
CS2223 Algorithms. B Term 2013

Homework 2 Solutions

By Artem Gritsenko, Ahmedul Kabir, Yun Lu, and Prof. Ruiz

Problem 1. (Solutions by Artem Gritsenko)

Algorithm:

1 for each set Si:

2 for each other set Sj:

3 disjoint = true

4 for each element k of Si:

5 if k belongs to Sj:

6 disjoint = false

7 if disjoint == true

8 print 'Sets ',i,j,' are disjoint'

9 return(true)

10 return(false)

1. Implementation Version 1

DisjointSetsVersion1(L) cost times

1 for i = 0 to len(L)-1 1c n+1

2 for j = i+1 to len(L)-1: 2c n*([(n-1)/2]+1)

3 disjoint = True 3c n*[(n-1)/2]

4 for k =0 to len(L[i])-1: 4c n*[(n-1)/2]*(n+1)

5 for s = 0 to len(L[j])-1: 5c n*[(n-1)/2]]*n*(n+1)

5 if L[i][k] == L[j][s]: 6c n*[(n-1)/2]*n*n

6 disjoint = False 7c n*[(n-1)/2]*n*n

7 if disjoint == True 8c n*[(n-1)/2]

8 print‘Sets’,i,j,’are disjoint’ 9c 1

9 return(True) 10c 1

10 return(False) 11c 1

The numbers on the lines in the implementation correspond to the numbers on the lines of the

Algorithm and mean the same instructions. Now let’s count the total number of instructions

executed during the run of the program in the worst case, for each instruction line.

1) The first loop iterates over all the sets to get the 1st set for comparison. The number of executions

of the loop condition in the worst case equal to the number of sets plus one. This is because for cycle

condition we always have 1 more iteration than for the cycle body. The cycle body, thus would

iterate n times.

2) The second loop iterates over all the sets to get the 2nd set for comparison. The second cycle has

the number of iterations n/2 because we want to consider only j > i cases. That means we have n-1

iterations for i=0, n-2 iterations for i=1, n-3 iterations for i=2, etc. The total number of iterations

would be sum of all numbers from n-1 to 1, which is (n-1)*n/2:

���� − 1� − �	 =	
�
�

���
��� − 1� −� � = ��� − 1�

�
�

���
− ��� − 1�2 = 	��� − 1�2

As in the previous case we add plus one execution for the condition, though the body of the 2
nd

 loop

would iterate (n-1)/2 times.

3) This instruction executes the number of times that both previous loops execute, which is the

multiplication of the previous loops number of executions and equal to n*(n-1)/2.

4) The third loop iterated over the elements of the 1st set, which is n iterations in the worst case. As

in previous cases we have n+1 executions of the loop condition and n executions of the loop body.

5) The forth loop iterates over the elements of the 2nd set, which is n iterations in the worst case.

5)-7) The loop body is executed a number of times equal to the multiplication of the 4 loops number

of iterations.

8)-10) These instructions are executed only once, because if we have found the disjoint sets the

program ends. Similarly, if we did not find a pair of disjoint sets, we just return False.

The total number of instructions is the sum of products of corresponding costs and times equal to

T(n) = 1c * (n+1)

+ 2c * (n*(((n-1)/2)+1))

+ 3c *(n*(n-1)/2)

+ 4c *(n*(n-1)/2*(n+1))

+ 5c *(n*(n-1)/2*n*(n+1))

+ 6c *(n*(n-1)/2*n*n)

+ 7c *(n*(n-1)/2)

+ 8c *(n*(n-1)/2*n*n)

+ 9c *1+ 10c *1+ 11c *1.

We can group and represent it in the way:

T(n) = 54
2

3
3

2
4

1 knknknknk ++++ .

2. Claim:)()(4nOnT =

3. Proof: We need to find 0n and c that for all 0nn > the following holds:)()(ncgnT ≤ .

We can note that
4

2
3

2 nknk < ,
4

3
2

3 nknk < ,
4

44 nknk < ,
4

55 nkk < for n > 1. That means we

can state that T(n) ≤
44

5
4

4
4

3
4

2
4

1 cnnknknknknk =++++ for all n > 1, where

54321 kkkkkc ++++= . Thus,)()(4nOnT = .

