):

plt.plot(x, b)
plt.plot(x, c)

The ‘a’ vs ‘x’ and ‘c’ vs ‘x’ plots would have settings from ‘screen.rc’, while the ‘b’ vs ‘x’ plot would
have settings from ‘print.rc’.

A dictionary can also be passed to the context manager:

with mpl.rc_context(rc={’text.usetex’: True}, fname=’screen.rc’):
plt.plot(x, a)

The ‘rc’ dictionary takes precedence over the settings loaded from ‘fname’. Passing a dictionary only
is also valid.

matplotlib.pyplot.rcdefaults()
Restore the default rc params. These are not the params loaded by the rc file, but mpl’s internal
params. See rc_file_defaults for reloading the default params from the rc file

matplotlib.pyplot.rgrids(*args, **kwargs)
Get or set the radial gridlines on a polar plot.

call signatures:

lines, labels = rgrids()
lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs)

When called with no arguments, rgrid() simply returns the tuple (lines, labels), where lines is an
array of radial gridlines (Line2D instances) and labels is an array of tick labels (Text instances).
When called with arguments, the labels will appear at the specified radial distances and angles.

70.1. matplotlib.pyplot 1147

Matplotlib, Release 1.3.1

labels, if not None, is a len(radii) list of strings of the labels to use at each angle.

If labels is None, the rformatter will be used

Examples:

set the locations of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0))

set the locations and labels of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0), (’Tom’, ’Dick’, ’Harry’)

matplotlib.pyplot.savefig(*args, **kwargs)
Save the current figure.

Call signature:

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1,
frameon=None)

The output formats available depend on the backend being used.

Arguments:
fname: A string containing a path to a filename, or a Python file-like object, or possibly

some backend-dependent object such as PdfPages.

If format is None and fname is a string, the output format is deduced from the
extension of the filename. If the filename has no extension, the value of the rc
parameter savefig.format is used.

If fname is not a string, remember to specify format to ensure that the correct
backend is used.

Keyword arguments:
dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default to the

value savefig.dpi in the matplotlibrc file.
facecolor, edgecolor: the colors of the figure rectangle
orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently only on

postscript output
papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’ through

‘b10’. Only supported for postscript output.
format: One of the file extensions supported by the active backend. Most backends sup-

port png, pdf, ps, eps and svg.
transparent: If True, the axes patches will all be transparent; the figure patch will also

be transparent unless facecolor and/or edgecolor are specified via kwargs. This is
useful, for example, for displaying a plot on top of a colored background on a web
page. The transparency of these patches will be restored to their original values
upon exit of this function.

frameon: If True, the figure patch will be colored, if False, the figure background will be
transparent. If not provided, the rcParam ‘savefig.frameon’ will be used.

1148 Chapter 70. pyplot

Matplotlib, Release 1.3.1

bbox_inches: Bbox in inches. Only the given portion of the figure is saved. If ‘tight’, try
to figure out the tight bbox of the figure.

pad_inches: Amount of padding around the figure when bbox_inches is ‘tight’.
bbox_extra_artists: A list of extra artists that will be considered when the tight bbox is

calculated.

matplotlib.pyplot.sca(ax)
Set the current Axes instance to ax.

The current Figure is updated to the parent of ax.

matplotlib.pyplot.scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, hold=None, **kwargs)

Make a scatter plot of x vs y, where x and y are sequence like objects of the same lengths.
Parameters x, y : array_like, shape (n,)

Input data
s : scalar or array_like, shape (n,), optional, default: 20

size in points^2.
c : color or sequence of color, optional, default

c can be a single color format string, or a sequence of color specifica-
tions of length N, or a sequence of N numbers to be mapped to colors
using the cmap and norm specified via kwargs (see below). Note that c
should not be a single numeric RGB or RGBA sequence because that
is indistinguishable from an array of values to be colormapped. c can
be a 2-D array in which the rows are RGB or RGBA, however.

marker : MarkerStyle, optional, default: ‘o’
See markers for more information on the different styles of markers
scatter supports.

cmap : Colormap, optional, default: None
A Colormap instance or registered name. cmap is only used if c is an
array of floats. If None, defaults to rc image.cmap.

norm : Normalize, optional, default: None
A Normalize instance is used to scale luminance data to 0, 1. norm
is only used if c is an array of floats. If None, use the default
normalize().

vmin, vmax : scalar, optional, default: None
vmin and vmax are used in conjunction with norm to normalize lumi-
nance data. If either are None, the min and max of the color array is
used. Note if you pass a norm instance, your settings for vmin and
vmax will be ignored.

alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)

linewidths : scalar or array_like, optional, default: None
If None, defaults to (lines.linewidth,). Note that this is a tuple, and if
you set the linewidths argument you must set it as a sequence of floats,
as required by RegularPolyCollection.

Returns paths : PathCollection
Other Parameters kwargs : Collection properties

70.1. matplotlib.pyplot 1149

Matplotlib, Release 1.3.1

Notes

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and only
unmasked points will be plotted.

Examples

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.sci(im)
Set the current image. This image will be the target of colormap commands like jet(), hot() or
clim()). The current image is an attribute of the current axes.

matplotlib.pyplot.semilogx(*args, **kwargs)
Make a plot with log scaling on the x axis.

Call signature:

semilogx(*args, **kwargs)

semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().

Notable keyword arguments:

1150 Chapter 70. pyplot

Matplotlib, Release 1.3.1

basex: scalar > 1 Base of the x logarithm
subsx: [None | sequence] The location of the minor xticks; None defaults to autosubs,

which depend on the number of decades in the plot; see set_xscale() for details.
nonposx: [‘mask’ | ‘clip’] Non-positive values in x can be masked as invalid, or clipped

to a very small positive number
The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]

Continued on next page

70.1. matplotlib.pyplot 1151

Matplotlib, Release 1.3.1

Table 70.22 – continued from previous page
Property Description
xdata 1D array
ydata 1D array
zorder any number

See also:

loglog() For example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.semilogy(*args, **kwargs)
Make a plot with log scaling on the y axis.

call signature:

semilogy(*args, **kwargs)

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:
basey: scalar > 1 Base of the y logarithm
subsy: [None | sequence] The location of the minor yticks; None defaults to autosubs,

which depend on the number of decades in the plot; see set_yscale() for details.
nonposy: [‘mask’ | ‘clip’] Non-positive values in y can be masked as invalid, or clipped

to a very small positive number
The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
drawstyle [’default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’]
gid an id string

Continued on next page

1152 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Table 70.23 – continued from previous page
Property Description
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ’’] and any drawstyle in combination with a linestyle, e.g., ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker unknown
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
path_effects unknown
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
sketch_params unknown
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See also:

loglog() For example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.set_cmap(cmap)
Set the default colormap. Applies to the current image if any. See help(colormaps) for more informa-
tion.

cmap must be a Colormap instance, or the name of a registered colormap.

See matplotlib.cm.register_cmap() and matplotlib.cm.get_cmap().

matplotlib.pyplot.setp(*args, **kwargs)
Set a property on an artist object.

matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,
as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

70.1. matplotlib.pyplot 1153

Matplotlib, Release 1.3.1

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. e.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the MATLAB style string/value pairs or with python kwargs. For example, the
following are equivalent:

>>> setp(lines, ’linewidth’, 2, ’color’, ’r’) # MATLAB style
>>> setp(lines, linewidth=2, color=’r’) # python style

matplotlib.pyplot.show(*args, **kw)
Display a figure.

When running in ipython with its pylab mode, display all figures and return to the ipython prompt.

In non-interactive mode, display all figures and block until the figures have been closed; in interactive
mode it has no effect unless figures were created prior to a change from non-interactive to interactive
mode (not recommended). In that case it displays the figures but does not block.

A single experimental keyword argument, block, may be set to True or False to override the blocking
behavior described above.

matplotlib.pyplot.specgram(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none
at 0x2635de8>, window=<function window_hanning at
0x2635b90>, noverlap=128, cmap=None, xextent=None,
pad_to=None, sides=’default’, scale_by_freq=None, hold=None,
**kwargs)

Plot a spectrogram.

Call signature:

1154 Chapter 70. pyplot

Matplotlib, Release 1.3.1

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides=’default’,
scale_by_freq=None, **kwargs)

Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the PSD
of each section is computed. The windowing function window is applied to each segment, and the
amount of overlap of each segment is specified with noverlap. The spectrogram is plotted in decibels
as a colormap (using imshow).

Keyword arguments:
NFFT: integer The number of data points used in each block for the FFT. Must be even;

a power 2 is most efficient. The default value is 256. This should NOT be used to
get zero padding, or the scaling of the result will be incorrect. Use pad_to for this
instead.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT. To
create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a
data segment as an argument and return the windowed version of the segment.

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for
integration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap: integer The number of points of overlap between blocks. The default value is
128.

Fc: integer The center frequency of x (defaults to 0), which offsets the y extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

cmap: A matplotlib.colors.Colormap instance; if None, use default determined by

70.1. matplotlib.pyplot 1155

Matplotlib, Release 1.3.1

rc
xextent: The image extent along the x-axis. xextent = (xmin,xmax) The default is

(0,max(bins)), where bins is the return value from specgram()

kwargs:
Additional kwargs are passed on to imshow which makes the specgram im-
age

Return value is (Pxx, freqs, bins, im):
•bins are the time points the spectrogram is calculated over
•freqs is an array of frequencies
•Pxx is an array of shape (len(times), len(freqs)) of power
•im is a AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown. This can be overridden using the sides keyword
argument.

Also note that while the plot is in dB, the Pxx array returned is linear in power.

Example:

0 5 10 15 20
3

2

1

0

1

2

3

0 5 10 15 20
0

200

400

600

800

1000

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.spectral()
set the default colormap to spectral and apply to current image if any. See help(colormaps) for more

1156 Chapter 70. pyplot

Matplotlib, Release 1.3.1

information

matplotlib.pyplot.spring()
set the default colormap to spring and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.spy(Z, precision=0, marker=None, markersize=None, aspect=’equal’,
hold=None, **kwargs)

Plot the sparsity pattern on a 2-D array.

Call signature:

spy(Z, precision=0, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.

If precision is 0, any non-zero value will be plotted; else, values of |Z| > precision will be plotted.

For scipy.sparse.spmatrix instances, there is a special case: if precision is ‘present’, any value
present in the array will be plotted, even if it is identically zero.

The array will be plotted as it would be printed, with the first index (row) increasing down and the
second index (column) increasing to the right.

By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect kwarg
to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an
array element directly.

Two plotting styles are available: image or marker. Both are available for full arrays, but only the
marker style works for scipy.sparse.spmatrix instances.

If marker and markersize are None, an image will be returned and any remaining kwargs are passed
to imshow(); else, a Line2D object will be returned with the value of marker determining the marker
type, and any remaining kwargs passed to the plot() method.

If marker and markersize are None, useful kwargs include:
•cmap
•alpha

See also:

imshow() For image options.

For controlling colors, e.g., cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

If marker or markersize is not None, useful kwargs include:
•marker
•markersize
•color

Useful values for marker include:
•‘s’ square (default)
•‘o’ circle

70.1. matplotlib.pyplot 1157

Matplotlib, Release 1.3.1

•‘.’ point
•‘,’ pixel

See also:

plot() For plotting options

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.stackplot(x, *args, **kwargs)
Draws a stacked area plot.

x : 1d array of dimension N
y [2d array of dimension MxN, OR any number 1d arrays each of dimension] 1xN. The

data is assumed to be unstacked. Each of the following calls is legal:

stackplot(x, y) # where y is MxN
stackplot(x, y1, y2, y3, y4) # where y1, y2, y3, y4, are all 1xNm

Keyword arguments:
baseline [[’zero’, ‘sym’, ‘wiggle’, ‘weighted_wiggle’]] Method used to calculate the

baseline. ‘zero’ is just a simple stacked plot. ‘sym’ is symmetric around zero
and is sometimes called ThemeRiver. ‘wiggle’ minimizes the sum of the squared
slopes. ‘weighted_wiggle’ does the same but weights to account for size of
each layer. It is also called Streamgraph-layout. More details can be found at
http://www.leebyron.com/else/streamgraph/.

colors [A list or tuple of colors. These will be cycled through and] used to colour the
stacked areas. All other keyword arguments are passed to fill_between()

Returns r : A list of PolyCollection, one for each element in the stacked area plot.

Note that Legend does not support PolyCollection objects. To create a legend on a
stackplot, use a proxy artist: http://matplotlib.org/users/legend_guide.html#using-proxy-
artist

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.stem(*args, **kwargs)
Create a stem plot.

Call signatures:

stem(y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)
stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and places a
marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.

If no x values are provided, the default is (0, 1, ..., len(y) - 1)

Return value is a tuple (markerline, stemlines, baseline).

See also:

This document for details.

Example:

1158 Chapter 70. pyplot

http://www.leebyron.com/else/streamgraph/
http://matplotlib.org/users/legend_guide.html#using-proxy-artist
http://matplotlib.org/users/legend_guide.html#using-proxy-artist
http://www.mathworks.com/help/techdoc/ref/stem.html

Matplotlib, Release 1.3.1

0 1 2 3 4 5 6 7
1.0

0.5

0.0

0.5

1.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.step(x, y, *args, **kwargs)
Make a step plot.

Call signature:

step(x, y, *args, **kwargs)

Additional keyword args to step() are the same as those for plot().

x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.

Keyword arguments:
where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i+1]

If ‘post’, that interval has level y[i]

If ‘mid’, the jumps in y occur half-way between the x-values.
Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.streamplot(x, y, u, v, density=1, linewidth=None, color=None,
cmap=None, norm=None, arrowsize=1, arrowstyle=’-|>’, min-
length=0.1, transform=None, hold=None)

Draws streamlines of a vector flow.
x, y [1d arrays] an evenly spaced grid.

70.1. matplotlib.pyplot 1159

Matplotlib, Release 1.3.1

u, v [2d arrays] x and y-velocities. Number of rows should match length of y, and the
number of columns should match x.

density [float or 2-tuple] Controls the closeness of streamlines. When density = 1, the
domain is divided into a 25x25 grid—density linearly scales this grid. Each cell in
the grid can have, at most, one traversing streamline. For different densities in each
direction, use [density_x, density_y].

linewidth [numeric or 2d array] vary linewidth when given a 2d array with the same shape
as velocities.

color [matplotlib color code, or 2d array] Streamline color. When given an array with the
same shape as velocities, color values are converted to colors using cmap.

cmap [Colormap] Colormap used to plot streamlines and arrows. Only necessary when
using an array input for color.

norm [Normalize] Normalize object used to scale luminance data to 0, 1. If None,
stretch (min, max) to (0, 1). Only necessary when color is an array.

arrowsize [float] Factor scale arrow size.
arrowstyle [str] Arrow style specification. See FancyArrowPatch.
minlength [float] Minimum length of streamline in axes coordinates.

Returns:
stream_container [StreamplotSet] Container object with attributes

•lines: matplotlib.collections.LineCollection of
streamlines
•arrows: collection of matplotlib.patches.FancyArrowPatch
objects representing arrows half-way along stream lines.

This container will probably change in the future to allow changes to
the colormap, alpha, etc. for both lines and arrows, but these changes
should be backward compatible.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.subplot(*args, **kwargs)
Return a subplot axes positioned by the given grid definition.

Typical call signature:

subplot(nrows, ncols, plot_number)

Where nrows and ncols are used to notionally split the figure into nrows * ncols sub-axes, and
plot_number is used to identify the particular subplot that this function is to create within the notional
grid. plot_number starts at 1, increments across rows first and has a maximum of nrows * ncols.

In the case when nrows, ncols and plot_number are all less than 10, a convenience exists, such that the
a 3 digit number can be given instead, where the hundreds represent nrows, the tens represent ncols
and the units represent plot_number. For instance:

subplot(211)

produces a subaxes in a figure which represents the top plot (i.e. the first) in a 2 row by 1 column
notional grid (no grid actually exists, but conceptually this is how the returned subplot has been
positioned).

1160 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Note: Creating a new subplot with a position which is entirely inside a pre-existing axes will trigger
the larger axes to be deleted:

import matplotlib.pyplot as plt
plot a line, implicitly creating a subplot(111)
plt.plot([1,2,3])
now create a subplot which represents the top plot of a grid
with 2 rows and 1 column. Since this subplot will overlap the
first, the plot (and its axes) previously created, will be removed
plt.subplot(211)
plt.plot(range(12))
plt.subplot(212, axisbg=’y’) # creates 2nd subplot with yellow background

If you do not want this behavior, use the add_subplot() method or the axes() function instead.

Keyword arguments:
axisbg: The background color of the subplot, which can be any valid color specifier. See

matplotlib.colors for more information.
polar: A boolean flag indicating whether the subplot plot should be a polar projection.

Defaults to False.
projection: A string giving the name of a custom projection to be used for

the subplot. This projection must have been previously registered. See
matplotlib.projections.

See also:

axes() For additional information on axes() and subplot() keyword arguments.
examples/pie_and_polar_charts/polar_scatter_demo.py For an example

Example:

70.1. matplotlib.pyplot 1161

Matplotlib, Release 1.3.1

0 1 2 3 4 5
0.5

0.0

0.5

1.0
D

a
m

p
e
d
 o

sc
ill

a
ti

o
n

A tale of 2 subplots

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

U
n
d
a
m

p
e
d

matplotlib.pyplot.subplot2grid(shape, loc, rowspan=1, colspan=1, **kwargs)
Create a subplot in a grid. The grid is specified by shape, at location of loc, spanning rowspan,
colspan cells in each direction. The index for loc is 0-based.

subplot2grid(shape, loc, rowspan=1, colspan=1)

is identical to

gridspec=GridSpec(shape[0], shape[2])
subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan)
subplot(subplotspec)

matplotlib.pyplot.subplot_tool(targetfig=None)
Launch a subplot tool window for a figure.

A matplotlib.widgets.SubplotTool instance is returned.

matplotlib.pyplot.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True,
subplot_kw=None, **fig_kw)

Create a figure with a set of subplots already made.

This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing
figure object, in a single call.

Keyword arguments:
nrows [int] Number of rows of the subplot grid. Defaults to 1.

1162 Chapter 70. pyplot

Matplotlib, Release 1.3.1

ncols [int] Number of columns of the subplot grid. Defaults to 1.
sharex [string or bool] If True, the X axis will be shared amongst all subplots. If True

and you have multiple rows, the x tick labels on all but the last row of plots will
have visible set to False If a string must be one of “row”, “col”, “all”, or “none”.
“all” has the same effect as True, “none” has the same effect as False. If “row”,
each subplot row will share a X axis. If “col”, each subplot column will share a X
axis and the x tick labels on all but the last row will have visible set to False.

sharey [string or bool] If True, the Y axis will be shared amongst all subplots. If True and
you have multiple columns, the y tick labels on all but the first column of plots will
have visible set to False If a string must be one of “row”, “col”, “all”, or “none”.
“all” has the same effect as True, “none” has the same effect as False. If “row”,
each subplot row will share a Y axis. If “col”, each subplot column will share a Y
axis and the y tick labels on all but the last row will have visible set to False.

squeeze [bool] If True, extra dimensions are squeezed out from the returned axis object:
•if only one subplot is constructed (nrows=ncols=1), the resulting single Axis
object is returned as a scalar.
•for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of
Axis objects are returned as numpy 1-d arrays.
•for NxM subplots with N>1 and M>1 are returned as a 2d array.

If False, no squeezing at all is done: the returned axis object is always a 2-d array
containing Axis instances, even if it ends up being 1x1.

subplot_kw [dict] Dict with keywords passed to the add_subplot() call used to create
each subplots.

fig_kw [dict] Dict with keywords passed to the figure() call. Note that all keywords
not recognized above will be automatically included here.

Returns:

fig, ax : tuple
•fig is the matplotlib.figure.Figure object
•ax can be either a single axis object or an array of axis objects if more than one subplot was
created. The dimensions of the resulting array can be controlled with the squeeze keyword, see
above.

Examples:

x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

Just a figure and one subplot
f, ax = plt.subplots()
ax.plot(x, y)
ax.set_title(’Simple plot’)

Two subplots, unpack the output array immediately
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title(’Sharing Y axis’)
ax2.scatter(x, y)

Four polar axes
plt.subplots(2, 2, subplot_kw=dict(polar=True))

70.1. matplotlib.pyplot 1163

Matplotlib, Release 1.3.1

Share a X axis with each column of subplots
plt.subplots(2, 2, sharex=’col’)

Share a Y axis with each row of subplots
plt.subplots(2, 2, sharey=’row’)

Share a X and Y axis with all subplots
plt.subplots(2, 2, sharex=’all’, sharey=’all’)
same as
plt.subplots(2, 2, sharex=True, sharey=True)

matplotlib.pyplot.subplots_adjust(*args, **kwargs)
Tune the subplot layout.

call signature:

subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

The parameter meanings (and suggested defaults) are:

left = 0.125 # the left side of the subplots of the figure
right = 0.9 # the right side of the subplots of the figure
bottom = 0.1 # the bottom of the subplots of the figure
top = 0.9 # the top of the subplots of the figure
wspace = 0.2 # the amount of width reserved for blank space between subplots
hspace = 0.2 # the amount of height reserved for white space between subplots

The actual defaults are controlled by the rc file

matplotlib.pyplot.summer()
set the default colormap to summer and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.suptitle(*args, **kwargs)
Add a centered title to the figure.

kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:
x [0.5] The x location of the text in figure coords
y [0.98] The y location of the text in figure coords
horizontalalignment [‘center’] The horizontal alignment of the text
verticalalignment [‘top’] The vertical alignment of the text

A matplotlib.text.Text instance is returned.

Example:

fig.suptitle(’this is the figure title’, fontsize=12)

matplotlib.pyplot.switch_backend(newbackend)
Switch the default backend. This feature is experimental, and is only expected to work switching
to an image backend. e.g., if you have a bunch of PostScript scripts that you want to run from an
interactive ipython session, you may want to switch to the PS backend before running them to avoid

1164 Chapter 70. pyplot

Matplotlib, Release 1.3.1

having a bunch of GUI windows popup. If you try to interactively switch from one GUI backend to
another, you will explode.

Calling this command will close all open windows.

matplotlib.pyplot.table(**kwargs)
Add a table to the current axes.

Call signature:

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

Returns a matplotlib.table.Table instance. For finer grained control over tables, use the Table
class and add it to the axes with add_table().

Thanks to John Gill for providing the class and table.

kwargs control the Table properties:
Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
fontsize a float in points
gid an id string
label string or anything printable with ‘%s’ conversion.
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

matplotlib.pyplot.text(x, y, s, fontdict=None, withdash=False, **kwargs)
Add text to the axes.

Add text in string s to axis at location x, y, data coordinates.
Parameters s : string

text

70.1. matplotlib.pyplot 1165

Matplotlib, Release 1.3.1

x, y : scalars
data coordinates

fontdict : dictionary, optional, default: None
A dictionary to override the default text properties. If fontdict is None,
the defaults are determined by your rc parameters.

withdash : boolean, optional, default: False
Creates a TextWithDash instance instead of a Text instance.

Other Parameters kwargs : Text properties.
Other miscellaneous text parameters.

Examples

Individual keyword arguments can be used to override any given parameter:

>>> text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in axis
coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the
axes:

>>> text(0.5, 0.5,’matplotlib’, horizontalalignment=’center’,
... verticalalignment=’center’,
... transform=ax.transAxes)

You can put a rectangular box around the text instance (e.g., to set a background color) by using the
keyword bbox. bbox is a dictionary of Rectangle properties. For example:

>>> text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

matplotlib.pyplot.thetagrids(*args, **kwargs)
Get or set the theta locations of the gridlines in a polar plot.

If no arguments are passed, return a tuple (lines, labels) where lines is an array of radial gridlines
(Line2D instances) and labels is an array of tick labels (Text instances):

lines, labels = thetagrids()

Otherwise the syntax is:

lines, labels = thetagrids(angles, labels=None, fmt=’%d’, frac = 1.1)

set the angles at which to place the theta grids (these gridlines are equal along the theta dimension).

angles is in degrees.

labels, if not None, is a len(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt%angle.

1166 Chapter 70. pyplot

Matplotlib, Release 1.3.1

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). e.g., 1.05 is
outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (lines, labels):
•lines are Line2D instances
•labels are Text instances.

Note that on input, the labels argument is a list of strings, and on output it is a list of Text instances.

Examples:

set the locations of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90))

set the locations and labels of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90), (’NE’, ’NW’, ’SW’,’SE’))

matplotlib.pyplot.tick_params(axis=’both’, **kwargs)
Change the appearance of ticks and tick labels.

Keyword arguments:
axis [[’x’ | ‘y’ | ‘both’]] Axis on which to operate; default is ‘both’.
reset [[True | False]] If True, set all parameters to defaults before processing other keyword arguments.

Default is False.
which [[’major’ | ‘minor’ | ‘both’]] Default is ‘major’; apply arguments to which ticks.
direction [[’in’ | ‘out’ | ‘inout’]] Puts ticks inside the axes, outside the axes, or both.
length Tick length in points.
width Tick width in points.
color Tick color; accepts any mpl color spec.
pad Distance in points between tick and label.
labelsize Tick label font size in points or as a string (e.g., ‘large’).
labelcolor Tick label color; mpl color spec.
colors Changes the tick color and the label color to the same value: mpl color spec.
zorder Tick and label zorder.
bottom, top, left, right [[bool | ‘on’ | ‘off’]] controls whether to draw the respective ticks.
labelbottom, labeltop, labelleft, labelright Boolean or [’on’ | ‘off’], controls whether to draw the re-

spective tick labels.
Example:

ax.tick_params(direction=’out’, length=6, width=2, colors=’r’)

This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2
points. Tick labels will also be red.

matplotlib.pyplot.ticklabel_format(**kwargs)
Change the ScalarFormatter used by default for linear axes.

Optional keyword arguments:

70.1. matplotlib.pyplot 1167

Matplotlib, Release 1.3.1

Key-
word

Description

style [‘sci’ (or ‘scientific’) | ‘plain’] plain turns off scientific notation
scilim-
its

(m, n), pair of integers; if style is ‘sci’, scientific notation will be used for
numbers outside the range 10‘m‘:sup: to 10‘n‘:sup:. Use (0,0) to include all
numbers.

use-
Off-
set

[True | False | offset]; if True, the offset will be calculated as needed; if False,
no offset will be used; if a numeric offset is specified, it will be used.

axis [‘x’ | ‘y’ | ‘both’]
use-
Lo-
cale

If True, format the number according to the current locale. This affects things
such as the character used for the decimal separator. If False, use C-style
(English) formatting. The default setting is controlled by the
axes.formatter.use_locale rcparam.

Only the major ticks are affected. If the method is called when the ScalarFormatter is not the
Formatter being used, an AttributeError will be raised.

matplotlib.pyplot.tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None)
Automatically adjust subplot parameters to give specified padding.

Parameters:
pad [float] padding between the figure edge and the edges of subplots, as a fraction of the font-size.
h_pad, w_pad [float] padding (height/width) between edges of adjacent subplots. Defaults to

pad_inches.
rect [if rect is given, it is interpreted as a rectangle] (left, bottom, right, top) in the normalized figure

coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1).

matplotlib.pyplot.title(s, *args, **kwargs)
Set a title of the current axes.

Set one of the three available axes titles. The available titles are positioned above the axes in the
center, flush with the left edge, and flush with the right edge.

Parameters label : str
Text to use for the title

fontdict : dict
A dictionary controlling the appearance of the title text, the default
fontdict is: {‘fontsize’: rcParams[’axes.titlesize’],

‘verticalalignment’: ‘baseline’, ‘horizontalalignment’:
loc}

loc : {‘center’, ‘left’, ‘right’}, str, optional
Which title to set, defaults to ‘center’

Returns text : Text
The matplotlib text instance representing the title

Other Parameters Other keyword arguments are text properties, see :

:class:‘~matplotlib.text.Text‘ for a list of valid text :

properties. :
See also:

See func:text for adding text to the current axes

1168 Chapter 70. pyplot

Matplotlib, Release 1.3.1

matplotlib.pyplot.tricontour(*args, **kwargs)
Draw contours on an unstructured triangular grid. tricontour() and tricontourf() draw contour
lines and filled contours, respectively. Except as noted, function signatures and return values are the
same for both versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be

used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

70.1. matplotlib.pyplot 1169

Matplotlib, Release 1.3.1

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling
is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will corre-
spond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,

1170 Chapter 70. pyplot

Matplotlib, Release 1.3.1

then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

tricontourf-only keyword arguments:
antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

70.1. matplotlib.pyplot 1171

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.tricontourf(*args, **kwargs)
Draw contours on an unstructured triangular grid. tricontour() and tricontourf() draw contour
lines and filled contours, respectively. Except as noted, function signatures and return values are the
same for both versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining arguments may be:

1172 Chapter 70. pyplot

Matplotlib, Release 1.3.1

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:
colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be

used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value
cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and

colors is None, a default Colormap is used.
norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling

data values to colors. If norm is None and colors is None, the default linear scaling
is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will corre-
spond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]
If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.

70.1. matplotlib.pyplot 1173

Matplotlib, Release 1.3.1

If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:
linewidths: [None | number | tuple of numbers] If linewidths is None, the default

width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,
then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

tricontourf-only keyword arguments:
antialiased: [True | False] enable antialiasing
nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer

to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

1174 Chapter 70. pyplot

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

70.1. matplotlib.pyplot 1175

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.tripcolor(*args, **kwargs)
Create a pseudocolor plot of an unstructured triangular grid.

The triangulation can be specified in one of two ways; either:

tripcolor(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

tripcolor(x, y, ...)
tripcolor(x, y, triangles, ...)
tripcolor(x, y, triangles=triangles, ...)
tripcolor(x, y, mask=mask, ...)
tripcolor(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The next argument must be C, the array of color values, either one per point in the triangulation if
color values are defined at points, or one per triangle in the triangulation if color values are defined
at triangles. If there are the same number of points and triangles in the triangulation it is assumed
that color values are defined at points; to force the use of color values at triangles use the kwarg
facecolors*=C instead of just *C.

1176 Chapter 70. pyplot

Matplotlib, Release 1.3.1

shading may be ‘flat’ (the default) or ‘gouraud’. If shading is ‘flat’ and C values are defined at points,
the color values used for each triangle are from the mean C of the triangle’s three points. If shading is
‘gouraud’ then color values must be defined at points. shading of ‘faceted’ is deprecated; please use
edgecolors instead.

The remaining kwargs are the same as for pcolor().

Example:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation, flat shading

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

70.1. matplotlib.pyplot 1177

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation, gouraud shading

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

tripcolor of user-specified triangulation

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

1178 Chapter 70. pyplot

Matplotlib, Release 1.3.1

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.triplot(*args, **kwargs)
Draw a unstructured triangular grid as lines and/or markers.

The triangulation to plot can be specified in one of two ways; either:

triplot(triangulation, ...)

where triangulation is a matplotlib.tri.Triangulation object, or

triplot(x, y, ...)
triplot(x, y, triangles, ...)
triplot(x, y, triangles=triangles, ...)
triplot(x, y, mask=mask, ...)
triplot(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining args and kwargs are the same as for plot().

Example:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
triplot of Delaunay triangulation

70.1. matplotlib.pyplot 1179

Matplotlib, Release 1.3.1

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

triplot of user-specified triangulation

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.twinx(ax=None)
Make a second axes that shares the x-axis. The new axes will overlay ax (or the current axes if ax is
None). The ticks for ax2 will be placed on the right, and the ax2 instance is returned.

See also:

examples/api_examples/two_scales.py For an example

matplotlib.pyplot.twiny(ax=None)
Make a second axes that shares the y-axis. The new axis will overlay ax (or the current axes if ax is
None). The ticks for ax2 will be placed on the top, and the ax2 instance is returned.

matplotlib.pyplot.vlines(x, ymin, ymax, colors=’k’, linestyles=’solid’, label=’‘, hold=None,
**kwargs)

Plot vertical lines.

Plot vertical lines at each x from ymin to ymax.
Parameters x : scalar or 1D array_like

x-indexes where to plot the lines.
xmin, xmax : scalar or 1D array_like

Respective beginning and end of each line. If scalars are provided, all
lines will have same length.

colors : array_like of colors, optional, default: ‘k’

1180 Chapter 70. pyplot

Matplotlib, Release 1.3.1

linestyles : [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’], optional

label : string, optional, default: ‘’
Returns lines : LineCollection
Other Parameters kwargs : LineCollection properties.

See also:

hlines horizontal lines

Examples

0 1 2 3 4 5
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Vertical lines demo

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (s)

0

1

2

3

4

5
Horizontal lines demo

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.waitforbuttonpress(*args, **kwargs)
Call signature:

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.

This will return True is a key was pressed, False if a mouse button was pressed and None if timeout
was reached without either being pressed.

If timeout is negative, does not timeout.

matplotlib.pyplot.winter()
set the default colormap to winter and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.xcorr(x, y, normed=True, detrend=<function detrend_none at 0x2635de8>,
usevlines=True, maxlags=10, hold=None, **kwargs)

Plot the cross correlation between x and y.

Call signature:

70.1. matplotlib.pyplot 1181

Matplotlib, Release 1.3.1

xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs)

If normed = True, normalize the data by the cross correlation at 0-th lag. x and y are detrended by the
detrend callable (default no normalization). x and y must be equal length.

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:
•lags are a length 2*maxlags+1 lag vector
•c is the 2*maxlags+1 auto correlation vector
•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True:
vlines() rather than plot() is used to draw vertical lines from the origin to the xcorr.
Otherwise the plotstyle is determined by the kwargs, which are Line2D properties.

The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

Example:

xcorr() is top graph, and acorr() is bottom graph.

1182 Chapter 70. pyplot

Matplotlib, Release 1.3.1

60 40 20 0 20 40 60
0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.xkcd(scale=1, length=100, randomness=2)
Turns on xkcd sketch-style drawing mode. This will only have effect on things drawn after this
function is called.

For best results, the “Humor Sans” font should be installed: it is not included with matplotlib.
Parameters scale: float, optional :

The amplitude of the wiggle perpendicular to the source line.
length: float, optional :

The length of the wiggle along the line.
randomness: float, optional :

The scale factor by which the length is shrunken or expanded.
This function works by a number of rcParams, so it will probably :

override others you have set before. :

If you want the effects of this function to be temporary, it can :

be used as a context manager, for example:: :
with plt.xkcd(): # This figure will be in XKCD-style fig1 =

plt.figure() # ...

This figure will be in regular style fig2 = plt.figure()

matplotlib.pyplot.xlabel(s, *args, **kwargs)

70.1. matplotlib.pyplot 1183

http://xkcd.com/

Matplotlib, Release 1.3.1

Set the x axis label of the current axis.

Default override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’top’,
’horizontalalignment’ : ’center’
}

See also:

text() For information on how override and the optional args work

matplotlib.pyplot.xlim(*args, **kwargs)
Get or set the x limits of the current axes.

xmin, xmax = xlim() # return the current xlim
xlim((xmin, xmax)) # set the xlim to xmin, xmax
xlim(xmin, xmax) # set the xlim to xmin, xmax

If you do not specify args, you can pass the xmin and xmax as kwargs, e.g.:

xlim(xmax=3) # adjust the max leaving min unchanged
xlim(xmin=1) # adjust the min leaving max unchanged

Setting limits turns autoscaling off for the x-axis.

The new axis limits are returned as a length 2 tuple.

matplotlib.pyplot.xscale(*args, **kwargs)
Set the scaling of the x-axis.

call signature:

xscale(scale, **kwargs)

The available scales are: ‘linear’ | ‘log’ | ‘symlog’

Different keywords may be accepted, depending on the scale:
‘linear’

‘log’
basex/basey: The base of the logarithm
nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be

masked as invalid, or clipped to a very small positive number
subsx/subsy: Where to place the subticks between each major tick. Should

be a sequence of integers. For example, in a log10 scale: [2, 3, 4,
5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major
tick.

‘symlog’

1184 Chapter 70. pyplot

Matplotlib, Release 1.3.1

basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to

avoid having the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should

be a sequence of integers. For example, in a log10 scale: [2, 3, 4,
5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major
tick.

linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to
be stretched relative to the logarithmic range. Its value is the num-
ber of decades to use for each half of the linear range. For example,
when linscale == 1.0 (the default), the space used for the positive and
negative halves of the linear range will be equal to one decade in the
logarithmic range.

matplotlib.pyplot.xticks(*args, **kwargs)
Get or set the x-limits of the current tick locations and labels.

