1. (30 points) Data Structures

A medical center has given each patient a pedometer that reports how many steps the patient takes on every Date
(month/day/year). The center plans to use the data to check (1) that patients are taking a similar number of steps
each week, and (2) that the average steps per week is above 50,000.

Below, we propose three data structures for the steps data for a single patient. Comment on whether each is
a good choice for the steps-per-week checks described above (ignore other possible uses of the data). Briefly
explain why (a sentence or two is encugh), indicating strengths and/or weaknesses as appropriate. There may
be multiple good choices or no good choices; evaluate each independently.

Your answer should demonstrate that you understand the traits of the proposed data structure.

The first two proposals use the following class to store the number of steps for a given date:

class DailySteps |
Date whichDay;
int numSteps;

}
e LinkedList<DailySteps>, assuming the listis sorted by Date (from most recent to least recent).

K a L - I . i "
f:_)' s { P T ‘Ji l:,(i | | < { Is SO i s .-;_'j LA."L Ccail € asl l_ ;‘ YA
et Chovce. 1 - ! Yeodtews (s Fhat we

.] _ L A < | ‘_7;‘(__.(;_ t_,-k,."'&',’,:l:‘,_l-{.._, 4 t,.“..‘Ji: OV YLé /¥ | > |75 12 LN
The ©h - els gvv - € 0 \ , o 11ee Hha et

i | A M Ra) o weeld eacih himeL We Use o

hau<

e LinkedList<LinkedList<DailySteps>>, where each inner list has DailySteps objects from

the same week, but there is no specific order in either the inner or outer lists. J 1
) : = A~ N g AU LA
. b« . Th Drob e on W Car== 5
\ : e v ("“‘ J-'L‘.'-l")‘ [& VWO L L2, IS \j R g ~ 17 . | o . 5 {
¥ g € ; Sy Sayned wee ¥ o bl CERRY B
i gyaecvionb o 1T = - woohead Vg
Comp i e Hhrou fhg Yies el W= =

blatke one W& '
\sla

e HashMap<Date, Integer> that maps each date to the number of steps taken that day.

\ | 4
') i 1 | \ ~ 1 ™ 1 Nt
1 N =i] A~ Ml 'S LSOV —
;\"\ oT oL ¢oO I (J!__i'! Pl &7 kT Nnaoa. e (o
1 i B ') e
- 41\
) z 1 . | S| VYR he
i \ (= e L < 2_AX_, — 3
e S c— T < 1 N L
N CLYT R %:) < CoAs o AT '((‘
3 '
|5 14T
AL

‘o oA Mo
ar g | V1 AL e

(exam continues next page)

2. (35 points) Exceptions/Java Programming

One day, someone at the medical center accidentally updates patients’ LDL history with results from a different
test whose numeric results are much smaller than valid LDL values. To guard against this happening again, the
center wants to check that test results are in an expected range before updating LDL data in EHR objects.

The current (unsafe) updatelDLHistory method (for updating EHR objects with LDL test results, as de-
scribed on the previous page) is as follows:
class MedicalCenter {
HashMap<String, EHR> patientData; // map patient names to EHRs
_void updatelLDLHistory(LinkedList<TestResult> newData) ({
‘h\& Chudl rangt (new Dater, 100, 250
for (TestResult tr : newData) {
EHR patientEHR = patientData.get (tr.patientName);
if (! (patientEHR == null))

patientEHR.LDLHistory.add(tr.result);

}
} ‘5 e f.l’~ L £ o 5 =

DL X dzpv\o

b Cateih (NotlDbLk

=1 =y o DPDA
} T‘ls(,‘.T-’--U! CTA Cp

Here is a method that checks whether every TestResult ina list has a result within a given range.

// check whether all numeric results are between the low and high values
boolean checkRange (LinkedList<TestResult> data, double low, double high) “{
for (TestResult tr : data) {

if ((low > tr.result) || (tr.result > high)) // value out of range
return—false; } Yo fos o \
} \1! oo e NotLbLEXG fm A

return tzrue;

(a) (30 points) Edit either or both of these methods as needed to store the test results only if all of them lie
within the range low=100 to high=250. If even one TestResult is out of range, none should be stored
and a Not LDLException should be thrown. Include throws declarations as needed. Assume both
methods are in the same class.

(b) (5 points) Somewhere on this page, write the class definition for Not LDLException, Assume it has no
fields. You do NOT need to write the constructor.

\ L S) g :
A\ 5 ¢ @ N\ 1Y v re DN O &N W N/ . Ul L ¢
AR .\\ ol LD L ey Pl ‘ EN NS e P]

(exam continues next page)

3. (40 points) Encapsulation/Program Design

ET)

In this question, as the updatelLDLHistory method processes TestResults, it also creates a “watchlist
of patients whose results have changed significantly since their last test. (The inner if statement and the
watchlist variable are the differences from the version in question 2.)

class MedicalCenter {
HashMap<String, EHR> patientData; // map patient names to EHRs

LinkedList<String> updatelDLHistory(LinkedList<TestResult> newData) {
// names of patlients we should check on based on results
LinkedList<String> watchlist = new LinkedList<String>();

for (TestResult tr : newData) {
EHR patientEHR = patientData.get (tr.patientName) ;
if (! (patientEHR == null)) {
// if difference to last LDL reading above 50, put patient in watchlist
if [((patientEHR.LDLHistory.size() > 0) && '
[\/ } {{tr.result - patientEHR.LDLHistory.get(0)) > 50)) {
watchlist.add(tr.patientName) ;
} -
" patientEHR.LDLHistory.add(tr.result);
iy) - —)
}

return watchlist;

(a) (10 points) Draw boxes on the above code around computations that should be in a class other than
MedicalCenter (which contains the updateLDLHistory method). Label each box with a unique
number (1, 2, ...). You only have to draw and number boxes for this part.

(b) (30 points) Using the space on this page and the next (if needed), for each box:

e Write the method call (method name and arguments) that should replace the boxed-off code. This call
can be to a new method (give it a descriptive name). Write only the call, do not write the actual
method. Use the box numbers to label calls that are not immediately next to their boxes.

e Indicate which class each new method should be in. If the class exists, simply name it (i.e., “in class
Dillo”). If the class does not exist, define it (giving the class name, fields, and field types).

Woangt (@2

(exam continues next page)

