
CS2223 Algorithms. B Term 2013

Homework 2 Solutions
By Artem Gritsenko, Ahmedul Kabir, Yun Lu, and Prof. Ruiz

We start by including the Master Theorem here for your reference.

Master Theorem: Suppose that T(n) is a function on the nonnegative integers that satisfies the

recurrence

���� = �� ���	 + ����
Let � = 	 �����. Then:

Case 1. If ���� = Ο�n�������	����	��������	� > 0, �ℎ��	���� = Θ�n��
Case 2. If ���� = Θ�n����%���ℎ��	���� = Θ�n����%&'��
Case3. If ���� = Ο�n�&�����	����	��������	� > 0, ��()�	�� �*+	 ≤ ��������	����	��������	� < 1,��(���	�/��)�)����0	����	�, �ℎ��	���� = Θ�f�n��.
Problem1: (Solutions by Yun Lu)

Algorithm I: finds a solution to its input problem by dividing it into 5 subproblems, each of half the size

of its input problem, recursively solves each of these 5 subproblems, and then combines their solutions

to form the solution of the input problem in linear time (= n).

Recurrence for algorithm I: 3���� = 5� �*5	 + ���1� = 1

1) Solution to this recurrence using the Master Theorem: � = 5,			� = 2, ���� = �, � = ���5 5,			�789:; = �5.<55

Case 1 of the master theorem applies here since f(n)= O(�5.<55�'� , where � = 1 > 0.

Therefore, T(n) =Θ��789:;)

2) Solution to this recurrence using the Recursion Tree Method:

T(n)

T(n/2) T(n/2) T(n/2) T(n/2) T(n/2)

T(n/4)T(n/4) T(n/4) T(n/4) T(n/4)

T(n/8)T(n/8) T(n/8) T(n/8) T(n/8)

....

....

.... Level i

T(1) T(1) T(1) T(1) T(1)

Height of Tree
.

.

.

.

���� = = >52?
@789:*

@AB � = � = >52?
@789:*

@AB = � �52	
789:*&' − 1
�52	 − 1 = � 52 �52	

789:* − 1
�32	

= 2�3 E52F5789:*2789:*G − 1H = 2�3 E52F�789:;� G − 1H = 53 �789:; − 23�

Since, ���55 = 2.322 > 1

Hence, ���� = Θ�;<�5.<55 − 5<�	 = Θ��789:;�.

3) Solution to this recurrence using the Substitution Method:

Need to find:		g�n�		such	that	���� = Ο�g�n��
1. Guess g�n� = ��789:; + (�

2. Use mathematical induction to prove that ���� ≤ ��789:; + (� for all n > 0:

• Base case: n = 1, T�1� = 1 ≤ 1789:;	� + (so we must have 1 ≤ � + (

• Induction hypothesis: Let n > 1. Assume that for all � < �, ���� ≤ ��789:; + (�.

Prove that this property holds for � also: ���� = 5� ��2	 + �

≤ 5 Q� �*5	789:; + (�*5	R + � 	
�0	�ℎ�)�(/��)��	ℎ0S��ℎ��)�	�)���	 �2 	< �,	

= 5� �789:;2789:; + 5(��2	 + �

= 5� �789:;5 + 5(�2 + �

= ��789:; + � >5(2 + 1?

and we want the above expression to be ≤ ��789:; + (�

Thus, constants c and d must satisfy the following two constraints:

�

5 × �2

55 × �25

5< × �2<

5@ × �2@= �52�@�

5(2 + 1 ≤ (,Uℎ)�ℎ	�����	�ℎ��	(≤ −23

And, 1 ≤ � + ((from the base case)

Let V(= − 5<� = ;<
	,																			�ℎ��	U�	ℎ�W�:	���� = ;<�789:; − 5<�

���� = Θ�2�789:; + �−1��� = Θ��789:;�

Algorithm II: finds a solution to its input problem of size n by recursively solving 2 subproblems of size n-

1, and then combines their solutions to form the solution of the input problem in constant time.