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = xticks()

set the locations of the xticks
xticks(arange(6))

set the locations and labels of the xticks
xticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties. For example, to rotate long labels:

xticks(arange(12), calendar.month_name[1:13], rotation=17)

matplotlib.pyplot.ylabel(s, *args, **kwargs)
Set the y axis label of the current axis.

Defaults override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’center’,
’horizontalalignment’ : ’right’,
’rotation’=’vertical’ : }

See also:

text() For information on how override and the optional args work.

matplotlib.pyplot.ylim(*args, **kwargs)
Get or set the y-limits of the current axes.

70.1. matplotlib.pyplot 1185

Matplotlib, Release 1.3.1

ymin, ymax = ylim() # return the current ylim
ylim((ymin, ymax)) # set the ylim to ymin, ymax
ylim(ymin, ymax) # set the ylim to ymin, ymax

If you do not specify args, you can pass the ymin and ymax as kwargs, e.g.:

ylim(ymax=3) # adjust the max leaving min unchanged
ylim(ymin=1) # adjust the min leaving max unchanged

Setting limits turns autoscaling off for the y-axis.

The new axis limits are returned as a length 2 tuple.

matplotlib.pyplot.yscale(*args, **kwargs)
Set the scaling of the y-axis.

call signature:

yscale(scale, **kwargs)

The available scales are: ‘linear’ | ‘log’ | ‘symlog’

Different keywords may be accepted, depending on the scale:
‘linear’

‘log’
basex/basey: The base of the logarithm
nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be

masked as invalid, or clipped to a very small positive number
subsx/subsy: Where to place the subticks between each major tick. Should

be a sequence of integers. For example, in a log10 scale: [2, 3, 4,
5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major
tick.

‘symlog’
basex/basey: The base of the logarithm
linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to

avoid having the plot go to infinity around zero).
subsx/subsy: Where to place the subticks between each major tick. Should

be a sequence of integers. For example, in a log10 scale: [2, 3, 4,
5, 6, 7, 8, 9]

will place 8 logarithmically spaced minor ticks between each major
tick.

linscalex/linscaley: This allows the linear range (-linthresh to linthresh) to
be stretched relative to the logarithmic range. Its value is the num-
ber of decades to use for each half of the linear range. For example,
when linscale == 1.0 (the default), the space used for the positive and
negative halves of the linear range will be equal to one decade in the
logarithmic range.

1186 Chapter 70. pyplot

Matplotlib, Release 1.3.1

matplotlib.pyplot.yticks(*args, **kwargs)
Get or set the y-limits of the current tick locations and labels.

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = yticks()

set the locations of the yticks
yticks(arange(6))

set the locations and labels of the yticks
yticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties. For example, to rotate long labels:

yticks(arange(12), calendar.month_name[1:13], rotation=45)

70.1. matplotlib.pyplot 1187

Matplotlib, Release 1.3.1

1188 Chapter 70. pyplot

CHAPTER

SEVENTYONE

SANKEY

71.1 matplotlib.sankey

Module for creating Sankey diagrams using matplotlib

class matplotlib.sankey.Sankey(ax=None, scale=1.0, unit=’‘, format=’%G’, gap=0.25, ra-
dius=0.1, shoulder=0.03, offset=0.15, head_angle=100, mar-
gin=0.4, tolerance=1e-06, **kwargs)

Sankey diagram in matplotlib
Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is
shown proportionally to the flow quantity. They are typically used to visualize energy or
material or cost transfers between processes. Wikipedia (6/1/2011)

Create a new Sankey instance.

Optional keyword arguments:

1189

http://en.wikipedia.org/wiki/Sankey_diagram

Matplotlib, Release 1.3.1

Field Description
ax axes onto which the data should be plotted If ax isn’t provided, new axes will

be created.
scale scaling factor for the flows scale sizes the width of the paths in order to

maintain proper layout. The same scale is applied to all subdiagrams. The
value should be chosen such that the product of the scale and the sum of the
inputs is approximately 1.0 (and the product of the scale and the sum of the
outputs is approximately -1.0).

unit string representing the physical unit associated with the flow quantities If
unit is None, then none of the quantities are labeled.

for-
mat

a Python number formatting string to be used in labeling the flow as a
quantity (i.e., a number times a unit, where the unit is given)

gap space between paths that break in/break away to/from the top or bottom
ra-
dius

inner radius of the vertical paths

shoul-
der

size of the shoulders of output arrowS

offset text offset (from the dip or tip of the arrow)
head_angleangle of the arrow heads (and negative of the angle of the tails) [deg]
mar-
gin

minimum space between Sankey outlines and the edge of the plot area

toler-
ance

acceptable maximum of the magnitude of the sum of flows The magnitude of
the sum of connected flows cannot be greater than tolerance.

The optional arguments listed above are applied to all subdiagrams so that there is consistent align-
ment and formatting.

If Sankey is instantiated with any keyword arguments other than those explicitly listed above
(**kwargs), they will be passed to add(), which will create the first subdiagram.

In order to draw a complex Sankey diagram, create an instance of Sankey by calling it without any
kwargs:

sankey = Sankey()

Then add simple Sankey sub-diagrams:

sankey.add() # 1
sankey.add() # 2
#...
sankey.add() # n

Finally, create the full diagram:

sankey.finish()

Or, instead, simply daisy-chain those calls:

Sankey().add().add... .add().finish()

1190 Chapter 71. sankey

Matplotlib, Release 1.3.1

See also:

add() finish()

Examples:

0.25

0.15

0.6

First
0.2

Second
0.15

Third
0.05

Fourth
0.5

Fifth
0.1

The default settings produce a diagram like this.

71.1. matplotlib.sankey 1191

Matplotlib, Release 1.3.1

Widget
A

25%

0%

60%

First
10% Second

20%

Third
5%

Fourth
15%Fifth

10%

Hurray!
40%

Flow Diagram of a Widget

Two Systems

one
two

1192 Chapter 71. sankey

Matplotlib, Release 1.3.1

add(patchlabel=’‘, flows=None, orientations=None, labels=’‘, trunklength=1.0, path-
lengths=0.25, prior=None, connect=(0, 0), rotation=0, **kwargs)
Add a simple Sankey diagram with flows at the same hierarchical level.

Return value is the instance of Sankey.

Optional keyword arguments:
Key-
word

Description

patch-
label

label to be placed at the center of the diagram Note: label (not
patchlabel) will be passed to the patch through **kwargs and can be
used to create an entry in the legend.

flows array of flow values By convention, inputs are positive and outputs are
negative.

ori-
enta-
tions

list of orientations of the paths Valid values are 1 (from/to the top), 0
(from/to the left or right), or -1 (from/to the bottom). If orientations
== 0, inputs will break in from the left and outputs will break away to
the right.

la-
bels

list of specifications of the labels for the flows Each value may be None
(no labels), ‘’ (just label the quantities), or a labeling string. If a single
value is provided, it will be applied to all flows. If an entry is a
non-empty string, then the quantity for the corresponding flow will be
shown below the string. However, if the unit of the main diagram is
None, then quantities are never shown, regardless of the value of this
argument.

trun-
k-
length

length between the bases of the input and output groups

path-
lengths

list of lengths of the arrows before break-in or after break-away If a
single value is given, then it will be applied to the first (inside) paths on
the top and bottom, and the length of all other arrows will be justified
accordingly. The pathlengths are not applied to the horizontal inputs
and outputs.

prior index of the prior diagram to which this diagram should be connected
con-
nect

a (prior, this) tuple indexing the flow of the prior diagram and the flow
of this diagram which should be connected If this is the first diagram or
prior is None, connect will be ignored.

rota-
tion

angle of rotation of the diagram [deg] rotation is ignored if this
diagram is connected to an existing one (using prior and connect). The
interpretation of the orientations argument will be rotated accordingly
(e.g., if rotation == 90, an orientations entry of 1 means to/from the
left).

Valid kwargs are matplotlib.patches.PathPatch() arguments:

71.1. matplotlib.sankey 1193

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

As examples, fill=False and label=’A legend entry’. By default,
facecolor=’#bfd1d4’ (light blue) and linewidth=0.5.

The indexing parameters (prior and connect) are zero-based.

The flows are placed along the top of the diagram from the inside out in order of their index
within the flows list or array. They are placed along the sides of the diagram from the top down
and along the bottom from the outside in.

If the the sum of the inputs and outputs is nonzero, the discrepancy will appear as a cubic Bezier
curve along the top and bottom edges of the trunk.

See also:

finish()

finish()
Adjust the axes and return a list of information about the Sankey subdiagram(s).

Return value is a list of subdiagrams represented with the following fields:

1194 Chapter 71. sankey

Matplotlib, Release 1.3.1

Field Description
patch Sankey outline (an instance of PathPatch)
flows values of the flows (positive for input, negative for output)
an-
gles

list of angles of the arrows [deg/90] For example, if the diagram has not
been rotated, an input to the top side will have an angle of 3 (DOWN),
and an output from the top side will have an angle of 1 (UP). If a flow has
been skipped (because its magnitude is less than tolerance), then its angle
will be None.

tips array in which each row is an [x, y] pair indicating the positions of the
tips (or “dips”) of the flow paths If the magnitude of a flow is less the
tolerance for the instance of Sankey, the flow is skipped and its tip will
be at the center of the diagram.

text Text instance for the label of the diagram
texts list of Text instances for the labels of flows

See also:

add()

71.1. matplotlib.sankey 1195

Matplotlib, Release 1.3.1

1196 Chapter 71. sankey

CHAPTER

SEVENTYTWO

SPINES

72.1 matplotlib.spines

class matplotlib.spines.Spine(axes, spine_type, path, **kwargs)
Bases: matplotlib.patches.Patch

an axis spine – the line noting the data area boundaries

Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They
can be placed at arbitrary positions. See function:set_position for more information.

The default position is (’outward’,0).

Spines are subclasses of class:Patch, and inherit much of their behavior.

Spines draw a line or a circle, depending if function:set_patch_line or func-
tion:set_patch_circle has been called. Line-like is the default.

•axes : the Axes instance containing the spine
•spine_type : a string specifying the spine type
•path : the path instance used to draw the spine

Valid kwargs are:

1197

Matplotlib, Release 1.3.1

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [’/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label string or anything printable with ‘%s’ conversion.
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
sketch_params unknown
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

classmethod circular_spine(axes, center, radius, **kwargs)
(staticmethod) Returns a circular Spine.

cla()
Clear the current spine

draw(artist, renderer, *args, **kwargs)

get_bounds()
Get the bounds of the spine.

get_patch_transform()

get_path()

get_position()
get the spine position

1198 Chapter 72. spines

Matplotlib, Release 1.3.1

get_smart_bounds()
get whether the spine has smart bounds

get_spine_transform()
get the spine transform

is_frame_like()
return True if directly on axes frame

This is useful for determining if a spine is the edge of an old style MPL plot. If so, this function
will return True.

classmethod linear_spine(axes, spine_type, **kwargs)
(staticmethod) Returns a linear Spine.

register_axis(axis)
register an axis

An axis should be registered with its corresponding spine from the Axes instance. This allows
the spine to clear any axis properties when needed.

set_bounds(low, high)
Set the bounds of the spine.

set_color(c)
Set the edgecolor.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

See also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_patch_circle(center, radius)
set the spine to be circular

set_patch_line()
set the spine to be linear

set_position(position)
set the position of the spine

Spine position is specified by a 2 tuple of (position type, amount). The position types are:
•‘outward’ : place the spine out from the data area by the specified number of points.
(Negative values specify placing the spine inward.)
•‘axes’ : place the spine at the specified Axes coordinate (from 0.0-1.0).
•‘data’ : place the spine at the specified data coordinate.

Additionally, shorthand notations define a special positions:
•‘center’ -> (‘axes’,0.5)
•‘zero’ -> (‘data’, 0.0)

set_smart_bounds(value)
set the spine and associated axis to have smart bounds

72.1. matplotlib.spines 1199

Matplotlib, Release 1.3.1

1200 Chapter 72. spines

CHAPTER

SEVENTYTHREE

TICKER

73.1 matplotlib.ticker

73.1.1 Tick locating and formatting

This module contains classes to support completely configurable tick locating and formatting. Although the
locators know nothing about major or minor ticks, they are used by the Axis class to support major and
minor tick locating and formatting. Generic tick locators and formatters are provided, as well as domain
specific custom ones..

Tick locating

The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits
based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is Multi-
pleLocator. You initialize this with a base, eg 10, and it picks axis limits and ticks that are multiples of your
base.

The Locator subclasses defined here are

NullLocator No ticks

FixedLocator Tick locations are fixed

IndexLocator locator for index plots (e.g., where x = range(len(y)))

LinearLocator evenly spaced ticks from min to max

LogLocator logarithmically ticks from min to max

MultipleLocator

ticks and range are a multiple of base; either integer or float

OldAutoLocator choose a MultipleLocator and dyamically reassign it for intelligent ticking during navi-
gation

MaxNLocator finds up to a max number of ticks at nice locations

AutoLocator MaxNLocator with simple defaults. This is the default tick locator for most plotting.

1201

Matplotlib, Release 1.3.1

AutoMinorLocator locator for minor ticks when the axis is linear and the major ticks are uniformly
spaced. It subdivides the major tick interval into a specified number of minor intervals, defaulting to
4 or 5 depending on the major interval.

There are a number of locators specialized for date locations - see the dates module

You can define your own locator by deriving from Locator. You must override the __call__ method, which
returns a sequence of locations, and you will probably want to override the autoscale method to set the view
limits from the data limits.

If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y
axis instance. The relevant methods are:

ax.xaxis.set_major_locator(xmajorLocator)
ax.xaxis.set_minor_locator(xminorLocator)
ax.yaxis.set_major_locator(ymajorLocator)
ax.yaxis.set_minor_locator(yminorLocator)

The default minor locator is the NullLocator, eg no minor ticks on by default.

Tick formatting

Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick
value and returns a string to the axis.

NullFormatter no labels on the ticks

IndexFormatter set the strings from a list of labels

FixedFormatter set the strings manually for the labels

FuncFormatter user defined function sets the labels

FormatStrFormatter use a sprintf format string

ScalarFormatter default formatter for scalars; autopick the fmt string

LogFormatter formatter for log axes

You can derive your own formatter from the Formatter base class by simply overriding the __call__
method. The formatter class has access to the axis view and data limits.

To control the major and minor tick label formats, use one of the following methods:

ax.xaxis.set_major_formatter(xmajorFormatter)
ax.xaxis.set_minor_formatter(xminorFormatter)
ax.yaxis.set_major_formatter(ymajorFormatter)
ax.yaxis.set_minor_formatter(yminorFormatter)

See pylab_examples-major_minor_demo1 for an example of setting major an minor ticks. See the
matplotlib.dates module for more information and examples of using date locators and formatters.

1202 Chapter 73. ticker

Matplotlib, Release 1.3.1

class matplotlib.ticker.TickHelper
Bases: object

axis = None

create_dummy_axis(**kwargs)

set_axis(axis)

set_bounds(vmin, vmax)

set_data_interval(vmin, vmax)

set_view_interval(vmin, vmax)

class matplotlib.ticker.Formatter
Bases: matplotlib.ticker.TickHelper

Convert the tick location to a string

fix_minus(s)

some classes may want to replace a hyphen for mi-
nus with the proper unicode symbol as described ‘here
<http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&

group_id=80706&atid=560720>‘_. The default is to do nothing

Note, if you use this method, e.g., in format_data() or call, you probably don’t want
to use it for format_data_short() since the toolbar uses this for interactive coord
reporting and I doubt we can expect GUIs across platforms will handle the unicode
correctly. So for now the classes that override fix_minus() should have an explicit
format_data_short() method

format_data(value)

format_data_short(value)
return a short string version

get_offset()

locs = []

set_locs(locs)

73.1. matplotlib.ticker 1203

http://sourceforge.net/tracker/index.php

Matplotlib, Release 1.3.1

class matplotlib.ticker.FixedFormatter(seq)
Bases: matplotlib.ticker.Formatter

Return fixed strings for tick labels

seq is a sequence of strings. For positions i < len(seq) return seq[i] regardless of x. Otherwise
return ‘’

get_offset()

set_offset_string(ofs)

class matplotlib.ticker.NullFormatter
Bases: matplotlib.ticker.Formatter

Always return the empty string

class matplotlib.ticker.FuncFormatter(func)
Bases: matplotlib.ticker.Formatter

User defined function for formatting

class matplotlib.ticker.FormatStrFormatter(fmt)
Bases: matplotlib.ticker.Formatter

Use a format string to format the tick

class matplotlib.ticker.ScalarFormatter(useOffset=True, useMathText=None, useLo-
cale=None)

Bases: matplotlib.ticker.Formatter

Tick location is a plain old number. If useOffset==True and the data range is much smaller than the
data average, then an offset will be determined such that the tick labels are meaningful. Scientific
notation is used for data < 10^-n or data >= 10^m, where n and m are the power limits set using
set_powerlimits((n,m)). The defaults for these are controlled by the axes.formatter.limits rc parameter.

fix_minus(s)
use a unicode minus rather than hyphen

format_data(value)
return a formatted string representation of a number

format_data_short(value)
return a short formatted string representation of a number

get_offset()
Return scientific notation, plus offset

get_useLocale()

get_useOffset()

1204 Chapter 73. ticker

Matplotlib, Release 1.3.1

pprint_val(x)

set_locs(locs)
set the locations of the ticks

set_powerlimits(lims)
Sets size thresholds for scientific notation.

e.g., formatter.set_powerlimits((-3, 4)) sets the pre-2007 default in which scientific
notation is used for numbers less than 1e-3 or greater than 1e4. See also set_scientific().

set_scientific(b)
True or False to turn scientific notation on or off see also set_powerlimits()

set_useLocale(val)

set_useOffset(val)

useLocale None

useOffset None

class matplotlib.ticker.LogFormatter(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.Formatter

Format values for log axis;

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

base(base)
change the base for labeling - warning: should always match the base used for LogLocator

format_data(value)

format_data_short(value)
return a short formatted string representation of a number

label_minor(labelOnlyBase)
switch on/off minor ticks labeling

pprint_val(x, d)

class matplotlib.ticker.LogFormatterExponent(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.LogFormatter

Format values for log axis; using exponent = log_base(value)

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

73.1. matplotlib.ticker 1205

Matplotlib, Release 1.3.1

class matplotlib.ticker.LogFormatterMathtext(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.LogFormatter

Format values for log axis; using exponent = log_base(value)

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

class matplotlib.ticker.Locator
Bases: matplotlib.ticker.TickHelper

Determine the tick locations;

Note, you should not use the same locator between different Axis because the locator stores references
to the Axis data and view limits

MAXTICKS = 1000

autoscale()
autoscale the view limits

pan(numsteps)
Pan numticks (can be positive or negative)

raise_if_exceeds(locs)
raise a RuntimeError if Locator attempts to create more than MAXTICKS locs

refresh()
refresh internal information based on current lim

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the
associated axis simply call the Locator instance:

>>> print(type(loc))
<type ’Locator’>
>>> print(loc())
[1, 2, 3, 4]

view_limits(vmin, vmax)
select a scale for the range from vmin to vmax

Normally this method is overridden by subclasses to change locator behaviour.

zoom(direction)
Zoom in/out on axis; if direction is >0 zoom in, else zoom out

class matplotlib.ticker.IndexLocator(base, offset)
Bases: matplotlib.ticker.Locator

Place a tick on every multiple of some base number of points plotted, eg on every 5th point. It is
assumed that you are doing index plotting; ie the axis is 0, len(data). This is mainly useful for x ticks.

1206 Chapter 73. ticker

Matplotlib, Release 1.3.1

place ticks on the i-th data points where (i-offset)%base==0

tick_values(vmin, vmax)

class matplotlib.ticker.FixedLocator(locs, nbins=None)
Bases: matplotlib.ticker.Locator

Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to
keep the number of ticks <= nbins +1. The subsampling will be done so as to include the smallest
absolute value; for example, if zero is included in the array of possibilities, then it is guaranteed to be
one of the chosen ticks.

tick_values(vmin, vmax)
” Return the locations of the ticks.

Note: Because the values are fixed, vmin and vmax are not used in this method.

class matplotlib.ticker.NullLocator
Bases: matplotlib.ticker.Locator

No ticks

tick_values(vmin, vmax)
” Return the locations of the ticks.

Note: Because the values are Null, vmin and vmax are not used in this method.

class matplotlib.ticker.LinearLocator(numticks=None, presets=None)
Bases: matplotlib.ticker.Locator

Determine the tick locations

The first time this function is called it will try to set the number of ticks to make a nice tick partitioning.
Thereafter the number of ticks will be fixed so that interactive navigation will be nice

Use presets to set locs based on lom. A dict mapping vmin, vmax->locs

tick_values(vmin, vmax)

view_limits(vmin, vmax)
Try to choose the view limits intelligently

class matplotlib.ticker.LogLocator(base=10.0, subs=[1.0], numdecs=4, numticks=15)
Bases: matplotlib.ticker.Locator

Determine the tick locations for log axes

place ticks on the location= base**i*subs[j]

base(base)
set the base of the log scaling (major tick every base**i, i integer)

73.1. matplotlib.ticker 1207

Matplotlib, Release 1.3.1

subs(subs)
set the minor ticks the log scaling every base**i*subs[j]

tick_values(vmin, vmax)

view_limits(vmin, vmax)
Try to choose the view limits intelligently

class matplotlib.ticker.AutoLocator
Bases: matplotlib.ticker.MaxNLocator

class matplotlib.ticker.MultipleLocator(base=1.0)
Bases: matplotlib.ticker.Locator

Set a tick on every integer that is multiple of base in the view interval

tick_values(vmin, vmax)

view_limits(dmin, dmax)
Set the view limits to the nearest multiples of base that contain the data

class matplotlib.ticker.MaxNLocator(*args, **kwargs)
Bases: matplotlib.ticker.Locator

Select no more than N intervals at nice locations.

Keyword args:
nbins Maximum number of intervals; one less than max number of ticks.
steps Sequence of nice numbers starting with 1 and ending with 10; e.g., [1, 2, 4, 5, 10]
integer If True, ticks will take only integer values.
symmetric If True, autoscaling will result in a range symmetric about zero.
prune [’lower’ | ‘upper’ | ‘both’ | None] Remove edge ticks – useful for stacked or ganged plots where

the upper tick of one axes overlaps with the lower tick of the axes above it. If prune==’lower’,
the smallest tick will be removed. If prune==’upper’, the largest tick will be removed. If
prune==’both’, the largest and smallest ticks will be removed. If prune==None, no ticks will
be removed.

bin_boundaries(vmin, vmax)

default_params = {‘trim’: True, ‘nbins’: 10, ‘steps’: None, ‘prune’: None, ‘integer’: False, ‘symmetric’: False}

set_params(**kwargs)

tick_values(vmin, vmax)

view_limits(dmin, dmax)

class matplotlib.ticker.AutoMinorLocator(n=None)
Bases: matplotlib.ticker.Locator

1208 Chapter 73. ticker

Matplotlib, Release 1.3.1

Dynamically find minor tick positions based on the positions of major ticks. Assumes the scale is
linear and major ticks are evenly spaced.

n is the number of subdivisions of the interval between major ticks; e.g., n=2 will place a single minor
tick midway between major ticks.

If n is omitted or None, it will be set to 5 or 4.

tick_values(vmin, vmax)

73.1. matplotlib.ticker 1209

Matplotlib, Release 1.3.1

1210 Chapter 73. ticker

CHAPTER

SEVENTYFOUR

TIGHT_LAYOUT

74.1 matplotlib.tight_layout

This module provides routines to adjust subplot params so that subplots are nicely fit in the figure. In doing
so, only axis labels, tick labels and axes titles are currently considered.

Internally, it assumes that the margins (left_margin, etc.) which are differences between ax.get_tightbbox
and ax.bbox are independent of axes position. This may fail if Axes.adjustable is datalim. Also, This will
fail for some cases (for example, left or right margin is affected by xlabel).

matplotlib.tight_layout.auto_adjust_subplotpars(fig, renderer, nrows_ncols,
num1num2_list, subplot_list,
ax_bbox_list=None, pad=1.08,
h_pad=None, w_pad=None,
rect=None)

Return a dictionary of subplot parameters so that spacing between subplots are adjusted. Note that
this function ignore geometry information of subplot itself, but uses what is given by nrows_ncols
and num1num2_list parameteres. Also, the results could be incorrect if some subplots have
adjustable=datalim.

Parameters:
nrows_ncols number of rows and number of columns of the grid.
num1num2_list list of numbers specifying the area occupied by the subplot
subplot_list list of subplots that will be used to calcuate optimal subplot_params.
pad [float] padding between the figure edge and the edges of subplots, as a fraction of the font-size.
h_pad, w_pad [float]

padding (height/width) between edges of adjacent subplots. Defaults to pad_inches.
rect [left, bottom, right, top] in normalized (0, 1) figure coordinates.

matplotlib.tight_layout.get_renderer(fig)

matplotlib.tight_layout.get_subplotspec_list(axes_list, grid_spec=None)
Return a list of subplotspec from the given list of axes. For an instance of axes that does not support
subplotspec, None is inserted in the list.

If grid_spec is given, None is inserted for those not from the given grid_spec.

1211

Matplotlib, Release 1.3.1

matplotlib.tight_layout.get_tight_layout_figure(fig, axes_list, subplotspec_list, ren-
derer, pad=1.08, h_pad=None,
w_pad=None, rect=None)

Return subplot parameters for tight-layouted-figure with specified padding.

Parameters:
fig : figure instance

axes_list : a list of axes
subplotspec_list [a list of subplotspec associated with each] axes in axes_list
renderer : renderer instance
pad [float] padding between the figure edge and the edges of subplots, as a fraction of the

font-size.
h_pad, w_pad [float] padding (height/width) between edges of adjacent subplots. De-

faults to pad_inches.
rect [if rect is given, it is interpreted as a rectangle] (left, bottom, right, top) in the nor-

malized figure coordinate that the whole subplots area (including labels) will fit
into. Default is (0, 0, 1, 1).

1212 Chapter 74. tight_layout

CHAPTER

SEVENTYFIVE

TRIANGULAR GRIDS

75.1 matplotlib.tri

Unstructured triangular grid functions.

class matplotlib.tri.Triangulation(x, y, triangles=None, mask=None)
An unstructured triangular grid consisting of npoints points and ntri triangles. The triangles can
either be specified by the user or automatically generated using a Delaunay triangulation.

Read-only attributes:
x: array of shape (npoints). x-coordinates of grid points.
y: array of shape (npoints). y-coordinates of grid points.
triangles: integer array of shape (ntri,3). For each triangle, the indices of the three

points that make up the triangle, ordered in an anticlockwise manner.
mask: optional boolean array of shape (ntri). Which triangles are masked out.
edges: integer array of shape (?,2). All edges of non-masked triangles. Each edge is the

start point index and end point index. Each edge (start,end and end,start) appears
only once.

neighbors: integer array of shape (ntri,3). For each triangle, the indices of the three
triangles that share the same edges, or -1 if there is no such neighboring trian-
gle. neighbors[i,j] is the triangle that is the neighbor to the edge from point index
triangles[i,j] to point index triangles[i,(j+1)%3].

For a Triangulation to be valid it must not have duplicate points, triangles formed from colinear points,
or overlapping triangles.

calculate_plane_coefficients(z)
Calculate plane equation coefficients for all unmasked triangles from the point (x,y) coordinates
and specified z-array of shape (npoints). Returned array has shape (npoints,3) and allows
z-value at (x,y) position in triangle tri to be calculated using z = array[tri,0]*x + array[tri,1]*y
+ array[tri,2].

static get_from_args_and_kwargs(*args, **kwargs)
Return a Triangulation object from the args and kwargs, and the remaining args and kwargs
with the consumed values removed.

There are two alternatives: either the first argument is a Triangulation object, in which case it
is returned, or the args and kwargs are sufficient to create a new Triangulation to return. In the
latter case, see Triangulation.__init__ for the possible args and kwargs.

1213

Matplotlib, Release 1.3.1

get_masked_triangles()
Return an array of triangles that are not masked.

get_trifinder()
Return the default matplotlib.tri.TriFinder of this triangulation, creating it if necessary.
This allows the same TriFinder object to be easily shared.

set_mask(mask)
Set or clear the mask array. This is either None, or a boolean array of shape (ntri).

class matplotlib.tri.TriFinder(triangulation)
Abstract base class for classes used to find the triangles of a Triangulation in which (x,y) points lie.

Rather than instantiate an object of a class derived from TriFinder, it is usually better to use the
function matplotlib.tri.Triangulation.get_trifinder().

Derived classes implement __call__(x,y) where x,y are array_like point coordinates of the same shape.

class matplotlib.tri.TrapezoidMapTriFinder(triangulation)
Bases: matplotlib.tri.trifinder.TriFinder

TriFinder class implemented using the trapezoid map algorithm from the book “Computational Ge-
ometry, Algorithms and Applications”, second edition, by M. de Berg, M. van Kreveld, M. Overmars
and O. Schwarzkopf.

The triangulation must be valid, i.e. it must not have duplicate points, triangles formed from colinear
points, or overlapping triangles. The algorithm has some tolerance to triangles formed from colinear
points, but this should not be relied upon.

__call__(x, y)
Return an array containing the indices of the triangles in which the specified x,y points lie, or
-1 for points that do not lie within a triangle.

x, y are array_like x and y coordinates of the same shape and any number of dimensions.

Returns integer array with the same shape and x and y.

class matplotlib.tri.TriInterpolator(triangulation, z, trifinder=None)
Abstract base class for classes used to perform interpolation on triangular grids.

Derived classes implement the following methods:
•__call__(x, y) , where x, y are array_like point coordinates of the same shape, and that
returns a masked array of the same shape containing the interpolated z-values.
•gradient(x, y) , where x, y are array_like point coordinates of the same shape, and that
returns a list of 2 masked arrays of the same shape containing the 2 derivatives of the interpolator
(derivatives of interpolated z values with respect to x and y).

class matplotlib.tri.LinearTriInterpolator(triangulation, z, trifinder=None)
Bases: matplotlib.tri.triinterpolate.TriInterpolator

A LinearTriInterpolator performs linear interpolation on a triangular grid.

Each triangle is represented by a plane so that an interpolated value at point (x,y) lies on the plane of
the triangle containing (x,y). Interpolated values are therefore continuous across the triangulation, but
their first derivatives are discontinuous at edges between triangles.

Parameters triangulation : Triangulation object

1214 Chapter 75. triangular grids

Matplotlib, Release 1.3.1

The triangulation to interpolate over.
z : array_like of shape (npoints,)

Array of values, defined at grid points, to interpolate between.
trifinder : TriFinder object, optional

If this is not specified, the Triangulation’s
default TriFinder will be used by calling
matplotlib.tri.Triangulation.get_trifinder().

Methods

__call__ (x, y) Returns interpolated values at x,y points
gradient (x, y) Returns interpolated derivatives at x,y points

__call__(x, y)
Returns a masked array containing interpolated values at the specified x,y points.

Parameters x, y : array-like
x and y coordinates of the same shape and any number of di-
mensions.

Returns z : np.ma.array
Masked array of the same shape as x and y ; values correspond-
ing to (x, y) points outside of the triangulation are masked out.

gradient(x, y)
Returns a list of 2 masked arrays containing interpolated derivatives at the specified x,y points.

Parameters x, y : array-like
x and y coordinates of the same shape and any number of di-
mensions.

Returns dzdx, dzdy : np.ma.array
2 masked arrays of the same shape as x and y ; values corre-
sponding to (x,y) points outside of the triangulation are masked
out. The first returned array contains the values of ∂z

∂x and the
second those of ∂z

∂y .

class matplotlib.tri.CubicTriInterpolator(triangulation, z, kind=’min_E’, trifinder=None,
dz=None)

Bases: matplotlib.tri.triinterpolate.TriInterpolator

A CubicTriInterpolator performs cubic interpolation on triangular grids.

In one-dimension - on a segment - a cubic interpolating function is defined by the values of the
function and its derivative at both ends. This is almost the same in 2-d inside a triangle, except that
the values of the function and its 2 derivatives have to be defined at each triangle node.

The CubicTriInterpolator takes the value of the function at each node - provided by the user - and
internally computes the value of the derivatives, resulting in a smooth interpolation. (As a special
feature, the user can also impose the value of the derivatives at each node, but this is not supposed to
be the common usage.)

Parameters triangulation : Triangulation object
The triangulation to interpolate over.

z : array_like of shape (npoints,)

75.1. matplotlib.tri 1215

Matplotlib, Release 1.3.1

Array of values, defined at grid points, to interpolate between.
kind : {‘min_E’, ‘geom’, ‘user’}, optional

Choice of the smoothing algorithm, in order to compute the interpolant
derivatives (defaults to ‘min_E’):

•if ‘min_E’: (default) The derivatives at each node is computed
to minimize a bending energy.
•if ‘geom’: The derivatives at each node is computed as a
weighted average of relevant triangle normals. To be used for
speed optimization (large grids).
•if ‘user’: The user provides the argument dz, no computation is
hence needed.

trifinder : TriFinder object, optional
If not specified, the Triangulation’s default TriFinder will be used by
calling matplotlib.tri.Triangulation.get_trifinder().

dz : tuple of array_likes (dzdx, dzdy), optional
Used only if kind =’user’. In this case dz must be provided as (dzdx,
dzdy) where dzdx, dzdy are arrays of the same shape as z and are the
interpolant first derivatives at the triangulation points.

Notes

This note is a bit technical and details the way a CubicTriInterpolator computes a cubic interpo-
lation.

The interpolation is based on a Clough-Tocher subdivision scheme of the triangulation mesh (to make
it clearer, each triangle of the grid will be divided in 3 child-triangles, and on each child triangle the
interpolated function is a cubic polynomial of the 2 coordinates). This technique originates from
FEM (Finite Element Method) analysis; the element used is a reduced Hsieh-Clough-Tocher (HCT)
element. Its shape functions are described in [R1]. The assembled function is guaranteed to be C1-
smooth, i.e. it is continuous and its first derivatives are also continuous (this is easy to show inside the
triangles but is also true when crossing the edges).

In the default case (kind =’min_E’), the interpolant minimizes a curvature energy on the functional
space generated by the HCT element shape functions - with imposed values but arbitrary derivatives
at each node. The minimized functional is the integral of the so-called total curvature (implementation
based on an algorithm from [R2] - PCG sparse solver):

E(z) =
1
2

∫
Ω

(∂2z
∂x2

)2

+

(
∂2z
∂y2

)2

+ 2
(
∂2z
∂y∂x

)2 dx dy (75.1)

If the case kind =’geom’ is chosen by the user, a simple geometric approximation is used (weighted
average of the triangle normal vectors), which could improve speed on very large grids.

References

[R1], [R2]

1216 Chapter 75. triangular grids

Matplotlib, Release 1.3.1

Methods

__call__ (x, y) Returns interpolated values at x,y points
gradient (x, y) Returns interpolated derivatives at x,y points

__call__(x, y)
Returns a masked array containing interpolated values at the specified x,y points.

Parameters x, y : array-like
x and y coordinates of the same shape and any number of di-
mensions.

Returns z : np.ma.array
Masked array of the same shape as x and y ; values correspond-
ing to (x, y) points outside of the triangulation are masked out.

gradient(x, y)
Returns a list of 2 masked arrays containing interpolated derivatives at the specified x,y points.

Parameters x, y : array-like
x and y coordinates of the same shape and any number of di-
mensions.

Returns dzdx, dzdy : np.ma.array
2 masked arrays of the same shape as x and y ; values corre-
sponding to (x,y) points outside of the triangulation are masked
out. The first returned array contains the values of ∂z

∂x and the
second those of ∂z

∂y .

Examples

An example of effective application is shown below (plot of the direction of the vector field
derivated from a known potential field):

75.1. matplotlib.tri 1217

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Gradient plot: an electrical dipole

class matplotlib.tri.TriRefiner(triangulation)
Abstract base class for classes implementing mesh refinement.

A TriRefiner encapsulates a Triangulation object and provides tools for mesh refinement and interpo-
lation.

Derived classes must implements:
•refine_triangulation(return_tri_index=False, **kwargs) , where the optional
keyword arguments kwargs are defined in each TriRefiner concrete implementation, and which
returns :

–a refined triangulation
–optionally (depending on return_tri_index), for each point of the refined triangulation:
the index of the initial triangulation triangle to which it belongs.

