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1 Introduction: Design by Successive Refinement

In the last lecture, we finished implementing a prelimary version of a slideshow program. The language is pretty simple
– all we can do is issue commands to display slides in a linear order. Still, we had to develop a lot of infrastructure
code to get this much of the system working. We now have a simple interface (which you would have had to develop
yourself if you were designing this language), data structures for slides, and the core of a program that can handle
slide displays. You’d need all of this to develop the full program anyway, so we’re off to a good start.

We are developing our slideshow language through a process known asiterative refinement. We didn’t tackle the
entire system at once. Instead, we carved out a small yet cohesive part of the full slideshow program, then designed,
implemented and tested it. We finished this implementation before adding more features. This approach is valuable
for many reasons:

• It helps you concentrate on one part of the system.

• It forces you to understand some of the issues that will affect your entire system design, but without the com-
plexity of the whole system.

• You end up with a collection of working code that you can try toreuse as you add more features to the system.
Note that you can’t always reuse your existing code (depending on what features you add later), but you can
often reuse a lot of it and you can almost always reuse theinsightsyou developed while working on that code.

Basically, iterative refinement encourages you to develop asystem in small stages, where each stage builds upon
earlier stages. Such early-stage systems are often calledprototypes. As you develop languages for this course (and
your entire career, for that matter), practice isolating small pieces to implement first and building on those pieces later.

With that said, let’s extend the slideshow language!

2 The First Refinement: Timed Conditionals

Imagine you are giving a talk using your slideshow package. You’re not really sure how much material to prepare –
if your audience asks a lot of questions, you may be running short on time, but you want to have enough material to
keep talking in case they don’t ask many questions. Ideally,you’d like your talk program to be conscious of the time
and to skip over certain collections of slides depending upon how much time remains.

Let’s extend our slideshow package with this functionality. We need to add atimecondconstruct to our language.
This construct is like anif -statement from other languages you’ve studied. It will perform some test on the time that’s
elapsed since you started speaking, then choose which set ofslides to run next depending on the result of the test.

What might this look like in our talk program? Recall that ourprevious talk program looked like:

(make-talk
(list (make-display intro-slide)

(make-display arith-eg-slide)
(make-display func-eg-slide)
(make-display summary-slide)))
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(where the various slides were defined in the previous set of notes, and in the posted code). Let’s say we want a
different talk that would skip thearith-eg-slideif more than 10 seconds has elapsed since we started talking.How
might we write that talk down? We need something like anif -statement in our language:

(make-talk
(list (make-display intro-slide)

(make-timecond<TEST>
(make-display arith-eg-slide)
<OTHERWISE>)

(make-display func-eg-slide)
(make-display summary-slide)))

This is the right idea, but we have to fill in the TEST and OTHERWISE details. In our example scenario, we don’t
want to run anything in the OTHERWISE case – we just want to go onto thefunc-eg-slide. What could we put in place
of OTHERWISE? We could use something likefalse, but we’re better off usingemptyand letting each branch of the
timecondbe a list. Why? Maybe we have a group of related slides, and we have to choose to show or skip all of them
at once. Lists would let us do that. This gives us the program:

(make-talk
(list (make-display intro-slide)

(make-timecond<TEST>
(list (make-display arith-eg-slide))
empty)

(make-display func-eg-slide)
(make-display summary-slide)))

Now, we just need to figure out what we’d put in the TEST position. A first temptation is to put a number there. In
our motivating scenario, we wanted to skip the slide if we hadspoken for more than 10 seconds, so maybe we should
write:

(make-talk
(list (make-display intro-slide)

(make-timecond10
(list (make-display arith-eg-slide))
empty)

(make-display func-eg-slide)
(make-display summary-slide)))

and have thetimecondstatement run the first set of slides if the elapsed time is less than the given number and the
second set of slides otherwise.

STOP AND THINK: Is this a good idea? Why or why not?

I claim this is a bad idea because it will restrict talk programs to only checking the elapsed time against one number.
What if a speaker wanted to decide on the slide order based on whether the elapsed time wasbetweentwo numbers?
This language would prohibit a programmer from writing sucha talk, and that seems an unnecessary limitation.