2. Implementation Version 2.

DisjointSetsVersion1(L) cost times

1 for i = 0 to len(L)-1 1c n+1

2 for j = i+1 to len(L)-1: 2c n*([(n-1)/2]+1)

3 disjoint = True 3c n*[(n-1)/2]

4 for k = 0 to len(L[i])-1: 4c n*[(n-1)/2]*(n+1)

5 if L[i][k]==1 & L[j][k]==1: 5c n*[(n-1)/2]*n

6 disjoint = False 6c n*[(n-1)/2]*n

7 if disjoint == True 7c n*[(n-1)/2]

8 print ‘Sets’,i,j,’are disjoint’ 8c 1

9 return(True) 9c 1

10 return(False) 10c 1

The difference with the implementation1 is that we got rid of one loop, which traversed the

elements of the second set for comparison (line 5 in version 1). We can do this because our sets are

consistent with each other due to the used data structure. So we can traverse over the elements of

only the first set and use the same index for the second set. Thus, the number of instructions for the

second implementation would be:

T(n) = 1c *(n + 1)

+ 2c * n*(((n-1)/2)+1)

+ 3c * n*(n-1)/2

+ 4c * n*(n-1)/2*(n+1)

+ 5c * n*(n-1)/2*n

+ 6c * n*(n-1)/2*n

+ 7c * n*(n-1)/2

+ 8c *1 + 9c *1 + 10c *1.

We can group and represent it as follows:

T(n) = 43
2

2
3

1 knknknk +++ .

2. Claim:)()(3nOnT =

3. Proof: We need to find 0n and c that for all 0nn > the following holds:)()(ncgnT ≤ .

We know that
3

2
2

2 nknk < ;
3

33 nknk < ; and
3

44 nkk < for n > 1. That means that

3

43

2

2

3

1)(cnknknknknT =+++≤ , where 4321 kkkkc +++= . Thus,)()(3nOnT = .

3. Experimental Comparison of the two Versions.

1. See hw2_problem1_code_cs2223_b13.py at:

http://web.cs.wpi.edu/~cs2223/b13/HW/HW2/Solutions/hw2_problem1_code_cs2223_b13.py

2. Execution time.

Input size Version 1 Runtime (sec.) Version 2 Runtime (sec.)

100 0.02800107 0.024001837

200 1.732099771 0.18701005

300 70.70604396 4.6963

400 228.4180651 11.38765097

500 539.2678452 22.96531296

3.

The growth of the functions match the asymptotic behavior. The thing that influences the results is

the way the sets are randomly generated. If they are sparse, it would be easy (fast) to find a disjoint

set. In my implementation that is regulated with a threshold parameter that says with what

probability a certain number would be included in the set. The results generated are for the 0.2

probability, which generated not-sparse sets.

Complexity Analysis

0

100

200

300

400

500

600

1 2 3 4 5

num/100

ti
m
e
(s
e
c
)

Version 1

Version 2

Problem 2 (Solutions by Ahmedul Kabir)

Rank the following functions by order of growth. That is, find an arrangement f1, f2, ..., f6 of the

functions satisfying f1 = Ω(f2), f2 = Ω(f3), ..., f5 = Ω(f6). Partition your list into equivalent classes

such that functions f(n) and g(n) are in the same class if and only if f(n) = Θ(g(n)).

a
n

n
a

 ���

loga(n)

a
a*n

n
log

a
(n)

where a is a constant greater than 1. Provide a detailed, rigorous proof of each part of your

solution.

Solutions: Below, we’ll sort the function in increasing order of growth rate.

Intuitively, log� � grows asymptotically slower than the others. So we start by checking whether it is O(��)

lim�→�
��� �
� = lim�→�

!
" #$
�� %! (using L’Hospital’s rule)

 = lim�→�
!