•refine_field(z, triinterpolator=None, **kwargs) , where:
–z array of field values (to refine) defined at the base triangulation nodes
–triinterpolator is a TriInterpolator (optional)
–the other optional keyword arguments kwargs are defined in each TriRefiner concrete
implementation

and which returns (as a tuple) a refined triangular mesh and the interpolated values of the field
at the refined triangulation nodes.

class matplotlib.tri.UniformTriRefiner(triangulation)
Bases: matplotlib.tri.trirefine.TriRefiner

Uniform mesh refinement by recursive subdivisions.

1218 Chapter 75. triangular grids

Matplotlib, Release 1.3.1

Parameters triangulation : Triangulation
The encapsulated triangulation (to be refined)

refine_field(z, triinterpolator=None, subdiv=3)
Refines a field defined on the encapsulated triangulation.

Returns refi_tri (refined triangulation), refi_z (interpolated values of the field at the node of the
refined triangulation).

Parameters z : 1d-array-like of length n_points
Values of the field to refine, defined at the nodes of the encap-
sulated triangulation. (n_points is the number of points in the
initial triangulation)

triinterpolator : TriInterpolator, optional
Interpolator used for field interpolation. If not specified, a
CubicTriInterpolator will be used.

subdiv : integer, optional
Recursion level for the subdivision. Defaults to 3. Each triangle
will be divided into 4**subdiv child triangles.

Returns refi_tri : Triangulation object
The returned refined triangulation

refi_z : 1d array of length: refi_tri node count.
The returned interpolated field (at refi_tri nodes)

Examples

The main application of this method is to plot high-quality iso-contours on a coarse triangular
grid (e.g., triangulation built from relatively sparse test data):

75.1. matplotlib.tri 1219

Matplotlib, Release 1.3.1

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
High-resolution tricontouring

refine_triangulation(return_tri_index=False, subdiv=3)
Computes an uniformly refined triangulation refi_triangulation of the encapsulated
triangulation.

This function refines the encapsulated triangulation by splitting each father triangle into 4 child
sub-triangles built on the edges midside nodes, recursively (level of recursion subdiv). In the
end, each triangle is hence divided into 4**subdiv child triangles. The default value for subdiv
is 3 resulting in 64 refined subtriangles for each triangle of the initial triangulation.

Parameters return_tri_index : boolean, optional
Boolean indicating whether an index table indicating the father
triangle index of each point will be returned. Default value
False.

subdiv : integer, optional
Recursion level for the subdivision. Defaults value 3. Each tri-
angle will be divided into 4**subdiv child triangles.

Returns refi_triangulation : Triangulation
The returned refined triangulation

found_index : array-like of integers
Index of the initial triangulation containing triangle, for each
point of refi_triangulation. Returned only if return_tri_index is
set to True.

class matplotlib.tri.TriAnalyzer(triangulation)
Define basic tools for triangular mesh analysis and improvement.

1220 Chapter 75. triangular grids

Matplotlib, Release 1.3.1

A TriAnalizer encapsulates a Triangulation object and provides basic tools for mesh analysis and
mesh improvement.

Parameters triangulation : Triangulation object
The encapsulated triangulation to analyze.

Attributes

scale_factors Factors to rescale the triangulation into a unit square.

circle_ratios(rescale=True)
Returns a measure of the triangulation triangles flatness.

The ratio of the incircle radius over the circumcircle radius is a widely used indicator of a
triangle flatness. It is always <= 0.5 and == 0.5 only for equilateral triangles. Circle ratios
below 0.01 denote very flat triangles.

To avoid unduly low values due to a difference of scale between the 2 axis, the triangular mesh
can first be rescaled to fit inside a unit square with scale_factors (Only if rescale is True,
which is its default value).

Parameters rescale : boolean, optional
If True, a rescaling will be internally performed (based on
scale_factors, so that the (unmasked) triangles fit exactly in-
side a unit square mesh. Default is True.

Returns circle_ratios : masked array
Ratio of the incircle radius over the circumcircle radius, for each
‘rescaled’ triangle of the encapsulated triangulation. Values cor-
responding to masked triangles are masked out.

get_flat_tri_mask(min_circle_ratio=0.01, rescale=True)
Eliminates excessively flat border triangles from the triangulation.

Returns a mask new_mask which allows to clean the encapsulated triangulation from its border-
located flat triangles (according to their circle_ratios()). This mask is meant to be subse-
quently applied to the triangulation using matplotlib.tri.Triangulation.set_mask() .
new_mask is an extension of the initial triangulation mask in the sense that an initially masked
triangle will remain masked.

The new_mask array is computed recursively ; at each step flat triangles are removed only if
they share a side with the current mesh border. Thus no new holes in the triangulated domain
will be created.

Parameters min_circle_ratio : float, optional
Border triangles with incircle/circumcircle radii ratio r/R will be
removed if r/R < min_circle_ratio. Default value: 0.01

rescale : boolean, optional
If True, a rescaling will first be internally performed (based on
scale_factors), so that the (unmasked) triangles fit exactly
inside a unit square mesh. This rescaling accounts for the dif-
ference of scale which might exist between the 2 axis. Default

75.1. matplotlib.tri 1221

Matplotlib, Release 1.3.1

(and recommended) value is True.
Returns new_mask : array-like of booleans

Mask to apply to encapsulated triangulation. All the initially
masked triangles remain masked in the new_mask.

Notes

The rationale behind this function is that a Delaunay triangulation - of an unstructured set
of points - sometimes contains almost flat triangles at its border, leading to artifacts in plots
(especially for high-resolution contouring). Masked with computed new_mask, the encapsu-
lated triangulation would contain no more unmasked border triangles with a circle ratio below
min_circle_ratio, thus improving the mesh quality for subsequent plots or interpolation.

Examples

Please refer to the following illustrating example:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Filtering a Delaunay mesh
(application to high-resolution tricontouring)

scale_factors None
Factors to rescale the triangulation into a unit square.

Returns k, tuple of 2 scale factors.
Returns k : tuple of 2 floats (kx, ky)

1222 Chapter 75. triangular grids

Matplotlib, Release 1.3.1

Tuple of floats that would rescale the triangulation :
[triangulation.x * kx, triangulation.y * ky]
fits exactly inside a unit square.

75.1. matplotlib.tri 1223

Matplotlib, Release 1.3.1

1224 Chapter 75. triangular grids

CHAPTER

SEVENTYSIX

UNITS

76.1 matplotlib.units

The classes here provide support for using custom classes with matplotlib, eg those that do not expose the
array interface but know how to converter themselves to arrays. It also supoprts classes with units and
units conversion. Use cases include converters for custom objects, eg a list of datetime objects, as well
as for objects that are unit aware. We don’t assume any particular units implementation, rather a units
implementation must provide a ConversionInterface, and the register with the Registry converter dictionary.
For example, here is a complete implementation which supports plotting with native datetime objects:

import matplotlib.units as units
import matplotlib.dates as dates
import matplotlib.ticker as ticker
import datetime

class DateConverter(units.ConversionInterface):

@staticmethod
def convert(value, unit, axis):

’convert value to a scalar or array’
return dates.date2num(value)

@staticmethod
def axisinfo(unit, axis):

’return major and minor tick locators and formatters’
if unit!=’date’: return None
majloc = dates.AutoDateLocator()
majfmt = dates.AutoDateFormatter(majloc)
return AxisInfo(majloc=majloc,

majfmt=majfmt,
label=’date’)

@staticmethod
def default_units(x, axis):

’return the default unit for x or None’
return ’date’

finally we register our object type with a converter
units.registry[datetime.date] = DateConverter()

1225

Matplotlib, Release 1.3.1

class matplotlib.units.AxisInfo(majloc=None, minloc=None, majfmt=None, minfmt=None,
label=None, default_limits=None)

information to support default axis labeling and tick labeling, and default limits

majloc and minloc: TickLocators for the major and minor ticks majfmt and minfmt: TickFormatters
for the major and minor ticks label: the default axis label default_limits: the default min, max of the
axis if no data is present If any of the above are None, the axis will simply use the default

class matplotlib.units.ConversionInterface
The minimal interface for a converter to take custom instances (or sequences) and convert them to
values mpl can use

static axisinfo(unit, axis)
return an units.AxisInfo instance for axis with the specified units

static convert(obj, unit, axis)
convert obj using unit for the specified axis. If obj is a sequence, return the converted sequence.
The ouput must be a sequence of scalars that can be used by the numpy array layer

static default_units(x, axis)
return the default unit for x or None for the given axis

static is_numlike(x)
The matplotlib datalim, autoscaling, locators etc work with scalars which are the units con-
verted to floats given the current unit. The converter may be passed these floats, or arrays of
them, even when units are set. Derived conversion interfaces may opt to pass plain-ol unitless
numbers through the conversion interface and this is a helper function for them.

class matplotlib.units.Registry
Bases: dict

register types with conversion interface

get_converter(x)
get the converter interface instance for x, or None

1226 Chapter 76. units

CHAPTER

SEVENTYSEVEN

WIDGETS

77.1 matplotlib.widgets

77.1.1 GUI Neutral widgets

Widgets that are designed to work for any of the GUI backends. All of these widgets require you to pre-
define an matplotlib.axes.Axes instance and pass that as the first arg. matplotlib doesn’t try to be too
smart with respect to layout – you will have to figure out how wide and tall you want your Axes to be to
accommodate your widget.

class matplotlib.widgets.AxesWidget(ax)
Bases: matplotlib.widgets.Widget

Widget that is connected to a single Axes.

Attributes:
ax [Axes] The parent axes for the widget
canvas [FigureCanvasBase subclass] The parent figure canvas for the widget.
active [bool] If False, the widget does not respond to events.
connect_event(event, callback)

Connect callback with an event.

This should be used in lieu of figure.canvas.mpl_connect since this function stores call
back ids for later clean up.

disconnect_events()
Disconnect all events created by this widget.

ignore(event)
Return True if event should be ignored.

This method (or a version of it) should be called at the beginning of any event callback.

class matplotlib.widgets.Button(ax, label, image=None, color=‘0.85’, hovercolor=‘0.95’)
Bases: matplotlib.widgets.AxesWidget

A GUI neutral button

The following attributes are accessible
ax The matplotlib.axes.Axes the button renders into.
label A matplotlib.text.Text instance.

1227

Matplotlib, Release 1.3.1

color The color of the button when not hovering.
hovercolor The color of the button when hovering.

Call on_clicked() to connect to the button
ax The matplotlib.axes.Axes instance the button will be placed into.
label The button text. Accepts string.
image The image to place in the button, if not None. Can be any legal arg to imshow (numpy array,

matplotlib Image instance, or PIL image).
color The color of the button when not activated
hovercolor The color of the button when the mouse is over it
disconnect(cid)

remove the observer with connection id cid

on_clicked(func)
When the button is clicked, call this func with event

A connection id is returned which can be used to disconnect

class matplotlib.widgets.CheckButtons(ax, labels, actives)
Bases: matplotlib.widgets.AxesWidget

A GUI neutral radio button

The following attributes are exposed
ax The matplotlib.axes.Axes instance the buttons are located in
labels List of matplotlib.text.Text instances
lines List of (line1, line2) tuples for the x’s in the check boxes. These lines exist for each

box, but have set_visible(False) when its box is not checked.
rectangles List of matplotlib.patches.Rectangle instances

Connect to the CheckButtons with the on_clicked() method

Add check buttons to matplotlib.axes.Axes instance ax
labels A len(buttons) list of labels as strings
actives

A len(buttons) list of booleans indicating whether the button is active
disconnect(cid)

remove the observer with connection id cid

on_clicked(func)
When the button is clicked, call func with button label

A connection id is returned which can be used to disconnect

class matplotlib.widgets.Cursor(ax, horizOn=True, vertOn=True, useblit=False, **lineprops)
Bases: matplotlib.widgets.AxesWidget

A horizontal and vertical line span the axes that and move with the pointer. You can turn off the hline
or vline spectively with the attributes

horizOn Controls the visibility of the horizontal line
vertOn Controls the visibility of the horizontal line

and the visibility of the cursor itself with the visible attribute

Add a cursor to ax. If useblit=True, use the backend- dependent blitting features for faster updates
(GTKAgg only for now). lineprops is a dictionary of line properties.

1228 Chapter 77. widgets

Matplotlib, Release 1.3.1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

clear(event)
clear the cursor

onmove(event)
on mouse motion draw the cursor if visible

class matplotlib.widgets.Lasso(ax, xy, callback=None, useblit=True)
Bases: matplotlib.widgets.AxesWidget

Selection curve of an arbitrary shape.

The selected path can be used in conjunction with contains_point() to select data points from an
image.

Unlike LassoSelector, this must be initialized with a starting point xy, and the Lasso events are
destroyed upon release.

Parameters:
ax [Axes] The parent axes for the widget.
xy [array] Coordinates of the start of the lasso.
callback [function] Whenever the lasso is released, the callback function is called and passed the

vertices of the selected path.
onmove(event)

onrelease(event)

77.1. matplotlib.widgets 1229

Matplotlib, Release 1.3.1

class matplotlib.widgets.LassoSelector(ax, onselect=None, useblit=True, lineprops=None)
Bases: matplotlib.widgets.AxesWidget

Selection curve of an arbitrary shape.

The selected path can be used in conjunction with contains_point() to select data points from an
image.

In contrast to Lasso, LassoSelector is written with an interface similar to RectangleSelector
and SpanSelector and will continue to interact with the axes until disconnected.

Parameters:
ax [Axes] The parent axes for the widget.
onselect [function] Whenever the lasso is released, the onselect function is called and passed the

vertices of the selected path.
Example usage:

ax = subplot(111)
ax.plot(x,y)

def onselect(verts):
print verts

lasso = LassoSelector(ax, onselect)

ignore(event)

onmove(event)

onpress(event)

onrelease(event)

update_background(event)

class matplotlib.widgets.LockDraw
Some widgets, like the cursor, draw onto the canvas, and this is not desirable under all circum-
stances, like when the toolbar is in zoom-to-rect mode and drawing a rectangle. The module
level “lock” allows someone to grab the lock and prevent other widgets from drawing. Use
matplotlib.widgets.lock(someobj) to pr

available(o)
drawing is available to o

isowner(o)
Return True if o owns this lock

locked()
Return True if the lock is currently held by an owner

1230 Chapter 77. widgets

Matplotlib, Release 1.3.1

release(o)
release the lock

class matplotlib.widgets.MultiCursor(canvas, axes, useblit=True, horizOn=False, ver-
tOn=True, **lineprops)

Bases: matplotlib.widgets.Widget

Provide a vertical (default) and/or horizontal line cursor shared between multiple axes

Example usage:

from matplotlib.widgets import MultiCursor
from pylab import figure, show, np

t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.sin(4*np.pi*t)
fig = figure()
ax1 = fig.add_subplot(211)
ax1.plot(t, s1)

ax2 = fig.add_subplot(212, sharex=ax1)
ax2.plot(t, s2)

multi = MultiCursor(fig.canvas, (ax1, ax2), color=’r’, lw=1,
horizOn=False, vertOn=True)

show()

clear(event)
clear the cursor

onmove(event)

class matplotlib.widgets.RadioButtons(ax, labels, active=0, activecolor=’blue’)
Bases: matplotlib.widgets.AxesWidget

A GUI neutral radio button

The following attributes are exposed
ax The matplotlib.axes.Axes instance the buttons are in
activecolor The color of the button when clicked
labels A list of matplotlib.text.Text instances
circles A list of matplotlib.patches.Circle instances

Connect to the RadioButtons with the on_clicked() method

Add radio buttons to matplotlib.axes.Axes instance ax
labels A len(buttons) list of labels as strings
active The index into labels for the button that is active
activecolor The color of the button when clicked
disconnect(cid)

remove the observer with connection id cid

77.1. matplotlib.widgets 1231

Matplotlib, Release 1.3.1

on_clicked(func)
When the button is clicked, call func with button label

A connection id is returned which can be used to disconnect

class matplotlib.widgets.RectangleSelector(ax, onselect, drawtype=’box’,
minspanx=None, minspany=None, use-
blit=False, lineprops=None, rectprops=None,
spancoords=’data’, button=None)

Bases: matplotlib.widgets.AxesWidget

Select a min/max range of the x axes for a matplotlib Axes

Example usage:

from matplotlib.widgets import RectangleSelector
from pylab import *

def onselect(eclick, erelease):
’eclick and erelease are matplotlib events at press and release’
print ’ startposition : (%f, %f)’ % (eclick.xdata, eclick.ydata)
print ’ endposition : (%f, %f)’ % (erelease.xdata, erelease.ydata)
print ’ used button : ’, eclick.button

def toggle_selector(event):
print ’ Key pressed.’
if event.key in [’Q’, ’q’] and toggle_selector.RS.active:

print ’ RectangleSelector deactivated.’
toggle_selector.RS.set_active(False)

if event.key in [’A’, ’a’] and not toggle_selector.RS.active:
print ’ RectangleSelector activated.’
toggle_selector.RS.set_active(True)

x = arange(100)/(99.0)
y = sin(x)
fig = figure
ax = subplot(111)
ax.plot(x,y)

toggle_selector.RS = RectangleSelector(ax, onselect, drawtype=’line’)
connect(’key_press_event’, toggle_selector)
show()

Create a selector in ax. When a selection is made, clear the span and call onselect with:

onselect(pos_1, pos_2)

and clear the drawn box/line. The pos_1 and pos_2 are arrays of length 2 containing the x- and
y-coordinate.

If minspanx is not None then events smaller than minspanx in x direction are ignored (it’s the same
for y).

The rectangle is drawn with rectprops; default:

1232 Chapter 77. widgets

Matplotlib, Release 1.3.1

rectprops = dict(facecolor=’red’, edgecolor = ’black’,
alpha=0.5, fill=False)

The line is drawn with lineprops; default:

lineprops = dict(color=’black’, linestyle=’-’,
linewidth = 2, alpha=0.5)

Use drawtype if you want the mouse to draw a line, a box or nothing between click and actual position
by setting

drawtype = ’line’, drawtype=’box’ or drawtype = ’none’.

spancoords is one of ‘data’ or ‘pixels’. If ‘data’, minspanx and minspanx will be interpreted in the
same coordinates as the x and y axis. If ‘pixels’, they are in pixels.

button is a list of integers indicating which mouse buttons should be used for rectangle selection. You
can also specify a single integer if only a single button is desired. Default is None, which does not
limit which button can be used.
Note, typically: 1 = left mouse button 2 = center mouse button (scroll wheel) 3 = right mouse button
get_active()

Get status of active mode (boolean variable)

ignore(event)
return True if event should be ignored

onmove(event)
on motion notify event if box/line is wanted

press(event)
on button press event

release(event)
on button release event

set_active(active)
Use this to activate / deactivate the RectangleSelector from your program with an boolean
parameter active.

update()
draw using newfangled blit or oldfangled draw depending on useblit

update_background(event)
force an update of the background

class matplotlib.widgets.Slider(ax, label, valmin, valmax, valinit=0.5, valfmt=’%1.2f’,
closedmin=True, closedmax=True, slidermin=None, slider-
max=None, dragging=True, **kwargs)

Bases: matplotlib.widgets.AxesWidget

A slider representing a floating point range
The following attributes are defined ax : the slider matplotlib.axes.Axes instance

val : the current slider value

77.1. matplotlib.widgets 1233

Matplotlib, Release 1.3.1

vline [a matplotlib.lines.Line2D instance] representing the initial value of the slider
poly [A matplotlib.patches.Polygon instance] which is the slider knob
valfmt : the format string for formatting the slider text
label [a matplotlib.text.Text instance] for the slider label
closedmin : whether the slider is closed on the minimum

closedmax : whether the slider is closed on the maximum
slidermin [another slider - if not None, this slider must be] greater than slidermin
slidermax [another slider - if not None, this slider must be] less than slidermax
dragging : allow for mouse dragging on slider

Call on_changed() to connect to the slider event

Create a slider from valmin to valmax in axes ax
valinit The slider initial position
label The slider label
valfmt Used to format the slider value
closedmin and closedmax Indicate whether the slider interval is closed
slidermin and slidermax Used to constrain the value of this slider to the values of other sliders.
additional kwargs are passed on to self.poly which is the matplotlib.patches.Rectangle
which draws the slider knob. See the matplotlib.patches.Rectangle documentation valid prop-
erty names (e.g., facecolor, edgecolor, alpha, ...)

disconnect(cid)
remove the observer with connection id cid

on_changed(func)
When the slider value is changed, call func with the new slider position

A connection id is returned which can be used to disconnect

reset()
reset the slider to the initial value if needed

set_val(val)

class matplotlib.widgets.SpanSelector(ax, onselect, direction, minspan=None,
useblit=False, rectprops=None, on-
move_callback=None)

Bases: matplotlib.widgets.AxesWidget

Select a min/max range of the x or y axes for a matplotlib Axes

Example usage:

ax = subplot(111)
ax.plot(x,y)

def onselect(vmin, vmax):
print vmin, vmax

span = SpanSelector(ax, onselect, ’horizontal’)

onmove_callback is an optional callback that is called on mouse move within the span range

1234 Chapter 77. widgets

Matplotlib, Release 1.3.1

Create a span selector in ax. When a selection is made, clear the span and call onselect with:

onselect(vmin, vmax)

and clear the span.

direction must be ‘horizontal’ or ‘vertical’

If minspan is not None, ignore events smaller than minspan
The span rectangle is drawn with rectprops; default:: rectprops = dict(facecolor=’red’, al-

pha=0.5)
Set the visible attribute to False if you want to turn off the functionality of the span selector

ignore(event)
return True if event should be ignored

new_axes(ax)

onmove(event)
on motion notify event

press(event)
on button press event

release(event)
on button release event

update()
Draw using newfangled blit or oldfangled draw depending on useblit

update_background(event)
force an update of the background

class matplotlib.widgets.SubplotTool(targetfig, toolfig)
Bases: matplotlib.widgets.Widget

A tool to adjust to subplot params of a matplotlib.figure.Figure
targetfig The figure instance to adjust
toolfig The figure instance to embed the subplot tool into. If None, a default figure will be created. If

you are using this from the GUI
funcbottom(val)

funchspace(val)

funcleft(val)

funcright(val)

functop(val)

77.1. matplotlib.widgets 1235

Matplotlib, Release 1.3.1

funcwspace(val)

class matplotlib.widgets.Widget
Bases: object

Abstract base class for GUI neutral widgets

drawon = True

eventson = True

1236 Chapter 77. widgets

Part VIII

Glossary

1237

Matplotlib, Release 1.3.1

AGG The Anti-Grain Geometry (Agg) rendering engine, capable of rendering high-quality images

Cairo The Cairo graphics engine

dateutil The dateutil library provides extensions to the standard datetime module

EPS Encapsulated Postscript (EPS)

freetype freetype is a font rasterization library used by matplotlib which supports TrueType, Type 1, and
OpenType fonts.

GDK The Gimp Drawing Kit for GTK+

GTK The GIMP Toolkit (GTK) graphical user interface library

JPG The Joint Photographic Experts Group (JPEG) compression method and file format for photographic
images

numpy numpy is the standard numerical array library for python, the successor to Numeric and numarray.
numpy provides fast operations for homogeneous data sets and common mathematical operations like
correlations, standard deviation, fourier transforms, and convolutions.

PDF Adobe’s Portable Document Format (PDF)

PNG Portable Network Graphics (PNG), a raster graphics format that employs lossless data compres-
sion which is more suitable for line art than the lossy jpg format. Unlike the gif format, png is not
encumbered by requirements for a patent license.

PS Postscript (PS) is a vector graphics ASCII text language widely used in printers and publishing.
Postscript was developed by adobe systems and is starting to show its age: for example is does not
have an alpha channel. PDF was designed in part as a next-generation document format to replace
postscript

pygtk pygtk provides python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend. Widely used on linux, and is often packages as ‘python-gtk2’

pyqt pyqt provides python wrappers for the Qt widgets library and is required by the matplotlib QtAgg
and Qt4Agg backends. Widely used on linux and windows; many linux distributions package this as
‘python-qt3’ or ‘python-qt4’.

python python is an object oriented interpreted language widely used for scripting, application develop-
ment, web application servers, scientific computing and more.

pytz pytz provides the Olson tz database in Python. it allows accurate and cross platform timezone calcu-
lations and solves the issue of ambiguous times at the end of daylight savings

Qt Qt is a cross-platform application framework for desktop and embedded development.

Qt4 Qt4 is the most recent version of Qt cross-platform application framework for desktop and embedded
development.

raster graphics Raster graphics, or bitmaps, represent an image as an array of pixels which is resolution
dependent. Raster graphics are generally most practical for photo-realistic images, but do not scale
easily without loss of quality.

SVG The Scalable Vector Graphics format (SVG). An XML based vector graphics format supported by
many web browsers.

1239

http://antigrain.com
http://cairographics.org
http://labix.org/python-dateutil
http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://www.freetype.org/
http://www.gtk.org/
http://en.wikipedia.org/wiki/Jpeg
http://numpy.scipy.org
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/PostScript
http://www.pygtk.org/
http://wiki.python.org/moin/PyQt
http://python.org
http://pytz.sourceforge.net/
http://trolltech.com/products/qt/
http://trolltech.com/products/qt/
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Svg

Matplotlib, Release 1.3.1

TIFF Tagged Image File Format (TIFF) is a file format for storing images, including photographs and line
art.

Tk Tk is a graphical user interface for Tcl and many other dynamic languages. It can produce rich, native
applications that run unchanged across Windows, Mac OS X, Linux and more.

vector graphics vector graphics use geometrical primitives based upon mathematical equations to repre-
sent images in computer graphics. Primitives can include points, lines, curves, and shapes or poly-
gons. Vector graphics are scalable, which means that they can be resized without suffering from
issues related to inherent resolution like are seen in raster graphics. Vector graphics are generally
most practical for typesetting and graphic design applications.

wxpython wxpython provides python wrappers for the wxWidgets library for use with the WX and WX-
Agg backends. Widely used on linux, OS-X and windows, it is often packaged by linux distributions
as ‘python-wxgtk’

wxWidgets WX is cross-platform GUI and tools library for GTK, MS Windows, and MacOS. It uses
native widgets for each operating system, so applications will have the look-and-feel that users on
that operating system expect.

1240

http://en.wikipedia.org/wiki/Tagged_Image_File_Format
http://www.tcl.tk/
http://en.wikipedia.org/wiki/Vector_graphics
http://www.wxpython.org/
http://www.wxwidgets.org/

BIBLIOGRAPHY

[R1] Michel Bernadou, Kamal Hassan, “Basis functions for general Hsieh-Clough-Tocher triangles, com-
plete or reduced.”, International Journal for Numerical Methods in Engineering, 17(5):784 - 789. 2.01.

[R2] C.T. Kelley, “Iterative Methods for Optimization”.

1241

Matplotlib, Release 1.3.1

1242 Bibliography

PYTHON MODULE INDEX

m
matplotlib.afm, 587
matplotlib.animation, 591
matplotlib.artist, 599
matplotlib.axes, 665
matplotlib.axis, 831
matplotlib.backend_bases, 841
matplotlib.backends.backend_pdf, 862
matplotlib.backends.backend_qt4agg, 860
matplotlib.backends.backend_wxagg, 861
matplotlib.cbook, 869
matplotlib.cm, 881
matplotlib.collections, 885
matplotlib.colorbar, 901
matplotlib.colors, 905
matplotlib.dates, 915
matplotlib.dviread, 864
matplotlib.figure, 925
matplotlib.font_manager, 945
matplotlib.fontconfig_pattern, 950
matplotlib.gridspec, 953
matplotlib.legend, 957
matplotlib.lines, 608
matplotlib.markers, 961
matplotlib.mathtext, 967
matplotlib.mlab, 983
matplotlib.patches, 616
matplotlib.path, 1005
matplotlib.projections, 405
matplotlib.projections.polar, 406
matplotlib.pyplot, 1013
matplotlib.sankey, 1189
matplotlib.scale, 403
matplotlib.sphinxext.plot_directive, 367
matplotlib.spines, 1197
matplotlib.text, 653
matplotlib.ticker, 1201

matplotlib.tight_layout, 1211
matplotlib.transforms, 379
matplotlib.tri, 1213
matplotlib.type1font, 867
matplotlib.units, 1225
matplotlib.widgets, 1227
mpl_toolkits.axes_grid.axes_size, 455
mpl_toolkits.mplot3d.art3d, 511
mpl_toolkits.mplot3d.axes3d, 490
mpl_toolkits.mplot3d.axis3d, 510
mpl_toolkits.mplot3d.proj3d, 515

1243

Matplotlib, Release 1.3.1

1244 Python Module Index

PYTHON MODULE INDEX

m
matplotlib.afm, 587
matplotlib.animation, 591
matplotlib.artist, 599
matplotlib.axes, 665
matplotlib.axis, 831
matplotlib.backend_bases, 841
matplotlib.backends.backend_pdf, 862
matplotlib.backends.backend_qt4agg, 860
matplotlib.backends.backend_wxagg, 861
matplotlib.cbook, 869
matplotlib.cm, 881
matplotlib.collections, 885
matplotlib.colorbar, 901
matplotlib.colors, 905
matplotlib.dates, 915
matplotlib.dviread, 864
matplotlib.figure, 925
matplotlib.font_manager, 945
matplotlib.fontconfig_pattern, 950
matplotlib.gridspec, 953
matplotlib.legend, 957
matplotlib.lines, 608
matplotlib.markers, 961
matplotlib.mathtext, 967
matplotlib.mlab, 983
matplotlib.patches, 616
matplotlib.path, 1005
matplotlib.projections, 405
matplotlib.projections.polar, 406
matplotlib.pyplot, 1013
matplotlib.sankey, 1189
matplotlib.scale, 403
matplotlib.sphinxext.plot_directive, 367
matplotlib.spines, 1197
matplotlib.text, 653
matplotlib.ticker, 1201

matplotlib.tight_layout, 1211
matplotlib.transforms, 379
matplotlib.tri, 1213
matplotlib.type1font, 867
matplotlib.units, 1225
matplotlib.widgets, 1227
mpl_toolkits.axes_grid.axes_size, 455
mpl_toolkits.mplot3d.art3d, 511
mpl_toolkits.mplot3d.axes3d, 490
mpl_toolkits.mplot3d.axis3d, 510
mpl_toolkits.mplot3d.proj3d, 515

1245

Matplotlib, Release 1.3.1

1246 Python Module Index

INDEX

Symbols
__call__() (matplotlib.tri.CubicTriInterpolator

method), 1217
__call__() (matplotlib.tri.LinearTriInterpolator

method), 1215
__call__() (matplotlib.tri.TrapezoidMapTriFinder

method), 1214

A
Accent (class in matplotlib.mathtext), 967
accent() (matplotlib.mathtext.Parser method), 976
acorr() (in module matplotlib.pyplot), 1013
acorr() (matplotlib.axes.Axes method), 665
add() (matplotlib.figure.AxesStack method), 925
add() (matplotlib.mlab.FIFOBuffer method), 985
add() (matplotlib.sankey.Sankey method), 1193
add_artist() (matplotlib.axes.Axes method), 666
add_auto_adjustable_area()

(mpl_toolkits.axes_grid.axes_divider.Divider
method), 456

add_axes() (matplotlib.figure.Figure method), 926
add_axobserver() (matplotlib.figure.Figure method),

928
add_callback() (matplotlib.artist.Artist method), 599
add_callback() (mat-

plotlib.backend_bases.TimerBase method),
859

add_checker() (matplotlib.cm.ScalarMappable
method), 881

add_collection() (matplotlib.axes.Axes method), 666
add_collection3d() (mpl_toolkits.mplot3d.Axes3D

method), 483
add_collection3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 490
add_container() (matplotlib.axes.Axes method), 666
add_contour_set() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 490

add_contourf_set() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 490

add_line() (matplotlib.axes.Axes method), 666
add_lines() (matplotlib.colorbar.Colorbar method),

901
add_lines() (matplotlib.colorbar.ColorbarBase

method), 902
add_patch() (matplotlib.axes.Axes method), 667
add_positions() (mat-

plotlib.collections.EventCollection
method), 893

add_subplot() (matplotlib.figure.Figure method),
928

add_table() (matplotlib.axes.Axes method), 667
Affine2D (class in matplotlib.transforms), 392
Affine2DBase (class in matplotlib.transforms), 391
AffineBase (class in matplotlib.transforms), 390
AFM (class in matplotlib.afm), 587
afmFontProperty() (in module mat-

plotlib.font_manager), 949
AGG, 1239
alias (matplotlib.mathtext.BakomaFonts attribute),

967
aliased_name() (matplotlib.artist.ArtistInspector

method), 605
aliased_name_rest() (mat-

plotlib.artist.ArtistInspector method),
605

align_iterators() (in module matplotlib.cbook), 873
allequal() (in module matplotlib.cbook), 874
allow_rasterization() (in module matplotlib.artist),

606
allowed_metadata (mat-

plotlib.animation.MencoderBase attribute),
595

allpairs() (in module matplotlib.cbook), 874
alltrue() (in module matplotlib.cbook), 874

1247

Matplotlib, Release 1.3.1

alphaState() (matplotlib.backends.backend_pdf.PdfFile
method), 862

amap() (in module matplotlib.mlab), 987
aname (matplotlib.artist.Artist attribute), 600
anchored() (matplotlib.transforms.BboxBase

method), 381
Animation (class in matplotlib.animation), 591
annotate() (in module matplotlib.pyplot), 1014
annotate() (matplotlib.axes.Axes method), 667
Annotation (class in matplotlib.text), 653
append() (matplotlib.cbook.RingBuffer method),

872
append_axes() (mpl_toolkits.axes_grid.axes_divider.AxesDivider

method), 459
append_positions() (mat-

plotlib.collections.EventCollection
method), 893

append_size() (mpl_toolkits.axes_grid.axes_divider.Divider
method), 456

apply_aspect() (matplotlib.axes.Axes method), 670
apply_tickdir() (matplotlib.axis.Tick method), 835
apply_tickdir() (matplotlib.axis.XTick method), 838
apply_tickdir() (matplotlib.axis.YTick method), 839
Arc (class in matplotlib.patches), 616
arc() (matplotlib.path.Path class method), 1006
args_key (matplotlib.animation.AVConvBase

attribute), 591
args_key (matplotlib.animation.FFMpegBase

attribute), 593
args_key (matplotlib.animation.ImageMagickBase

attribute), 594
args_key (matplotlib.animation.MencoderBase at-

tribute), 595
Arrow (class in matplotlib.patches), 618
arrow() (in module matplotlib.pyplot), 1018
arrow() (matplotlib.axes.Axes method), 670
ArrowStyle (class in matplotlib.patches), 619
ArrowStyle.BarAB (class in matplotlib.patches), 621
ArrowStyle.BracketA (class in matplotlib.patches),

621
ArrowStyle.BracketAB (class in matplotlib.patches),

621
ArrowStyle.BracketB (class in matplotlib.patches),

622
ArrowStyle.Curve (class in matplotlib.patches), 622
ArrowStyle.CurveA (class in matplotlib.patches),

622

ArrowStyle.CurveAB (class in matplotlib.patches),
622

ArrowStyle.CurveB (class in matplotlib.patches),
622

ArrowStyle.CurveFilledA (class in mat-
plotlib.patches), 622

ArrowStyle.CurveFilledAB (class in mat-
plotlib.patches), 622

ArrowStyle.CurveFilledB (class in mat-
plotlib.patches), 623

ArrowStyle.Fancy (class in matplotlib.patches), 623
ArrowStyle.Simple (class in matplotlib.patches), 623
ArrowStyle.Wedge (class in matplotlib.patches), 623
Artist (class in matplotlib.artist), 599
artist_picker() (matplotlib.legend.DraggableLegend

method), 957
ArtistAnimation (class in matplotlib.animation), 592
ArtistInspector (class in matplotlib.artist), 605
as_list() (matplotlib.figure.AxesStack method), 925
asarrays() (matplotlib.mlab.FIFOBuffer method),

985
AsteriskPolygonCollection (class in mat-

plotlib.collections), 885
auto_adjust_subplotpars() (in module mat-

plotlib.tight_layout), 1211
auto_delim() (matplotlib.mathtext.Parser method),

976
auto_scale_xyz() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 490
AutoDateFormatter (class in matplotlib.dates), 918
AutoDateLocator (class in matplotlib.dates), 919
autofmt_xdate() (matplotlib.figure.Figure method),