This raises an important aside. When you create a language, you have to find the right balance between limiting
what programs a language supports and giving the programmerenough flexibility to write the programs they’ll want to
write. Think about why you’ve added a construct, and whetheryour approach gives the programmer enough flexibility
to use the construct effectively.1

Back to the example – how could we give the speaker more flexibility in specifying time tests? We can safely say
that all tests will be relative to the current elapsed time. What if we made each test a function that takes the current
time as an argument and returns a boolean? Then our program would look like:

1You can take this too far and add too much to a language. Every good language has a clear sense of what it does NOT let you do, aswell as
what it will let you do. Finding the balance between these twois one of the most subtle tasks skills in language design.
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(make-talk
(list (make-display intro-slide)

(make-timecond(lambda (time) (> 10 time))
(list (make-display arith-eg-slide))
empty)

(make-display func-eg-slide)
(make-display summary-slide)))

This is a good initial approach for addingtimecondto the language. But this just shows how we want to add it to
our programs – we need to edit the data definitions and interpreter to handle this change.

Augmenting the Data Definition

Where shouldtimecondgo in our data definition? From the example, it appears to belong with the commands, since a
talk contains a list of commands (notice thattimecondis at the same level asdisplay, so it should go in a similar place
in the data definition). How would you have known this if we hadn’t started with the example?Any time you add a
new operator or construct, it’s going to go into the command area of your data definition(every language definition
needs a data definition for its commands).

Here’s our previous data definition for commands:

;; A cmd is
;; - (make-display slide)
(define-structdisplay(slide))

We need to add a space fortimecondthat matches the example we developed above:

;; A cmd is
;; - (make-display slide)
;; - (make-timecond (number→boolean) list[cmd] list[cmd])

(define-structdisplay(slide))
(define-struct timecond(time-limit within-time over-time))

[Note: the posted code introduces a new data definition called section, and uses that in the definition oftimecond
instead oflist[cmd]. Either would work. I created thesectionstructure in case we later wanted to add other attributes
to individual sections of a talk.]

Augmenting the Interpreter

Now that we have the data definition fortimecond, we can extend the interpreter to support it. Where should wemake
the change? Notice we have edited only one data definition: the one for commands. All the other data definitions have
remained intact. This tells usexactlywhere to edit the existing interpreter code: therun-cmdfunction, the template
function that processes the command data definition, has to change.2

How do we get started? Same way we always do: fill in the template and see what that suggests:

;; run-cmd : cmd→ void
;; executes the given command
(define(run-cmd cmd)

(cond [(display? cmd)
(begin (print-slide(display-slide cmd))

(await-click))]
[(timecond? cmd)
(timecond-time-limit cmd) . . .

2This example helps illustrate why we put so much emphasis on templates in this course. If you design programs to have the same structure as
your data, it’s easy to decide where to edit your code when thedefinitions change.
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(run-cmdlist(timecond-within-time cmd)) . . .
(run-cmdlist(timecond-over-time cmd)) . . . ]))

Note that the template gives us the calls torun-cmdliston the two sets of slides – the template code takes care of
running those commands for us. We just have to determine whento run those commands.

What is (timecond-time-limit cmd)? The data definition tells us that it is a function from number to boolean. So,
we need to find a number to give it as input, and we have to figure out how to use the output. For the input, we want
to give it the current elapsed time. Let’s assume we can writea function to give us that number (call that function
elapsed-time). Add that to our working code:

;; run-cmd : cmd→ void
;; executes the given command
(define(run-cmd cmd)

(cond [(display? cmd)
(begin (print-slide(display-slide cmd))

(await-click))]
[(timecond? cmd)
(timecond-time-limit cmd) (elapsed-time) . . .
(run-cmdlist(timecond-within-time cmd)) . . .
(run-cmdlist(timecond-over-time cmd)) . . . ]))

How do we call the time-limit function with the result ofelapsed-time? It’s just a function call, so add a pair of
parentheses:

;; run-cmd : cmd→ void
;; executes the given command
(define(run-cmd cmd)

(cond [(display? cmd)
(begin (print-slide(display-slide cmd))