" #$
 "
"

 = lim�→�
�

�� �& � = 0

So, '()� � = O(��)

Now, looking at �� and *�, it seems quite obvious that �� = O(*�) since the former is polynomial and the

latter is exponential. Let us use the limit rule to verify:

lim�→�
�
�" = lim�→�

�� %!
�" �& � (using L’Hospital’s rule)

 =
�
�&� lim�→∞ �*−1

*� = 0

 (since for all constants a and b such that a > 1, lim�→�
�,
�" = 0. See textbook page 55)

Hence, �� = O(��)

We will now use the limits method to find the relationship between *� and *��.

lim�→�
�"
� " = lim�→�

�" �& �
� "-! �& � (using L’Hospital’s rule)

 = lim�→�
�"

�.��"� = lim�→�
�

�.��"� %! = 0 [since the denominator approaches ∞]

So, �� = O(���). For illustration purposes, we include here another proof of the fact �� = O(���) that uses

the definition of Big-Oh directly. We need to show that there exist constants c > 0 and n0 > 0 such that for all

n ≥ n0, *�≤ c *��. Note that since a > 1, a ≤ a
a
. Hence for any n ≥ 1, *�≤ �*��" = *��. Therefore the

definition of �� = O(���) is satisfied with constants c=1 and n0 = 1.

Now for ���, we will compare it with ���. We take the logarithm of both functions (we’ll use log�). We can

do this since log is monotonically increasing and the values of both ��� and ��� are greater than a for large

values of n and since a > 1. Taking the log (with base a) on both functions we get log� *� = �� log� * = ��

which grows faster than log� *�� = *� log� * = an. Also note that for a > 1, an ≤ n
a

for any n ≥ 3. Therefore

the definition of ��� = O(���) is satisfied with constants c=1 and n0 = 3.

Hence ��� = O(���).

So far we have '()�� < �� < ��	 < ��� < ��� , and we need to put ���� � in its proper place.

Comparing ���� � with ��, note that their values are equal when a = log� � or n = *�. But for all values of n

> *�, we have �� < ���� �. So we have our values n0 = *� and c = 1 for which ���� � will be asymptotically

larger for all n > n0. We can also take the log of both sides and see that log� ���� � = �log� ��/ which grows

faster than log� �� = * log� � (Since log � is asymptotically larger than constants).

Hence �� = O(�'()� �)

Now to compare ���� � with *�, we can take the log (with base a) on both sides and see log� ���� �� =

�log� ��/ and log� *� = nlog� * = n. We know that �log ��/ grows slower than n (see a proof of this on

page 57 of the textbook).

So �'()�= O(��).

Our final ordering is therefore '()� � < �� < �'()� < ��	 < ��� < ���

where f(n) < g(n) is used here as shorthand for f(n) = O(g(n)), or equivalently, g(n) = Ω(f(n)).

Problem 3: (Solutions by Yun Lu)

Find a function f(n) and a function g(n) such that f(n) ≠ O(g(n)), f(n) ≠ Ω(g(n)), and f(n) ≠ Θ(g(n)). Explain

your answer in detail.

According to the definition, 0�1� = 2�3�1��, if there exist constants 1� and c>0 such that 0�1� ≤ 53�1�
for all 1 ≥ 1�.

Consider the following functions 0�1� and 3�1�:

0�1� = 71, 1	�9	:;:�
1, 1	�9	<==

3�1� = 7 1, 1	�9	<==
1, 1	�9	:;:�

There are no constants c and 1� to make either 0�1� = 2�3�1�� or 3�1� = 2�0�1�� hold. The reason for

this is that no matter how much the input size x grows, 0�1� < 3�1� for even 1’s, 3�1� < 0�1� for odd 1’s,

and the difference between 0�1� and 3�1�, 0�1�	– 	3�1� 	= 	±	�1 − 1�, keeps increasing alternating from a

positive to a negative difference for odd and even 1’s, as 1 goes to infinity. Hence, no constants 5 and 1�

exist that would make either 0�1� ≤ 53�1� or 3�1� ≤ 50�1� for all 1 ≥ 1� .