930
AutoHeightChar (class in matplotlib.mathtext), 967
AutoLocator (class in matplotlib.ticker), 1208
AutoMinorLocator (class in matplotlib.ticker), 1208
autoscale() (in module matplotlib.pyplot), 1021
autoscale() (matplotlib.axes.Axes method), 673
autoscale() (matplotlib.cm.ScalarMappable method),

881
autoscale() (matplotlib.colors.LogNorm method),

910
autoscale() (matplotlib.colors.Normalize method),

911
autoscale() (matplotlib.colors.SymLogNorm

method), 911
autoscale() (matplotlib.dates.AutoDateLocator

method), 920

1248 Index

Matplotlib, Release 1.3.1

autoscale() (matplotlib.dates.RRuleLocator method),
919

autoscale() (matplotlib.dates.YearLocator method),
920

autoscale() (matplotlib.ticker.Locator method), 1206
autoscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 490
autoscale_None() (matplotlib.cm.ScalarMappable

method), 881
autoscale_None() (matplotlib.colors.LogNorm

method), 910
autoscale_None() (matplotlib.colors.Normalize

method), 911
autoscale_None() (matplotlib.colors.SymLogNorm

method), 911
autoscale_view() (matplotlib.axes.Axes method),

673
autoscale_view() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 490
AutoWidthChar (class in matplotlib.mathtext), 967
autumn() (in module matplotlib.pyplot), 1021
available() (matplotlib.widgets.LockDraw method),

1230
AVConvBase (class in matplotlib.animation), 591
AVConvFileWriter (class in matplotlib.animation),

591
AVConvWriter (class in matplotlib.animation), 591
ax (matplotlib.colorbar.ColorbarBase attribute), 902
Axes (class in matplotlib.axes), 665
axes (matplotlib.figure.Figure attribute), 930
axes() (in module matplotlib.pyplot), 1021
Axes3D (class in mpl_toolkits.mplot3d.axes3d), 490
AxesDivider (class in

mpl_toolkits.axes_grid.axes_divider),
459

AxesLocator (class in
mpl_toolkits.axes_grid.axes_divider),
458

AxesStack (class in matplotlib.figure), 925
AxesWidget (class in matplotlib.widgets), 1227
AxesX (class in mpl_toolkits.axes_grid.axes_size),

455
AxesY (class in mpl_toolkits.axes_grid.axes_size),

455
axhline() (in module matplotlib.pyplot), 1022
axhline() (matplotlib.axes.Axes method), 673
axhspan() (in module matplotlib.pyplot), 1023
axhspan() (matplotlib.axes.Axes method), 675

Axis (class in matplotlib.axis), 831
Axis (class in mpl_toolkits.mplot3d.axis3d), 510
axis (matplotlib.ticker.TickHelper attribute), 1203
axis() (in module matplotlib.pyplot), 1025
axis() (matplotlib.axes.Axes method), 677
axis_date() (matplotlib.axis.Axis method), 831
axis_name (matplotlib.axis.XAxis attribute), 837
axis_name (matplotlib.axis.YAxis attribute), 838
AxisArtist (class in

mpl_toolkits.axes_grid.axis_artist), 461
AxisInfo (class in matplotlib.units), 1225
axisinfo() (matplotlib.units.ConversionInterface

static method), 1226
AxisLabel (class in

mpl_toolkits.axes_grid.axis_artist), 463
axvline() (in module matplotlib.pyplot), 1026
axvline() (matplotlib.axes.Axes method), 677
axvspan() (in module matplotlib.pyplot), 1028
axvspan() (matplotlib.axes.Axes method), 679

B
back() (matplotlib.backend_bases.NavigationToolbar2

method), 854
back() (matplotlib.cbook.Stack method), 872
BakomaFonts (class in matplotlib.mathtext), 967
bar() (in module matplotlib.pyplot), 1029
bar() (matplotlib.axes.Axes method), 680
bar() (mpl_toolkits.mplot3d.Axes3D method), 484
bar() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 491
bar3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 491
barbs() (in module matplotlib.pyplot), 1032
barbs() (matplotlib.axes.Axes method), 683
barh() (in module matplotlib.pyplot), 1036
barh() (matplotlib.axes.Axes method), 687
base() (matplotlib.ticker.LogFormatter method),

1205
base() (matplotlib.ticker.LogLocator method), 1207
base_repr() (in module matplotlib.mlab), 987
basepath (matplotlib.mathtext.StandardPsFonts at-

tribute), 978
Bbox (class in matplotlib.transforms), 384
bbox_artist() (in module matplotlib.patches), 652
BboxBase (class in matplotlib.transforms), 381
BboxTransform (class in matplotlib.transforms), 397
BboxTransformFrom (class in mat-

plotlib.transforms), 398

Index 1249

Matplotlib, Release 1.3.1

BboxTransformTo (class in matplotlib.transforms),
397

bin_boundaries() (matplotlib.ticker.MaxNLocator
method), 1208

bin_path() (matplotlib.animation.MovieWriter class
method), 596

binary_repr() (in module matplotlib.mlab), 987
binom() (matplotlib.mathtext.Parser method), 976
bivariate_normal() (in module matplotlib.mlab), 987
blended_transform_factory() (in module mat-

plotlib.transforms), 396
BlendedAffine2D (class in matplotlib.transforms),

395
BlendedGenericTransform (class in mat-

plotlib.transforms), 395
blit() (matplotlib.backend_bases.FigureCanvasBase

method), 842
blit() (matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg

method), 860
blit() (matplotlib.backends.backend_wxagg.FigureCanvasWxAgg

method), 861
bone() (in module matplotlib.pyplot), 1038
BoundaryNorm (class in matplotlib.colors), 906
bounds (matplotlib.transforms.BboxBase attribute),

381
Box (class in matplotlib.mathtext), 968
box() (in module matplotlib.pyplot), 1038
boxplot() (in module matplotlib.pyplot), 1038
boxplot() (matplotlib.axes.Axes method), 689
BoxStyle (class in matplotlib.patches), 623
BoxStyle.LArrow (class in matplotlib.patches), 624
BoxStyle.RArrow (class in matplotlib.patches), 625
BoxStyle.Round (class in matplotlib.patches), 625
BoxStyle.Round4 (class in matplotlib.patches), 625
BoxStyle.Roundtooth (class in matplotlib.patches),

625
BoxStyle.Sawtooth (class in matplotlib.patches), 625
BoxStyle.Square (class in matplotlib.patches), 625
broken_barh() (in module matplotlib.pyplot), 1046
broken_barh() (matplotlib.axes.Axes method), 697
BrokenBarHCollection (class in mat-

plotlib.collections), 886
bubble() (matplotlib.cbook.Stack method), 873
bubble() (matplotlib.figure.AxesStack method), 925
Bunch (class in matplotlib.cbook), 869
Button (class in matplotlib.widgets), 1227
button (matplotlib.backend_bases.MouseEvent at-

tribute), 853

button_press_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 842

button_release_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 842

byAttribute() (matplotlib.cbook.Sorter method), 872
byItem() (matplotlib.cbook.Sorter method), 872

C
c_over_c() (matplotlib.mathtext.Parser method), 976
cache (matplotlib.colors.ColorConverter attribute),

906
Cairo, 1239
calculate_plane_coefficients() (mat-

plotlib.tri.Triangulation method), 1213
CallbackRegistry (class in matplotlib.cbook), 869
can_pan() (matplotlib.axes.Axes method), 699
can_pan() (matplotlib.projections.polar.PolarAxes

method), 408
can_pan() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 491
can_zoom() (matplotlib.axes.Axes method), 699
can_zoom() (matplotlib.projections.polar.PolarAxes

method), 408
can_zoom() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 491
center() (matplotlib.mlab.PCA method), 987
center_matrix() (in module matplotlib.mlab), 987
change_geometry() (matplotlib.axes.SubplotBase

method), 828
change_geometry() (mpl_toolkits.axes_grid.axes_divider.SubplotDivider

method), 458
changed() (matplotlib.cm.ScalarMappable method),

881
Char (class in matplotlib.mathtext), 968
check_update() (matplotlib.cm.ScalarMappable

method), 881
CheckButtons (class in matplotlib.widgets), 1228
checksum (matplotlib.dviread.Tfm attribute), 866
Circle (class in matplotlib.patches), 626
circle_ratios() (matplotlib.tri.TriAnalyzer method),

1221
CircleCollection (class in matplotlib.collections),

887
CirclePolygon (class in matplotlib.patches), 627
circular_spine() (matplotlib.spines.Spine class

method), 1198

1250 Index

Matplotlib, Release 1.3.1

cla() (in module matplotlib.pyplot), 1048
cla() (matplotlib.axes.Axes method), 699
cla() (matplotlib.axis.Axis method), 831
cla() (matplotlib.spines.Spine method), 1198
cla() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 492
clabel() (in module matplotlib.pyplot), 1048
clabel() (matplotlib.axes.Axes method), 699
clabel() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 492
clamp() (matplotlib.mathtext.Ship static method),

978
clean() (matplotlib.cbook.Grouper method), 871
cleaned() (matplotlib.path.Path method), 1006
cleanup() (matplotlib.animation.FileMovieWriter

method), 593
cleanup() (matplotlib.animation.MovieWriter

method), 596
cleanup_path() (in module matplotlib.path), 1010
clear() (matplotlib.axes.Axes method), 706
clear() (matplotlib.cbook.MemoryMonitor method),

871
clear() (matplotlib.cbook.Stack method), 873
clear() (matplotlib.figure.Figure method), 930
clear() (matplotlib.transforms.Affine2D method),

392
clear() (matplotlib.widgets.Cursor method), 1229
clear() (matplotlib.widgets.MultiCursor method),

1231
clf() (in module matplotlib.pyplot), 1055
clf() (matplotlib.figure.Figure method), 930
clim() (in module matplotlib.pyplot), 1055
clip_path_to_rect() (in module matplotlib.path),

1010
clip_to_bbox() (matplotlib.path.Path method), 1007
close() (in module matplotlib.pyplot), 1055
close() (matplotlib.backends.backend_pdf.PdfPages

method), 863
close() (matplotlib.dviread.Dvi method), 864
close_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 842

close_group() (mat-
plotlib.backend_bases.RendererBase
method), 856

CloseEvent (class in matplotlib.backend_bases), 841
CLOSEPOLY (matplotlib.path.Path attribute), 1006

cm_fallback (matplotlib.mathtext.StixFonts at-
tribute), 979

cmap (matplotlib.cm.ScalarMappable attribute), 881
code_type (matplotlib.path.Path attribute), 1007
codes (matplotlib.legend.Legend attribute), 958
codes (matplotlib.path.Path attribute), 1007
cohere() (in module matplotlib.mlab), 988
cohere() (in module matplotlib.pyplot), 1056
cohere() (matplotlib.axes.Axes method), 706
cohere_pairs() (in module matplotlib.mlab), 989
Collection (class in matplotlib.collections), 887
color() (matplotlib.collections.LineCollection

method), 895
Colorbar (class in matplotlib.colorbar), 901
colorbar (matplotlib.cm.ScalarMappable attribute),

881
colorbar() (in module matplotlib.pyplot), 1058
colorbar() (matplotlib.figure.Figure method), 930
colorbar_extend (matplotlib.colors.Colormap

attribute), 907
colorbar_factory() (in module matplotlib.colorbar),

903
ColorbarBase (class in matplotlib.colorbar), 902
ColorbarPatch (class in matplotlib.colorbar), 903
ColorConverter (class in matplotlib.colors), 906
Colormap (class in matplotlib.colors), 907
colormaps() (in module matplotlib.pyplot), 542
colors (matplotlib.colors.ColorConverter attribute),

906
colors() (in module matplotlib.pyplot), 1061
composite_transform_factory() (in module mat-

plotlib.transforms), 397
CompositeAffine2D (class in matplotlib.transforms),

397
CompositeGenericTransform (class in mat-

plotlib.transforms), 396
config_axis() (matplotlib.colorbar.ColorbarBase

method), 902
connect() (in module matplotlib.pyplot), 1061
connect() (matplotlib.cbook.CallbackRegistry

method), 870
connect() (matplotlib.patches.ConnectionStyle.Angle

method), 630
connect() (matplotlib.patches.ConnectionStyle.Angle3

method), 630
connect() (matplotlib.patches.ConnectionStyle.Arc

method), 630

Index 1251

Matplotlib, Release 1.3.1

connect() (matplotlib.patches.ConnectionStyle.Arc3
method), 630

connect() (matplotlib.patches.ConnectionStyle.Bar
method), 631

connect_event() (matplotlib.widgets.AxesWidget
method), 1227

ConnectionPatch (class in matplotlib.patches), 627
ConnectionStyle (class in matplotlib.patches), 629
ConnectionStyle.Angle (class in matplotlib.patches),

629
ConnectionStyle.Angle3 (class in mat-

plotlib.patches), 630
ConnectionStyle.Arc (class in matplotlib.patches),

630
ConnectionStyle.Arc3 (class in matplotlib.patches),

630
ConnectionStyle.Bar (class in matplotlib.patches),

630
contains() (matplotlib.artist.Artist method), 600
contains() (matplotlib.axes.Axes method), 709
contains() (matplotlib.axis.Tick method), 835
contains() (matplotlib.axis.XAxis method), 837
contains() (matplotlib.axis.YAxis method), 838
contains() (matplotlib.collections.Collection

method), 888
contains() (matplotlib.figure.Figure method), 933
contains() (matplotlib.legend.Legend method), 959
contains() (matplotlib.lines.Line2D method), 609
contains() (matplotlib.patches.Ellipse method), 631
contains() (matplotlib.patches.Patch method), 640
contains() (matplotlib.patches.Rectangle method),

646
contains() (matplotlib.text.Annotation method), 655
contains() (matplotlib.text.Text method), 657
contains() (matplotlib.transforms.BboxBase

method), 382
contains_branch() (matplotlib.transforms.Transform

method), 387
contains_branch_seperately() (mat-

plotlib.transforms.Transform method),
387

contains_path() (matplotlib.path.Path method), 1007
contains_point() (matplotlib.axes.Axes method), 709
contains_point() (matplotlib.patches.Patch method),

640
contains_point() (matplotlib.path.Path method),

1007

contains_points() (matplotlib.path.Path method),
1007

containsx() (matplotlib.transforms.BboxBase
method), 382

containsy() (matplotlib.transforms.BboxBase
method), 382

contiguous_regions() (in module matplotlib.mlab),
990

contour() (in module matplotlib.pyplot), 1062
contour() (matplotlib.axes.Axes method), 709
contour() (mpl_toolkits.mplot3d.Axes3D method),

478
contour() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 492
contour3D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 492
contourf() (in module matplotlib.pyplot), 1073
contourf() (matplotlib.axes.Axes method), 720
contourf() (mpl_toolkits.mplot3d.Axes3D method),

481
contourf() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 492
contourf3D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 493
ConversionInterface (class in matplotlib.units), 1226
convert() (matplotlib.units.ConversionInterface

static method), 1226
convert_mesh_to_paths() (mat-

plotlib.collections.QuadMesh static
method), 897

convert_mesh_to_paths() (mat-
plotlib.collections.TriMesh static method),
900

convert_mesh_to_triangles() (mat-
plotlib.collections.QuadMesh method),
898

convert_path_to_polygons() (in module mat-
plotlib.path), 1011

convert_units() (matplotlib.axis.Axis method), 831
convert_xunits() (matplotlib.artist.Artist method),

600
convert_yunits() (matplotlib.artist.Artist method),

600
convert_zunits() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 493
converter (class in matplotlib.cbook), 874
cool() (in module matplotlib.pyplot), 1084
copper() (in module matplotlib.pyplot), 1084

1252 Index

Matplotlib, Release 1.3.1

copy() (matplotlib.font_manager.FontProperties
method), 947

copy() (matplotlib.mathtext.GlueSpec method), 970
copy() (matplotlib.mathtext.Parser.State method),

976
copy() (matplotlib.path.Path method), 1007
copy_properties() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 849

corners() (matplotlib.transforms.BboxBase method),
382

count_contains() (matplotlib.transforms.BboxBase
method), 382

count_overlaps() (matplotlib.transforms.BboxBase
method), 382

create_dummy_axis() (matplotlib.ticker.TickHelper
method), 1203

createFontList() (in module mat-
plotlib.font_manager), 949

cross_from_above() (in module matplotlib.mlab),
990

cross_from_below() (in module matplotlib.mlab),
990

csd() (in module matplotlib.mlab), 991
csd() (in module matplotlib.pyplot), 1084
csd() (matplotlib.axes.Axes method), 731
csv2rec() (in module matplotlib.mlab), 992
csvformat_factory() (in module matplotlib.mlab),

992
CubicTriInterpolator (class in matplotlib.tri), 1215
current_key_axes() (matplotlib.figure.AxesStack

method), 925
Cursor (class in matplotlib.widgets), 1228
Cursors (class in matplotlib.backend_bases), 841
CURVE3 (matplotlib.path.Path attribute), 1006
CURVE4 (matplotlib.path.Path attribute), 1006
customspace() (matplotlib.mathtext.Parser method),

976

D
dashd (matplotlib.backend_bases.GraphicsContextBase

attribute), 849
datalim_to_dt() (matplotlib.dates.DateLocator

method), 918
date2num() (in module matplotlib.dates), 917
DateFormatter (class in matplotlib.dates), 917
DateLocator (class in matplotlib.dates), 918
dateutil, 1239

DayLocator (class in matplotlib.dates), 921
dblclick (matplotlib.backend_bases.MouseEvent at-

tribute), 853
dedent() (in module matplotlib.cbook), 874
deepcopy() (matplotlib.path.Path method), 1007
default_params (matplotlib.ticker.MaxNLocator at-

tribute), 1208
default_units() (mat-

plotlib.units.ConversionInterface static
method), 1226

delaxes() (in module matplotlib.pyplot), 1087
delaxes() (matplotlib.figure.Figure method), 933
delay (matplotlib.animation.ImageMagickBase at-

tribute), 594
delete_masked_points() (in module mat-

plotlib.cbook), 874
demean() (in module matplotlib.mlab), 992
deprecated() (in module matplotlib.cbook), 875
depth (matplotlib.dviread.Tfm attribute), 866
depth (matplotlib.mathtext.Kern attribute), 971
depth (matplotlib.transforms.Transform attribute),

387
design_size (matplotlib.dviread.Tfm attribute), 866
destroy() (matplotlib.backend_bases.FigureManagerBase

method), 848
destroy() (matplotlib.mathtext.Fonts method), 969
destroy() (matplotlib.mathtext.TruetypeFonts

method), 979
detrend() (in module matplotlib.mlab), 992
detrend_linear() (in module matplotlib.mlab), 992
detrend_mean() (in module matplotlib.mlab), 992
detrend_none() (in module matplotlib.mlab), 993
dict_delall() (in module matplotlib.cbook), 875
disable_mouse_rotation()

(mpl_toolkits.mplot3d.axes3d.Axes3D
method), 493

disconnect() (in module matplotlib.pyplot), 1087
disconnect() (matplotlib.cbook.CallbackRegistry

method), 870
disconnect() (matplotlib.widgets.Button method),

1228
disconnect() (matplotlib.widgets.CheckButtons

method), 1228
disconnect() (matplotlib.widgets.RadioButtons

method), 1231
disconnect() (matplotlib.widgets.Slider method),

1234

Index 1253

Matplotlib, Release 1.3.1

disconnect_events() (mat-
plotlib.widgets.AxesWidget method),
1227

dist() (in module matplotlib.mlab), 993
dist_point_to_segment() (in module mat-

plotlib.mlab), 993
distances_along_curve() (in module mat-

plotlib.mlab), 993
Divider (class in mpl_toolkits.axes_grid.axes_divider),

456
do_3d_projection() (mpl_toolkits.mplot3d.art3d.Line3DCollection

method), 511
do_3d_projection() (mpl_toolkits.mplot3d.art3d.Patch3D

method), 512
do_3d_projection() (mpl_toolkits.mplot3d.art3d.Patch3DCollection

method), 512
do_3d_projection() (mpl_toolkits.mplot3d.art3d.PathPatch3D

method), 512
do_3d_projection() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
donothing_callback() (in module matplotlib.mlab),

993
dpi (matplotlib.figure.Figure attribute), 933
drag_pan() (matplotlib.axes.Axes method), 734
drag_pan() (matplotlib.backend_bases.NavigationToolbar2

method), 854
drag_zoom() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 854

draggable() (matplotlib.legend.Legend method), 959
DraggableLegend (class in matplotlib.legend), 957
drange() (in module matplotlib.dates), 917
draw() (in module matplotlib.pyplot), 1087
draw() (matplotlib.artist.Artist method), 600
draw() (matplotlib.axes.Axes method), 734
draw() (matplotlib.axis.Axis method), 831
draw() (matplotlib.axis.Tick method), 836
draw() (matplotlib.backend_bases.FigureCanvasBase

method), 842
draw() (matplotlib.backend_bases.NavigationToolbar2

method), 854
draw() (matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg

method), 860
draw() (matplotlib.backends.backend_wxagg.FigureCanvasWxAgg

method), 861
draw() (matplotlib.collections.CircleCollection

method), 887

draw() (matplotlib.collections.Collection method),
888

draw() (matplotlib.collections.EllipseCollection
method), 892

draw() (matplotlib.collections.PathCollection
method), 896

draw() (matplotlib.collections.PolyCollection
method), 897

draw() (matplotlib.collections.QuadMesh method),
898

draw() (matplotlib.collections.RegularPolyCollection
method), 899

draw() (matplotlib.collections.TriMesh method), 900
draw() (matplotlib.figure.Figure method), 933
draw() (matplotlib.legend.Legend method), 959
draw() (matplotlib.lines.Line2D method), 610
draw() (matplotlib.patches.Arc method), 617
draw() (matplotlib.patches.ConnectionPatch

method), 628
draw() (matplotlib.patches.FancyArrowPatch

method), 635
draw() (matplotlib.patches.Patch method), 640
draw() (matplotlib.patches.Shadow method), 649
draw() (matplotlib.spines.Spine method), 1198
draw() (matplotlib.text.Annotation method), 655
draw() (matplotlib.text.Text method), 657
draw() (matplotlib.text.TextWithDash method), 662
draw() (mpl_toolkits.axes_grid.axis_artist.AxisArtist

method), 461
draw() (mpl_toolkits.mplot3d.art3d.Line3D

method), 511
draw() (mpl_toolkits.mplot3d.art3d.Line3DCollection

method), 511
draw() (mpl_toolkits.mplot3d.art3d.Patch3D

method), 512
draw() (mpl_toolkits.mplot3d.art3d.Patch3DCollection

method), 512
draw() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
draw() (mpl_toolkits.mplot3d.art3d.Text3D

method), 514
draw() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 493
draw() (mpl_toolkits.mplot3d.axis3d.Axis method),

510
draw_all() (matplotlib.colorbar.ColorbarBase

method), 902
draw_artist() (matplotlib.axes.Axes method), 734

1254 Index

Matplotlib, Release 1.3.1

draw_artist() (matplotlib.figure.Figure method), 933
draw_bbox() (in module matplotlib.patches), 652
draw_cursor() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 842

draw_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 842

draw_frame() (matplotlib.legend.Legend method),
959

draw_gouraud_triangle() (mat-
plotlib.backend_bases.RendererBase
method), 856

draw_gouraud_triangles() (mat-
plotlib.backend_bases.RendererBase
method), 856

draw_idle() (matplotlib.backend_bases.FigureCanvasBase
method), 842

draw_image() (mat-
plotlib.backend_bases.RendererBase
method), 856

draw_markers() (mat-
plotlib.backend_bases.RendererBase
method), 856

draw_pane() (mpl_toolkits.mplot3d.axis3d.Axis
method), 510

draw_path() (matplotlib.backend_bases.RendererBase
method), 856

draw_path_collection() (mat-
plotlib.backend_bases.RendererBase
method), 857

draw_quad_mesh() (mat-
plotlib.backend_bases.RendererBase
method), 857

draw_rubberband() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 854

draw_tex() (matplotlib.backend_bases.RendererBase
method), 857

draw_text() (matplotlib.backend_bases.RendererBase
method), 857

DrawEvent (class in matplotlib.backend_bases), 841
drawon (matplotlib.widgets.Widget attribute), 1236
drawRectangle() (mat-

plotlib.backends.backend_qt4agg.FigureCanvasQTAgg
method), 860

drawStyleKeys (matplotlib.lines.Line2D attribute),
610

drawStyles (matplotlib.lines.Line2D attribute), 610
Dvi (class in matplotlib.dviread), 864
DviFont (class in matplotlib.dviread), 865
dynamic_update() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 854

E
Ellipse (class in matplotlib.patches), 631
EllipseCollection (class in matplotlib.collections),

891
embedTTF() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 862

empty() (matplotlib.cbook.Stack method), 873
Encoding (class in matplotlib.dviread), 865
encoding (matplotlib.dviread.Encoding attribute),

865
end() (matplotlib.backends.backend_pdf.Stream

method), 864
end_group() (matplotlib.mathtext.Parser method),

976
end_pan() (matplotlib.axes.Axes method), 734
enter_notify_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 843

entropy() (in module matplotlib.mlab), 993
environment variable

HOME, 328, 331
MPLCONFIGDIR, 328, 331
PATH, 55, 58, 59, 63, 331
PYTHONPATH, 331, 338

epoch2num() (in module matplotlib.dates), 917
EPS, 1239
Error() (in module matplotlib.mathtext), 968
errorbar() (in module matplotlib.pyplot), 1088
errorbar() (matplotlib.axes.Axes method), 734
Event (class in matplotlib.backend_bases), 842
EventCollection (class in matplotlib.collections),

892
eventplot() (in module matplotlib.pyplot), 1090
eventplot() (matplotlib.axes.Axes method), 737
events (matplotlib.backend_bases.FigureCanvasBase

attribute), 843
eventson (matplotlib.widgets.Widget attribute), 1236
exception_to_str() (in module matplotlib.cbook),

875

Index 1255

Matplotlib, Release 1.3.1

exec_key (matplotlib.animation.AVConvBase
attribute), 591

exec_key (matplotlib.animation.FFMpegBase
attribute), 593

exec_key (matplotlib.animation.ImageMagickBase
attribute), 594

exec_key (matplotlib.animation.MencoderBase at-
tribute), 595

exp_safe() (in module matplotlib.mlab), 993
expanded() (matplotlib.transforms.BboxBase

method), 382
extend_positions() (mat-

plotlib.collections.EventCollection
method), 893

extents (matplotlib.transforms.BboxBase attribute),
382

F
factory() (matplotlib.mathtext.GlueSpec class

method), 971
family_escape() (in module mat-

plotlib.fontconfig_pattern), 951
family_unescape() (in module mat-

plotlib.fontconfig_pattern), 951
FancyArrow (class in matplotlib.patches), 632
FancyArrowPatch (class in matplotlib.patches), 633
FancyBboxPatch (class in matplotlib.patches), 636
FFMpegBase (class in matplotlib.animation), 593
FFMpegFileWriter (class in matplotlib.animation),

593
FFMpegWriter (class in matplotlib.animation), 593
fftsurr() (in module matplotlib.mlab), 993
FIFOBuffer (class in matplotlib.mlab), 985
figaspect() (in module matplotlib.figure), 944
figimage() (in module matplotlib.pyplot), 1093
figimage() (matplotlib.figure.Figure method), 933
figlegend() (in module matplotlib.pyplot), 1094
figtext() (in module matplotlib.pyplot), 1095
Figure (class in matplotlib.figure), 925
figure() (in module matplotlib.pyplot), 1096
FigureCanvasBase (class in mat-

plotlib.backend_bases), 842
FigureCanvasPdf (class in mat-

plotlib.backends.backend_pdf), 862
FigureCanvasQTAgg (class in mat-

plotlib.backends.backend_qt4agg), 860
FigureCanvasWxAgg (class in mat-

plotlib.backends.backend_wxagg), 861

FigureFrameWxAgg (class in mat-
plotlib.backends.backend_wxagg), 861

FigureManagerBase (class in mat-
plotlib.backend_bases), 848

FigureManagerQTAgg (class in mat-
plotlib.backends.backend_qt4agg), 860

Fil (class in matplotlib.mathtext), 968
FileMovieWriter (class in matplotlib.animation),

593
filetypes (matplotlib.backend_bases.FigureCanvasBase

attribute), 843
filetypes (matplotlib.backends.backend_wxagg.FigureCanvasWxAgg

attribute), 861
Fill (class in matplotlib.mathtext), 968
fill (matplotlib.patches.Patch attribute), 640
fill() (in module matplotlib.backends.backend_pdf),

864
fill() (in module matplotlib.pyplot), 1097
fill() (matplotlib.axes.Axes method), 739
fill_between() (in module matplotlib.pyplot), 1099
fill_between() (matplotlib.axes.Axes method), 741
fill_betweenx() (in module matplotlib.pyplot), 1103
fill_betweenx() (matplotlib.axes.Axes method), 745
filled_markers (matplotlib.lines.Line2D attribute),

610
filled_markers (matplotlib.markers.MarkerStyle at-

tribute), 962
Filll (class in matplotlib.mathtext), 968
fillStyles (matplotlib.lines.Line2D attribute), 610
fillstyles (matplotlib.markers.MarkerStyle attribute),

962
finalize_offset() (mat-

plotlib.legend.DraggableLegend method),
957

find() (in module matplotlib.mlab), 993
find_tex_file() (in module matplotlib.dviread), 867
finddir() (in module matplotlib.cbook), 875
findfont() (in module matplotlib.font_manager), 949
findfont() (matplotlib.font_manager.FontManager

method), 945
findobj() (in module matplotlib.pyplot), 1106
findobj() (matplotlib.artist.Artist method), 600
findobj() (matplotlib.artist.ArtistInspector method),

605
findSystemFonts() (in module mat-

plotlib.font_manager), 949
finish() (matplotlib.animation.FileMovieWriter

method), 593

1256 Index

Matplotlib, Release 1.3.1

finish() (matplotlib.animation.MovieWriter method),
597

finish() (matplotlib.sankey.Sankey method), 1194
fix_minus() (matplotlib.ticker.Formatter method),

1203
fix_minus() (matplotlib.ticker.ScalarFormatter

method), 1204
Fixed (class in mpl_toolkits.axes_grid.axes_size),

455
FixedFormatter (class in matplotlib.ticker), 1203
FixedLocator (class in matplotlib.ticker), 1207
flag() (in module matplotlib.pyplot), 1106
flatten() (in module matplotlib.cbook), 875
flipy() (matplotlib.backend_bases.RendererBase

method), 857
flush_events() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 843

font (matplotlib.mathtext.Parser.State attribute), 976
font() (matplotlib.mathtext.Parser method), 976
FontconfigPatternParser (class in mat-

plotlib.fontconfig_pattern), 950
FontEntry (class in matplotlib.font_manager), 945
FontManager (class in matplotlib.font_manager),

945
fontmap (matplotlib.mathtext.StandardPsFonts at-

tribute), 978
fontName() (matplotlib.backends.backend_pdf.PdfFile

method), 862
FontProperties (class in matplotlib.font_manager),

947
Fonts (class in matplotlib.mathtext), 969
format_coord() (matplotlib.axes.Axes method), 748
format_coord() (mat-

plotlib.projections.polar.PolarAxes
method), 408

format_coord() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 493

format_data() (matplotlib.ticker.Formatter method),
1203

format_data() (matplotlib.ticker.LogFormatter
method), 1205

format_data() (matplotlib.ticker.ScalarFormatter
method), 1204

format_data_short() (matplotlib.ticker.Formatter
method), 1203

format_data_short() (matplotlib.ticker.LogFormatter
method), 1205

format_data_short() (mat-
plotlib.ticker.ScalarFormatter method),
1204

format_xdata() (matplotlib.axes.Axes method), 748
format_ydata() (matplotlib.axes.Axes method), 748
format_zdata() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 493
FormatBool (class in matplotlib.mlab), 985
FormatDate (class in matplotlib.mlab), 985
FormatDatetime (class in matplotlib.mlab), 986
FormatFloat (class in matplotlib.mlab), 986
FormatFormatStr (class in matplotlib.mlab), 986
FormatInt (class in matplotlib.mlab), 986
FormatMillions (class in matplotlib.mlab), 986
FormatObj (class in matplotlib.mlab), 986
FormatPercent (class in matplotlib.mlab), 986
FormatStrFormatter (class in matplotlib.ticker), 1204
FormatString (class in matplotlib.mlab), 986
Formatter (class in matplotlib.ticker), 1203
formatter (matplotlib.axis.Ticker attribute), 836
FormatThousands (class in matplotlib.mlab), 987
forward() (matplotlib.backend_bases.NavigationToolbar2

method), 854
forward() (matplotlib.cbook.Stack method), 873
frac() (matplotlib.mathtext.Parser method), 976
Fraction (class in mpl_toolkits.axes_grid.axes_size),

455
frame_format (mat-

plotlib.animation.FileMovieWriter at-
tribute), 593

frame_size (matplotlib.animation.MovieWriter at-
tribute), 597

frange() (in module matplotlib.mlab), 993
freetype, 1239
from_any() (in module

mpl_toolkits.axes_grid.axes_size), 455
from_bounds() (matplotlib.transforms.Bbox static

method), 385
from_extents() (matplotlib.transforms.Bbox static

method), 385
from_levels_and_colors() (in module mat-

plotlib.colors), 911
from_list() (matplotlib.colors.LinearSegmentedColormap

static method), 909
from_values() (matplotlib.transforms.Affine2D

static method), 392
fromstr() (matplotlib.mlab.FormatBool method), 985
fromstr() (matplotlib.mlab.FormatDate method), 985

Index 1257

Matplotlib, Release 1.3.1

fromstr() (matplotlib.mlab.FormatDatetime method),
986

fromstr() (matplotlib.mlab.FormatFloat method),
986

fromstr() (matplotlib.mlab.FormatInt method), 986
fromstr() (matplotlib.mlab.FormatObj method), 986
frozen() (matplotlib.transforms.Affine2DBase

method), 391
frozen() (matplotlib.transforms.BboxBase method),

382
frozen() (matplotlib.transforms.BlendedGenericTransform

method), 395
frozen() (matplotlib.transforms.CompositeGenericTransform

method), 396
frozen() (matplotlib.transforms.IdentityTransform

method), 393
frozen() (matplotlib.transforms.TransformNode

method), 381
frozen() (matplotlib.transforms.TransformWrapper

method), 389
full_screen_toggle() (mat-

plotlib.backend_bases.FigureManagerBase
method), 848

fully_contains() (matplotlib.transforms.BboxBase
method), 382

fully_containsx() (matplotlib.transforms.BboxBase
method), 382

fully_containsy() (matplotlib.transforms.BboxBase
method), 382

fully_overlaps() (matplotlib.transforms.BboxBase
method), 382

FuncAnimation (class in matplotlib.animation), 594
funcbottom() (matplotlib.widgets.SubplotTool

method), 1235
FuncFormatter (class in matplotlib.ticker), 1204
funchspace() (matplotlib.widgets.SubplotTool

method), 1235
funcleft() (matplotlib.widgets.SubplotTool method),

1235
funcright() (matplotlib.widgets.SubplotTool

method), 1235
function() (matplotlib.mathtext.Parser method), 976
functop() (matplotlib.widgets.SubplotTool method),

1235
funcwspace() (matplotlib.widgets.SubplotTool

method), 1235

G
gca() (in module matplotlib.pyplot), 1106
gca() (matplotlib.figure.Figure method), 935
gcf() (in module matplotlib.pyplot), 1107
gci() (in module matplotlib.pyplot), 1107
GDK, 1239
generate_fontconfig_pattern() (in module mat-

plotlib.fontconfig_pattern), 951
genfrac() (matplotlib.mathtext.Parser method), 976
get() (in module matplotlib.artist), 606
get() (matplotlib.cbook.RingBuffer method), 872
get() (matplotlib.figure.AxesStack method), 925
get_aa() (matplotlib.lines.Line2D method), 610
get_aa() (matplotlib.patches.Patch method), 640
get_active() (matplotlib.widgets.RectangleSelector

method), 1233
get_adjustable() (matplotlib.axes.Axes method), 748
get_affine() (matplotlib.transforms.AffineBase

method), 390
get_affine() (matplotlib.transforms.BlendedGenericTransform

method), 395
get_affine() (matplotlib.transforms.CompositeGenericTransform

method), 396
get_affine() (matplotlib.transforms.IdentityTransform

method), 393
get_affine() (matplotlib.transforms.Transform

method), 387
get_agg_filter() (matplotlib.artist.Artist method),

600
get_aliases() (matplotlib.artist.ArtistInspector

method), 606
get_alpha() (matplotlib.artist.Artist method), 600
get_alpha() (matplotlib.backend_bases.GraphicsContextBase

method), 849
get_alt_path() (matplotlib.markers.MarkerStyle

method), 963
get_alt_transform() (mat-

plotlib.markers.MarkerStyle method),
963

get_anchor() (matplotlib.axes.Axes method), 748
get_anchor() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 456
get_angle() (matplotlib.afm.AFM method), 587
get_animated() (matplotlib.artist.Artist method), 600
get_annotation_clip() (mat-

plotlib.patches.ConnectionPatch method),
629

1258 Index

Matplotlib, Release 1.3.1

get_antialiased() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 849

get_antialiased() (matplotlib.lines.Line2D method),
610

get_antialiased() (matplotlib.patches.Patch method),
641

get_array() (matplotlib.cm.ScalarMappable
method), 881

get_arrowstyle() (mat-
plotlib.patches.FancyArrowPatch method),
635

get_aspect() (matplotlib.axes.Axes method), 748
get_aspect() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 456
get_autoscale_on() (matplotlib.axes.Axes method),