Recurrence for algorithm II:Y	���� = 2��� − 1� + ���1� = 1

1) Solution to this recurrence using the Master Theorem:

The master theory is not applicable here since the size of the subproblems is not a fraction of the

size of the input problem. That is, there is no constant b for which the size of the subproblems is

n/b.

2) Solution to this recurrence using the Recursion Tree Method:

T(n)

....

....

....
Level i

--

Height of
 tree = n

T(n-1) T(n-1)

T(n-2) T(n-2)

T(1)

T(n-2) T(n-2) ---

.

.

.

T(1) .

���� = =�2�@�*�'
@AB = � 2* − 12 − 1 = ��2* − 1� ���� = Θ�2* − 1� =Θ�2* − 1� = Θ�2*�

3) Solution to this recurrence using the Substitution Method:

Need to find:		g�n� such that ���� = O�g�n��
1. Guess g�n� = �2* + (

2. Use mathematical induction to prove ���� ≤ �2* + (:

• Base case: n = 1, T�1� = 1 ≤ 	�2' + (so we need 1 ≤ 2� + (

• Induction hypothesis: Let n > 1. Assume that for all � < �, ���� ≤ �2� + (.

�

2 × �

25 × �

2< × �

2@ × �

Prove that this property holds for � also: ���� 				= 2��� − 1� + 1

≤ 2[�2*�' + (\ + 1, �0	�ℎ�)�(/��)��	ℎ0S��ℎ��)�	�)���	� − 1	 < �

= 2�2*�' + 2(+ 1 = �2* + 2(+ 1 ≤ �2* + (

Thus, constants c and d must satisfy the following two constraints: 2(+ 1 ≤ (→ (≤ −1

And 1 ≤ 2� + ((from the base case)

Let ^(= −1� = 1 	,											�ℎ��	U�	ℎ�W�:	���� = 2* + �−1� ���� = Θ�2* + �−1�� = Θ�2*�

Algorithm III: finds a solution to its input problem of size n by recursively solving 9 subproblems of size

n/3, and then combines their solutions to form the solution of the input problem in quadratic time (=

n
2
).

For algorithm III:	3���� = 9� �*<	 + �5��1� = 1

1) Solution to this recurrence using the Master Theorem: � = 9, � = 3, ���� = �5, � = ���< 9,					�789`a = �5

Case 2 of the master theorem applies here since f(n)= Θ (�5�
Therefore, T(n) = Θ��5 log �)

2) Solution to this recurrence using the Recursion Tree Method:

T(n)

....

....

.... Level i

T(1)

Height of tree

T(n/3) T(n/3) T(n/3) T(n/3) T(n/3) T(n/3) T(n/3) T(n/3) T(n/3)

T(n/9) T(n/9) T(n/9) T(n/9) T(n/9) T(n/9) T(n/9) T(n/9) T(n/9)

T(n/27) T(n/27) T(n/27) T(n/27) T(n/27) T(n/27) T(n/27) T(n/27) T(n/27)

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1)

.

.

.

.

���� = = �5789`*
@AB = �5���<� = Θ��5 log ��

�5

9 × ��3�5

95 × � �35�5

9< × � �3<�5

9@ × ��3@�5= �5

3) Solution to this recurrence using the Substitution Method:

Need to find:		g�n� such that ���� = Ο�g�n��
1. Guess g�n� = ��5���<� + (�5 + ��

2. Use mathematical induction to prove ���� ≤ ��5���<� + (�5 + �� :

• Base case: n = 1, T�1� = 1 ≤ 	����<1 + (+ �, ��	U�	�/��	ℎ�W�	�ℎ��:	1 ≤ (+ �

• Induction hypothesis: Let n > 1. Assume that for all � < �, ���� ≤ ��5���<� + (�5 + ��.