Below is the runtime plot for 0�1� and 3�1�:

Note: There many other pairs of functions f(n) and g(n) that satisfy the conditions of this problem, that is

that their asymptotic growth are incomparable. So this is not the only possible solution to this problem.

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

R
u

n
tim

e

Input Size

Runtime plot for f(x) and g(x)

f(x)

g(x)

Problem 4: (Solutions by Artem Gritsenko)

Write a formal mathematical proof of the following property of Big-O:

Transitivity of Big-Oh: If A��� 	= 	B�C���� and C��� 	= 	B�D���� then A��� 	= 	B�D����.

Solution:

To show that Big-Oh is transitive, we must show that for all functions 0���, 3��� and ℎ���, if 0��� is

2�3���� and 3��� is 2�ℎ���� then 0��� is 2�ℎ����. Assume that 0��� 	= 	2�3���� and 3��� =
	2�ℎ����.

• Since 0��� 	= 	2�3����, there exist constants 1n and 1c such that)()(1 ngcnf ≤ for all

1nn ≥

• Since 3��� 	= 	2�ℎ����, there exist constants 2n and 2c such that)()(2 nhcng ≤ for all

2nn ≥ .

Let 0n be the maximum of 1n and 2n and let 21ccc = . Then, for all 0nn ≥)()(1 ngcnf ≤ and

)()(2 nhcng ≤ , so)()()(21 nchnhccnf =≤ . Therefore, 0��� 	= 	2�ℎ����.

Note:

For the solution of this problem, you need to use the definition of Big-Oh as we did above. You

cannot prove this problem by using the limits rule. The limits rule provides sufficient conditions,

not necessary conditions. That is,

IF you know that lim�→�
F���
G��� exists and that this limit is 0, THEN you can conclude that

0��� 	= 	2�3����.
But it doesn’t necessarily work the other way around. That is, if you know that 0��� 	= 	2�3���)
you cannot conclude that lim�→�

F���
G��� even exists.

Problem 5: (Solutions by Yun Lu)

Table 5-1: Input sizes and corresponding runtimes for different sorting algorithms. Here c1 = 0.0000003 and

c2 = 0.0000008; c1 n2 and c2 n log(n) are showing here for illustration purposes only. Throughout these

homework solutions, log base e is used (that is, ln). Random quickSort was not part of the HW, but it is

included here so that you can learn this variant of quicksort (where the pivot element is chosen at random).

Plot 5-1 illustrates the fact that bubbleSort, insertionSort, mergeSort, and quickSort are O(n
2
).

Plot 5-1: Runtime (in seconds) VS input size for different sorting algorithms. Here c = 0.0000003.

Plot 5-1a shows a tighter upper bound for mergeSort, c*n*log(n).

y = 2E-07x2 + 6E-05x - 0.0438

y = 2E-07x2 - 9E-05x + 0.1617

y =7E-7xLn(x) - 0.0007

y = 9E-08x2 - 2E-05x + 0.0708

y = 3E-07x2 + 3E-17x + 8E-15

-5.00000

0.00000

5.00000

10.00000

15.00000

20.00000

25.00000

30.00000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e

Input size

Runtime Comparison of Sorting Algorithms and asymptotic

upper bound cn2

bubbleSort insertionSort mergeSort quickSort c*(n^2)

Time(sec)

 n

bubbleSort insertionSort mergeSort quickSort cccc1111 nnnn
2222
 cccc2222 n log(n)n log(n)n log(n)n log(n) Random_quickSort