748
get_autoscale_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 493
get_autoscalex_on() (matplotlib.axes.Axes method),

748
get_autoscaley_on() (matplotlib.axes.Axes method),

749
get_autoscalez_on()

(mpl_toolkits.mplot3d.axes3d.Axes3D
method), 493

get_axes() (matplotlib.artist.Artist method), 600
get_axes() (matplotlib.figure.Figure method), 936
get_axes_locator() (matplotlib.axes.Axes method),

749
get_axis_bgcolor() (matplotlib.axes.Axes method),

749
get_axis_position() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_axisbelow() (matplotlib.axes.Axes method), 749
get_axisbelow() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_axisline_style() (mpl_toolkits.axes_grid.axis_artist.AxisArtist

method), 461
get_backend() (in module matplotlib), 583
get_bbox() (matplotlib.patches.FancyBboxPatch

method), 638
get_bbox() (matplotlib.patches.Rectangle method),

646
get_bbox_char() (matplotlib.afm.AFM method), 587
get_bbox_patch() (matplotlib.text.Text method), 657
get_bbox_to_anchor() (matplotlib.legend.Legend

method), 959

get_bounds() (matplotlib.spines.Spine method),
1198

get_boxstyle() (matplotlib.patches.FancyBboxPatch
method), 638

get_c() (matplotlib.lines.Line2D method), 610
get_canvas() (mat-

plotlib.backends.backend_wxagg.FigureFrameWxAgg
method), 861

get_canvas() (mat-
plotlib.backends.backend_wxagg.NavigationToolbar2WxAgg
method), 861

get_canvas_width_height() (mat-
plotlib.backend_bases.RendererBase
method), 857

get_capheight() (matplotlib.afm.AFM method), 588
get_capstyle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 849

get_capstyle() (matplotlib.markers.MarkerStyle
method), 963

get_children() (matplotlib.artist.Artist method), 600
get_children() (matplotlib.axes.Axes method), 749
get_children() (matplotlib.axis.Axis method), 831
get_children() (matplotlib.axis.Tick method), 836
get_children() (matplotlib.figure.Figure method),

936
get_children() (matplotlib.legend.Legend method),

959
get_children() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_clim() (matplotlib.cm.ScalarMappable method),

881
get_clip_box() (matplotlib.artist.Artist method), 600
get_clip_on() (matplotlib.artist.Artist method), 600
get_clip_path() (matplotlib.artist.Artist method), 600
get_clip_path() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 849

get_clip_rectangle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 849

get_closed() (matplotlib.patches.Polygon method),
645

get_cmap() (in module matplotlib.cm), 882
get_cmap() (matplotlib.cm.ScalarMappable

method), 882
get_color() (matplotlib.collections.EventCollection

method), 893

Index 1259

Matplotlib, Release 1.3.1

get_color() (matplotlib.collections.LineCollection
method), 895

get_color() (matplotlib.lines.Line2D method), 610
get_color() (matplotlib.text.Text method), 657
get_colors() (in module

mpl_toolkits.mplot3d.art3d), 514
get_colors() (matplotlib.collections.LineCollection

method), 895
get_connectionstyle() (mat-

plotlib.patches.FancyArrowPatch method),
635

get_contains() (matplotlib.artist.Artist method), 600
get_converter() (matplotlib.units.Registry method),

1226
get_current_fig_manager() (in module mat-

plotlib.pyplot), 1107
get_cursor_props() (matplotlib.axes.Axes method),

749
get_dash_capstyle() (matplotlib.lines.Line2D

method), 610
get_dash_joinstyle() (matplotlib.lines.Line2D

method), 610
get_dashdirection() (matplotlib.text.TextWithDash

method), 662
get_dashes() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 849

get_dashes() (matplotlib.collections.Collection
method), 888

get_dashlength() (matplotlib.text.TextWithDash
method), 662

get_dashpad() (matplotlib.text.TextWithDash
method), 663

get_dashpush() (matplotlib.text.TextWithDash
method), 663

get_dashrotation() (matplotlib.text.TextWithDash
method), 663

get_data() (matplotlib.lines.Line2D method), 610
get_data_interval() (matplotlib.axis.Axis method),

831
get_data_interval() (matplotlib.axis.XAxis method),

837
get_data_interval() (matplotlib.axis.YAxis method),

838
get_data_interval() (mpl_toolkits.mplot3d.axis3d.XAxis

method), 510
get_data_interval() (mpl_toolkits.mplot3d.axis3d.YAxis

method), 511

get_data_interval() (mpl_toolkits.mplot3d.axis3d.ZAxis
method), 511

get_data_ratio() (matplotlib.axes.Axes method), 749
get_data_ratio() (mat-

plotlib.projections.polar.PolarAxes
method), 408

get_data_ratio_log() (matplotlib.axes.Axes method),
749

get_data_transform() (matplotlib.patches.Patch
method), 641

get_datalim() (matplotlib.collections.Collection
method), 888

get_datalim() (matplotlib.collections.QuadMesh
method), 898

get_default_bbox_extra_artists() (mat-
plotlib.axes.Axes method), 749

get_default_bbox_extra_artists() (mat-
plotlib.figure.Figure method), 936

get_default_filename() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 843

get_default_filetype() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 843

get_default_handler_map() (mat-
plotlib.legend.Legend class method),
959

get_default_size() (mat-
plotlib.font_manager.FontManager static
method), 946

get_default_weight() (mat-
plotlib.font_manager.FontManager
method), 946

get_depth() (matplotlib.mathtext.MathTextParser
method), 972

get_dir_vector() (in module
mpl_toolkits.mplot3d.art3d), 514

get_dpi() (matplotlib.figure.Figure method), 936
get_dpi_cor() (matplotlib.patches.FancyArrowPatch

method), 635
get_drawstyle() (matplotlib.lines.Line2D method),

610
get_ec() (matplotlib.patches.Patch method), 641
get_edgecolor() (matplotlib.collections.Collection

method), 888
get_edgecolor() (matplotlib.figure.Figure method),

937

1260 Index

Matplotlib, Release 1.3.1

get_edgecolor() (matplotlib.patches.Patch method),
641

get_edgecolor() (mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 513

get_edgecolors() (matplotlib.collections.Collection
method), 888

get_edgecolors() (mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 513

get_extents() (matplotlib.patches.Patch method), 641
get_extents() (matplotlib.path.Path method), 1007
get_facecolor() (matplotlib.collections.Collection

method), 888
get_facecolor() (matplotlib.figure.Figure method),

937
get_facecolor() (matplotlib.patches.Patch method),

641
get_facecolor() (mpl_toolkits.mplot3d.art3d.Patch3D

method), 512
get_facecolor() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
get_facecolors() (matplotlib.collections.Collection

method), 888
get_facecolors() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
get_family() (mat-

plotlib.font_manager.FontProperties
method), 947

get_family() (matplotlib.text.Text method), 657
get_familyname() (matplotlib.afm.AFM method),

588
get_fc() (matplotlib.patches.Patch method), 641
get_figheight() (matplotlib.figure.Figure method),

937
get_figlabels() (in module matplotlib.pyplot), 1107
get_fignums() (in module matplotlib.pyplot), 1107
get_figure() (matplotlib.artist.Artist method), 601
get_figure() (matplotlib.text.TextWithDash method),

663
get_figwidth() (matplotlib.figure.Figure method),

937
get_file() (matplotlib.font_manager.FontProperties

method), 948
get_fill() (matplotlib.patches.Patch method), 641
get_fillstyle() (matplotlib.lines.Line2D method), 610
get_fillstyle() (matplotlib.markers.MarkerStyle

method), 963
get_flat_tri_mask() (matplotlib.tri.TriAnalyzer

method), 1221

get_flip_min_max() (in module
mpl_toolkits.mplot3d.axis3d), 511

get_font_properties() (matplotlib.text.Text method),
657

get_fontconfig_fonts() (in module mat-
plotlib.font_manager), 949

get_fontconfig_pattern() (mat-
plotlib.font_manager.FontProperties
method), 948

get_fontext_synonyms() (in module mat-
plotlib.font_manager), 950

get_fontfamily() (matplotlib.text.Text method), 657
get_fontname() (matplotlib.afm.AFM method), 588
get_fontname() (matplotlib.text.Text method), 657
get_fontproperties() (matplotlib.text.Text method),

657
get_fontsize() (matplotlib.text.Text method), 657
get_fontstretch() (matplotlib.text.Text method), 657
get_fontstyle() (matplotlib.text.Text method), 658
get_fontvariant() (matplotlib.text.Text method), 658
get_fontweight() (matplotlib.text.Text method), 658
get_forced_alpha() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 849

get_formatd() (in module matplotlib.mlab), 994
get_frame() (matplotlib.legend.Legend method), 959
get_frame_on() (matplotlib.axes.Axes method), 749
get_frame_on() (matplotlib.legend.Legend method),

959
get_frame_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_frameon() (matplotlib.figure.Figure method),

937
get_from_args_and_kwargs() (mat-

plotlib.tri.Triangulation static method),
1213

get_fullname() (matplotlib.afm.AFM method), 588
get_fully_transformed_path() (mat-

plotlib.transforms.TransformedPath
method), 398

get_geometry() (matplotlib.axes.SubplotBase
method), 828

get_geometry() (matplotlib.gridspec.GridSpecBase
method), 954

get_geometry() (matplotlib.gridspec.SubplotSpec
method), 955

get_geometry() (mpl_toolkits.axes_grid.axes_divider.SubplotDivider
method), 458

Index 1261

Matplotlib, Release 1.3.1

get_gid() (matplotlib.artist.Artist method), 601
get_gid() (matplotlib.backend_bases.GraphicsContextBase

method), 849
get_grid_positions() (mat-

plotlib.gridspec.GridSpecBase method),
954

get_gridlines() (matplotlib.axis.Axis method), 831
get_gridspec() (matplotlib.gridspec.SubplotSpec

method), 955
get_ha() (matplotlib.text.Text method), 658
get_hatch() (matplotlib.backend_bases.GraphicsContextBase

method), 849
get_hatch() (matplotlib.collections.Collection

method), 888
get_hatch() (matplotlib.patches.Patch method), 641
get_hatch_path() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 849

get_height() (matplotlib.patches.FancyBboxPatch
method), 638

get_height() (matplotlib.patches.Rectangle method),
646

get_height_char() (matplotlib.afm.AFM method),
588

get_height_ratios() (mat-
plotlib.gridspec.GridSpecBase method),
954

get_helper() (mpl_toolkits.axes_grid.axis_artist.AxisArtist
method), 461

get_hinting_type() (mat-
plotlib.mathtext.MathtextBackend
method), 973

get_hinting_type() (mat-
plotlib.mathtext.MathtextBackendAgg
method), 973

get_horizontal() (mpl_toolkits.axes_grid.axes_divider.Divider
method), 456

get_horizontal_sizes()
(mpl_toolkits.axes_grid.axes_divider.Divider
method), 456

get_horizontal_stem_width() (matplotlib.afm.AFM
method), 588

get_horizontalalignment() (matplotlib.text.Text
method), 658

get_image_magnification() (mat-
plotlib.backend_bases.RendererBase
method), 857

get_images() (matplotlib.axes.Axes method), 749

get_joinstyle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 849

get_joinstyle() (matplotlib.markers.MarkerStyle
method), 963

get_kern() (matplotlib.mathtext.Fonts method), 969
get_kern() (matplotlib.mathtext.StandardPsFonts

method), 978
get_kern() (matplotlib.mathtext.TruetypeFonts

method), 979
get_kern_dist() (matplotlib.afm.AFM method), 588
get_kern_dist_from_name() (matplotlib.afm.AFM

method), 588
get_kerning() (matplotlib.mathtext.Char method),

968
get_kerning() (matplotlib.mathtext.Node method),

975
get_label() (matplotlib.artist.Artist method), 601
get_label() (matplotlib.axis.Axis method), 831
get_label_position() (matplotlib.axis.XAxis

method), 837
get_label_position() (matplotlib.axis.YAxis

method), 838
get_label_text() (matplotlib.axis.Axis method), 831
get_legend() (matplotlib.axes.Axes method), 749
get_legend_handler() (matplotlib.legend.Legend

static method), 959
get_legend_handler_map() (mat-

plotlib.legend.Legend method), 959
get_legend_handles_labels() (matplotlib.axes.Axes

method), 749
get_linelength() (mat-

plotlib.collections.EventCollection
method), 893

get_lineoffset() (mat-
plotlib.collections.EventCollection
method), 893

get_lines() (matplotlib.axes.Axes method), 749
get_lines() (matplotlib.legend.Legend method), 959
get_linestyle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 849

get_linestyle() (matplotlib.collections.Collection
method), 888

get_linestyle() (mat-
plotlib.collections.EventCollection
method), 893

1262 Index

Matplotlib, Release 1.3.1

get_linestyle() (matplotlib.lines.Line2D method),
610

get_linestyle() (matplotlib.patches.Patch method),
641

get_linestyles() (matplotlib.collections.Collection
method), 888

get_linewidth() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 850

get_linewidth() (matplotlib.collections.Collection
method), 888

get_linewidth() (mat-
plotlib.collections.EventCollection
method), 893

get_linewidth() (matplotlib.lines.Line2D method),
610

get_linewidth() (matplotlib.patches.Patch method),
641

get_linewidths() (matplotlib.collections.Collection
method), 888

get_loc() (matplotlib.axis.Tick method), 836
get_locator() (matplotlib.dates.AutoDateLocator

method), 920
get_locator() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 456
get_ls() (matplotlib.lines.Line2D method), 611
get_ls() (matplotlib.patches.Patch method), 641
get_lw() (matplotlib.lines.Line2D method), 611
get_lw() (matplotlib.patches.Patch method), 641
get_major_formatter() (matplotlib.axis.Axis

method), 832
get_major_locator() (matplotlib.axis.Axis method),

832
get_major_ticks() (matplotlib.axis.Axis method),

832
get_major_ticks() (mpl_toolkits.mplot3d.axis3d.Axis

method), 510
get_majorticklabels() (matplotlib.axis.Axis method),

832
get_majorticklines() (matplotlib.axis.Axis method),

832
get_majorticklocs() (matplotlib.axis.Axis method),

832
get_marker() (matplotlib.lines.Line2D method), 611
get_marker() (matplotlib.markers.MarkerStyle

method), 963
get_markeredgecolor() (matplotlib.lines.Line2D

method), 611

get_markeredgewidth() (matplotlib.lines.Line2D
method), 611

get_markerfacecolor() (matplotlib.lines.Line2D
method), 611

get_markerfacecoloralt() (matplotlib.lines.Line2D
method), 611

get_markersize() (matplotlib.lines.Line2D method),
611

get_markevery() (matplotlib.lines.Line2D method),
611

get_masked_triangles() (matplotlib.tri.Triangulation
method), 1213

get_matrix() (mat-
plotlib.projections.polar.PolarAffine
method), 406

get_matrix() (mat-
plotlib.projections.polar.PolarAxes.PolarAffine
method), 407

get_matrix() (matplotlib.transforms.Affine2D
method), 392

get_matrix() (matplotlib.transforms.BboxTransform
method), 397

get_matrix() (mat-
plotlib.transforms.BboxTransformFrom
method), 398

get_matrix() (mat-
plotlib.transforms.BboxTransformTo
method), 398

get_matrix() (mat-
plotlib.transforms.BlendedAffine2D
method), 396

get_matrix() (mat-
plotlib.transforms.CompositeAffine2D
method), 397

get_matrix() (mat-
plotlib.transforms.IdentityTransform
method), 393

get_matrix() (mat-
plotlib.transforms.ScaledTranslation
method), 398

get_matrix() (matplotlib.transforms.Transform
method), 388

get_mec() (matplotlib.lines.Line2D method), 611
get_metrics() (matplotlib.mathtext.Fonts method),

969
get_mew() (matplotlib.lines.Line2D method), 611
get_mfc() (matplotlib.lines.Line2D method), 611
get_mfcalt() (matplotlib.lines.Line2D method), 611

Index 1263

Matplotlib, Release 1.3.1

get_minor_formatter() (matplotlib.axis.Axis
method), 832

get_minor_locator() (matplotlib.axis.Axis method),
832

get_minor_ticks() (matplotlib.axis.Axis method),
832

get_minorticklabels() (matplotlib.axis.Axis method),
832

get_minorticklines() (matplotlib.axis.Axis method),
832

get_minorticklocs() (matplotlib.axis.Axis method),
832

get_minpos() (matplotlib.axis.XAxis method), 837
get_minpos() (matplotlib.axis.YAxis method), 838
get_ms() (matplotlib.lines.Line2D method), 611
get_mutation_aspect() (mat-

plotlib.patches.FancyArrowPatch method),
635

get_mutation_aspect() (mat-
plotlib.patches.FancyBboxPatch method),
638

get_mutation_scale() (mat-
plotlib.patches.FancyArrowPatch method),
635

get_mutation_scale() (mat-
plotlib.patches.FancyBboxPatch method),
638

get_name() (matplotlib.font_manager.FontProperties
method), 948

get_name() (matplotlib.text.Text method), 658
get_name_char() (matplotlib.afm.AFM method),

588
get_navigate() (matplotlib.axes.Axes method), 749
get_navigate_mode() (matplotlib.axes.Axes

method), 749
get_numsides() (mat-

plotlib.collections.RegularPolyCollection
method), 899

get_offset() (matplotlib.ticker.FixedFormatter
method), 1204

get_offset() (matplotlib.ticker.Formatter method),
1203

get_offset() (matplotlib.ticker.ScalarFormatter
method), 1204

get_offset_position() (mat-
plotlib.collections.Collection method),
889

get_offset_text() (matplotlib.axis.Axis method), 832

get_offset_transform() (mat-
plotlib.collections.Collection method),
889

get_offsets() (matplotlib.collections.Collection
method), 889

get_orientation() (mat-
plotlib.collections.EventCollection
method), 893

get_pad() (matplotlib.axis.Tick method), 836
get_pad() (mpl_toolkits.axes_grid.axis_artist.AxisLabel

method), 463
get_pad_pixels() (matplotlib.axis.Tick method), 836
get_pagecount() (mat-

plotlib.backends.backend_pdf.PdfPages
method), 863

get_patch_transform() (matplotlib.patches.Arrow
method), 619

get_patch_transform() (matplotlib.patches.Ellipse
method), 632

get_patch_transform() (matplotlib.patches.Patch
method), 641

get_patch_transform() (mat-
plotlib.patches.Rectangle method), 647

get_patch_transform() (mat-
plotlib.patches.RegularPolygon method),
648

get_patch_transform() (matplotlib.patches.Shadow
method), 649

get_patch_transform() (matplotlib.patches.YAArrow
method), 652

get_patch_transform() (matplotlib.spines.Spine
method), 1198

get_patch_verts() (in module
mpl_toolkits.mplot3d.art3d), 514

get_patches() (matplotlib.legend.Legend method),
959

get_path() (matplotlib.lines.Line2D method), 611
get_path() (matplotlib.markers.MarkerStyle

method), 963
get_path() (matplotlib.patches.Arrow method), 619
get_path() (matplotlib.patches.Ellipse method), 632
get_path() (matplotlib.patches.FancyArrowPatch

method), 635
get_path() (matplotlib.patches.FancyBboxPatch

method), 638
get_path() (matplotlib.patches.Patch method), 641
get_path() (matplotlib.patches.PathPatch method),

644

1264 Index

Matplotlib, Release 1.3.1

get_path() (matplotlib.patches.Polygon method),
645

get_path() (matplotlib.patches.Rectangle method),
647

get_path() (matplotlib.patches.RegularPolygon
method), 648

get_path() (matplotlib.patches.Shadow method), 650
get_path() (matplotlib.patches.Wedge method), 650
get_path() (matplotlib.patches.YAArrow method),

652
get_path() (matplotlib.spines.Spine method), 1198
get_path() (mpl_toolkits.mplot3d.art3d.Patch3D

method), 512
get_path_collection_extents() (in module mat-

plotlib.path), 1011
get_path_effects() (matplotlib.artist.Artist method),

601
get_path_extents() (in module matplotlib.path), 1011
get_path_in_displaycoord() (mat-

plotlib.patches.ConnectionPatch method),
629

get_path_in_displaycoord() (mat-
plotlib.patches.FancyArrowPatch method),
636

get_paths() (matplotlib.collections.Collection
method), 889

get_paths() (matplotlib.collections.PathCollection
method), 896

get_paths() (matplotlib.collections.QuadMesh
method), 898

get_paths() (matplotlib.collections.TriMesh
method), 900

get_paths_extents() (in module matplotlib.path),
1011

get_picker() (matplotlib.artist.Artist method), 601
get_pickradius() (matplotlib.axis.Axis method), 832
get_pickradius() (matplotlib.collections.Collection

method), 889
get_pickradius() (matplotlib.lines.Line2D method),

611
get_plot_commands() (in module matplotlib.pyplot),

1107
get_points() (matplotlib.transforms.Bbox method),

385
get_points() (matplotlib.transforms.TransformedBbox

method), 386
get_position() (matplotlib.axes.Axes method), 750

get_position() (matplotlib.gridspec.SubplotSpec
method), 955

get_position() (matplotlib.spines.Spine method),
1198

get_position() (matplotlib.text.Text method), 658
get_position() (matplotlib.text.TextWithDash

method), 663
get_position() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 456
get_position() (mpl_toolkits.axes_grid.axes_divider.SubplotDivider

method), 458
get_position_runtime()

(mpl_toolkits.axes_grid.axes_divider.Divider
method), 456

get_positions() (mat-
plotlib.collections.EventCollection
method), 893

get_proj() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 494

get_projection_class() (in module mat-
plotlib.projections), 405

get_projection_class() (mat-
plotlib.projections.ProjectionRegistry
method), 405

get_projection_names() (in module mat-
plotlib.projections), 405

get_projection_names() (mat-
plotlib.projections.ProjectionRegistry
method), 405

get_prop_tup() (matplotlib.text.Text method), 658
get_prop_tup() (matplotlib.text.TextWithDash

method), 663
get_radius() (matplotlib.patches.Circle method), 626
get_rasterization_zorder() (matplotlib.axes.Axes

method), 750
get_rasterized() (matplotlib.artist.Artist method),

601
get_recursive_filelist() (in module mat-

plotlib.cbook), 876
get_renderer() (in module matplotlib.tight_layout),

1211
get_renderer_cache() (matplotlib.axes.Axes

method), 750
get_results() (matplotlib.mathtext.Fonts method),

969
get_results() (matplotlib.mathtext.MathtextBackend

method), 973

Index 1265

Matplotlib, Release 1.3.1

get_results() (mat-
plotlib.mathtext.MathtextBackendAgg
method), 973

get_results() (mat-
plotlib.mathtext.MathtextBackendBitmap
method), 974

get_results() (mat-
plotlib.mathtext.MathtextBackendCairo
method), 974

get_results() (mat-
plotlib.mathtext.MathtextBackendPath
method), 974

get_results() (mat-
plotlib.mathtext.MathtextBackendPdf
method), 974

get_results() (mat-
plotlib.mathtext.MathtextBackendPs
method), 974

get_results() (mat-
plotlib.mathtext.MathtextBackendSvg
method), 975

get_rgb() (matplotlib.backend_bases.GraphicsContextBase
method), 850

get_rotate_label() (mpl_toolkits.mplot3d.axis3d.Axis
method), 510

get_rotation() (in module matplotlib.text), 664
get_rotation() (mat-

plotlib.collections.RegularPolyCollection
method), 899

get_rotation() (matplotlib.text.Text method), 658
get_rotation_mode() (matplotlib.text.Text method),

658
get_sample_data() (in module matplotlib.cbook),

876
get_scale() (matplotlib.axis.Axis method), 832
get_scale_docs() (in module matplotlib.scale), 404
get_segments() (mat-

plotlib.collections.LineCollection method),
895

get_setters() (matplotlib.artist.ArtistInspector
method), 606

get_shared_x_axes() (matplotlib.axes.Axes method),
750

get_shared_y_axes() (matplotlib.axes.Axes method),
750

get_siblings() (matplotlib.cbook.Grouper method),
871

get_size() (matplotlib.font_manager.FontProperties
method), 948

get_size() (matplotlib.text.Text method), 658
get_size_in_points() (mat-

plotlib.font_manager.FontProperties
method), 948

get_size_inches() (matplotlib.figure.Figure method),
937

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.BakomaFonts method),
968

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.Fonts method), 970

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.StixFonts method),
979

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.UnicodeFonts method),
980

get_sizes() (matplotlib.collections.CircleCollection
method), 887

get_sizes() (matplotlib.collections.PathCollection
method), 896

get_sizes() (matplotlib.collections.RegularPolyCollection
method), 899

get_sketch_params() (matplotlib.artist.Artist
method), 601

get_sketch_params() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 850

get_slant() (matplotlib.font_manager.FontProperties
method), 948

get_smart_bounds() (matplotlib.axis.Axis method),
832

get_smart_bounds() (matplotlib.spines.Spine
method), 1198

get_snap() (matplotlib.artist.Artist method), 601
get_snap() (matplotlib.backend_bases.GraphicsContextBase

method), 850
get_snap_threshold() (mat-

plotlib.markers.MarkerStyle method),
963

get_solid_capstyle() (matplotlib.lines.Line2D
method), 611

get_solid_joinstyle() (matplotlib.lines.Line2D
method), 611

get_sparse_matrix() (in module matplotlib.mlab),
994

1266 Index

Matplotlib, Release 1.3.1

get_spine_transform() (matplotlib.spines.Spine
method), 1199

get_split_ind() (in module matplotlib.cbook), 876
get_state() (matplotlib.mathtext.Parser method), 976
get_str_bbox() (matplotlib.afm.AFM method), 588
get_str_bbox_and_descent() (matplotlib.afm.AFM

method), 588
get_stretch() (mat-

plotlib.font_manager.FontProperties
method), 948

get_stretch() (matplotlib.text.Text method), 658
get_style() (matplotlib.font_manager.FontProperties

method), 948
get_style() (matplotlib.text.Text method), 658
get_subplot_params() (matplotlib.gridspec.GridSpec

method), 953
get_subplot_params() (mat-

plotlib.gridspec.GridSpecBase method),
954

get_subplot_params() (mat-
plotlib.gridspec.GridSpecFromSubplotSpec
method), 954

get_subplotspec() (matplotlib.axes.SubplotBase
method), 829

get_subplotspec() (mpl_toolkits.axes_grid.axes_divider.AxesLocator
method), 458

get_subplotspec() (mpl_toolkits.axes_grid.axes_divider.SubplotDivider
method), 458

get_subplotspec_list() (in module mat-
plotlib.tight_layout), 1211

get_supported_filetypes() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 843

get_supported_filetypes_grouped() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 843

get_test_data() (in module
mpl_toolkits.mplot3d.axes3d), 509

get_texmanager() (mat-
plotlib.backend_bases.RendererBase
method), 857

get_text() (matplotlib.text.Text method), 658
get_text_heights() (matplotlib.axis.XAxis method),

837
get_text_width_height_descent() (mat-

plotlib.backend_bases.RendererBase
method), 858

get_text_widths() (matplotlib.axis.YAxis method),
838

get_texts() (matplotlib.legend.Legend method), 960
get_texts_widths_heights_descents()

(mpl_toolkits.axes_grid.axis_artist.TickLabels
method), 463

get_theta_direction() (mat-
plotlib.projections.polar.PolarAxes
method), 408

get_theta_offset() (mat-
plotlib.projections.polar.PolarAxes
method), 408

get_tick_out() (mpl_toolkits.axes_grid.axis_artist.Ticks
method), 462

get_tick_positions() (mpl_toolkits.mplot3d.axis3d.Axis
method), 510

get_ticklabel_extents() (matplotlib.axis.Axis
method), 832

get_ticklabels() (matplotlib.axis.Axis method), 832
get_ticklines() (matplotlib.axis.Axis method), 832
get_ticklocs() (matplotlib.axis.Axis method), 833
get_ticks_position() (matplotlib.axis.XAxis

method), 837
get_ticks_position() (matplotlib.axis.YAxis method),

838
get_ticksize() (mpl_toolkits.axes_grid.axis_artist.Ticks

method), 462
get_tight_layout() (matplotlib.figure.Figure

method), 937
get_tight_layout_figure() (in module mat-

plotlib.tight_layout), 1211
get_tightbbox() (matplotlib.axes.Axes method), 750
get_tightbbox() (matplotlib.axis.Axis method), 833
get_tightbbox() (matplotlib.figure.Figure method),

937
get_tightbbox() (mpl_toolkits.axes_grid.axis_artist.AxisArtist

method), 461
get_tightbbox() (mpl_toolkits.mplot3d.axis3d.Axis

method), 510
get_title() (matplotlib.axes.Axes method), 750
get_title() (matplotlib.legend.Legend method), 960
get_topmost_subplotspec() (mat-

plotlib.gridspec.GridSpecFromSubplotSpec
method), 954

get_topmost_subplotspec() (mat-
plotlib.gridspec.SubplotSpec method),
955

Index 1267

Matplotlib, Release 1.3.1

get_transform() (matplotlib.artist.Artist method),
601

get_transform() (matplotlib.axis.Axis method), 833
get_transform() (matplotlib.markers.MarkerStyle

method), 963
get_transform() (matplotlib.patches.Patch method),

641
get_transform() (matplotlib.scale.LinearScale

method), 403
get_transform() (matplotlib.scale.LogScale method),

403
get_transform() (matplotlib.scale.ScaleBase

method), 404
get_transform() (mat-

plotlib.scale.SymmetricalLogScale
method), 404

get_transform() (mpl_toolkits.axes_grid.axis_artist.AxisArtist
method), 461

get_transformed_clip_path_and_affine() (mat-
plotlib.artist.Artist method), 601

get_transformed_path_and_affine() (mat-
plotlib.transforms.TransformedPath
method), 398

get_transformed_points_and_affine() (mat-
plotlib.transforms.TransformedPath
method), 398

get_transforms() (matplotlib.collections.Collection
method), 889

get_trifinder() (matplotlib.tri.Triangulation method),
1214

get_underline_thickness() (matplotlib.afm.AFM
method), 588

get_underline_thickness() (mat-
plotlib.mathtext.Fonts method), 970

get_underline_thickness() (mat-
plotlib.mathtext.StandardPsFonts method),
978

get_underline_thickness() (mat-
plotlib.mathtext.TruetypeFonts method),
979

get_unicode_index() (in module mat-
plotlib.mathtext), 980

get_unit() (matplotlib.text.OffsetFrom method), 656
get_unit_generic() (matplotlib.dates.RRuleLocator

static method), 919
get_units() (matplotlib.axis.Axis method), 833
get_url() (matplotlib.artist.Artist method), 601

get_url() (matplotlib.backend_bases.GraphicsContextBase
method), 850

get_urls() (matplotlib.collections.Collection
method), 889

get_used_characters() (matplotlib.mathtext.Fonts
method), 970

get_useLocale() (matplotlib.ticker.ScalarFormatter
method), 1204

get_useOffset() (matplotlib.ticker.ScalarFormatter
method), 1204

get_va() (matplotlib.text.Text method), 658
get_valid_values() (matplotlib.artist.ArtistInspector

method), 606
get_variant() (mat-

plotlib.font_manager.FontProperties
method), 948

get_variant() (matplotlib.text.Text method), 658
get_vector() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
get_vertical() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 456
get_vertical_sizes() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 456
get_vertical_stem_width() (matplotlib.afm.AFM

method), 588
get_verticalalignment() (matplotlib.text.Text

method), 658
get_verts() (matplotlib.patches.Patch method), 641
get_view_interval() (matplotlib.axis.Axis method),

833
get_view_interval() (matplotlib.axis.Tick method),

836
get_view_interval() (matplotlib.axis.XAxis method),

837
get_view_interval() (matplotlib.axis.XTick method),

838
get_view_interval() (matplotlib.axis.YAxis method),

838
get_view_interval() (matplotlib.axis.YTick method),

839
get_view_interval() (mpl_toolkits.mplot3d.axis3d.Axis

method), 510
get_visible() (matplotlib.artist.Artist method), 601
get_vsize_hsize() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 456
get_w_lims() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_weight() (matplotlib.afm.AFM method), 588

1268 Index

Matplotlib, Release 1.3.1

get_weight() (mat-
plotlib.font_manager.FontProperties
method), 948

get_weight() (matplotlib.text.Text method), 658
get_width() (matplotlib.patches.FancyBboxPatch

method), 638
get_width() (matplotlib.patches.Rectangle method),

647
get_width_char() (matplotlib.afm.AFM method),

588
get_width_from_char_name() (matplotlib.afm.AFM

method), 588
get_width_height() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 843

get_width_ratios() (mat-
plotlib.gridspec.GridSpecBase method),
954

get_window_extent() (matplotlib.artist.Artist
method), 601

get_window_extent() (matplotlib.axes.Axes
method), 750

get_window_extent() (mat-
plotlib.collections.Collection method),
889

get_window_extent() (matplotlib.figure.Figure
method), 937

get_window_extent() (matplotlib.legend.Legend
method), 960

get_window_extent() (matplotlib.lines.Line2D
method), 611

get_window_extent() (matplotlib.patches.Patch
method), 642

get_window_extent() (matplotlib.text.Text method),
658

get_window_extent() (matplotlib.text.TextWithDash
method), 663

get_window_title() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 843

get_window_title() (mat-
plotlib.backend_bases.FigureManagerBase
method), 848

get_x() (matplotlib.patches.FancyBboxPatch
method), 638

get_x() (matplotlib.patches.Rectangle method), 647
get_xaxis() (matplotlib.axes.Axes method), 750

get_xaxis_text1_transform() (matplotlib.axes.Axes
method), 750

get_xaxis_text2_transform() (matplotlib.axes.Axes
method), 750

get_xaxis_transform() (matplotlib.axes.Axes
method), 751

get_xbound() (matplotlib.axes.Axes method), 751
get_xdata() (matplotlib.lines.Line2D method), 612
get_xgridlines() (matplotlib.axes.Axes method), 751
get_xheight() (matplotlib.afm.AFM method), 588
get_xheight() (matplotlib.mathtext.Fonts method),

970
get_xheight() (matplotlib.mathtext.StandardPsFonts

method), 978
get_xheight() (matplotlib.mathtext.TruetypeFonts

method), 979
get_xlabel() (matplotlib.axes.Axes method), 751
get_xlim() (matplotlib.axes.Axes method), 751
get_xlim() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_xlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_xmajorticklabels() (matplotlib.axes.Axes

method), 751
get_xminorticklabels() (matplotlib.axes.Axes

method), 751
get_xscale() (matplotlib.axes.Axes method), 751
get_xticklabels() (matplotlib.axes.Axes method),

751
get_xticklines() (matplotlib.axes.Axes method), 751
get_xticks() (matplotlib.axes.Axes method), 751
get_xy() (matplotlib.patches.Polygon method), 645
get_xy() (matplotlib.patches.Rectangle method), 647
get_xydata() (matplotlib.lines.Line2D method), 612
get_xyz_where() (in module matplotlib.mlab), 994
get_y() (matplotlib.patches.FancyBboxPatch

method), 639
get_y() (matplotlib.patches.Rectangle method), 647
get_yaxis() (matplotlib.axes.Axes method), 751
get_yaxis_text1_transform() (matplotlib.axes.Axes

method), 752
get_yaxis_text2_transform() (matplotlib.axes.Axes

method), 752
get_yaxis_transform() (matplotlib.axes.Axes

method), 752
get_ybound() (matplotlib.axes.Axes method), 752
get_ydata() (matplotlib.lines.Line2D method), 612
get_ygridlines() (matplotlib.axes.Axes method), 752

