CS1102: Extending the Slideshow Language

Kathi Fisler, WPI
September 17, 2004

1 Introduction: Design by Successive Refinement

Inthe last lecture, we finished implementing a prelimariar of a slideshow program. The language is pretty simple
— all we can do is issue commands to display slides in a lineero Still, we had to develop a lot of infrastructure
code to get this much of the system working. We now have a simnpérface (which you would have had to develop
yourself if you were designing this language), data stmastdor slides, and the core of a program that can handle
slide displays. You'd need all of this to develop the full gram anyway, so we're off to a good start.

We are developing our slideshow language through a processrkasiterative refinementWe didn’t tackle the
entire system at once. Instead, we carved out a small yesi@hgart of the full slideshow program, then designed,
implemented and tested it. We finished this implementateforde adding more features. This approach is valuable
for many reasons:

e It helps you concentrate on one part of the system.

¢ It forces you to understand some of the issues that will &ffear entire system design, but without the com-
plexity of the whole system.

e You end up with a collection of working code that you can trydase as you add more features to the system.
Note that you can'’t always reuse your existing code (dependn what features you add later), but you can
often reuse a lot of it and you can almost always reusé@ightsyou developed while working on that code.

Basically, iterative refinement encourages you to develsyséem in small stages, where each stage builds upon
earlier stages. Such early-stage systems are often qatidotypes As you develop languages for this course (and
your entire career, for that matter), practice isolatingipieces to implement first and building on those pieces lat

With that said, let's extend the slideshow language!

2 The First Refinement: Timed Conditionals

Imagine you are giving a talk using your slideshow packag®i’'né not really sure how much material to prepare —
if your audience asks a lot of questions, you may be runniogtsin time, but you want to have enough material to
keep talking in case they don’t ask many questions. Idegdly;d like your talk program to be conscious of the time
and to skip over certain collections of slides dependingupaw much time remains.

Let’s extend our slideshow package with this functionaltie need to add amecondconstruct to our language.
This construct is like aif-statement from other languages you've studied. It wilfpen some test on the time that's
elapsed since you started speaking, then choose which sidesd to run next depending on the result of the test.

What might this look like in our talk program? Recall that @uevious talk program looked like:

(make-talk
(list (make-display intro-slide
(make-display arith-eg-slige
(make-display func-eg-slijle
(make-display summary-slige



(where the various slides were defined in the previous sebtifsn and in the posted code). Let's say we want a
different talk that would skip tharith-eg-slideif more than 10 seconds has elapsed since we started talkiog.
might we write that talk down? We need something likéfastatement in our language:

(make-talk
(list (make-display intro-slide
(make-timecone&k TEST>
(make-display arith-eg-slide
<OTHERWISE')
(make-display func-eg-slijle
(make-display summary-slige

This is the right idea, but we have to fill in the TEST and OTHERW® details. In our example scenario, we don't
want to run anything in the OTHERWISE case — we just want torgo thefunc-eg-slideWhat could we put in place
of OTHERWISE? We could use something liftase but we're better off usingmptyand letting each branch of the
timecondbe a list. Why? Maybe we have a group of related slides, andawe to choose to show or skip all of them
at once. Lists would let us do that. This gives us the program:

(make-talk
(list (make-display intro-slide
(make-timeconec TEST>
(list (make-display arith-eg-slidg
empty
(make-display func-eg-slijle
(make-display summary-slige

Now, we just need to figure out what we'd put in the TEST ponitia first temptation is to put a number there. In
our motivating scenario, we wanted to skip the slide if we fpoken for more than 10 seconds, so maybe we should
write:

(make-talk
(list (make-display intro-slide
(make-timecondO
(list (make-display arith-eg-slidg
empty
(make-display func-eg-slijle
(make-display summary-slige

and have théimecondstatement run the first set of slides if the elapsed time stlean the given number and the
second set of slides otherwise.

STOP AND THINK: Is this a good idea? Why or why not?

I claim this is a bad idea because it will restrict talk pragsato only checking the elapsed time against one number.
What if a speaker wanted to decide on the slide order basecether the elapsed time whstweertwo numbers?
This language would prohibit a programmer from writing sadialk, and that seems an unnecessary limitation.