1000 0.26260 0.18678 0.00734 0.08859 0.3 0.007973 0.00461

2000 1.04449 0.67136 0.01513 0.38994 1.2 0.017545 0.01322

3000 2.20468 1.51443 0.02451 0.87549 2.7 0.027722 0.01863

4000 4.02151 2.58445 0.03525 1.40696 4.8 0.038291 0.02891

5000 6.22779 4.11279 0.04501 2.13173 7.5 0.049151 0.03450

6000 8.80387 5.95739 0.05439 3.04104 10.8 0.060244 0.03957

7000 11.99891 8.00732 0.06489 4.22379 14.7 0.07153 0.05278

8000 15.60927 10.43232 0.07623 5.55496 19.2 0.083981 0.06729

9000 19.68651 13.43139 0.08703 6.98035 24.3 0.094577 0.07174

10000 24.24205 16.79881 0.09781 8.66589 30 0.106302 0.07912

Plot 5-1a: Runtime (in seconds) of MergeSort and asymptotic upper bound c*n*log(n), c = 0.0000008.

The plots above provide trend lines calculated with Excel and with Matlab, for illustration purposes

only. Table 5-2 shows the asymptotic growth behavior of the sorting methods under consideration,

as discussed in the textbook (Chapters 2 and 7), and on the website that provides the Python

implementation of the sorting methods used in this homework:

http://interactivepython.org/courselib/static/pythonds/SortSearch/sorting.html

 Asymptotic Upper Bounds

BubbleSort O(n
2
)

InsertionSort O(n
2
)

MergeSort O(n log(n))

QuickSort O(n
2
)

Table 5-2: Asymptotic upper bounds of different sorting algorithms

Notes:

• In the homework, the input list is in decreasing order. After sorting, the list will be in increasing

order. This provides a worst case scenario for (most of) these search methods.

• Note that in this HW solutions, we added a variation of quicksort, called Random quicksort

here, by selecting one of the elements from list[first] and list[last] at random. We then,

exchange this elements with list[first] so that the original code will use this randomly selected

element as the pivot element.

position = random.randint(first, last)

temp = alist[first]

alist[first] = alist[position]

alist[position]= temp

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e

Input size

Runtime of MergeSort and Upper Bound

mergeSort c*nlog(n)

The running time for random quicksort, quicksort and mergesort are shown below:

Plot 5-2: Runtime comparison for random quickSort, quickSort and mergeSort. The curves for random

quicksort and mergeSort overlap in this plot. See Plot 5-3.

Since the curves for random quicksort and mergeSort overlap in Plot 5-2, we depict these curves a

more refined level of granularity in Plot 5-3. It is worth noticing that since random quicksort is a

randomized algorithm, its running time will vary based on the pivot selected in each recursion. But,

we still could see that the running time is O(nlogn).

Plot 5-3: Runtime comparison of random quicksort and mergesort

-1.00000

1.00000

3.00000

5.00000

7.00000

9.00000

1000 3000 5000 7000 9000

T
im

e

Input size

Comparision Between Random Quicksort,

Quicksort, and Mergesort

mergeSort Random_quickSort quickSort

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

1000 3000 5000 7000 9000 11000

T
im

e

Input Size

Comparison Between Random Quicksort and

Mergesort

mergeSort Random_quickSort

The table and plot below contain runtime values obtained running the same code on a CS Unix server, a

more powerful machine than my own laptop.

 bubbleSort insertionSort mergeSort quickSort

1000 0.16 0.11 0 0.06

2000 0.6 0.43 0.01 0.22

3000 1.47 0.99 0.02 0.48

4000 2.61 1.77 0.02 0.86

5000 4.07 2.79 0.03 1.33

6000 5.86 4.02 0.03 1.92

7000 7.97 5.48 0.04 2.6

8000 10.43 7.16 0.05 3.41

9000 13.17 9.08 0.05 4.31

10000 16.28 11.22 0.06 5.32

y = 2E-07x2 + 8E-06x - 0.0277

y = 1E-07x2 - 9E-06x + 0.0017

y = 6E-05xln(x) - 0.9275

y = 5E-08x2 - 2E-06x + 0.0092

-2

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000

T
im

e

Input size

Comparison of Runtimes

bubbleSort insertionSort mergeSort quickSort