Index 1269

Matplotlib, Release 1.3.1

get_ylabel() (matplotlib.axes.Axes method), 752
get_ylim() (matplotlib.axes.Axes method), 752
get_ylim() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_ylim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_ymajorticklabels() (matplotlib.axes.Axes

method), 752
get_yminorticklabels() (matplotlib.axes.Axes

method), 752
get_yscale() (matplotlib.axes.Axes method), 753
get_yticklabels() (matplotlib.axes.Axes method),

753
get_yticklines() (matplotlib.axes.Axes method), 753
get_yticks() (matplotlib.axes.Axes method), 753
get_zbound() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 494
get_zlabel() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
get_zlim() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
get_zlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
get_zmajorticklabels()

(mpl_toolkits.mplot3d.axes3d.Axes3D
method), 495

get_zminorticklabels()
(mpl_toolkits.mplot3d.axes3d.Axes3D
method), 495

get_zorder() (matplotlib.artist.Artist method), 602
get_zscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
get_zticklabels() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
get_zticklines() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
get_zticks() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
getp() (in module matplotlib.artist), 607
getpoints() (matplotlib.patches.YAArrow method),

652
GetRealpathAndStat (class in matplotlib.cbook), 870
ginput() (in module matplotlib.pyplot), 1107
ginput() (matplotlib.figure.Figure method), 937
Glue (class in matplotlib.mathtext), 970
GlueSpec (class in matplotlib.mathtext), 970
grab_frame() (matplotlib.animation.MovieWriter

method), 597

grab_mouse() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 843

gradient() (matplotlib.tri.CubicTriInterpolator
method), 1217

gradient() (matplotlib.tri.LinearTriInterpolator
method), 1215

GraphicsContextBase (class in mat-
plotlib.backend_bases), 849

gray() (in module matplotlib.pyplot), 1108
Grid (class in mpl_toolkits.axes_grid.axes_grid),

460
grid() (in module matplotlib.pyplot), 1108
grid() (matplotlib.axes.Axes method), 753
grid() (matplotlib.axis.Axis method), 833
grid() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 495
griddata() (in module matplotlib.mlab), 994
GridSpec (class in matplotlib.gridspec), 953
GridSpecBase (class in matplotlib.gridspec), 954
GridSpecFromSubplotSpec (class in mat-

plotlib.gridspec), 954
group() (matplotlib.mathtext.Parser method), 976
Grouper (class in matplotlib.cbook), 870
grow() (matplotlib.mathtext.Accent method), 967
grow() (matplotlib.mathtext.Box method), 968
grow() (matplotlib.mathtext.Char method), 968
grow() (matplotlib.mathtext.Glue method), 970
grow() (matplotlib.mathtext.Kern method), 971
grow() (matplotlib.mathtext.List method), 972
grow() (matplotlib.mathtext.Node method), 975
GTK, 1239

H
HAND (matplotlib.backend_bases.Cursors at-

tribute), 841
has_data() (matplotlib.axes.Axes method), 754
has_inverse (matplotlib.transforms.Transform

attribute), 388
has_nonfinite (matplotlib.path.Path attribute), 1007
hatch() (matplotlib.path.Path class method), 1008
have_units() (matplotlib.artist.Artist method), 602
have_units() (matplotlib.axis.Axis method), 833
have_units() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 496
Hbox (class in matplotlib.mathtext), 971
HCentered (class in matplotlib.mathtext), 971
height (matplotlib.dviread.Tfm attribute), 866

1270 Index

Matplotlib, Release 1.3.1

height (matplotlib.mathtext.Kern attribute), 971
height (matplotlib.transforms.BboxBase attribute),

382
hex2color() (in module matplotlib.colors), 912
hexbin() (in module matplotlib.pyplot), 1109
hexbin() (matplotlib.axes.Axes method), 754
hist() (in module matplotlib.pyplot), 1112
hist() (matplotlib.axes.Axes method), 757
hist2d() (in module matplotlib.pyplot), 1115
hist2d() (matplotlib.axes.Axes method), 760
hitlist() (matplotlib.artist.Artist method), 602
hlines() (in module matplotlib.pyplot), 1117
hlines() (matplotlib.axes.Axes method), 761
Hlist (class in matplotlib.mathtext), 971
hlist_out() (matplotlib.mathtext.Ship method), 978
hms0d (matplotlib.dates.DateLocator attribute), 918
hold() (in module matplotlib.pyplot), 1118
hold() (matplotlib.axes.Axes method), 762
hold() (matplotlib.figure.Figure method), 938
HOME, 328, 331
home() (matplotlib.backend_bases.NavigationToolbar2

method), 854
home() (matplotlib.cbook.Stack method), 873
hot() (in module matplotlib.pyplot), 1118
HourLocator (class in matplotlib.dates), 921
hours() (in module matplotlib.dates), 923
hpack() (matplotlib.mathtext.Hlist method), 971
Hrule (class in matplotlib.mathtext), 971
hsv() (in module matplotlib.pyplot), 1118
hsv_to_rgb() (in module matplotlib.colors), 912

I
id (matplotlib.cbook.Scheduler attribute), 872
identity() (in module matplotlib.mlab), 995
identity() (matplotlib.transforms.Affine2D static

method), 392
IdentityTransform (class in matplotlib.transforms),

393
Idle (class in matplotlib.cbook), 871
idle_event() (matplotlib.backend_bases.FigureCanvasBase

method), 843
IdleEvent (class in matplotlib.backend_bases), 851
idlelock (matplotlib.cbook.Scheduler attribute), 872
ignore() (matplotlib.transforms.Bbox method), 385
ignore() (matplotlib.widgets.AxesWidget method),

1227
ignore() (matplotlib.widgets.LassoSelector method),

1230

ignore() (matplotlib.widgets.RectangleSelector
method), 1233

ignore() (matplotlib.widgets.SpanSelector method),
1235

illegal_s (matplotlib.dates.DateFormatter attribute),
918

ImageGrid (class in
mpl_toolkits.axes_grid.axes_grid), 460

ImageMagickBase (class in matplotlib.animation),
594

ImageMagickFileWriter (class in mat-
plotlib.animation), 594

ImageMagickWriter (class in matplotlib.animation),
594

imageObject() (mat-
plotlib.backends.backend_pdf.PdfFile
method), 862

imread() (in module matplotlib.pyplot), 1118
imsave() (in module matplotlib.pyplot), 1119
imshow() (in module matplotlib.pyplot), 1119
imshow() (matplotlib.axes.Axes method), 763
in_axes() (matplotlib.axes.Axes method), 765
inaxes (matplotlib.backend_bases.LocationEvent at-

tribute), 852
inaxes (matplotlib.backend_bases.MouseEvent at-

tribute), 853
IndexDateFormatter (class in matplotlib.dates), 918
IndexLocator (class in matplotlib.ticker), 1206
infodict() (matplotlib.backends.backend_pdf.PdfPages

method), 863
init3d() (mpl_toolkits.mplot3d.axis3d.Axis method),

510
input_dims (matplotlib.transforms.Transform

attribute), 388
inside_poly() (in module matplotlib.mlab), 995
interpolated() (matplotlib.path.Path method), 1008
intersection() (matplotlib.transforms.BboxBase

static method), 382
intersects_bbox() (matplotlib.path.Path method),

1008
intersects_path() (matplotlib.path.Path method),

1008
interval (matplotlib.backend_bases.TimerBase at-

tribute), 859
intervalx (matplotlib.transforms.BboxBase at-

tribute), 383
intervaly (matplotlib.transforms.BboxBase at-

tribute), 383

Index 1271

Matplotlib, Release 1.3.1

inv_transform() (in module
mpl_toolkits.mplot3d.proj3d), 515

invalidate() (matplotlib.transforms.TransformNode
method), 381

inverse() (matplotlib.colors.BoundaryNorm
method), 906

inverse() (matplotlib.colors.LogNorm method), 910
inverse() (matplotlib.colors.NoNorm method), 910
inverse() (matplotlib.colors.Normalize method), 911
inverse() (matplotlib.colors.SymLogNorm method),

911
inverse_transformed() (mat-

plotlib.transforms.BboxBase method),
383

invert_ticklabel_direction()
(mpl_toolkits.axes_grid.axis_artist.AxisArtist
method), 461

invert_xaxis() (matplotlib.axes.Axes method), 765
invert_yaxis() (matplotlib.axes.Axes method), 765
invert_zaxis() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 496
inverted() (matplotlib.projections.polar.InvertedPolarTransform

method), 406
inverted() (matplotlib.projections.polar.PolarAxes.InvertedPolarTransform

method), 406
inverted() (matplotlib.projections.polar.PolarAxes.PolarTransform

method), 407
inverted() (matplotlib.projections.polar.PolarTransform

method), 411
inverted() (matplotlib.transforms.Affine2DBase

method), 391
inverted() (matplotlib.transforms.BlendedGenericTransform

method), 395
inverted() (matplotlib.transforms.CompositeGenericTransform

method), 396
inverted() (matplotlib.transforms.IdentityTransform

method), 394
inverted() (matplotlib.transforms.Transform

method), 388
InvertedPolarTransform (class in mat-

plotlib.projections.polar), 406
ioff() (in module matplotlib.pyplot), 1121
ion() (in module matplotlib.pyplot), 1121
is_alias() (matplotlib.artist.ArtistInspector method),

606
is_available() (mat-

plotlib.animation.MovieWriterRegistry
method), 597

is_closed_polygon() (in module matplotlib.mlab),
995

is_color_like() (in module matplotlib.colors), 912
is_dashed() (matplotlib.lines.Line2D method), 612
is_dropsub() (matplotlib.mathtext.Parser method),

976
is_figure_set() (matplotlib.artist.Artist method), 602
is_filled() (matplotlib.markers.MarkerStyle method),

963
is_first_col() (matplotlib.axes.SubplotBase method),

829
is_first_row() (matplotlib.axes.SubplotBase

method), 829
is_frame_like() (matplotlib.spines.Spine method),

1199
is_gray() (matplotlib.colors.Colormap method), 907
is_horizontal() (mat-

plotlib.collections.EventCollection
method), 894

is_last_col() (matplotlib.axes.SubplotBase method),
829

is_last_row() (matplotlib.axes.SubplotBase method),
829

is_math_text() (in module matplotlib.cbook), 876
is_math_text() (matplotlib.text.Text static method),

659
is_missing() (matplotlib.cbook.converter method),

874
is_numlike() (in module matplotlib.cbook), 876
is_numlike() (matplotlib.units.ConversionInterface

static method), 1226
is_opentype_cff_font() (in module mat-

plotlib.font_manager), 950
is_overunder() (matplotlib.mathtext.Parser method),

976
is_saving() (matplotlib.backend_bases.FigureCanvasBase

method), 843
is_scalar() (in module matplotlib.cbook), 876
is_scalar_or_string() (in module matplotlib.cbook),

876
is_separable (matplotlib.transforms.Transform at-

tribute), 388
is_sequence_of_strings() (in module mat-

plotlib.cbook), 876
is_slanted() (matplotlib.mathtext.Char method), 968
is_slanted() (matplotlib.mathtext.Parser method),

976
is_string_like() (in module matplotlib.cbook), 876

1272 Index

Matplotlib, Release 1.3.1

is_transform_set() (matplotlib.artist.Artist method),
602

is_unit() (matplotlib.transforms.BboxBase method),
383

is_writable_file_like() (in module matplotlib.cbook),
876

isAvailable() (matplotlib.animation.MovieWriter
class method), 597

iscolor() (in module mpl_toolkits.mplot3d.art3d),
514

ishold() (in module matplotlib.pyplot), 1121
ishold() (matplotlib.axes.Axes method), 765
isinteractive() (in module matplotlib.pyplot), 1121
isowner() (matplotlib.widgets.LockDraw method),

1230
ispower2() (in module matplotlib.mlab), 995
issubclass_safe() (in module matplotlib.cbook), 876
isvector() (in module matplotlib.mlab), 995
iter_segments() (matplotlib.path.Path method), 1008
iter_ticks() (matplotlib.axis.Axis method), 833
iterable() (in module matplotlib.cbook), 876

J
jet() (in module matplotlib.pyplot), 1121
join() (matplotlib.cbook.Grouper method), 871
joined() (matplotlib.cbook.Grouper method), 871
JPG, 1239
juggle_axes() (in module

mpl_toolkits.mplot3d.art3d), 514

K
Kern (class in matplotlib.mathtext), 971
kern() (matplotlib.mathtext.Hlist method), 971
key_press() (matplotlib.backend_bases.FigureManagerBase

method), 848
key_press_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 843

key_press_handler() (in module mat-
plotlib.backend_bases), 860

key_press_handler_id (mat-
plotlib.backend_bases.FigureManagerBase
attribute), 848

key_release_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 843

KeyEvent (class in matplotlib.backend_bases), 852
kwdoc() (in module matplotlib.artist), 607

L
l1norm() (in module matplotlib.mlab), 995
l2norm() (in module matplotlib.mlab), 995
label_minor() (matplotlib.ticker.LogFormatter

method), 1205
label_outer() (matplotlib.axes.SubplotBase method),

829
LABELPAD (mpl_toolkits.axes_grid.axis_artist.AxisArtist

attribute), 461
Lasso (class in matplotlib.widgets), 1229
LassoSelector (class in matplotlib.widgets), 1230
last() (matplotlib.mlab.FIFOBuffer method), 985
lastevent (matplotlib.backend_bases.LocationEvent

attribute), 852
leave_notify_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 843

Legend (class in matplotlib.legend), 957
legend() (in module matplotlib.pyplot), 1121
legend() (matplotlib.axes.Axes method), 765
legend() (matplotlib.figure.Figure method), 938
less_simple_linear_interpolation() (in module mat-

plotlib.mlab), 995
levypdf() (in module matplotlib.mlab), 996
LightSource (class in matplotlib.colors), 907
limit_range_for_scale() (matplotlib.axis.Axis

method), 833
limit_range_for_scale() (matplotlib.scale.LogScale

method), 403
limit_range_for_scale() (matplotlib.scale.ScaleBase

method), 404
Line2D (class in matplotlib.lines), 608
line2d() (in module mpl_toolkits.mplot3d.proj3d),

515
line2d_dist() (in module

mpl_toolkits.mplot3d.proj3d), 515
line2d_seg_dist() (in module

mpl_toolkits.mplot3d.proj3d), 515
Line3D (class in mpl_toolkits.mplot3d.art3d), 511
Line3DCollection (class in

mpl_toolkits.mplot3d.art3d), 511
line_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 514
line_collection_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 514
linear_spine() (matplotlib.spines.Spine class

method), 1199

Index 1273

Matplotlib, Release 1.3.1

LinearLocator (class in matplotlib.ticker), 1207
LinearScale (class in matplotlib.scale), 403
LinearSegmentedColormap (class in mat-

plotlib.colors), 908
LinearTriInterpolator (class in matplotlib.tri), 1214
LineCollection (class in matplotlib.collections), 894
lineStyles (matplotlib.lines.Line2D attribute), 612
LINETO (matplotlib.path.Path attribute), 1006
List (class in matplotlib.mathtext), 972
list() (matplotlib.animation.MovieWriterRegistry

method), 597
list_fonts() (in module matplotlib.font_manager),

950
ListedColormap (class in matplotlib.colors), 909
listFiles() (in module matplotlib.cbook), 876
locally_modified_subplot_params() (mat-

plotlib.gridspec.GridSpec method), 953
locate() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 457
LocationEvent (class in matplotlib.backend_bases),

852
Locator (class in matplotlib.ticker), 1206
locator (matplotlib.axis.Ticker attribute), 836
locator_params() (in module matplotlib.pyplot),

1124
locator_params() (matplotlib.axes.Axes method),

768
locator_params() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 496
LockDraw (class in matplotlib.widgets), 1230
locked() (matplotlib.widgets.LockDraw method),

1230
locs (matplotlib.ticker.Formatter attribute), 1203
log2() (in module matplotlib.mlab), 996
LogFormatter (class in matplotlib.ticker), 1205
LogFormatterExponent (class in matplotlib.ticker),

1205
LogFormatterMathtext (class in matplotlib.ticker),

1205
LogLocator (class in matplotlib.ticker), 1207
loglog() (in module matplotlib.pyplot), 1125
loglog() (matplotlib.axes.Axes method), 768
LogNorm (class in matplotlib.colors), 909
LogScale (class in matplotlib.scale), 403
logspace() (in module matplotlib.mlab), 996
longest_contiguous_ones() (in module mat-

plotlib.mlab), 996
longest_ones() (in module matplotlib.mlab), 996

M
main() (matplotlib.mathtext.Parser method), 977
mainloop() (matplotlib.backend_bases.ShowBase

method), 859
make_axes() (in module matplotlib.colorbar), 903
make_axes_gridspec() (in module mat-

plotlib.colorbar), 904
make_compound_path() (matplotlib.path.Path class

method), 1009
make_compound_path_from_polys() (mat-

plotlib.path.Path class method), 1009
makeMappingArray() (in module matplotlib.colors),

912
margins() (in module matplotlib.pyplot), 1127
margins() (matplotlib.axes.Axes method), 770
margins() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 496
markerObject() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 862

markers (matplotlib.lines.Line2D attribute), 612
markers (matplotlib.markers.MarkerStyle attribute),

963
MarkerStyle (class in matplotlib.markers), 962
math() (matplotlib.mathtext.Parser method), 977
math_string() (matplotlib.mathtext.Parser method),

977
math_to_image() (in module matplotlib.mathtext),

980
MathtextBackend (class in matplotlib.mathtext), 973
MathtextBackendAgg (class in matplotlib.mathtext),

973
MathtextBackendBitmap (class in mat-

plotlib.mathtext), 974
MathtextBackendCairo (class in mat-

plotlib.mathtext), 974
MathtextBackendPath (class in matplotlib.mathtext),

974
MathtextBackendPdf (class in matplotlib.mathtext),

974
MathtextBackendPs (class in matplotlib.mathtext),

974
MathtextBackendSvg (class in matplotlib.mathtext),

975
MathTextParser (class in matplotlib.mathtext), 972
MathTextWarning, 973
matplotlib.afm (module), 587

1274 Index

Matplotlib, Release 1.3.1

matplotlib.animation (module), 591
matplotlib.artist (module), 599
matplotlib.axes (module), 665
matplotlib.axis (module), 831
matplotlib.backend_bases (module), 841
matplotlib.backends.backend_pdf (module), 862
matplotlib.backends.backend_qt4agg (module), 860
matplotlib.backends.backend_wxagg (module), 861
matplotlib.cbook (module), 869
matplotlib.cm (module), 881
matplotlib.collections (module), 885
matplotlib.colorbar (module), 901
matplotlib.colors (module), 905
matplotlib.dates (module), 915
matplotlib.dviread (module), 864
matplotlib.figure (module), 925
matplotlib.font_manager (module), 945
matplotlib.fontconfig_pattern (module), 950
matplotlib.gridspec (module), 953
matplotlib.legend (module), 957
matplotlib.lines (module), 608
matplotlib.markers (module), 961
matplotlib.mathtext (module), 967
matplotlib.mlab (module), 983
matplotlib.patches (module), 616
matplotlib.path (module), 1005
matplotlib.projections (module), 405
matplotlib.projections.polar (module), 406
matplotlib.pyplot (module), 1013
matplotlib.rcParams (in module matplotlib), 583
matplotlib.sankey (module), 1189
matplotlib.scale (module), 403
matplotlib.sphinxext.plot_directive (module), 367
matplotlib.spines (module), 1197
matplotlib.text (module), 653
matplotlib.ticker (module), 1201
matplotlib.tight_layout (module), 1211
matplotlib.transforms (module), 379
matplotlib.tri (module), 1213
matplotlib.type1font (module), 867
matplotlib.units (module), 1225
matplotlib.widgets (module), 1227
matplotlib_fname() (in module matplotlib), 584
MatplotlibDeprecationWarning, 871
matrix_from_values() (mat-

plotlib.transforms.Affine2DBase static
method), 391

matshow() (in module matplotlib.pyplot), 1128

matshow() (matplotlib.axes.Axes method), 771
max (matplotlib.transforms.BboxBase attribute), 383
maxdict (class in matplotlib.cbook), 876
MaxHeight (class in

mpl_toolkits.axes_grid.axes_size), 455
MaxNLocator (class in matplotlib.ticker), 1208
MAXTICKS (matplotlib.ticker.Locator attribute),

1206
MaxWidth (class in

mpl_toolkits.axes_grid.axes_size), 455
MemoryMonitor (class in matplotlib.cbook), 871
MencoderBase (class in matplotlib.animation), 595
MencoderFileWriter (class in matplotlib.animation),

595
MencoderWriter (class in matplotlib.animation), 595
MicrosecondLocator (class in matplotlib.dates), 921
min (matplotlib.transforms.BboxBase attribute), 383
minorticks_off() (in module matplotlib.pyplot), 1128
minorticks_off() (matplotlib.axes.Axes method), 773
minorticks_on() (in module matplotlib.pyplot), 1128
minorticks_on() (matplotlib.axes.Axes method), 773
MinuteLocator (class in matplotlib.dates), 921
minutes() (in module matplotlib.dates), 923
mkdirs() (in module matplotlib.cbook), 877
mod() (in module mpl_toolkits.mplot3d.proj3d), 515
MonthLocator (class in matplotlib.dates), 920
motion_notify_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 844

mouse_init() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 496

mouse_move() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 854

MouseEvent (class in matplotlib.backend_bases),
853

movavg() (in module matplotlib.mlab), 996
MOVE (matplotlib.backend_bases.Cursors at-

tribute), 841
move_from_center() (in module

mpl_toolkits.mplot3d.axis3d), 511
MOVETO (matplotlib.path.Path attribute), 1006
MovieWriter (class in matplotlib.animation), 596
MovieWriterRegistry (class in mat-

plotlib.animation), 597
mpl_connect() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 844

Index 1275

Matplotlib, Release 1.3.1

mpl_disconnect() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 844

mpl_toolkits.axes_grid.axes_size (module), 455
mpl_toolkits.mplot3d.art3d (module), 511
mpl_toolkits.mplot3d.axes3d (module), 490
mpl_toolkits.mplot3d.axis3d (module), 510
mpl_toolkits.mplot3d.proj3d (module), 515
MPLCONFIGDIR, 328, 331
mplDeprecation (in module matplotlib.cbook), 877
MultiCursor (class in matplotlib.widgets), 1231
MultipleLocator (class in matplotlib.ticker), 1208
mutated() (matplotlib.transforms.Bbox method), 385
mutatedx() (matplotlib.transforms.Bbox method),

385
mutatedy() (matplotlib.transforms.Bbox method),

385
mx2num() (in module matplotlib.dates), 917

N
Name (class in matplotlib.backends.backend_pdf),

862
name (matplotlib.axes.Axes attribute), 773
name (mpl_toolkits.mplot3d.axes3d.Axes3D at-

tribute), 497
NavigationToolbar2 (class in mat-

plotlib.backend_bases), 853
NavigationToolbar2QTAgg (class in mat-

plotlib.backends.backend_qt4agg), 860
NavigationToolbar2WxAgg (class in mat-

plotlib.backends.backend_wxagg), 861
NegFil (class in matplotlib.mathtext), 975
NegFill (class in matplotlib.mathtext), 975
NegFilll (class in matplotlib.mathtext), 975
new_axes() (matplotlib.widgets.SpanSelector

method), 1235
new_figure_manager() (in module mat-

plotlib.backends.backend_pdf), 864
new_figure_manager() (in module mat-

plotlib.backends.backend_qt4agg), 861
new_figure_manager() (in module mat-

plotlib.backends.backend_wxagg), 861
new_figure_manager_given_figure() (in module

matplotlib.backends.backend_pdf), 864
new_figure_manager_given_figure() (in module

matplotlib.backends.backend_qt4agg), 861
new_figure_manager_given_figure() (in module

matplotlib.backends.backend_wxagg), 862

new_frame_seq() (matplotlib.animation.Animation
method), 592

new_frame_seq() (mat-
plotlib.animation.FuncAnimation method),
594

new_gc() (matplotlib.backend_bases.RendererBase
method), 858

new_horizontal() (mpl_toolkits.axes_grid.axes_divider.AxesDivider
method), 459

new_locator() (mpl_toolkits.axes_grid.axes_divider.Divider
method), 457

new_saved_frame_seq() (mat-
plotlib.animation.Animation method),
592

new_saved_frame_seq() (mat-
plotlib.animation.FuncAnimation method),
594

new_subplotspec() (mat-
plotlib.gridspec.GridSpecBase method),
954

new_timer() (matplotlib.backend_bases.FigureCanvasBase
method), 845

new_vertical() (mpl_toolkits.axes_grid.axes_divider.AxesDivider
method), 459

no_norm() (in module matplotlib.colors), 912
Node (class in matplotlib.mathtext), 975
non_math() (matplotlib.mathtext.Parser method),

977
NonGuiException, 855
NoNorm (class in matplotlib.colors), 910
nonsingular() (in module matplotlib.transforms), 398
nonsingular() (matplotlib.dates.AutoDateLocator

method), 920
nonsingular() (matplotlib.dates.DateLocator

method), 918
norm (matplotlib.cm.ScalarMappable attribute), 882
norm_angle() (in module

mpl_toolkits.mplot3d.art3d), 514
norm_flat() (in module matplotlib.mlab), 996
norm_text_angle() (in module

mpl_toolkits.mplot3d.art3d), 514
Normalize (class in matplotlib.colors), 910
normalize() (in module matplotlib.colors), 912
normpdf() (in module matplotlib.mlab), 996
Null (class in matplotlib.cbook), 871
null() (matplotlib.transforms.Bbox static method),

385
NullFormatter (class in matplotlib.ticker), 1204

1276 Index

Matplotlib, Release 1.3.1

NullLocator (class in matplotlib.ticker), 1207
num2date() (in module matplotlib.dates), 917
num2epoch() (in module matplotlib.dates), 917
NUM_VERTICES_FOR_CODE (mat-

plotlib.path.Path attribute), 1006
numpy, 1239
numvertices (matplotlib.patches.RegularPolygon at-

tribute), 648

O
offset_line() (in module matplotlib.mlab), 996
OffsetFrom (class in matplotlib.text), 656
OFFSETTEXTPAD (matplotlib.axis.Axis attribute),

831
on_changed() (matplotlib.widgets.Slider method),

1234
on_clicked() (matplotlib.widgets.Button method),

1228
on_clicked() (matplotlib.widgets.CheckButtons

method), 1228
on_clicked() (matplotlib.widgets.RadioButtons

method), 1231
on_mappable_changed() (mat-

plotlib.colorbar.Colorbar method), 901
onetrue() (in module matplotlib.cbook), 877
onHilite() (matplotlib.backend_bases.FigureCanvasBase

method), 845
onmove() (matplotlib.widgets.Cursor method), 1229
onmove() (matplotlib.widgets.Lasso method), 1229
onmove() (matplotlib.widgets.LassoSelector

method), 1230
onmove() (matplotlib.widgets.MultiCursor method),

1231
onmove() (matplotlib.widgets.RectangleSelector

method), 1233
onmove() (matplotlib.widgets.SpanSelector

method), 1235
onpick() (matplotlib.lines.VertexSelector method),

616
onpress() (matplotlib.widgets.LassoSelector

method), 1230
onrelease() (matplotlib.widgets.Lasso method), 1229
onrelease() (matplotlib.widgets.LassoSelector

method), 1230
onRemove() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 845

open_group() (mat-
plotlib.backend_bases.RendererBase
method), 858

Operator (class in mat-
plotlib.backends.backend_pdf), 862

operatorname() (matplotlib.mathtext.Parser
method), 977

option_image_nocomposite() (mat-
plotlib.backend_bases.RendererBase
method), 858

option_scale_image() (mat-
plotlib.backend_bases.RendererBase
method), 858

orientation (matplotlib.patches.RegularPolygon at-
tribute), 648

OSXInstalledFonts() (in module mat-
plotlib.font_manager), 949

output_args (matplotlib.animation.FFMpegBase at-
tribute), 593

output_args (matplotlib.animation.ImageMagickBase
attribute), 594

output_args (matplotlib.animation.MencoderBase
attribute), 595

output_dims (matplotlib.transforms.Transform at-
tribute), 388

over() (in module matplotlib.pyplot), 1128
overlaps() (matplotlib.transforms.BboxBase

method), 383
overline() (matplotlib.mathtext.Parser method), 977

P
p0 (matplotlib.transforms.BboxBase attribute), 383
p1 (matplotlib.transforms.BboxBase attribute), 383
Padded (class in mpl_toolkits.axes_grid.axes_size),

455
padded() (matplotlib.transforms.BboxBase method),

383
paintEvent() (mat-

plotlib.backends.backend_qt4agg.FigureCanvasQTAgg
method), 860

pan() (matplotlib.axis.Axis method), 833
pan() (matplotlib.backend_bases.NavigationToolbar2

method), 854
pan() (matplotlib.ticker.Locator method), 1206
parse() (matplotlib.fontconfig_pattern.FontconfigPatternParser

method), 950
parse() (matplotlib.mathtext.MathTextParser

method), 972

Index 1277

Matplotlib, Release 1.3.1

parse() (matplotlib.mathtext.Parser method), 977
parse_afm() (in module matplotlib.afm), 588
Parser (class in matplotlib.mathtext), 975
Parser.State (class in matplotlib.mathtext), 975
parts (matplotlib.type1font.Type1Font attribute),

867, 868
pass_through (mat-

plotlib.transforms.TransformNode at-
tribute), 381

Patch (class in matplotlib.patches), 639
Patch3D (class in mpl_toolkits.mplot3d.art3d), 512
Patch3DCollection (class in

mpl_toolkits.mplot3d.art3d), 512
patch_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 514
patch_collection_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 514
PatchCollection (class in matplotlib.collections), 895
PATH, 55, 58, 59, 63
Path (class in matplotlib.path), 1005
path_in_path() (in module matplotlib.path), 1011
path_intersects_path() (in module matplotlib.path),

1011
path_length() (in module matplotlib.mlab), 996
path_to_3d_segment() (in module

mpl_toolkits.mplot3d.art3d), 514
PathCollection (class in matplotlib.collections), 896
PathPatch (class in matplotlib.patches), 643
PathPatch3D (class in mpl_toolkits.mplot3d.art3d),

512
pathpatch_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 514
paths_to_3d_segments() (in module

mpl_toolkits.mplot3d.art3d), 514
pause() (in module matplotlib.pyplot), 1128
PCA (class in matplotlib.mlab), 987
pchanged() (matplotlib.artist.Artist method), 602
pcolor() (in module matplotlib.pyplot), 1128
pcolor() (matplotlib.axes.Axes method), 773
pcolorfast() (matplotlib.axes.Axes method), 776
pcolormesh() (in module matplotlib.pyplot), 1131
pcolormesh() (matplotlib.axes.Axes method), 777
PDF, 1239
PdfFile (class in matplotlib.backends.backend_pdf),

862
PdfPages (class in mat-

plotlib.backends.backend_pdf), 863

pdfRepr() (in module mat-
plotlib.backends.backend_pdf), 864

persp_transformation() (in module
mpl_toolkits.mplot3d.proj3d), 515

pick() (matplotlib.artist.Artist method), 602
pick() (matplotlib.axes.Axes method), 779
pick() (matplotlib.backend_bases.FigureCanvasBase

method), 845
pick_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 845

pickable() (matplotlib.artist.Artist method), 602
PickEvent (class in matplotlib.backend_bases), 855
pickle_dump() (in module mat-

plotlib.font_manager), 950
pickle_load() (in module matplotlib.font_manager),

950
pie() (in module matplotlib.pyplot), 1133
pie() (matplotlib.axes.Axes method), 779
pieces() (in module matplotlib.cbook), 877
pink() (in module matplotlib.pyplot), 1134
plot() (in module matplotlib.pyplot), 1134
plot() (matplotlib.axes.Axes method), 780
plot() (matplotlib.cbook.MemoryMonitor method),

871
plot() (mpl_toolkits.mplot3d.Axes3D method), 468
plot() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 497
plot3D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 497
plot_date() (in module matplotlib.pyplot), 1137
plot_date() (matplotlib.axes.Axes method), 783
plot_surface() (mpl_toolkits.mplot3d.Axes3D

method), 471
plot_surface() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 497
plot_trisurf() (mpl_toolkits.mplot3d.Axes3D

method), 474
plot_trisurf() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 497
plot_wireframe() (mpl_toolkits.mplot3d.Axes3D

method), 470
plot_wireframe() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 501
plotfile() (in module matplotlib.pyplot), 1139
plotting() (in module matplotlib.pyplot), 539
PNG, 1239
point_in_path() (in module matplotlib.path), 1011

1278 Index

Matplotlib, Release 1.3.1

point_in_path_collection() (in module mat-
plotlib.path), 1012

POINTER (matplotlib.backend_bases.Cursors at-
tribute), 841

points_in_path() (in module matplotlib.path), 1012
points_to_pixels() (mat-

plotlib.backend_bases.RendererBase
method), 858

polar() (in module matplotlib.pyplot), 1140
PolarAffine (class in matplotlib.projections.polar),

406
PolarAxes (class in matplotlib.projections.polar),

406
PolarAxes.InvertedPolarTransform (class in mat-

plotlib.projections.polar), 406
PolarAxes.PolarAffine (class in mat-

plotlib.projections.polar), 407
PolarAxes.PolarTransform (class in mat-

plotlib.projections.polar), 407
PolarAxes.RadialLocator (class in mat-

plotlib.projections.polar), 408
PolarAxes.ThetaFormatter (class in mat-

plotlib.projections.polar), 408
PolarTransform (class in mat-

plotlib.projections.polar), 411
Poly3DCollection (class in

mpl_toolkits.mplot3d.art3d), 512
poly_below() (in module matplotlib.mlab), 997
poly_between() (in module matplotlib.mlab), 997
poly_collection_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 514
PolyCollection (class in matplotlib.collections), 896
Polygon (class in matplotlib.patches), 644
pop_state() (matplotlib.mathtext.Parser method),

977
popall() (in module matplotlib.cbook), 877
pprint_getters() (matplotlib.artist.ArtistInspector

method), 606
pprint_setters() (matplotlib.artist.ArtistInspector

method), 606
pprint_setters_rest() (mat-

plotlib.artist.ArtistInspector method),
606

pprint_val() (matplotlib.ticker.LogFormatter
method), 1205

pprint_val() (matplotlib.ticker.ScalarFormatter
method), 1204

prctile() (in module matplotlib.mlab), 997

prctile_rank() (in module matplotlib.mlab), 997
prepca() (in module matplotlib.mlab), 997
press() (matplotlib.backend_bases.NavigationToolbar2

method), 854
press() (matplotlib.widgets.RectangleSelector

method), 1233
press() (matplotlib.widgets.SpanSelector method),

1235
press_pan() (matplotlib.backend_bases.NavigationToolbar2

method), 854
press_zoom() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 854

print_bmp() (matplotlib.backend_bases.FigureCanvasBase
method), 845

print_cycles() (in module matplotlib.cbook), 877
print_eps() (matplotlib.backend_bases.FigureCanvasBase

method), 845
print_figure() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 845

print_figure() (mat-
plotlib.backends.backend_qt4agg.FigureCanvasQTAgg
method), 860

print_figure() (mat-
plotlib.backends.backend_wxagg.FigureCanvasWxAgg
method), 861

print_jpeg() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_jpg() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_pdf() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_pgf() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_png() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_ps() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_raw() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_rgba() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_svg() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_svgz() (matplotlib.backend_bases.FigureCanvasBase
method), 846