This raises an important aside. When you create a languagehave to find the right balance between limiting
what programs a language supports and giving the prograemoeigh flexibility to write the programs they'll want to
write. Think about why you've added a construct, and wheyloer approach gives the programmer enough flexibility
to use the construct effectively.

Back to the example — how could we give the speaker more flayiln specifying time tests? We can safely say
that all tests will be relative to the current elapsed timehatif we made each test a function that takes the current
time as an argument and returns a boolean? Then our progratd lgok like:

1You can take this too far and add too much to a language. Eaogt anguage has a clear sense of what it does NOT let you aeelhas
what it will let you do. Finding the balance between these isvane of the most subtle tasks skills in language design.



(make-talk
(list (make-display intro-slide
(make-timecon@lambda (time) (> 10 time))
(list (make-display arith-eg-slide
empty
(make-display func-eg-slijle
(make-display summary-slige

This is a good initial approach for additignecondto the language. But this just shows how we want to add it to
our programs — we need to edit the data definitions and irgpto handle this change.

Augmenting the Data Definition

Where shouldimecondgo in our data definition? From the example, it appears tortgpldth the commands, since a
talk contains a list of commands (notice thiateconds at the same level alisplay, so it should go in a similar place
in the data definition). How would you have known this if we hadtarted with the exampleRny time you add a
new operator or construct, it's going to go into the commanrehzof your data definitioifevery language definition
needs a data definition for its commands).

Here’s our previous data definition for commands:
i Acmdis
;; - (make-display slide)
(define-structdisplay(slide))

We need to add a space fimecondthat matches the example we developed above:
i Acmdis

;; - (make-display slide)

;» - (make-timecond (numbesboolean) listicmd] listfcmd])

(define-struct display(slide))
(define-struct timecond(time-limit within-time over-timp

[Note: the posted code introduces a new data definitionadtaletion and uses that in the definition tifnecond
instead oflistfcmd. Either would work. | created thgectionstructure in case we later wanted to add other attributes
to individual sections of a talk.]

Augmenting the Interpreter

Now that we have the data definition fiimecond we can extend the interpreter to support it. Where shoulthalee
the change? Notice we have edited only one data definiti@norie for commands. All the other data definitions have
remained intact. This tells wesxactlywhere to edit the existing interpreter code: tha-cmdfunction, the template
function that processes the command data definition, hasaoge?

How do we get started? Same way we always do: fill in the terajglatl see what that suggests:

;» run-cmd : cmd— void

;; executes the given command

(define (run-cmd cmdl

(cond [(display? cmdl
(begin (print-slide (display-slide cmy)
(await-click)]

[(timecond? cmy
(timecond-time-limit cmd. . .

2This example helps illustrate why we put so much emphasigmplates in this course. If you design programs to have time sdructure as
your data, it's easy to decide where to edit your code whewdfi@itions change.



(run-cmdlist(timecond-within-time cnjdl. . .
(run-cmdlist(timecond-over-time cmyl. . .]))

Note that the template gives us the callsua-cmdliston the two sets of slides — the template code takes care of
running those commands for us. We just have to determine ¥hem those commands.

What is timecond-time-limit cm® The data definition tells us that it is a function from numioeboolean. So,
we need to find a number to give it as input, and we have to figur@aw to use the output. For the input, we want
to give it the current elapsed time. Let's assume we can warfienction to give us that number (call that function
elapsed-timp Add that to our working code:

;; run-cmd : cmd— void

;; executes the given command

(define (run-cmd cmdl

(cond [(display? cmdl
(begin (print-slide (display-slide cmy)
(await-click)]

[(timecond? cmy
(timecond-time-limit cmd(elapsed-timg. . .
(run-cmdlist(timecond-within-time cnjdl. . .
(run-cmdlist(timecond-over-time cmil. . .]))