(await-click))]
[(timecond? cmd)
((timecond-time-limit cmd) (elapsed-time)) . . .
(run-cmdlist(timecond-within-time cmd)) . . .
(run-cmdlist(timecond-over-time cmd)) . . . ]))

The consecutive left parens may look odd, but they’re consistent with what we’ve done before. This just says that we
don’t have a name for the function to call – we need to get it through some other expression. The second left paren
starts that expression. If this really bothers you, you could also write (the equivalent):

;; run-cmd : cmd→ void
;; executes the given command
(define(run-cmd cmd)

(cond [(display? cmd)
(begin (print-slide(display-slide cmd))

(await-click))]
[(timecond? cmd)
(let ([timefunc(timecond-time-limit cmd)])

(timefunc(elapsed-time)) . . .
(run-cmdlist(timecond-within-time cmd)) . . .
(run-cmdlist(timecond-over-time cmd)) . . . )]))

The result of the function is a boolean. What does it tell us? Which set of commands to run. This suggests that we
need acond to finish writingrun-cmd:

;; run-cmd : cmd→ void
;; executes the given command
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(define(run-cmd cmd)
(cond [(display? cmd)

(begin (print-slide(display-slide cmd))
(await-click))]

[(timecond? cmd)
(cond [((timecond-time-limit cmd) (elapsed-time))

(run-section(timecond-within-time cmd))]
[else(run-section(timecond-over-time cmd))])]))

That’s it! We now have time conditionals implemented in our language. Grab the fileppt-stage2.scm from
the webpage to try this code out. The code also shows you how toimplement theelapsed-timefunction.

3 The Second Refinement: Dynamic Content

Run the talk program withtimecondtwice: once exercising each branch of the conditional. If you look closely, you’ll
notice a new problem: if we do skip thearith-eg-slide, the first example shown (thefunc-eg-slide) has title “Example
2”, even though there was no example 1. This is problematic – the whole point of addingtimecondis to let a speaker
change the talk content “behind the scenes” (instead of frantically pressing the space bar as many people do when
using powerpoint when they are running out of time). For the talk to look truly smooth, however, we’ll need to be able
to adjust the example numbers as well.

If we want to achieve example numbers that match the sequencing undertimecond, when can we assign example
numbers to slides? There are two choices: when we write the program, or when we run the program (the latter is
calledrun-time). We need to set the example numbers at run-time. You could try to write a program that copied the
body of thefunc-eg-slidewith different slide numbers and put the copies in the right places in the talk program, but a
sufficiently large program with manytimecondstatements would quickly show you that this approach doesn’t scale.
Since the example number depends on speaker (run) time, we will need to decide on those numbers at run-time.

How do we do this in the program? Let’s go back to our talk program and try some alternatives:

(define talk1
(let ([intro-slide(make-slide. . . )]

[arith-eg-slide
(make-slide
"Example 1"
(make-pointlist(list "(+ (∗ 2 3) 6)" "(+ 6 6)" "12") false))]

[func-eg-slide(make-slide. . . )]
[summary-slide(make-slide. . . )])

(make-talk
(list (make-display intro-slide)

(make-timecond(lambda (time-in-talk) (> 20 time-in-talk))
(list (make-display arith-eg-slide))
empty)

(make-display func-eg-slide)
(make-display summary-slide)))))

Clearly, the number 1 has to come out. What can we use in its place? How about a variable for the count of
examples that we have displayed so far (we’ll call this variable example-index). Can we just replace the 1 with
example-indexas follows?

(define talk1
(let ([intro-slide(make-slide. . . )]

[arith-eg-slide
(make-slide
"Example example-index"
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(make-pointlist(list "(+ (∗ 2 3) 6)" "(+ 6 6)" "12") false))]
[func-eg-slide(make-slide. . . )]
[summary-slide(make-slide. . . )])

(make-talk. . . )))

Of course not. This putsexample-indexas a sequence of characters into the string, and we want to putthecontentsof
example-indexinto the string. We could just take the variable name out of the string as in:

(define talk1
(let ([intro-slide(make-slide. . . )]

[arith-eg-slide
(make-slide
"Example" example-index
(make-pointlist(list "(+ (∗ 2 3) 6)" "(+ 6 6)" "12") false))]

[func-eg-slide(make-slide. . . )]
[summary-slide(make-slide. . . )])

(make-talk. . . )))

This is problematic because it changes the number of arguments to make-slide, and we don’t want to have to make
two kinds of slides (example slides and non-example slides)[why not?].

