
-------- Answer ------------------------

The test case:

Date someDate = new Date(12, 16, 2015)
LL<Post> snaps = getSnapshot("kathi", someDate)

t.checkExpect(snaps.size() <= 10 &&
 DatesWithinDays(snaps, somedate, 3) &&
 uniquePosters(snaps).size() >= 5, true)

The methods:

// are all dates within numDays of the given date
boolean DatesWithinDays(LL<Post> posts, Date someDate, int numDays)
 -- goes into the SocialNetwork or Examples class

// list of unique members who have a post in the list, no duplicates
LL<Member> uniquePosters(LL<Post>)
 -- goes into the SocialNetwork or Examples class

------- Grading Comments -----------------

* The general strategy here is to have a method or a built-in operator
 that can check each of the criteria for your expected answer.
 Generate the answer, then check each of the criteria within the
 checkExpect.

* It is critical that someDate (in the test case part) appears in both
 the call used to build the snaps list and in the DatesWithinDays
 call used to check the list of snaps. This shows that you
 understand that the data that is used to generate the candidate
 answer is often needed to check that the answer is valid.

* The exact constructor for Date was not important. As long as you
 did something that showed you had a common Date object in both the
 call and the check, we wouldn't have cared about the constructor part.

* You could have broken this down differently, such as putting a
 method to compare dates in the Post class. Grading on this question
 did not care about encapsulation. It did care that you put methods
 in classes that had access to the other methods and data that you
 cared about.