How do we call the time-limit function with the result elapsed-tim@ It's just a function call, so add a pair of
parentheses:

;; run-cmd : cmd— void

;; executes the given command

(define (run-cmd cmdl

(cond [(display? cmdl
(begin (print-slide (display-slide cmy)
(await-clicK)]

[(timecond? cmy
((timecond-time-limit cmd(elapsed-timpg ...
(run-cmdlist(timecond-within-time cnjdl. . .
(run-cmdlist(timecond-over-time cmil. . .]))

The consecutive left parens may look odd, but they're coersisvith what we've done before. This just says that we
don’t have a name for the function to call — we need to get ihulgh some other expression. The second left paren
starts that expression. If this really bothers you, you d@lgo write (the equivalent):

;; run-cmd : cmd— void
;; executes the given command
(define (run-cmd cmdl
(cond [(display? cmdl
(begin (print-slide (display-slide cmy)
(await-clicK)]
[(timecond? cmy
(let ([timefunc(timecond-time-limit cmy)
(timefunc(elapsed-timp ...
(run-cmdlist(timecond-within-time cmjjl. . .
(run-cmdlist(timecond-over-time cmjyl. . .)]))

The result of the function is a boolean. What does it tell us#idWset of commands to run. This suggests that we
need acondto finish writingrun-cmd

;; run-cmd : cmd— void
;; executes the given command



(define (run-cmd cmdl
(cond [(display? cmdl

(begin (print-slide (display-slide cmy)
(await-clicK)]

[(timecond? cmy

(cond [((timecond-time-limit cm3d(elapsed-timp

(run-section(timecond-within-time cnjdl

[else(run-section(timecond-over-time cMy)]))

That’s it! We now have time conditionals implemented in anduage. Grab the filept - st age2. scmfrom
the webpage to try this code out. The code also shows you hompiement theelapsed-timéunction.

3 The Second Refinement: Dynamic Content

Run the talk program wittimecondtwice: once exercising each branch of the conditional. if amk closely, you'll
notice a new problem: if we do skip tlith-eg-slide the first example shown (tHanc-eg-slid¢has title “Example
2", even though there was no example 1. This is problematie-whole point of addingimecondis to let a speaker
change the talk content “behind the scenes” (instead ofiéaty pressing the space bar as many people do when
using powerpoint when they are running out of time). For #ile tio look truly smooth, however, we’ll need to be able
to adjust the example numbers as well.

If we want to achieve example numbers that match the sequgncidettimecond when can we assign example
numbers to slides? There are two choices: when we write thgram, or when we run the program (the latter is
calledrun-timg. We need to set the example numbers at run-time. You coyla twrite a program that copied the
body of thefunc-eg-slidewith different slide numbers and put the copies in the rigates in the talk program, but a
sufficiently large program with manymecondstatements would quickly show you that this approach dossale.
Since the example number depends on speaker (run) time, lweeed to decide on those numbers at run-time.

How do we do this in the program? Let’s go back to our talk paogand try some alternatives:

(definetalkl
(let ([intro-slide (make-slide . .)]
[arith-eg-slide
(make-slide
" Example 1"
(make-pointlis{list" (+ (x 2 3) 6)" " (+ 6 6)" " 12") fals)]
[func-eg-slidgmake-slide . .)]
[summary-slidémake-slide . .)])
(make-talk
(list (make-display intro-slide
(make-timecon@lambda (time-in-talk (> 20 time-in-talk)
(list (make-display arith-eg-slide
empty
(make-display func-eg-slijle
(make-display summary-sligé))

Clearly, the number 1 has to come out. What can we use in iteBldHow about a variable for the count of
examples that we have displayed so far (we'll call this u@ddaxample-index Can we just replace the 1 with
example-indexrs follows?

(definetalkl
(let ([intro-slide (make-slide . .)]
[arith-eg-slide
(make-slide
" Example example-index"



(make-pointlis{list " (+ (x 2 3) 6)" " (+ 6 6)" " 12") false)]
[func-eg-slidgmake-slide. .)]
[summary-slidémake-slide . .)])
(make-talk ..)))

Of course not. This putsxample-indeas a sequence of characters into the string, and we want thgedntentsof
example-indeinto the string. We could just take the variable name out efstiing as in:

(definetalkl
(let ([intro-slide (make-slide . .)]