Scheme provides an operator calledformat that builds a string out of data values. The following code creates
a single string containing the string Example followed by the example-index (see the DrScheme helpdesk for more
information onformat).

(define talk1
(let ([intro-slide(make-slide. . . )]

[arith-eg-slide
(make-slide
(format"Example ˜a" example-index)
(make-pointlist(list "(+ (∗ 2 3) 6)" "(+ 6 6)" "12") false))]

[func-eg-slide(make-slide. . . )]
[summary-slide(make-slide. . . )])

(make-talk. . . )))

How does this solution look? It matches the data definition ofa slide becauseformat returns a string. It uses the
value ofexample-indexto build the string. Assuming we defined the variableexample-indexand increment it each
time we display an example slide, this looks pretty good.

Or does it? What value wouldexample-indexhave when we make the title string for thearith-eg-slide? Or, a
related question,when would Scheme call the format command? We want that call to happen at run-time, just before
we display the slide. Is that when it happens?

To answer this, you need to remember how Scheme evaluates functions. Scheme will definetalk1 when you hit
execute – this isbeforeyou run the program (at what we callcompile-time– when your programming environment
loads or processes your program prior to running it). So, Scheme will callformatand grab the value ofexample-index
when you hit Execute,not when you run the talk1 program through the interpreter. Thisis not what we wanted to have
happen! How can we prevent it?

We said that Scheme evalutes expressions and defines variables when you hit Execute. Consider what happens if
you write a function like

;; square : number→ number
(define(square n)

(∗ n n))

and hit Execute. Does Scheme perform the multiplication at this time? No, it can’t, because you haven’t yet called the
function, you only defined it. This is a crucial point for you to understand about how programs are run.
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As a general rule, languages do not evaluate the bodies of functions until you call them. In particular,
function bodies are not evaluated at function-definition (compile) time.3

How does this help us? If we put the reference toexample-indexinside a function, and we don’t call that function
until its time to display the slide, then Scheme will use the current run-time value ofexample-indexto format the slide
titles. In other words, somewhere we need to wrap alambda around the use ofexample-index.

Where can we put the lambda? Putting it just around theexample-index, as in (format"Example ˜a" (lambda
() example-index)) won’t work because thenformatwould try to put the lambda, not the number, into the string. We
want to put thelambda someplace that keeps our data definition for slides consistent across all of the slides. Using
this criterion, the best place for thelambda is outside the call tomake-slide, as follows:

(define talk1
(let ([intro-slide(lambda () (make-slide. . . ))]

[arith-eg-slide
(lambda ()

(make-slide
(format"Example ˜a" example-index)
(make-pointlist(list "(+ (∗ 2 3) 6)" "(+ 6 6)" "12") false)))]

[func-eg-slide(lambda () (make-slide. . . ))]
[summary-slide(lambda () (make-slide. . . ))])

(make-talk. . . )))

What did this change accomplish? Each slide is now a function, not a structure. When Scheme evaluates the definition
for talk1, it will not go into the bodies of the lambdas, so it will not look at the value forexample-index. In other words,
we are using lambda to delay the evaluation of the slide contents until run-time. Remember we discussed this idea
when we talked about functions andlambdas a couple of weeks ago: functions are useful for delaying computations
that we know now, but want to perform later.