Index 1279

Matplotlib, Release 1.3.1

print_tif() (matplotlib.backend_bases.FigureCanvasBase
method), 846

print_tiff() (matplotlib.backend_bases.FigureCanvasBase
method), 846

prism() (in module matplotlib.pyplot), 1140
process() (matplotlib.cbook.CallbackRegistry

method), 870
process_projection_requirements() (in module mat-

plotlib.projections), 405
process_selected() (matplotlib.lines.VertexSelector

method), 616
process_value() (matplotlib.colors.Normalize static

method), 911
proj_points() (in module

mpl_toolkits.mplot3d.proj3d), 515
proj_trans_clip_points() (in module

mpl_toolkits.mplot3d.proj3d), 515
proj_trans_points() (in module

mpl_toolkits.mplot3d.proj3d), 515
proj_transform() (in module

mpl_toolkits.mplot3d.proj3d), 515
proj_transform_clip() (in module

mpl_toolkits.mplot3d.proj3d), 515
proj_transform_vec() (in module

mpl_toolkits.mplot3d.proj3d), 515
proj_transform_vec_clip() (in module

mpl_toolkits.mplot3d.proj3d), 516
project() (matplotlib.mlab.PCA method), 987
projection_factory() (in module mat-

plotlib.projections), 405
ProjectionRegistry (class in matplotlib.projections),

405
prop (matplotlib.type1font.Type1Font attribute),

867, 868
properties() (matplotlib.artist.Artist method), 602
properties() (matplotlib.artist.ArtistInspector

method), 606
PS, 1239
psd() (in module matplotlib.mlab), 997
psd() (in module matplotlib.pyplot), 1140
psd() (matplotlib.axes.Axes method), 785
PsfontsMap (class in matplotlib.dviread), 865
push() (matplotlib.cbook.Stack method), 873
push_current() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 854

push_state() (matplotlib.mathtext.Parser method),
977

pygtk, 1239
pyqt, 1239
python, 1239
PYTHONPATH, 331, 338
pytz, 1239

Q
Qt, 1239
Qt4, 1239
quad2cubic() (in module matplotlib.mlab), 998
QuadMesh (class in matplotlib.collections), 897
quiver() (in module matplotlib.pyplot), 1143
quiver() (matplotlib.axes.Axes method), 788
quiverkey() (in module matplotlib.pyplot), 1145
quiverkey() (matplotlib.axes.Axes method), 790

R
RadialLocator (class in mat-

plotlib.projections.polar), 412
RadioButtons (class in matplotlib.widgets), 1231
radius (matplotlib.patches.Circle attribute), 626
radius (matplotlib.patches.RegularPolygon at-

tribute), 649
raise_if_exceeds() (matplotlib.ticker.Locator

method), 1206
raster graphics, 1239
rc() (in module matplotlib), 583
rc() (in module matplotlib.pyplot), 1146
rc_context (class in matplotlib), 585
rc_context() (in module matplotlib.pyplot), 1147
rc_params() (in module matplotlib), 584
rc_params_from_file() (in module matplotlib), 585
rcdefaults() (in module matplotlib.pyplot), 1147
RcParams (class in matplotlib), 584
readonly (matplotlib.path.Path attribute), 1009
rec2csv() (in module matplotlib.mlab), 998
rec2txt() (in module matplotlib.mlab), 999
rec_append_fields() (in module matplotlib.mlab),

999
rec_drop_fields() (in module matplotlib.mlab), 999
rec_groupby() (in module matplotlib.mlab), 999
rec_join() (in module matplotlib.mlab), 1000
rec_keep_fields() (in module matplotlib.mlab), 1000
rec_summarize() (in module matplotlib.mlab), 1000
recache() (matplotlib.lines.Line2D method), 612
recache_always() (matplotlib.lines.Line2D method),

612
recs_join() (in module matplotlib.mlab), 1000

1280 Index

Matplotlib, Release 1.3.1

Rectangle (class in matplotlib.patches), 646
RectangleSelector (class in matplotlib.widgets),

1232
recursive_remove() (in module matplotlib.cbook),

877
redraw_in_frame() (matplotlib.axes.Axes method),

791
Reference (class in mat-

plotlib.backends.backend_pdf), 863
refine_field() (matplotlib.tri.UniformTriRefiner

method), 1219
refine_triangulation() (mat-

plotlib.tri.UniformTriRefiner method),
1220

refresh() (matplotlib.dates.AutoDateLocator
method), 920

refresh() (matplotlib.ticker.Locator method), 1206
register() (matplotlib.animation.MovieWriterRegistry

method), 597
register() (matplotlib.mlab.FIFOBuffer method), 985
register() (matplotlib.projections.ProjectionRegistry

method), 405
register_axis() (matplotlib.spines.Spine method),

1199
register_backend() (in module mat-

plotlib.backend_bases), 860
register_cmap() (in module matplotlib.cm), 883
register_scale() (in module matplotlib.scale), 404
Registry (class in matplotlib.units), 1226
RegularPolyCollection (class in mat-

plotlib.collections), 898
RegularPolygon (class in matplotlib.patches), 647
relativedelta (class in matplotlib.dates), 922
release() (matplotlib.backend_bases.NavigationToolbar2

method), 854
release() (matplotlib.widgets.LockDraw method),

1230
release() (matplotlib.widgets.RectangleSelector

method), 1233
release() (matplotlib.widgets.SpanSelector method),

1235
release_mouse() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 847

release_pan() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 855

release_zoom() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 855

relim() (matplotlib.axes.Axes method), 791
remove() (matplotlib.artist.Artist method), 602
remove() (matplotlib.cbook.Stack method), 873
remove() (matplotlib.figure.AxesStack method), 925
remove_callback() (matplotlib.artist.Artist method),

602
remove_callback() (mat-

plotlib.backend_bases.TimerBase method),
859

render() (matplotlib.mathtext.Accent method), 967
render() (matplotlib.mathtext.Box method), 968
render() (matplotlib.mathtext.Char method), 968
render() (matplotlib.mathtext.Node method), 975
render() (matplotlib.mathtext.Rule method), 978
render_filled_rect() (mat-

plotlib.mathtext.MathtextBackend
method), 973

render_glyph() (matplotlib.mathtext.Fonts method),
970

render_glyph() (mat-
plotlib.mathtext.MathtextBackend
method), 973

render_glyph() (mat-
plotlib.mathtext.MathtextBackendAgg
method), 973

render_glyph() (mat-
plotlib.mathtext.MathtextBackendCairo
method), 974

render_glyph() (mat-
plotlib.mathtext.MathtextBackendPath
method), 974

render_glyph() (mat-
plotlib.mathtext.MathtextBackendPdf
method), 974

render_glyph() (mat-
plotlib.mathtext.MathtextBackendPs
method), 975

render_glyph() (mat-
plotlib.mathtext.MathtextBackendSvg
method), 975

render_rect_filled() (matplotlib.mathtext.Fonts
method), 970

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendAgg
method), 973

Index 1281

Matplotlib, Release 1.3.1

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendCairo
method), 974

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendPath
method), 974

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendPdf
method), 974

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendPs
method), 975

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendSvg
method), 975

RendererBase (class in matplotlib.backend_bases),
855

report() (matplotlib.cbook.MemoryMonitor
method), 871

report_memory() (in module matplotlib.cbook), 877
required_group() (matplotlib.mathtext.Parser

method), 977
reserveObject() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 862

reset() (matplotlib.widgets.Slider method), 1234
reset_position() (matplotlib.axes.Axes method), 791
reset_ticks() (matplotlib.axis.Axis method), 833
resize() (matplotlib.backend_bases.FigureCanvasBase

method), 847
resize() (matplotlib.backend_bases.FigureManagerBase

method), 848
resize_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 847

ResizeEvent (class in matplotlib.backend_bases),
858

restore() (matplotlib.backend_bases.GraphicsContextBase
method), 850

restrict_dict() (in module matplotlib.cbook), 877
revcmap() (in module matplotlib.cm), 883
reverse_dict() (in module matplotlib.cbook), 877
rgb2hex() (in module matplotlib.colors), 912
rgb_to_hsv() (in module matplotlib.colors), 913
rgrids() (in module matplotlib.pyplot), 1147
RingBuffer (class in matplotlib.cbook), 872
rk4() (in module matplotlib.mlab), 1000
rms_flat() (in module matplotlib.mlab), 1001

rot_x() (in module mpl_toolkits.mplot3d.proj3d),
516

rotate() (matplotlib.transforms.Affine2D method),
392

rotate_around() (matplotlib.transforms.Affine2D
method), 392

rotate_axes() (in module
mpl_toolkits.mplot3d.art3d), 515

rotate_deg() (matplotlib.transforms.Affine2D
method), 392

rotate_deg_around() (mat-
plotlib.transforms.Affine2D method),
393

rotated() (matplotlib.transforms.BboxBase method),
383

rrule (class in matplotlib.dates), 922
RRuleLocator (class in matplotlib.dates), 919
Rule (class in matplotlib.mathtext), 978
run() (matplotlib.cbook.Idle method), 871
run() (matplotlib.cbook.Timeout method), 873

S
safe_isinf() (in module matplotlib.mlab), 1001
safe_isnan() (in module matplotlib.mlab), 1001
safe_masked_invalid() (in module mat-

plotlib.cbook), 877
safezip() (in module matplotlib.cbook), 877
Sankey (class in matplotlib.sankey), 1189
save() (matplotlib.animation.Animation method),

592
save_figure() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 855

savefig() (in module matplotlib.pyplot), 1148
savefig() (matplotlib.backends.backend_pdf.PdfPages

method), 863
savefig() (matplotlib.figure.Figure method), 939
saving() (matplotlib.animation.MovieWriter

method), 597
sca() (in module matplotlib.pyplot), 1149
sca() (matplotlib.figure.Figure method), 940
ScalarFormatter (class in matplotlib.ticker), 1204
ScalarMappable (class in matplotlib.cm), 881
scale() (matplotlib.transforms.Affine2D method),

393
scale_factors (matplotlib.tri.TriAnalyzer attribute),

1222
scale_factory() (in module matplotlib.scale), 405

1282 Index

Matplotlib, Release 1.3.1

ScaleBase (class in matplotlib.scale), 403
Scaled (class in mpl_toolkits.axes_grid.axes_size),

455
scaled() (matplotlib.colors.Normalize method), 911
ScaledTranslation (class in matplotlib.transforms),

398
scatter() (in module matplotlib.pyplot), 1149
scatter() (matplotlib.axes.Axes method), 791
scatter() (mpl_toolkits.mplot3d.Axes3D method),

469
scatter() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 501
scatter3D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 502
Scheduler (class in matplotlib.cbook), 872
sci() (in module matplotlib.pyplot), 1150
score_family() (mat-

plotlib.font_manager.FontManager
method), 946

score_size() (matplotlib.font_manager.FontManager
method), 946

score_stretch() (mat-
plotlib.font_manager.FontManager
method), 946

score_style() (mat-
plotlib.font_manager.FontManager
method), 946

score_variant() (mat-
plotlib.font_manager.FontManager
method), 946

score_weight() (mat-
plotlib.font_manager.FontManager
method), 946

scroll_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 847

SecondLocator (class in matplotlib.dates), 921
seconds() (in module matplotlib.dates), 923
segment_hits() (in module matplotlib.lines), 616
segments_intersect() (in module matplotlib.mlab),

1001
SELECT_REGION (mat-

plotlib.backend_bases.Cursors attribute),
841

semilogx() (in module matplotlib.pyplot), 1150
semilogx() (matplotlib.axes.Axes method), 793
semilogy() (in module matplotlib.pyplot), 1152
semilogy() (matplotlib.axes.Axes method), 794

set() (matplotlib.artist.Artist method), 602
set() (matplotlib.transforms.Affine2D method), 393
set() (matplotlib.transforms.Bbox method), 385
set() (matplotlib.transforms.TransformWrapper

method), 390
set_3d_properties() (mpl_toolkits.mplot3d.art3d.Line3D

method), 511
set_3d_properties() (mpl_toolkits.mplot3d.art3d.Patch3D

method), 512
set_3d_properties() (mpl_toolkits.mplot3d.art3d.Patch3DCollection

method), 512
set_3d_properties() (mpl_toolkits.mplot3d.art3d.PathPatch3D

method), 512
set_3d_properties() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
set_3d_properties() (mpl_toolkits.mplot3d.art3d.Text3D

method), 514
set_aa() (matplotlib.lines.Line2D method), 612
set_aa() (matplotlib.patches.Patch method), 642
set_active() (matplotlib.widgets.RectangleSelector

method), 1233
set_adjustable() (matplotlib.axes.Axes method), 796
set_agg_filter() (matplotlib.artist.Artist method), 602
set_alpha() (matplotlib.artist.Artist method), 602
set_alpha() (matplotlib.backend_bases.GraphicsContextBase

method), 850
set_alpha() (matplotlib.collections.Collection

method), 889
set_alpha() (matplotlib.colorbar.ColorbarBase

method), 902
set_alpha() (matplotlib.patches.Patch method), 642
set_anchor() (matplotlib.axes.Axes method), 796
set_anchor() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 457
set_animated() (matplotlib.artist.Artist method), 603
set_annotation_clip() (mat-

plotlib.patches.ConnectionPatch method),
629

set_antialiased() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 850

set_antialiased() (matplotlib.collections.Collection
method), 889

set_antialiased() (matplotlib.lines.Line2D method),
612

set_antialiased() (matplotlib.patches.Patch method),
642

Index 1283

Matplotlib, Release 1.3.1

set_antialiaseds() (matplotlib.collections.Collection
method), 889

set_array() (matplotlib.cm.ScalarMappable method),
882

set_arrowstyle() (mat-
plotlib.patches.FancyArrowPatch method),
636

set_aspect() (matplotlib.axes.Axes method), 796
set_aspect() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 457
set_autoscale_on() (matplotlib.axes.Axes method),

797
set_autoscale_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 502
set_autoscalex_on() (matplotlib.axes.Axes method),

797
set_autoscaley_on() (matplotlib.axes.Axes method),

797
set_autoscalez_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 502
set_axes() (matplotlib.artist.Artist method), 603
set_axes() (matplotlib.lines.Line2D method), 612
set_axes_locator() (matplotlib.axes.Axes method),

797
set_axis() (matplotlib.dates.AutoDateLocator

method), 920
set_axis() (matplotlib.dates.MicrosecondLocator

method), 921
set_axis() (matplotlib.ticker.TickHelper method),

1203
set_axis_bgcolor() (matplotlib.axes.Axes method),

797
set_axis_direction() (mpl_toolkits.axes_grid.axis_artist.AxisArtist

method), 461
set_axis_direction() (mpl_toolkits.axes_grid.axis_artist.AxisLabel

method), 463
set_axis_direction() (mpl_toolkits.axes_grid.axis_artist.TickLabels

method), 463
set_axis_off() (matplotlib.axes.Axes method), 797
set_axis_off() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 503
set_axis_on() (matplotlib.axes.Axes method), 797
set_axis_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 503
set_axisbelow() (matplotlib.axes.Axes method), 797
set_axisbelow() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 503

set_axislabel_direction()
(mpl_toolkits.axes_grid.axis_artist.AxisArtist
method), 462

set_axisline_style() (mpl_toolkits.axes_grid.axis_artist.AxisArtist
method), 462

set_backgroundcolor() (matplotlib.text.Text
method), 659

set_bad() (matplotlib.colors.Colormap method), 907
set_bbox() (matplotlib.text.Text method), 659
set_bbox_to_anchor() (matplotlib.legend.Legend

method), 960
set_bounds() (matplotlib.patches.FancyBboxPatch

method), 639
set_bounds() (matplotlib.patches.Rectangle

method), 647
set_bounds() (matplotlib.spines.Spine method),

1199
set_bounds() (matplotlib.ticker.TickHelper method),

1203
set_boxstyle() (matplotlib.patches.FancyBboxPatch

method), 639
set_c() (matplotlib.lines.Line2D method), 612
set_canvas() (matplotlib.figure.Figure method), 940
set_canvas_size() (matplotlib.mathtext.Fonts

method), 970
set_canvas_size() (mat-

plotlib.mathtext.MathtextBackend
method), 973

set_canvas_size() (mat-
plotlib.mathtext.MathtextBackendAgg
method), 974

set_capstyle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 850

set_center() (matplotlib.patches.Wedge method),
650

set_children() (mat-
plotlib.transforms.TransformNode
method), 381

set_clim() (matplotlib.cm.ScalarMappable method),
882

set_clip_box() (matplotlib.artist.Artist method), 603
set_clip_on() (matplotlib.artist.Artist method), 603
set_clip_path() (matplotlib.artist.Artist method), 603
set_clip_path() (matplotlib.axis.Axis method), 833
set_clip_path() (matplotlib.axis.Tick method), 836
set_clip_path() (mat-

plotlib.backend_bases.GraphicsContextBase

1284 Index

Matplotlib, Release 1.3.1

method), 850
set_clip_rectangle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 850

set_closed() (matplotlib.patches.Polygon method),
645

set_cmap() (in module matplotlib.pyplot), 1153
set_cmap() (matplotlib.cm.ScalarMappable

method), 882
set_color() (matplotlib.collections.Collection

method), 889
set_color() (matplotlib.collections.LineCollection

method), 895
set_color() (matplotlib.lines.Line2D method), 612
set_color() (matplotlib.patches.Patch method), 642
set_color() (matplotlib.spines.Spine method), 1199
set_color() (matplotlib.text.Text method), 659
set_color_cycle() (matplotlib.axes.Axes method),

797
set_colorbar() (matplotlib.cm.ScalarMappable

method), 882
set_connectionstyle() (mat-

plotlib.patches.FancyArrowPatch method),
636

set_contains() (matplotlib.artist.Artist method), 603
set_cursor() (matplotlib.backend_bases.NavigationToolbar2

method), 855
set_cursor_props() (matplotlib.axes.Axes method),

797
set_dash_capstyle() (matplotlib.lines.Line2D

method), 612
set_dash_joinstyle() (matplotlib.lines.Line2D

method), 612
set_dashdirection() (matplotlib.text.TextWithDash

method), 663
set_dashes() (matplotlib.backend_bases.GraphicsContextBase

method), 850
set_dashes() (matplotlib.collections.Collection

method), 889
set_dashes() (matplotlib.lines.Line2D method), 613
set_dashlength() (matplotlib.text.TextWithDash

method), 663
set_dashpad() (matplotlib.text.TextWithDash

method), 663
set_dashpush() (matplotlib.text.TextWithDash

method), 663
set_dashrotation() (matplotlib.text.TextWithDash

method), 664

set_data() (matplotlib.lines.Line2D method), 613
set_data_interval() (matplotlib.axis.Axis method),

833
set_data_interval() (matplotlib.axis.XAxis method),

837
set_data_interval() (matplotlib.axis.YAxis method),

838
set_data_interval() (mat-

plotlib.dates.MicrosecondLocator method),
921

set_data_interval() (matplotlib.ticker.TickHelper
method), 1203

set_default_handler_map() (mat-
plotlib.legend.Legend class method),
960

set_default_intervals() (matplotlib.axis.Axis
method), 833

set_default_intervals() (matplotlib.axis.XAxis
method), 837

set_default_intervals() (matplotlib.axis.YAxis
method), 839

set_default_locators_and_formatters() (mat-
plotlib.scale.LinearScale method), 403

set_default_locators_and_formatters() (mat-
plotlib.scale.LogScale method), 403

set_default_locators_and_formatters() (mat-
plotlib.scale.ScaleBase method), 404

set_default_locators_and_formatters() (mat-
plotlib.scale.SymmetricalLogScale
method), 404

set_default_weight() (mat-
plotlib.font_manager.FontManager
method), 947

set_dpi() (matplotlib.figure.Figure method), 940
set_dpi_cor() (matplotlib.patches.FancyArrowPatch

method), 636
set_drawstyle() (matplotlib.lines.Line2D method),

613
set_ec() (matplotlib.patches.Patch method), 642
set_edgecolor() (matplotlib.collections.Collection

method), 889
set_edgecolor() (matplotlib.figure.Figure method),

941
set_edgecolor() (matplotlib.patches.Patch method),

642
set_edgecolor() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513

Index 1285

Matplotlib, Release 1.3.1

set_edgecolors() (matplotlib.collections.Collection
method), 890

set_edgecolors() (mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 513

set_facecolor() (matplotlib.collections.Collection
method), 890

set_facecolor() (matplotlib.figure.Figure method),
941

set_facecolor() (matplotlib.patches.Patch method),
642

set_facecolor() (mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 513

set_facecolors() (matplotlib.collections.Collection
method), 890

set_facecolors() (mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 513

set_family() (matplotlib.font_manager.FontProperties
method), 948

set_family() (matplotlib.text.Text method), 659
set_fc() (matplotlib.patches.Patch method), 642
set_figheight() (matplotlib.figure.Figure method),

941
set_figure() (matplotlib.artist.Artist method), 603
set_figure() (matplotlib.axes.Axes method), 798
set_figure() (matplotlib.text.Annotation method),

655
set_figure() (matplotlib.text.TextWithDash method),

664
set_figwidth() (matplotlib.figure.Figure method),

941
set_file() (matplotlib.font_manager.FontProperties

method), 948
set_fill() (matplotlib.patches.Patch method), 642
set_fillstyle() (matplotlib.lines.Line2D method), 613
set_fillstyle() (matplotlib.markers.MarkerStyle

method), 963
set_font_properties() (matplotlib.text.Text method),

659
set_fontconfig_pattern() (mat-

plotlib.font_manager.FontProperties
method), 948

set_fontname() (matplotlib.text.Text method), 659
set_fontproperties() (matplotlib.text.Text method),

659
set_fontsize() (matplotlib.text.Text method), 660
set_fontstretch() (matplotlib.text.Text method), 660
set_fontstyle() (matplotlib.text.Text method), 660
set_fontvariant() (matplotlib.text.Text method), 660

set_fontweight() (matplotlib.text.Text method), 660
set_foreground() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 851

set_frame_on() (matplotlib.axes.Axes method), 798
set_frame_on() (matplotlib.legend.Legend method),

960
set_frame_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 503
set_frameon() (matplotlib.figure.Figure method),

941
set_gamma() (mat-

plotlib.colors.LinearSegmentedColormap
method), 909

set_gid() (matplotlib.artist.Artist method), 603
set_gid() (matplotlib.backend_bases.GraphicsContextBase

method), 851
set_graylevel() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 851

set_ha() (matplotlib.text.Text method), 660
set_hatch() (matplotlib.backend_bases.GraphicsContextBase

method), 851
set_hatch() (matplotlib.collections.Collection

method), 890
set_hatch() (matplotlib.patches.Patch method), 642
set_height() (matplotlib.patches.FancyBboxPatch

method), 639
set_height() (matplotlib.patches.Rectangle method),

647
set_height_ratios() (mat-

plotlib.gridspec.GridSpecBase method),
954

set_history_buttons() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 855

set_horizontal() (mpl_toolkits.axes_grid.axes_divider.Divider
method), 457

set_horizontalalignment() (matplotlib.text.Text
method), 660

set_joinstyle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 851

set_label() (matplotlib.artist.Artist method), 603
set_label() (matplotlib.axis.Tick method), 836
set_label() (matplotlib.colorbar.ColorbarBase

method), 902

1286 Index

Matplotlib, Release 1.3.1

set_label() (mpl_toolkits.axes_grid.axis_artist.AxisArtist
method), 462

set_label1() (matplotlib.axis.Tick method), 836
set_label2() (matplotlib.axis.Tick method), 836
set_label_coords() (matplotlib.axis.Axis method),

833
set_label_position() (matplotlib.axis.XAxis

method), 837
set_label_position() (matplotlib.axis.YAxis method),

839
set_label_text() (matplotlib.axis.Axis method), 834
set_linelength() (mat-

plotlib.collections.EventCollection
method), 894

set_lineoffset() (mat-
plotlib.collections.EventCollection
method), 894

set_linespacing() (matplotlib.text.Text method), 660
set_linestyle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 851

set_linestyle() (matplotlib.collections.Collection
method), 890

set_linestyle() (matplotlib.lines.Line2D method),
613

set_linestyle() (matplotlib.patches.Patch method),
643

set_linestyles() (matplotlib.collections.Collection
method), 890

set_linewidth() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 851

set_linewidth() (matplotlib.collections.Collection
method), 890

set_linewidth() (matplotlib.lines.Line2D method),
613

set_linewidth() (matplotlib.patches.Patch method),
643

set_linewidths() (matplotlib.collections.Collection
method), 891

set_locator() (mpl_toolkits.axes_grid.axes_divider.Divider
method), 457

set_locs() (matplotlib.ticker.Formatter method),
1203

set_locs() (matplotlib.ticker.ScalarFormatter
method), 1205

set_lod() (matplotlib.artist.Artist method), 604
set_ls() (matplotlib.lines.Line2D method), 613

set_ls() (matplotlib.patches.Patch method), 643
set_lw() (matplotlib.collections.Collection method),

891
set_lw() (matplotlib.lines.Line2D method), 613
set_lw() (matplotlib.patches.Patch method), 643
set_ma() (matplotlib.text.Text method), 660
set_major_formatter() (matplotlib.axis.Axis

method), 834
set_major_locator() (matplotlib.axis.Axis method),

834
set_marker() (matplotlib.lines.Line2D method), 614
set_marker() (matplotlib.markers.MarkerStyle

method), 963
set_markeredgecolor() (matplotlib.lines.Line2D

method), 614
set_markeredgewidth() (matplotlib.lines.Line2D

method), 614
set_markerfacecolor() (matplotlib.lines.Line2D

method), 614
set_markerfacecoloralt() (matplotlib.lines.Line2D

method), 614
set_markersize() (matplotlib.lines.Line2D method),

614
set_markevery() (matplotlib.lines.Line2D method),

614
set_mask() (matplotlib.tri.Triangulation method),

1214
set_matrix() (matplotlib.transforms.Affine2D

method), 393
set_mec() (matplotlib.lines.Line2D method), 614
set_message() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 855

set_mew() (matplotlib.lines.Line2D method), 614
set_mfc() (matplotlib.lines.Line2D method), 614
set_mfcalt() (matplotlib.lines.Line2D method), 614
set_minor_formatter() (matplotlib.axis.Axis

method), 834
set_minor_locator() (matplotlib.axis.Axis method),

834
set_ms() (matplotlib.lines.Line2D method), 614
set_multialignment() (matplotlib.text.Text method),

660
set_mutation_aspect() (mat-

plotlib.patches.FancyArrowPatch method),
636

set_mutation_aspect() (mat-
plotlib.patches.FancyBboxPatch method),

Index 1287

Matplotlib, Release 1.3.1

639
set_mutation_scale() (mat-

plotlib.patches.FancyArrowPatch method),
636

set_mutation_scale() (mat-
plotlib.patches.FancyBboxPatch method),
639

set_name() (matplotlib.font_manager.FontProperties
method), 949

set_name() (matplotlib.text.Text method), 660
set_navigate() (matplotlib.axes.Axes method), 798
set_navigate_mode() (matplotlib.axes.Axes

method), 798
set_norm() (matplotlib.cm.ScalarMappable method),

882
set_offset_position() (matplotlib.axis.YAxis

method), 839
set_offset_position() (mat-

plotlib.collections.Collection method),
891

set_offset_string() (matplotlib.ticker.FixedFormatter
method), 1204

set_offsets() (matplotlib.collections.Collection
method), 891

set_orientation() (mat-
plotlib.collections.EventCollection
method), 894

set_over() (matplotlib.colors.Colormap method),
907

set_pad() (matplotlib.axis.Tick method), 836
set_pad() (mpl_toolkits.axes_grid.axis_artist.AxisLabel

method), 463
set_pane_color() (mpl_toolkits.mplot3d.axis3d.Axis

method), 510
set_pane_pos() (mpl_toolkits.mplot3d.axis3d.Axis

method), 510
set_params() (matplotlib.ticker.MaxNLocator

method), 1208
set_patch_circle() (matplotlib.spines.Spine method),

1199
set_patch_line() (matplotlib.spines.Spine method),

1199
set_patchA() (matplotlib.patches.FancyArrowPatch

method), 636
set_patchB() (matplotlib.patches.FancyArrowPatch

method), 636
set_path_effects() (matplotlib.artist.Artist method),

604

set_paths() (matplotlib.collections.Collection
method), 891

set_paths() (matplotlib.collections.LineCollection
method), 895

set_paths() (matplotlib.collections.PatchCollection
method), 896

set_paths() (matplotlib.collections.PathCollection
method), 896

set_paths() (matplotlib.collections.PolyCollection
method), 897

set_paths() (matplotlib.collections.QuadMesh
method), 898

set_paths() (matplotlib.collections.TriMesh
method), 900

set_picker() (matplotlib.artist.Artist method), 604
set_picker() (matplotlib.lines.Line2D method), 614
set_pickradius() (matplotlib.axis.Axis method), 834
set_pickradius() (matplotlib.collections.Collection

method), 891
set_pickradius() (matplotlib.lines.Line2D method),

615
set_points() (matplotlib.transforms.Bbox method),

385
set_position() (matplotlib.axes.Axes method), 798
set_position() (matplotlib.spines.Spine method),

1199
set_position() (matplotlib.text.Text method), 660
set_position() (matplotlib.text.TextWithDash

method), 664
set_position() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 457
set_positions() (mat-

plotlib.collections.EventCollection
method), 894

set_positions() (mat-
plotlib.patches.FancyArrowPatch method),
636

set_powerlimits() (matplotlib.ticker.ScalarFormatter
method), 1205

set_radius() (matplotlib.patches.Circle method), 626
set_radius() (matplotlib.patches.Wedge method),

650
set_rasterization_zorder() (matplotlib.axes.Axes

method), 798
set_rasterized() (matplotlib.artist.Artist method),

604
set_rgrids() (matplotlib.projections.polar.PolarAxes

method), 408

1288 Index

Matplotlib, Release 1.3.1

set_rotate_label() (mpl_toolkits.mplot3d.axis3d.Axis
method), 510

set_rotation() (matplotlib.text.Text method), 660
set_rotation_mode() (matplotlib.text.Text method),

660
set_scale() (matplotlib.axis.Axis method), 834
set_scientific() (matplotlib.ticker.ScalarFormatter

method), 1205
set_segments() (mat-

plotlib.collections.LineCollection method),
895

set_segments() (mpl_toolkits.mplot3d.art3d.Line3DCollection
method), 512

set_size() (matplotlib.font_manager.FontProperties
method), 949

set_size() (matplotlib.text.Text method), 661
set_size_inches() (matplotlib.figure.Figure method),

941
set_sketch_params() (matplotlib.artist.Artist

method), 604
set_sketch_params() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 851

set_slant() (matplotlib.font_manager.FontProperties
method), 949

set_smart_bounds() (matplotlib.axis.Axis method),
834

set_smart_bounds() (matplotlib.spines.Spine
method), 1199

set_snap() (matplotlib.artist.Artist method), 604
set_snap() (matplotlib.backend_bases.GraphicsContextBase

method), 851
set_solid_capstyle() (matplotlib.lines.Line2D

method), 615
set_solid_joinstyle() (matplotlib.lines.Line2D

method), 615
set_sort_zpos() (mpl_toolkits.mplot3d.art3d.Line3DCollection

method), 512
set_sort_zpos() (mpl_toolkits.mplot3d.art3d.Patch3DCollection

method), 512
set_sort_zpos() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
set_stretch() (matplotlib.font_manager.FontProperties

method), 949
set_stretch() (matplotlib.text.Text method), 661
set_style() (matplotlib.font_manager.FontProperties

method), 949
set_style() (matplotlib.text.Text method), 661

set_subplotspec() (matplotlib.axes.SubplotBase
method), 829

set_subplotspec() (mpl_toolkits.axes_grid.axes_divider.SubplotDivider
method), 458

set_text() (matplotlib.text.Text method), 661
set_theta1() (matplotlib.patches.Wedge method),

651
set_theta2() (matplotlib.patches.Wedge method),

651
set_theta_direction() (mat-

plotlib.projections.polar.PolarAxes
method), 409

set_theta_offset() (mat-
plotlib.projections.polar.PolarAxes
method), 410

set_theta_zero_location() (mat-
plotlib.projections.polar.PolarAxes
method), 410

set_thetagrids() (mat-
plotlib.projections.polar.PolarAxes
method), 410

set_tick_out() (mpl_toolkits.axes_grid.axis_artist.Ticks
method), 462

set_tick_params() (matplotlib.axis.Axis method),
834

set_ticklabel_direction()
(mpl_toolkits.axes_grid.axis_artist.AxisArtist
method), 462

set_ticklabels() (matplotlib.axis.Axis method), 834
set_ticklabels() (matplotlib.colorbar.ColorbarBase

method), 902
set_ticks() (matplotlib.axis.Axis method), 835
set_ticks() (matplotlib.colorbar.ColorbarBase

method), 903
set_ticks_position() (matplotlib.axis.XAxis method),

837
set_ticks_position() (matplotlib.axis.YAxis method),

839
set_ticksize() (mpl_toolkits.axes_grid.axis_artist.Ticks

method), 463
set_tight_layout() (matplotlib.figure.Figure method),

941
set_title() (matplotlib.axes.Axes method), 798
set_title() (matplotlib.legend.Legend method), 960
set_title() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 503
set_top_view() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 503

Index 1289

Matplotlib, Release 1.3.1

set_transform() (matplotlib.artist.Artist method),
605

set_transform() (matplotlib.lines.Line2D method),
615

set_transform() (matplotlib.text.TextWithDash
method), 664

set_tzinfo() (matplotlib.dates.DateFormatter
method), 918

set_tzinfo() (matplotlib.dates.DateLocator method),
918

set_under() (matplotlib.colors.Colormap method),
907

set_unit() (matplotlib.text.OffsetFrom method), 656
set_units() (matplotlib.axis.Axis method), 835
set_url() (matplotlib.artist.Artist method), 605
set_url() (matplotlib.backend_bases.GraphicsContextBase

method), 851
set_urls() (matplotlib.collections.Collection

method), 891
set_useLocale() (matplotlib.ticker.ScalarFormatter

method), 1205
set_useOffset() (matplotlib.ticker.ScalarFormatter

method), 1205
set_va() (matplotlib.text.Text method), 661
set_val() (matplotlib.widgets.Slider method), 1234
set_variant() (mat-

plotlib.font_manager.FontProperties
method), 949

set_variant() (matplotlib.text.Text method), 661
set_vertical() (mpl_toolkits.axes_grid.axes_divider.Divider

method), 458
set_verticalalignment() (matplotlib.text.Text

method), 661
set_verts() (matplotlib.collections.LineCollection

method), 895
set_verts() (matplotlib.collections.PolyCollection

method), 897
set_verts() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
set_view_interval() (matplotlib.axis.Axis method),

835
set_view_interval() (matplotlib.axis.XAxis method),

837
set_view_interval() (matplotlib.axis.YAxis method),

839
set_view_interval() (mat-

plotlib.dates.MicrosecondLocator method),
921

set_view_interval() (matplotlib.ticker.TickHelper
method), 1203

set_view_interval() (mpl_toolkits.mplot3d.axis3d.Axis
method), 510

set_visible() (matplotlib.artist.Artist method), 605
set_weight() (mat-

plotlib.font_manager.FontProperties
method), 949

set_weight() (matplotlib.text.Text method), 661
set_width() (matplotlib.patches.FancyBboxPatch

method), 639
set_width() (matplotlib.patches.Rectangle method),

647
set_width() (matplotlib.patches.Wedge method), 651
set_width_ratios() (mat-

plotlib.gridspec.GridSpecBase method),
954

set_window_title() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 847

set_window_title() (mat-
plotlib.backend_bases.FigureManagerBase
method), 848

set_x() (matplotlib.patches.FancyBboxPatch
method), 639

set_x() (matplotlib.patches.Rectangle method), 647
set_x() (matplotlib.text.Text method), 661
set_x() (matplotlib.text.TextWithDash method), 664
set_xbound() (matplotlib.axes.Axes method), 799
set_xdata() (matplotlib.lines.Line2D method), 615
set_xlabel() (matplotlib.axes.Axes method), 799
set_xlim() (matplotlib.axes.Axes method), 799
set_xlim() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 503
set_xlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 504
set_xmargin() (matplotlib.axes.Axes method), 800
set_xscale() (matplotlib.axes.Axes method), 800
set_xscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 504
set_xticklabels() (matplotlib.axes.Axes method), 800
set_xticks() (matplotlib.axes.Axes method), 802
set_xy() (matplotlib.patches.Polygon method), 645
set_xy() (matplotlib.patches.Rectangle method), 647
set_y() (matplotlib.patches.FancyBboxPatch

method), 639
set_y() (matplotlib.patches.Rectangle method), 647
set_y() (matplotlib.text.Text method), 661