[arith-eg-slide

(make-slide
" Example" example-index
(make-pointlis(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12") false)]

[func-eg-slidgmake-slide . .)]

[summary-slidémake-slide . .)])

(make-talk ..)))

This is problematic because it changes the number of argisni@make-slide, and we don’t want to have to make
two kinds of slides (example slides and non-example sliflelsy not?.

Scheme provides an operator calfedmat that builds a string out of data values. The following codeates
a single string containing the string Example followed by #xample-index (see the DrScheme helpdesk for more
information onforma).

(definetalkl
(let ([intro-slide (make-slide . .)]

[arith-eg-slide

(make-slide
(format" Example "a" example-index
(make-pointlis(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12") false)]

[func-eg-slidgmake-slide. .)]

[summary-slidémake-slide . .)])

(make-talk ..)))

How does this solution look? It matches the data definitioa sfide becaus®rmatreturns a string. It uses the
value ofexample-indexo build the string. Assuming we defined the variablample-indexand increment it each
time we display an example slide, this looks pretty good.

Or does it? What value wouldxample-indexave when we make the title string for theth-eg-slid® Or, a
related questionwhen would Scheme call the format comnfaide want that call to happen at run-time, just before
we display the slide. Is that when it happens?

To answer this, you need to remember how Scheme evaluatetioium Scheme will definalkl when you hit
execute — this ibeforeyou run the program (at what we calbmpile-time- when your programming environment
loads or processes your program prior to running it). Soe8ehwill callformatand grab the value axample-index
when you hit Executejot when you run the talkl program through the interpreter. ot what we wanted to have
happen! How can we prevent it?

We said that Scheme evalutes expressions and defines eanabén you hit Execute. Consider what happens if
you write a function like

;; square : number» number
(define(square 1)

(xnn))

and hit Execute. Does Scheme perform the multiplicatiohiattime? No, it can’t, because you haven't yet called the
function, you only defined it. This is a crucial point for yauunderstand about how programs are run.



As a general rule, languages do not evaluate the bodies atifurs until you call them. In particular,
function bodies are not evaluated at function-definiticongpile) time3

How does this help us? If we put the referencexample-indeinside a function, and we don’t call that function
until its time to display the slide, then Scheme will use tbheent run-time value oéxample-indeto format the slide
titles. In other words, somewhere we need to wrdgmabda around the use afxample-index

Where can we put the lambda? Putting it just aroundetteemple-indexas in format" Example "a" (lambda
() example-indey won't work because theformatwould try to put the lambda, not the number, into the stringg W
want to put thdambda someplace that keeps our data definition for slides comsiat¥oss all of the slides. Using
this criterion, the best place for theembda is outside the call tsnake-slideas follows:

(definetalkl
(let ([intro-slide (lambda () (make-slide . .))]
[arith-eg-slide
(lambda ()
(make-slide
(format" Example "a" example-indéex
(make-pointlis(list " (+ (x 2 3) 6)" " (+ 6 6)" "12") falsg))]
[func-eg-slid€lambda () (make-slide. .))]
[summary-slidélambda () (make-slide . .))])
(make-talk ..)))

What did this change accomplish? Each slide is now a funatiota structure. When Scheme evaluates the definition
for talkd, it will not go into the bodies of the lambdas, so it will nobloat the value foexample-indexin other words,
we are using lambda to delay the evaluation of the slide cuatentil run-time Remember we discussed this idea
when we talked about functions alanbdas a couple of weeks ago: functions are useful for delayingpdations
that we know now, but want to perform later.