Prove that this property holds for � also: ���� = 9� ��3	 + �5

≤ 9 Q� ��3	5 ���< ��3	 + (��3	5 + � ��3	R + �5	 �0	�ℎ�)�(/��)��	ℎ0S��ℎ��)�	�)���	 �3 	< �,	 = 9� ��3	5 ���< ��3	 + 9(��3	5 + 9� ��3	 + �5

= ��5���< ��3	 + (�5 + 3�� + �5 = ��5����<� − ���<3� + �(+ 1��5 + 3�� = ��5���<� − ��5 + �(+ 1��5 + 3�� = ��5���<� + �(+ 1 − ���5 + 3��

and we want the above expression to be ≤ 	��5���<� + (�5 + ��

Thus, constants b, c and d must satisfy the following two constraints: ^	�(+ 1 − �� ≤ (3� ≤ � d�(1 ≤ (+ �	(from the base case)

���		 e(= 1� = 1� = 0, then we have: ���� = �5���<� + �5

���� = Θ��5���<� + �5� = Θ��5���<��

Everything else being equal, which one of the 3 algorithms would you choose to solve the problem?

Explain your answer.

For algorithm I: ���� = 5� �*5	 + � = Θ��789:;�
For algorithm II:	���� = 2��� − 1� + 1 = Θ�2*�
For algorithm III	���� = 9� �*<	 + �5 = Θ��5 log ��
Since algorithm II runs in exponential time, it will be the slowest. So we need to compare

algorithm I and algorithm III.

lim*→h �789:;�5���<� = lim*→h�789:;�5���<� = lim*→h�5.<5�5���<� = lim*→h �B.<5���<�= lim*→h 0.32��B.ij1���3 	�/�)��	klmôS)���l�	�/��� = lim*→h�0.32��B.ij��	��3 = 	∞

�ℎ/�, �5���<� = p��789:;�.
In conclusion, based on the asymptotic behavior of the runtime of these algorithms, I will chose

algorithm III that has runtime Θ��5 log ��	to solve the problem.

Problem 2. (By Artem Gritsenko)

Strategy I: Naïve-Multi-Merge.

1) We call the merge procedure for first two input arrays, and then we merge the resulting array

with the next input array one by one. The merge procedure for the first two arrays would take time

proportional to that of 2n comparisons, the merge procedure for the resulting array and the 3
rd

 input

array would require 3n comparisons in the worst case and so on. Let’s say that each comparison is

performed in time c. This would result in the following runtime function:

)1
2

)1(
()...432(...432),(−

+
=++++=++++=

kk
сnkсnknсnсnсnсknT

cncknnck
kk

сn −+=
−+

=
2

1

2

1
)

2

2
(2

2

.

2) Claim:)()(2nkOnT =

Proof: To prove this we need to find 00 >n and 00 >c such that for all 0nn ≥ the following holds:

)()(0 ngcnT ≤ . We can say that
2

2

2
ckn

сnk
< ,

2

2
ckn

сnk
< ,

2ckncn <− for n > 1. That means we

can represent
2222

0)(nkccnkcnkсnknT =++= , where сc 30 = .

Thus,)()(2nkOnT = .

2. Smart-Multi-Merge:

1) The idea of the algorithm is to utilize recursion to make the multi-merge more efficient. To do this we

split the input list of arrays],...[1 kAA into two parts of the same size],...[2/1 kAA and],...[2/ kk AA .

Each of these parts we split in two subparts again. We continue the process until we reach a list with a

single array][iA . From this stage we can start merging the subparts to acquire the sorted arrays. We

make this recursively until we merge all the arrays.

k arrays

k/2 arraysk/2 arrays

k/4 arrays k/4 arrays k/4 arrays k/4 arrays

single

array

single

array

single

array

single

array

.

.

.

...

k
2

log

k

2) SmartMultiMerge Pseudo-code.

The input parameters of the function is ListOfArrays - the list of arrays to divide.

SmartMultiMerge(ListOfArrays)

k = size(ListOfArrays)

if k=1 then

 return ListOfArrays

else

 mid = k / 2

 LeftList = [ListOfArrays[1],..., ListOfArrays[mid]]

 left = SmartMultiMerge (LeftList)

 RightList = [ListOfArrays[mid+1],..., ListOfArrays[k]]

 right = SmartMultiMerge (RightList)

 return merge(left, right)

The procedure is the following: we pass the initial list of arrays. If the length of the list is 1 that means

there is only one array in the list and we are done. Otherwise, we split the list into two parts and

execute the function recursively for each of the parts. The recursive calls stop when we achieve lists with

single arrays (already sorted) in both left and right parts. After we acquire the sorted left and right parts

we merge them and repeat the procedure recursively.