But wait – doesn’t this change our data definition for slides?And don’t we have to actuallycall these new functions
somewhere? Yes on both counts. What’s changed in the data definition? The display commands now take a function
that takes no arguments andreturnsa slide, rather than a slide structure:4

;; A cmd is
;; - (make-display (→ slide))
;; - (make-timecond (time→ boolean) list[cmd] list[cmd])

How does this change impact the interpreter? Remember the correspondence between data definitions and code:
the change goes in thedisplay?case ofrun-cmd. What does the change entail? Before we callprint-slide, we need to
run the function in the display to get the slide structure (notice the extra set of parens around the call todisplay-slide
in thedisplay?case now):

;; run-cmd : cmd→ void
;; executes the given command
(define(run-cmd cmd)

(cond [(display? cmd)
(begin (print-slide((display-slide cmd)))

(await-click))]
[(timecond? cmd)
(cond [((timecond-time-limit cmd) (elapsed-time))

(run-cmdlist(timecond-within-time cmd))]
[else(run-cmdlist(timecond-over-time cmd))])]))

The posted code (ppt-stage3.scm) shows the full code along with the code that increments theexample-index
variable.

3This idea that programs are processed in different, identifiable times, is one theme that will recur through this class – keep this in mind.
4You could also change the definition of a slide to be a functionand leave the definition of display intact. That would be better in some ways,

but for consistency with the code handed out in class we’ll stick to changing the definition of display for now.
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4 Recap

We’ve done a brain-full of work in this lecture. Let’s step back for a moment, recall what we did and what techniques
we learned.

What We Did

1. We added time conditionals to our slideshow language.

2. We modified the slideshow program to generate some data (inthis case the example numbers) at run-time.

Techniques We Learned

1. Add new constructs to the command data definition for our language (every language we define will have a
command data definition).

2. When you add a new construct, think about what informationa programmer needs to write down for that
construct, develop some examples, then write data definitions to support your ideas.

3. By usingcond in our implementation, we can implement conditional-like expressions in our language.

4. We can uselambda to delay a computation until run-time. Simply wrappinglambda around an expression
prevents Scheme from evaluating that expression. However,if we do this we need to edit our code to call the
new function when we do want to evaluate the expression.

5. Adding new constructs to a language has fairly local impact on code – we only edit the code in the places
corresponding to where we edited the data definitions.

Download the code. Run it. Move the lambdas around and see what breaks. Try the approaches we discussed but
didn’t take and make sure you understand why we didn’t take them. Hopefully, the techniques and approaches we
used in this example will become clearer that way.

5 Are We Done Yet?

We have finished implementing our first software package using a languages-like approach. How close have we come
to implementing a real programming language? We’ve done theheart of the work, but some small issues still remain:

• The syntax still looks funny.What does a program look like in this language? If you wanted your roommate to
program in your language, what would (s)he have to write? Currently, something like:

(make-talk
(list (make-display intro-slide)

(make-timecond(lambda (time) (> 10 time))
(list (make-display arith-eg-slide))
empty)

(make-display func-eg-slide)
(make-display summary-slide)))

That doesn’t look very much like a programming language – thenotation is pretty clumsy and relies on all these
make constructs. Real languages don’t look much like this, so what’s missing?

What’s missing is a cleaner notation (syntax) for writing down slide programs, and a translator from that syntax
into our data definitions. In a real language, you might want to write something more like:

(talk (display intro-slide)
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(if (> 10 time) (display arith-eg-slide))
(display func-eg-slide)
(display summary-slide))

(or, maybe even something without parentheses!) You would then need a program (called aparser) that would
translate this cleaner notation into themake-display, etc version that we’ve been using. We will get into this a
little in the next couple of weeks (though this is a big topic and we can’t do it justice in 1102).

That said, the work we’ve done so far includes everything EXCEPT the nicer notation and the parser. Just under
the syntax of every language lies a series of data definitionslike the ones we developed here. Interpreters are
written to process those data definitions. You have done a real language implementation, minus prettying up the
notation.

• Given that we usedlambda in our programs, aren’t we relying pretty heavily on Scheme here?Yes and no. Yes
in that we are definitely relying on Scheme (C++ doesn’t havelambda), but no in that every language that you
would implement the slideshow package in has constructs that would achieve whatlambda did for you here.
The general techniques we’re learning (such as delaying computation to get run-time content generation) apply
across the board. You just need to learn how to implement those techniques in your implementation language of
choice.

This also ties into the previous question: once you put the prettier notation on front of the language, that notation
would transfer across more implementation languages than our currentmake-display, etc notation would. But
that’s another topic for another day.
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