1290 Index

Matplotlib, Release 1.3.1

set_y() (matplotlib.text.TextWithDash method), 664
set_ybound() (matplotlib.axes.Axes method), 802
set_ydata() (matplotlib.lines.Line2D method), 615
set_ylabel() (matplotlib.axes.Axes method), 802
set_ylim() (matplotlib.axes.Axes method), 802
set_ylim() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 504
set_ylim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 504
set_ymargin() (matplotlib.axes.Axes method), 803
set_yscale() (matplotlib.axes.Axes method), 803
set_yscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 504
set_yticklabels() (matplotlib.axes.Axes method), 803
set_yticks() (matplotlib.axes.Axes method), 805
set_zbound() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 505
set_zlabel() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 505
set_zlim() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 505
set_zlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 505
set_zmargin() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 506
set_zorder() (matplotlib.artist.Artist method), 605
set_zscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 506
set_zsort() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 513
set_zticklabels() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 506
set_zticks() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 507
setp() (in module matplotlib.artist), 607
setp() (in module matplotlib.pyplot), 1153
setup() (matplotlib.animation.FileMovieWriter

method), 594
setup() (matplotlib.animation.MovieWriter method),

597
shade() (matplotlib.colors.LightSource method), 908
shade_rgb() (matplotlib.colors.LightSource

method), 908
Shadow (class in matplotlib.patches), 649
Ship (class in matplotlib.mathtext), 978
should_simplify (matplotlib.path.Path attribute),

1009
show() (in module matplotlib.pyplot), 1154

show() (matplotlib.backend_bases.FigureManagerBase
method), 848

show() (matplotlib.figure.Figure method), 941
show_popup() (mat-

plotlib.backend_bases.FigureManagerBase
method), 849

ShowBase (class in matplotlib.backend_bases), 859
shrink() (matplotlib.mathtext.Accent method), 967
shrink() (matplotlib.mathtext.Box method), 968
shrink() (matplotlib.mathtext.Char method), 968
shrink() (matplotlib.mathtext.Glue method), 970
shrink() (matplotlib.mathtext.Kern method), 972
shrink() (matplotlib.mathtext.List method), 972
shrink() (matplotlib.mathtext.Node method), 975
shrunk() (matplotlib.transforms.BboxBase method),

383
shrunk_to_aspect() (mat-

plotlib.transforms.BboxBase method),
383

silent_list (class in matplotlib.cbook), 877
simple_group() (matplotlib.mathtext.Parser

method), 977
simple_linear_interpolation() (in module mat-

plotlib.cbook), 877
simplify_threshold (matplotlib.path.Path attribute),

1009
single_shot (matplotlib.backend_bases.TimerBase

attribute), 859
size (matplotlib.dviread.DviFont attribute), 865
size (matplotlib.transforms.BboxBase attribute), 383
Slider (class in matplotlib.widgets), 1233
slopes() (in module matplotlib.mlab), 1001
sort() (matplotlib.cbook.Sorter method), 872
Sorter (class in matplotlib.cbook), 872
soundex() (in module matplotlib.cbook), 878
space() (matplotlib.mathtext.Parser method), 977
span_where() (mat-

plotlib.collections.BrokenBarHCollection
static method), 886

SpanSelector (class in matplotlib.widgets), 1234
specgram() (in module matplotlib.mlab), 1002
specgram() (in module matplotlib.pyplot), 1154
specgram() (matplotlib.axes.Axes method), 805
spectral() (in module matplotlib.pyplot), 1156
Spine (class in matplotlib.spines), 1197
splitx() (matplotlib.transforms.BboxBase method),

384

Index 1291

Matplotlib, Release 1.3.1

splity() (matplotlib.transforms.BboxBase method),
384

spring() (in module matplotlib.pyplot), 1157
spy() (in module matplotlib.pyplot), 1157
spy() (matplotlib.axes.Axes method), 807
sqrt() (matplotlib.mathtext.Parser method), 977
SsGlue (class in matplotlib.mathtext), 978
Stack (class in matplotlib.cbook), 872
stackplot() (in module matplotlib.pyplot), 1158
stackplot() (matplotlib.axes.Axes method), 808
stackrel() (matplotlib.mathtext.Parser method), 977
StandardPsFonts (class in matplotlib.mathtext), 978
StarPolygonCollection (class in mat-

plotlib.collections), 899
start() (matplotlib.backend_bases.TimerBase

method), 859
start_event_loop() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 847

start_event_loop_default() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 847

start_filter() (matplotlib.backend_bases.RendererBase
method), 858

start_group() (matplotlib.mathtext.Parser method),
977

start_pan() (matplotlib.axes.Axes method), 808
start_rasterizing() (mat-

plotlib.backend_bases.RendererBase
method), 858

stem() (in module matplotlib.pyplot), 1158
stem() (matplotlib.axes.Axes method), 809
step (matplotlib.backend_bases.MouseEvent at-

tribute), 853
step() (in module matplotlib.pyplot), 1159
step() (matplotlib.axes.Axes method), 809
stineman_interp() (in module matplotlib.mlab), 1003
StixFonts (class in matplotlib.mathtext), 978
StixSansFonts (class in matplotlib.mathtext), 979
STOP (matplotlib.path.Path attribute), 1006
stop() (matplotlib.backend_bases.TimerBase

method), 860
stop() (matplotlib.cbook.Scheduler method), 872
stop_event_loop() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 847

stop_event_loop_default() (mat-
plotlib.backend_bases.FigureCanvasBase

method), 847
stop_filter() (matplotlib.backend_bases.RendererBase

method), 858
stop_rasterizing() (mat-

plotlib.backend_bases.RendererBase
method), 858

Stream (class in matplotlib.backends.backend_pdf),
863

streamplot() (in module matplotlib.pyplot), 1159
streamplot() (matplotlib.axes.Axes method), 810
strftime() (matplotlib.dates.DateFormatter method),

918
string_width_height() (matplotlib.afm.AFM

method), 588
strip_math() (in module matplotlib.cbook), 878
strip_math() (matplotlib.backend_bases.RendererBase

method), 858
Subplot (in module matplotlib.axes), 828
subplot() (in module matplotlib.pyplot), 1160
subplot2grid() (in module matplotlib.pyplot), 1162
subplot_class_factory() (in module matplotlib.axes),

829
subplot_tool() (in module matplotlib.pyplot), 1162
SubplotBase (class in matplotlib.axes), 828
SubplotDivider (class in

mpl_toolkits.axes_grid.axes_divider),
458

SubplotParams (class in matplotlib.figure), 944
subplots() (in module matplotlib.pyplot), 1162
subplots_adjust() (in module matplotlib.pyplot),

1164
subplots_adjust() (matplotlib.figure.Figure method),

942
SubplotSpec (class in matplotlib.gridspec), 954
SubplotTool (class in matplotlib.widgets), 1235
subs() (matplotlib.ticker.LogLocator method), 1207
subsuper() (matplotlib.mathtext.Parser method), 977
SubSuperCluster (class in matplotlib.mathtext), 979
summer() (in module matplotlib.pyplot), 1164
supported_formats (mat-

plotlib.animation.FFMpegFileWriter
attribute), 593

supported_formats (mat-
plotlib.animation.ImageMagickFileWriter
attribute), 594

supported_formats (mat-
plotlib.animation.MencoderFileWriter
attribute), 595

1292 Index

Matplotlib, Release 1.3.1

supports_blit (mat-
plotlib.backend_bases.FigureCanvasBase
attribute), 848

suptitle() (in module matplotlib.pyplot), 1164
suptitle() (matplotlib.figure.Figure method), 942
SVG, 1239
switch_backend() (in module matplotlib.pyplot),

1164
switch_backends() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 848

switch_orientation() (mat-
plotlib.collections.EventCollection
method), 894

symbol() (matplotlib.mathtext.Parser method), 977
SymLogNorm (class in matplotlib.colors), 911
SymmetricalLogScale (class in matplotlib.scale),

404

T
table() (in module matplotlib.pyplot), 1165
table() (matplotlib.axes.Axes method), 810
target (matplotlib.mathtext.BakomaFonts attribute),

968
test_lines_dists() (in module

mpl_toolkits.mplot3d.proj3d), 516
test_proj() (in module mpl_toolkits.mplot3d.proj3d),

516
test_proj_draw_axes() (in module

mpl_toolkits.mplot3d.proj3d), 516
test_proj_make_M() (in module

mpl_toolkits.mplot3d.proj3d), 516
test_rot() (in module mpl_toolkits.mplot3d.proj3d),

516
test_world() (in module

mpl_toolkits.mplot3d.proj3d), 516
texname (matplotlib.dviread.DviFont attribute), 865
Text (class in matplotlib.text), 656
text() (in module matplotlib.pyplot), 1165
text() (matplotlib.axes.Axes method), 811
text() (matplotlib.figure.Figure method), 942
text() (mpl_toolkits.mplot3d.Axes3D method), 486
text() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 507
text2D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 507
Text3D (class in mpl_toolkits.mplot3d.art3d), 514

text3D() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 507

text_2d_to_3d() (in module
mpl_toolkits.mplot3d.art3d), 515

TextWithDash (class in matplotlib.text), 662
Tfm (class in matplotlib.dviread), 866
ThetaFormatter (class in mat-

plotlib.projections.polar), 412
thetagrids() (in module matplotlib.pyplot), 1166
Tick (class in matplotlib.axis), 835
tick_bottom() (matplotlib.axis.XAxis method), 837
tick_left() (matplotlib.axis.YAxis method), 839
tick_params() (in module matplotlib.pyplot), 1167
tick_params() (matplotlib.axes.Axes method), 812
tick_params() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 508
tick_right() (matplotlib.axis.YAxis method), 839
tick_top() (matplotlib.axis.XAxis method), 838
tick_update_position() (in module

mpl_toolkits.mplot3d.axis3d), 511
tick_values() (matplotlib.ticker.AutoMinorLocator

method), 1209
tick_values() (matplotlib.ticker.FixedLocator

method), 1207
tick_values() (matplotlib.ticker.IndexLocator

method), 1207
tick_values() (matplotlib.ticker.LinearLocator

method), 1207
tick_values() (matplotlib.ticker.Locator method),

1206
tick_values() (matplotlib.ticker.LogLocator

method), 1208
tick_values() (matplotlib.ticker.MaxNLocator

method), 1208
tick_values() (matplotlib.ticker.MultipleLocator

method), 1208
tick_values() (matplotlib.ticker.NullLocator

method), 1207
Ticker (class in matplotlib.axis), 836
TickHelper (class in matplotlib.ticker), 1202
ticklabel_format() (in module matplotlib.pyplot),

1167
ticklabel_format() (matplotlib.axes.Axes method),

812
ticklabel_format() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 508
TickLabels (class in

mpl_toolkits.axes_grid.axis_artist), 463

Index 1293

Matplotlib, Release 1.3.1

Ticks (class in mpl_toolkits.axes_grid.axis_artist),
462

TIFF, 1240
tight_layout() (in module matplotlib.pyplot), 1168
tight_layout() (matplotlib.figure.Figure method),

943
tight_layout() (matplotlib.gridspec.GridSpec

method), 953
TimedAnimation (class in matplotlib.animation),

597
Timeout (class in matplotlib.cbook), 873
TimerBase (class in matplotlib.backend_bases), 859
title() (in module matplotlib.pyplot), 1168
Tk, 1240
to_filehandle() (in module matplotlib.cbook), 878
to_mask() (matplotlib.mathtext.MathTextParser

method), 972
to_png() (matplotlib.mathtext.MathTextParser

method), 972
to_polygons() (matplotlib.path.Path method), 1009
to_rgb() (matplotlib.colors.ColorConverter method),

906
to_rgba() (matplotlib.cm.ScalarMappable method),

882
to_rgba() (matplotlib.colors.ColorConverter

method), 907
to_rgba() (matplotlib.mathtext.MathTextParser

method), 972
to_rgba_array() (matplotlib.colors.ColorConverter

method), 907
to_values() (matplotlib.transforms.Affine2DBase

method), 391
todate (class in matplotlib.cbook), 878
todatetime (class in matplotlib.cbook), 878
tofloat (class in matplotlib.cbook), 878
toggle() (mpl_toolkits.axes_grid.axis_artist.AxisArtist

method), 462
toint (class in matplotlib.cbook), 878
toolitems (matplotlib.backend_bases.NavigationToolbar2

attribute), 855
tostr (class in matplotlib.cbook), 878
tostr() (matplotlib.mlab.FormatFormatStr method),

986
tostr() (matplotlib.mlab.FormatInt method), 986
tostr() (matplotlib.mlab.FormatObj method), 986
tostr() (matplotlib.mlab.FormatString method), 986
toval() (matplotlib.mlab.FormatBool method), 985
toval() (matplotlib.mlab.FormatDate method), 985

toval() (matplotlib.mlab.FormatFloat method), 986
toval() (matplotlib.mlab.FormatInt method), 986
toval() (matplotlib.mlab.FormatObj method), 986
Transform (class in matplotlib.transforms), 387
transform() (in module

mpl_toolkits.mplot3d.proj3d), 516
transform() (matplotlib.transforms.AffineBase

method), 390
transform() (matplotlib.transforms.IdentityTransform

method), 394
transform() (matplotlib.transforms.Transform

method), 388
transform() (matplotlib.type1font.Type1Font

method), 868
transform_affine() (mat-

plotlib.transforms.Affine2DBase method),
391

transform_affine() (mat-
plotlib.transforms.AffineBase method),
390

transform_affine() (mat-
plotlib.transforms.CompositeGenericTransform
method), 396

transform_affine() (mat-
plotlib.transforms.IdentityTransform
method), 394

transform_affine() (matplotlib.transforms.Transform
method), 388

transform_angles() (mat-
plotlib.transforms.Transform method),
388

transform_non_affine() (mat-
plotlib.projections.polar.InvertedPolarTransform
method), 406

transform_non_affine() (mat-
plotlib.projections.polar.PolarAxes.InvertedPolarTransform
method), 407

transform_non_affine() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 407

transform_non_affine() (mat-
plotlib.projections.polar.PolarTransform
method), 411

transform_non_affine() (mat-
plotlib.transforms.AffineBase method),
390

transform_non_affine() (mat-
plotlib.transforms.BlendedGenericTransform

1294 Index

Matplotlib, Release 1.3.1

method), 395
transform_non_affine() (mat-

plotlib.transforms.CompositeGenericTransform
method), 396

transform_non_affine() (mat-
plotlib.transforms.IdentityTransform
method), 394

transform_non_affine() (mat-
plotlib.transforms.Transform method),
389

transform_path() (matplotlib.transforms.AffineBase
method), 390

transform_path() (mat-
plotlib.transforms.IdentityTransform
method), 394

transform_path() (matplotlib.transforms.Transform
method), 389

transform_path_affine() (mat-
plotlib.transforms.AffineBase method),
390

transform_path_affine() (mat-
plotlib.transforms.IdentityTransform
method), 394

transform_path_affine() (mat-
plotlib.transforms.Transform method),
389

transform_path_non_affine() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 407

transform_path_non_affine() (mat-
plotlib.projections.polar.PolarTransform
method), 411

transform_path_non_affine() (mat-
plotlib.transforms.AffineBase method),
391

transform_path_non_affine() (mat-
plotlib.transforms.CompositeGenericTransform
method), 397

transform_path_non_affine() (mat-
plotlib.transforms.IdentityTransform
method), 394

transform_path_non_affine() (mat-
plotlib.transforms.Transform method),
389

transform_point() (mat-
plotlib.transforms.Affine2DBase method),
391

transform_point() (matplotlib.transforms.Transform
method), 389

transformed() (matplotlib.path.Path method), 1010
transformed() (matplotlib.transforms.BboxBase

method), 384
TransformedBbox (class in matplotlib.transforms),

386
TransformedPath (class in matplotlib.transforms),

398
TransformNode (class in matplotlib.transforms), 380
TransformWrapper (class in matplotlib.transforms),

389
translate() (matplotlib.transforms.Affine2D method),

393
translated() (matplotlib.transforms.BboxBase

method), 384
transmute() (matplotlib.patches.ArrowStyle.Fancy

method), 623
transmute() (matplotlib.patches.ArrowStyle.Simple

method), 623
transmute() (matplotlib.patches.ArrowStyle.Wedge

method), 623
transmute() (matplotlib.patches.BoxStyle.LArrow

method), 625
transmute() (matplotlib.patches.BoxStyle.RArrow

method), 625
transmute() (matplotlib.patches.BoxStyle.Round

method), 625
transmute() (matplotlib.patches.BoxStyle.Round4

method), 625
transmute() (matplotlib.patches.BoxStyle.Roundtooth

method), 625
transmute() (matplotlib.patches.BoxStyle.Sawtooth

method), 625
transmute() (matplotlib.patches.BoxStyle.Square

method), 626
TrapezoidMapTriFinder (class in matplotlib.tri),

1214
TriAnalyzer (class in matplotlib.tri), 1220
Triangulation (class in matplotlib.tri), 1213
tricontour() (in module matplotlib.pyplot), 1168
tricontour() (matplotlib.axes.Axes method), 813
tricontour() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 508
tricontourf() (in module matplotlib.pyplot), 1172
tricontourf() (matplotlib.axes.Axes method), 817
tricontourf() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 508

Index 1295

Matplotlib, Release 1.3.1

TriFinder (class in matplotlib.tri), 1214
TriInterpolator (class in matplotlib.tri), 1214
TriMesh (class in matplotlib.collections), 899
tripcolor() (in module matplotlib.pyplot), 1176
tripcolor() (matplotlib.axes.Axes method), 821
triplot() (in module matplotlib.pyplot), 1179
triplot() (matplotlib.axes.Axes method), 823
TriRefiner (class in matplotlib.tri), 1218
TruetypeFonts (class in matplotlib.mathtext), 979
TruetypeFonts.CachedFont (class in mat-

plotlib.mathtext), 979
ttfdict_to_fnames() (in module mat-

plotlib.font_manager), 950
ttfFontProperty() (in module mat-

plotlib.font_manager), 950
tunit_cube() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 509
tunit_edges() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 509
twinx() (in module matplotlib.pyplot), 1180
twinx() (matplotlib.axes.Axes method), 825
twiny() (in module matplotlib.pyplot), 1180
twiny() (matplotlib.axes.Axes method), 825
Type1Font (class in matplotlib.type1font), 867

U
unichr_safe() (in module matplotlib.mathtext), 980
unicode_safe() (in module matplotlib.cbook), 878
UnicodeFonts (class in matplotlib.mathtext), 979
UniformTriRefiner (class in matplotlib.tri), 1218
union() (matplotlib.transforms.BboxBase static

method), 384
unique() (in module matplotlib.cbook), 878
unit() (matplotlib.transforms.Bbox static method),

385
unit_bbox() (in module

mpl_toolkits.mplot3d.axes3d), 509
unit_circle() (matplotlib.path.Path class method),

1010
unit_circle_righthalf() (matplotlib.path.Path class

method), 1010
unit_cube() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 509
unit_rectangle() (matplotlib.path.Path class method),

1010
unit_regular_asterisk() (matplotlib.path.Path class

method), 1010

unit_regular_polygon() (matplotlib.path.Path class
method), 1010

unit_regular_star() (matplotlib.path.Path class
method), 1010

unknown_symbol() (matplotlib.mathtext.Parser
method), 977

unmasked_index_ranges() (in module mat-
plotlib.cbook), 878

update() (matplotlib.artist.Artist method), 605
update() (matplotlib.backend_bases.NavigationToolbar2

method), 855
update() (matplotlib.figure.SubplotParams method),

944
update() (matplotlib.gridspec.GridSpec method),

953
update() (matplotlib.widgets.RectangleSelector

method), 1233
update() (matplotlib.widgets.SpanSelector method),

1235
update_background() (mat-

plotlib.widgets.LassoSelector method),
1230

update_background() (mat-
plotlib.widgets.RectangleSelector method),
1233

update_background() (mat-
plotlib.widgets.SpanSelector method),
1235

update_bbox_position_size() (mat-
plotlib.text.Annotation method), 655

update_bbox_position_size() (matplotlib.text.Text
method), 662

update_bruteforce() (matplotlib.colorbar.Colorbar
method), 901

update_coords() (matplotlib.text.TextWithDash
method), 664

update_datalim() (matplotlib.axes.Axes method),
825

update_datalim() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 509

update_datalim_bounds() (matplotlib.axes.Axes
method), 826

update_datalim_numerix() (matplotlib.axes.Axes
method), 826

update_datalim_to_current() (mat-
plotlib.mlab.FIFOBuffer method), 985

update_default_handler_map() (mat-
plotlib.legend.Legend class method),

1296 Index

Matplotlib, Release 1.3.1

960
update_fonts() (mat-

plotlib.font_manager.FontManager
method), 947

update_from() (matplotlib.artist.Artist method), 605
update_from() (matplotlib.collections.Collection

method), 891
update_from() (matplotlib.lines.Line2D method),

615
update_from() (matplotlib.patches.Patch method),

643
update_from() (matplotlib.text.Text method), 662
update_from_data() (matplotlib.transforms.Bbox

method), 385
update_from_data_xy() (matplotlib.transforms.Bbox

method), 386
update_from_path() (matplotlib.transforms.Bbox

method), 386
update_normal() (matplotlib.colorbar.Colorbar

method), 901
update_params() (matplotlib.axes.SubplotBase

method), 829
update_params() (mpl_toolkits.axes_grid.axes_divider.SubplotDivider

method), 458
update_position() (matplotlib.axis.XTick method),

838
update_position() (matplotlib.axis.YTick method),

839
update_positions() (matplotlib.text.Annotation

method), 655
update_scalarmappable() (mat-

plotlib.collections.Collection method),
891

update_ticks() (matplotlib.colorbar.ColorbarBase
method), 903

update_units() (matplotlib.axis.Axis method), 835
use() (in module matplotlib), 583
use_cmex (matplotlib.mathtext.StixFonts attribute),

979
use_cmex (matplotlib.mathtext.UnicodeFonts

attribute), 980
useLocale (matplotlib.ticker.ScalarFormatter at-

tribute), 1205
useOffset (matplotlib.ticker.ScalarFormatter at-

tribute), 1205

V
validCap (matplotlib.lines.Line2D attribute), 615

validJoin (matplotlib.lines.Line2D attribute), 615
value_escape() (in module mat-

plotlib.fontconfig_pattern), 951
value_unescape() (in module mat-

plotlib.fontconfig_pattern), 951
Vbox (class in matplotlib.mathtext), 980
VCentered (class in matplotlib.mathtext), 980
vec_pad_ones() (in module

mpl_toolkits.mplot3d.proj3d), 516
vector graphics, 1240
vector_lengths() (in module matplotlib.mlab), 1003
VertexSelector (class in matplotlib.lines), 615
vertices (matplotlib.path.Path attribute), 1010
Vf (class in matplotlib.dviread), 866
view_init() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 509
view_limits() (matplotlib.ticker.LinearLocator

method), 1207
view_limits() (matplotlib.ticker.Locator method),

1206
view_limits() (matplotlib.ticker.LogLocator

method), 1208
view_limits() (matplotlib.ticker.MaxNLocator

method), 1208
view_limits() (matplotlib.ticker.MultipleLocator

method), 1208
view_transformation() (in module

mpl_toolkits.mplot3d.proj3d), 516
viewlim_to_dt() (matplotlib.dates.DateLocator

method), 919
vlines() (in module matplotlib.pyplot), 1180
vlines() (matplotlib.axes.Axes method), 826
Vlist (class in matplotlib.mathtext), 980
vlist_out() (matplotlib.mathtext.Ship method), 978
vpack() (matplotlib.mathtext.Vlist method), 980
Vrule (class in matplotlib.mathtext), 980

W
waitforbuttonpress() (in module matplotlib.pyplot),

1181
waitforbuttonpress() (matplotlib.figure.Figure

method), 943
waittime (matplotlib.cbook.Idle attribute), 871
warn_deprecated() (in module matplotlib.cbook),

879
Wedge (class in matplotlib.patches), 650
wedge() (matplotlib.path.Path class method), 1010
WeekdayLocator (class in matplotlib.dates), 920

Index 1297

Matplotlib, Release 1.3.1

weeks() (in module matplotlib.dates), 923
weight_as_number() (in module mat-

plotlib.font_manager), 950
Widget (class in matplotlib.widgets), 1236
width (matplotlib.dviread.Tfm attribute), 866
width (matplotlib.transforms.BboxBase attribute),

384
widths (matplotlib.dviread.DviFont attribute), 865
win32FontDirectory() (in module mat-

plotlib.font_manager), 950
win32InstalledFonts() (in module mat-

plotlib.font_manager), 950
window_hanning() (in module matplotlib.mlab),

1003
window_none() (in module matplotlib.mlab), 1004
winter() (in module matplotlib.pyplot), 1181
world_transformation() (in module

mpl_toolkits.mplot3d.proj3d), 516
wrap() (in module matplotlib.cbook), 879
write() (matplotlib.backends.backend_pdf.Stream

method), 864
writeInfoDict() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 862

writeTrailer() (mat-
plotlib.backends.backend_pdf.PdfFile
method), 862

writeXref() (matplotlib.backends.backend_pdf.PdfFile
method), 863

wxpython, 1240
wxWidgets, 1240

X
x (matplotlib.backend_bases.LocationEvent at-

tribute), 852
x (matplotlib.backend_bases.MouseEvent attribute),

853
x0 (matplotlib.transforms.BboxBase attribute), 384
x1 (matplotlib.transforms.BboxBase attribute), 384
XAxis (class in matplotlib.axis), 837
XAxis (class in mpl_toolkits.mplot3d.axis3d), 510
xaxis_date() (matplotlib.axes.Axes method), 826
xaxis_inverted() (matplotlib.axes.Axes method), 826
xcorr() (in module matplotlib.pyplot), 1181
xcorr() (matplotlib.axes.Axes method), 827
xdata (matplotlib.backend_bases.LocationEvent at-

tribute), 852

xdata (matplotlib.backend_bases.MouseEvent
attribute), 853

xkcd() (in module matplotlib.pyplot), 1183
xlabel() (in module matplotlib.pyplot), 1183
xlat() (matplotlib.cbook.Xlator method), 873
Xlator (class in matplotlib.cbook), 873
xlim() (in module matplotlib.pyplot), 1184
xmax (matplotlib.transforms.BboxBase attribute),

384
xmin (matplotlib.transforms.BboxBase attribute),

384
xscale() (in module matplotlib.pyplot), 1184
XTick (class in matplotlib.axis), 838
xticks() (in module matplotlib.pyplot), 1185
xy (matplotlib.patches.Polygon attribute), 645
xy (matplotlib.patches.Rectangle attribute), 647
xy (matplotlib.patches.RegularPolygon attribute),

649
xy() (matplotlib.cbook.MemoryMonitor method),

871

Y
y (matplotlib.backend_bases.LocationEvent at-

tribute), 852
y (matplotlib.backend_bases.MouseEvent attribute),

853
y0 (matplotlib.transforms.BboxBase attribute), 384
y1 (matplotlib.transforms.BboxBase attribute), 384
YAArrow (class in matplotlib.patches), 651
YAxis (class in matplotlib.axis), 838
YAxis (class in mpl_toolkits.mplot3d.axis3d), 511
yaxis_date() (matplotlib.axes.Axes method), 828
yaxis_inverted() (matplotlib.axes.Axes method), 828
ydata (matplotlib.backend_bases.LocationEvent at-

tribute), 852
ydata (matplotlib.backend_bases.MouseEvent

attribute), 853
YearLocator (class in matplotlib.dates), 920
ylabel() (in module matplotlib.pyplot), 1185
ylim() (in module matplotlib.pyplot), 1185
ymax (matplotlib.transforms.BboxBase attribute),

384
ymin (matplotlib.transforms.BboxBase attribute),

384
yscale() (in module matplotlib.pyplot), 1186
YTick (class in matplotlib.axis), 839
yticks() (in module matplotlib.pyplot), 1186

1298 Index

Matplotlib, Release 1.3.1

Z
zalpha() (in module mpl_toolkits.mplot3d.art3d),

515
ZAxis (class in mpl_toolkits.mplot3d.axis3d), 511
zaxis_date() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 509
zaxis_inverted() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 509
zoom() (matplotlib.axis.Axis method), 835
zoom() (matplotlib.backend_bases.NavigationToolbar2

method), 855
zoom() (matplotlib.ticker.Locator method), 1206
zorder (matplotlib.artist.Artist attribute), 605
zorder (matplotlib.legend.Legend attribute), 960
zorder (matplotlib.lines.Line2D attribute), 615
zorder (matplotlib.patches.Patch attribute), 643
zorder (matplotlib.text.Text attribute), 662
ZORDER (mpl_toolkits.axes_grid.axis_artist.AxisArtist

attribute), 461

Index 1299

	I User's Guide
	Introduction
	Installing
	Manually installing pre-built packages
	Installing from source
	Build requirements
	Building on OSX

	Pyplot tutorial
	Controlling line properties
	Working with multiple figures and axes
	Working with text

	Interactive navigation
	Navigation Keyboard Shortcuts

	Customizing matplotlib
	The matplotlibrc file
	Dynamic rc settings

	Using matplotlib in a python shell
	Ipython to the rescue
	Other python interpreters
	Controlling interactive updating

	Working with text
	Text introduction
	Basic text commands
	Text properties and layout
	Writing mathematical expressions
	Typesetting With XeLaTeX/LuaLaTeX
	Text rendering With LaTeX
	Annotating text

	Image tutorial
	Startup commands
	Importing image data into Numpy arrays
	Plotting numpy arrays as images

	Artist tutorial
	Customizing your objects
	Object containers
	Figure container
	Axes container
	Axis containers
	Tick containers

	Customizing Location of Subplot Using GridSpec
	Basic Example of using subplot2grid
	GridSpec and SubplotSpec
	Adjust GridSpec layout
	GridSpec using SubplotSpec
	A Complex Nested GridSpec using SubplotSpec
	GridSpec with Varying Cell Sizes

	Tight Layout guide
	Simple Example

	Legend guide
	What to be displayed
	Multicolumn Legend
	Legend location
	Multiple Legend
	Legend of Complex Plots

	Event handling and picking
	Event connections
	Event attributes
	Mouse enter and leave
	Object picking

	Transformations Tutorial
	Data coordinates
	Axes coordinates
	Blended transformations
	Using offset transforms to create a shadow effect
	The transformation pipeline

	Path Tutorial
	Bézier example
	Compound paths

	Annotating Axes
	Annotating with Text with Box
	Annotating with Arrow
	Placing Artist at the anchored location of the Axes
	Using Complex Coordinate with Annotation
	Using ConnectorPatch
	Zoom effect between Axes
	Define Custom BoxStyle

	Our Favorite Recipes
	Sharing axis limits and views
	Easily creating subplots
	Fixing common date annoyances
	Fill Between and Alpha
	Transparent, fancy legends
	Placing text boxes

	Screenshots
	Simple Plot
	Subplot demo
	Histograms
	Path demo
	mplot3d
	Streamplot
	Ellipses
	Bar charts
	Pie charts
	Table demo
	Scatter demo
	Slider demo
	Fill demo
	Date demo
	Financial charts
	Basemap demo
	Log plots
	Polar plots
	Legends
	Mathtext_examples
	Native TeX rendering
	EEG demo
	XKCD-style sketch plots

	What's new in matplotlib
	new in matplotlib-1.3
	new in matplotlib 1.2.2
	new in matplotlib-1.2
	new in matplotlib-1.1
	new in matplotlib-1.0
	new in matplotlib-0.99
	new in 0.98.4

	Github stats
	License
	Copyright Policy
	License agreement for matplotlib 1.3.1
	License agreement for matplotlib versions prior to 1.3.0

	Credits

	II The Matplotlib FAQ
	Installation
	Report a compilation problem
	matplotlib compiled fine, but nothing shows up when I use it
	How to completely remove matplotlib
	How to Install
	Linux Notes
	OS-X Notes
	Windows Notes

	Usage
	General Concepts
	Matplotlib, pylab, and pyplot: how are they related?
	Coding Styles
	What is a backend?
	What is interactive mode?

	How-To
	Plotting: howto
	Contributing: howto
	Matplotlib in a web application server
	Search examples
	Cite Matplotlib

	Troubleshooting
	Obtaining matplotlib version
	matplotlib install location
	.matplotlib directory location
	Getting help
	Problems with recent git versions

	Environment Variables
	Setting environment variables in Linux and OS-X
	Setting environment variables in windows

	III The Matplotlib Developers' Guide
	Coding guide
	Pull request checklist
	Style guide
	Hints

	Licenses
	Why BSD compatible?

	Working with matplotlib source code
	Introduction
	Install git
	Following the latest source
	Making a patch
	Git for development
	git resources

	Testing
	Requirements
	Running the tests
	Writing a simple test
	Writing an image comparison test
	Known failing tests
	Creating a new module in matplotlib.tests
	Using tox
	Using Travis CI

	Documenting matplotlib
	Getting started
	Organization of matplotlib's documentation
	Formatting
	Figures
	Referring to mpl documents
	Internal section references
	Section names, etc
	Inheritance diagrams
	Emacs helpers

	Doing a matplotlib release
	Testing
	Branching
	Packaging
	Posting files
	Update PyPI
	Documentation updates
	Announcing

	Working with transformations
	matplotlib.transforms

	Adding new scales and projections to matplotlib
	Creating a new scale
	Creating a new projection
	API documentation

	IV Matplotlib AxesGrid Toolkit
	Overview of AxesGrid toolkit
	What is AxesGrid toolkit?
	AXES_GRID1
	AXISARTIST

	The Matplotlib AxesGrid Toolkit User's Guide
	AxesDivider
	AXISARTIST namespace

	The Matplotlib AxesGrid Toolkit API
	mpl_toolkits.axes_grid.axes_size
	mpl_toolkits.axes_grid.axes_divider
	mpl_toolkits.axes_grid.axes_grid
	mpl_toolkits.axes_grid.axis_artist

	V mplot3d
	Matplotlib mplot3d toolkit
	mplot3d tutorial
	mplot3d API
	mplot3d FAQ

	VI Toolkits
	Basemap (Not distributed with matplotlib)
	Cartopy (Not distributed with matplotlib)
	GTK Tools
	Excel Tools
	Natgrid (Not distributed with matplotlib)
	mplot3d
	AxesGrid

	VII The Matplotlib API
	Plotting commands summary
	API Changes
	Changes in 1.3.x
	Changes in 1.2.x
	Changes in 1.1.x
	Changes beyond 0.99.x
	Changes in 0.99
	Changes for 0.98.x
	Changes for 0.98.1
	Changes for 0.98.0
	Changes for 0.91.2
	Changes for 0.91.1
	Changes for 0.91.0
	Changes for 0.90.1
	Changes for 0.90.0
	Changes for 0.87.7
	Changes for 0.86
	Changes for 0.85
	Changes for 0.84
	Changes for 0.83
	Changes for 0.82
	Changes for 0.81
	Changes for 0.80
	Changes for 0.73
	Changes for 0.72
	Changes for 0.71
	Changes for 0.70
	Changes for 0.65.1
	Changes for 0.65
	Changes for 0.63
	Changes for 0.61
	Changes for 0.60
	Changes for 0.54.3
	Changes for 0.54
	Changes for 0.50
	Changes for 0.42
	Changes for 0.40

	The top level matplotlib module
	afm (Adobe Font Metrics interface)
	matplotlib.afm

	animation
	matplotlib.animation

	artists
	matplotlib.artist
	matplotlib.lines
	matplotlib.patches
	matplotlib.text

	axes
	matplotlib.axes

	axis
	matplotlib.axis

	backends
	matplotlib.backend_bases
	matplotlib.backends.backend_gtkagg
	matplotlib.backends.backend_qt4agg
	matplotlib.backends.backend_wxagg
	matplotlib.backends.backend_pdf
	matplotlib.dviread
	matplotlib.type1font

	cbook
	matplotlib.cbook

	cm (colormap)
	matplotlib.cm

	collections
	matplotlib.collections

	colorbar
	matplotlib.colorbar

	colors
	matplotlib.colors

	dates
	matplotlib.dates

	figure
	matplotlib.figure

	font_manager
	matplotlib.font_manager
	matplotlib.fontconfig_pattern

	gridspec
	matplotlib.gridspec

	legend
	matplotlib.legend

	Markers
	matplotlib.markers

	mathtext
	matplotlib.mathtext

	mlab
	matplotlib.mlab

	path
	matplotlib.path

	pyplot
	matplotlib.pyplot

	sankey
	matplotlib.sankey

	spines
	matplotlib.spines

	ticker
	matplotlib.ticker

	tight_layout
	matplotlib.tight_layout

	triangular grids
	matplotlib.tri

	units
	matplotlib.units

	widgets
	matplotlib.widgets

	VIII Glossary
	Bibliography
	Python Module Index
	Python Module Index
	Index