3) Correctness of SmartMultiMerge.

We will show that the algorithm works correctly, using a proof by (strong) induction on k.

For the base case, consider a list of one element-array (which is the base case of the algorithm). Such an

array is already sorted, so the base case is correct.

For the induction step, suppose that algorithm will correctly merge any list of less than k arrays. Now

suppose we call SmartMultiMerge on a list of k arrays. It will recursively call SmartMultiMerge on two

lists of arrays of size k/2. By the strong induction hypothesis, these calls will merge these list of arrays

correctly. Hence, after the recursive calls, we would have two sorted arrays. We can apply the merge

procedure to these arrays, since this procedure is correct (see section 2.3.1 of the textbook).

This concludes our proof.

4) Recurrence for the runtime T(n,k) of SmartMultiMerge

>+

=

=
1,)

2
,(2

1,

),(
kifnk

k
nT

kifc

knT .

5) Big-O analysis of the runtime T(n,k) of SmartMultiMerge

We use the “unrolling” recurrence tree method. Because we split the k elements (arrays) on two parts,

the total number of splitting levels (tree height) is equal to k
2

log .

The number of operations that we need to execute on each level of the tree is equal to kn. We can

figure it out by going from the top level of the tree down to the bottom. On the first level we have one

problem and the time needed to execute is nk, according to the recurrence (4). On the second level we

have 2 subproblems each one of size n(k/2). To solve them we need 2n(k/2) time, which is equal to nk.

On the third level we have 4 subproblems each of the size of n(k/4) that results in 4n(k/4)=nk time.

Continuing in the same manner we can see that each level of the tree is takes exactly kn time (except

the very last level of the tree, which is executed in k time), multiply by the number of tree levels gives

us:

)log(log)1(log),(22 knkOknkknkkknkknT =+−=+−=

T(n,k)

....

....

.... Level i

T(1)

--

T(1)

.

.

.

T(n,k/2) T(n,k/2)

T(n,k/4) T(n,k/4) T(n,k/4) T(n,k/4)

T(n,k/8) T(n,k/8)

Height of tree

--

��

2� �2 = ��

25� > �25? = ��

2<� > �2<? = ��

2@�'� > �2@�'? = ��

���, �� = �����5�rrrrrrrrrrrrrrrrrrrrrr

Problem 2 Part 3 (Ahmedul Kabir)

Python Implementation:

import time

Regular merge function. Takes two sorted lists left and right, and returns their merged list
def merge(left, right):
 result = []
 left_idx, right_idx = 0, 0

 while left_idx < len(left) and right_idx < len(right):
 # Find the minimum of the two and append it to the result array
 if left[left_idx] <= right[right_idx]:
 result.append(left[left_idx])
 left_idx += 1
 else:
 result.append(right[right_idx])
 right_idx += 1

 # Fill the result of the result array with the elements from the one that is still left
 if left:
 while left_idx < len(left):
 result.append(left[left_idx])
 left_idx += 1
 if right:
 while right_idx < len(right):
 result.append(right[right_idx])
 right_idx += 1
 return result

Naive implementation of multi-merge. Takes a list one at a time and merges it with newArr
def naiveMultiMerge(arrays):
 newArr = arrays[0] # Start with first list
 for i in range(1, len(arrays)):
 newArr = merge(newArr,arrays[i]) # Keep merging one at a time
 return newArr

Smart implementation of multi-merge. Uses a recursive procedure to merge lists two at a time
Merges the lists starting from 'first' to 'last' position
def smartMultiMerge(arrays, first, last):
 if first == last:
 return arrays[first] # Just one list, divide part complete
 if first < last:
 mid = (first + last) / 2
 left = smartMultiMerge(arrays, first, mid) # Merge the first half from first to mid
 right = smartMultiMerge(arrays, mid + 1, last) # Merge the second half from mid+1 to last
 return merge(left, right) # Conquer: Merge the two merged halves