But wait — doesn’t this change our data definition for slidés® don’t we have to actuallgall these new functions
somewhere? Yes on both counts. What's changed in the datatidef? The display commands now take a function
that takes no arguments aredurnsa slide, rather than a slide structdre:
mAcmdis
;; - (make-display £ slide))

;» - (make-timecond (time- boolean) listfcmd] listfcmd])

How does this change impact the interpreter? Remember thespondence between data definitions and code:
the change goes in thiisplay?case ofun-cmd What does the change entail? Before we peht-slide, we need to
run the function in the display to get the slide structurdifmothe extra set of parens around the calfiigplay-slide
in the display?case now):

;» run-cmd : cmd— void
;; executes the given command
(define (run-cmd cmdl
(cond [(display? cmdl
(begin (print-slide ((display-slide cmy))
(await-click)]
[(timecond? cmy
(cond [((timecond-time-limit cmd(elapsed-timp
(run-cmdlist(timecond-within-time cnjjl
[else(run-cmdlist(timecond-over-time cmy)]))

The posted codgpt - st age3. scm) shows the full code along with the code that incrementeikanple-index
variable.

3This idea that programs are processed in different, idahtéitimes, is one theme that will recur through this classepkhis in mind.
4You could also change the definition of a slide to be a functind leave the definition of display intact. That would bedeitt some ways,
but for consistency with the code handed out in class wedkdb changing the definition of display for now.



4 Recap

We've done a brain-full of work in this lecture. Let's stepckdor a moment, recall what we did and what techniques
we learned.

What We Did
1. We added time conditionals to our slideshow language.

2. We modified the slideshow program to generate some datliginase the example numbers) at run-time.

Techniques We Learned

1. Add new constructs to the command data definition for onglage (every language we define will have a
command data definition).

2. When you add a new construct, think about what informasigorogrammer needs to write down for that
construct, develop some examples, then write data defisitim support your ideas.

3. By usingcondin our implementation, we can implement conditional-lixpeessions in our language.

4. We can uséambda to delay a computation until run-time. Simply wrappitagnbda around an expression
prevents Scheme from evaluating that expression. Howiwee do this we need to edit our code to call the
new function when we do want to evaluate the expression.

5. Adding new constructs to a language has fairly local ihpaiccode — we only edit the code in the places
corresponding to where we edited the data definitions.

Download the code. Run it. Move the lambdas around and setehsbaks. Try the approaches we discussed but
didn’t take and make sure you understand why we didn't takenthHopefully, the techniques and approaches we
used in this example will become clearer that way.

5 Are We Done Yet?

We have finished implementing our first software packagegusitanguages-like approach. How close have we come
to implementing a real programming language? We've donédlagt of the work, but some small issues still remain:

e The syntax still looks funnyWhat does a program look like in this language? If you wantaar yoommate to
program in your language, what would (s)he have to write7&ly, something like:

(make-talk
(list (make-display intro-slide
(make-timecon@lambda (time) (> 10 time))
(list (make-display arith-eg-slide
empty
(make-display func-eg-slijle
(make-display summary-slige

That doesn’tlook very much like a programming language -nthtation is pretty clumsy and relies on all these
make constructs. Real languages don't look much like tbisylsat’s missing?

What's missing is a cleaner notation (syntax) for writingwhcslide programs, and a translator from that syntax
into our data definitions. In a real language, you might wanttite something more like:

(talk (display intro-slidé



(if (> 10 time) (display arith-eg-slidp
(display func-eg-slide
(display summary-sligg

(or, maybe even something without parentheses!) You wdwdd heed a program (callegarsei) that would
translate this cleaner notation into theake-displayetc version that we've been using. We will get into this a
little in the next couple of weeks (though this is a big topidave can’t do it justice in 1102).

That said, the work we've done so far includes everything ERT the nicer notation and the parser. Just under
the syntax of every language lies a series of data definitikeshe ones we developed here. Interpreters are
written to process those data definitions. You have donel éarguage implementation, minus prettying up the
notation.

Given that we usethmbda in our programs, aren’t we relying pretty heavily on Scheragl Yes and no. Yes

in that we are definitely relying on Scheme (C++ doesn’t Hamebda), but no in that every language that you
would implement the slideshow package in has constructsitbald achieve whatambda did for you here.
The general techniques we’re learning (such as delayingpatation to get run-time content generation) apply
across the board. You just need to learn how to implemenettezhniques in your implementation language of
choice.

This also ties into the previous question: once you put th&ipr notation on front of the language, that notation
would transfer across more implementation languages thaowrentmake-displayetc notation would. But
that’s another topic for another day.