Runtime evaluation
n = 100
k = 16
arrays = [[i for i in range(n)] for j in range(k)]

start_time = time.clock()
naiveMultiMerge(arrays)
end_time = time.clock()
print ("Naive multi-merge took " + str(end_time - start_time) + " seconds")

start_time = time.clock()
smartMultiMerge(arrays,0,len(arrays)-1)
end_time = time.clock()
print ("Smart multi-merge took " + str(end_time - start_time) + " seconds")

Runtimes

Naïve merge

n\k 16 32 64 128 256 512

100 0.004 0.035 0.131 0.523 2.067 8.178

200 0.018 0.067 0.27 1.041 4.131 16.977

300 0.026 0.102 0.397 1.55 6.381 25.618

400 0.036 0.135 0.541 2.155 8.37 34.205

500 0.043 0.171 0.701 2.787 10.602 43.456

Smart merge

n\k 16 32 64 128 256 512

100 0.009 0.01 0.024 0.058 0.135 0.301

200 0.008 0.02 0.049 0.115 0.262 0.628

300 0.013 0.031 0.076 0.174 0.412 0.946

400 0.017 0.043 0.1 0.255 0.544 1.244

500 0.02 0.053 0.127 0.325 0.692 1.535

Growth with respect to k (with n fixed at 500)

As k increases, Naïve-merge grows in a quadratic manner, i.e. in the order of k
2
, whereas Smart-merge grows in

the order of klogk.

Growth with respect to n (with n fixed at 512)

As n increases, both Naïve-merge and Smart-merge grow linearly.

Final conclusion:

 For Naïve-merge, the order is O(nk
2
)

 For Smart-merge, the order is O(nklogk)

0

10

20

30

40

50

Naïve

smart

0

0.5

1

1.5

2

k
=

1
6

k
=

3
2

k
=

6
4

k
=

1
2

8

k
=

2
5

6

k
=

5
1

2

smart

0

10

20

30

40

50

n=100 n=200 n=300 n=400 n=500

Naïve

Smart

0

0.5

1

1.5

2

Smart

Solution to Problem 3 (Ahmedul Kabir)

Problem: State whether the base of a logarithmic expression in each of the cases below can be

ignored or not. That is, whether the particular base of the logarithm (log2, log10, ln, ...) makes a

difference or not. If it can be ignored, prove it rigorously. If it cannot be ignored, show an example in

which the base of the logarithm makes a difference.

1. O(stuvw), where a is a constant greater than 1.

Base of the logarithm does NOT make a difference in this case. Note that 	logx � =
	yz{|*	yz{} x where

b is a constant. Here 	log+ � is also a constant. So changing the base from a to b changes the

value of the logarithm only by a constant factor, which doesn’t make a difference in terms of

order of the function. In other words, O(logx �) = O(log+ �) for all a, b > 1.

2. O(wstuv ~), where a and b are constants greater than 1.

Here the base of the logarithm DOES matter. Suppose a = 2 and b = 4. Then wstuv ~ = wstu� � = w�

However, if we change the value of a to 4, then the function becomes wstuv ~ = wstu� � = n.

Clearly n and n
2

are of different orders.

3. O(stu��w� w), where f(n) is a function of n (e.g., f(n) = √ n).

The base DOES matter in this case as well. Note that 	log��*� � =
	log| *	yz{} ��*� (where c is a

constant). But this time, the denominator is no longer a constant, but a function of n. So

changing the base from f(n) to c changes the value of the logarithm by a factor which is a

function of n, which can make a difference in the order of the function. For a concrete example,

let f(n) = √� which leads to 	log��*� � = 	log√* � = 2 which is a constant. Now if we change the

base to 2, the function becomes 	log��*� � = 	log5 � which grows faster than a constant.

4. O(logx �), where a is a constant smaller than 1.

In this case, the base DOES matter, since 	logx � when a < 1 is a strictly decreasing function, i.e.

its value decreases as n increases. If we change a to any constant c > 1, then the resulting

function will be strictly increasing, and so it will not be of the same order as the previous one. To

illustrate that 	logx � with a < 1 is monotonically decreasing, let us use a =
'5 which gives us log'/5 � = -	log5 � since log'/5 � = x iff �'5�� = n iff 2�� = n iff x = -	log5 �

