
CS2223 Algorithms. B Term 2013.     Homework 5 Solutions 

Solutions by  Artem Gritsenko, Ahmedul Kabir, Yun Lu, and Prof. Ruiz 

Problem I. By Artem Gritsenko, Yun Lu, and Prof. Ruiz 

a. Algorithm. 

KNAPSACK (�,�,��, … , ��, ��, … , �� ) 

# � is the knapsack capacity  
# � is the number of items that can be packed in the knapsack 
#  item 	 has weight �
 and value �
  
# Assume that  �� ≤ �� ≤ ⋯ ≤ �� and �� ≥ �� ≥ ⋯ ≥ �� 
# We’ll use two variables: a set � that contains the items selected to to be pack  in the  
# knapsack, and � which is the sum of the weights of the items in �.    
    

 �	 = 	0 

�	 = 	∅ 

		 = 	1	
 while (		 ≤ 	�)		and	(	� + �
 	≤ 	�) 
   � = 	� + �
 
  � = � ∪ {	}	
  		 = 			 + 	1 

 return S 

 

b. Complexity analysis.   

The algorithm runs in linear time in the number of items ( = �). In the worst case, it will 

traverse the full list of � items in the while loop. Processing each individual item (loop 

body) takes constant time. Hence,  (�) 	= 	!(�).    
 

c. Algorithm Correctness. 

First we show that it terminates. The while loop considers each item at most once, and 

hence the algorithm terminates after at most � iterations.  

 

Now we prove that the algorithm terminates with a correct answer. That is, that the set � 

output by the algorithm is an optimal solution. In other words, we need to prove that: 



 

1. � is a solution: The sum of the weights of the items in � is less than or equal to �. 

This is true because an item 	 is added to � only if the current weight of � together 

with �
 doesn’t exceed �. 

 

2. � is an optimal solution: For any other solution �’, the sum of the values of the items 

in � is greater than or equal to the sum of the values of the items in �’.   
Let’s prove that the set � output by the algorithm is optimal using a proof by 

contradiction. Assume that � is not optimal. Then there is another set ! which is an 

optimal solution. Let’s sort the items in � and the items in ! in increasing order by 

weight (= decreasing order by value). �	 = 	 {	�, 	�, … , 	$}	!	 = {%�, %�, … , %&} 
Let ' ≥ 	0 be the first index in which the two sets differ. That is,  �	 = 	 {	�, 	�, … , 	
(�, 	) , 	)*�, … , 	$}	!	 = {%�, %�, … , %
(�, %) , %)*�, … , %&} 
with 	� = %�, 		� = %�, … , 	
(� = %
(�, and 	) ≠	 %).  

Since our algorithm chose 	) in such a way that 	) is the item with smaller weight and 

higher value among all items not in  	�, … , 	)(�, then: 

• the weight of 	) is less than or equal to the weight of %), and 

• the value of 	) is greater than or equal to the value of  %). 

Then we use the exchange argument: we can replace %) with 	) in !, without exceeding 

the weight limit, and keeping the value of ! the same or increasing it. It the value of ! 

increases, then this yields a contradiction as we assumed that ! was optimal. If the 

value of ! doesn’t increase, then we repeat the same exchange argument with the next 

item, the (' + 1),- item. We continue to do so until we transform ! into a solution with 

higher value, which would contradict the assumption that it was optimal; or we make it 

equal to � without increasing its weight, which would prove that � is an optimal solution 

too. 

   

  



 

Problem II. By Ahmedul Kabir and Prof. Ruiz 

a. Pseudocode for Offline Caching problem 

FurthestInFuture(<r1, r2, … rn>, k): 

    for i = 1 to n 

        if ri is in cache: 

  then print “Cache Hit” 

        else 

            print “Cache Miss” 

            if cache is not full 

                Add ri to cache 

            else (if cache is full)  

                // Find element in cache with furthest distance 

                distfurthest = 0 

for j = 1 to k 

                    p = i + 1 // p is an index on the list of requests 

                    Keep increasing p until rp == cache[j]  

                    if p reaches end of sequence without finding rp 

                        then  

distj = infinity  

furthest = j 

break from the inner for loop 

                    else 

                        distj = p - i 

                    if distj > distfurthest 

                        then  

furthest = j 

distfurthest = distj 

 

Evict Cache[furthest]  

                Add ri to cache                     

 

Kabir’s Python implementation of this pseudo-code is available at: 

http://web.cs.wpi.edu/~cs2223/b13/HW/HW5/Solutions 



Running time of the algorithm 

The outer loop runs n times, and the inner loop k times. For each iteration of the inner loop, we 

may have to traverse (n – i) items at worst. So the running time is  

. ∑ (� − 	)�
1�  = 
$�(�(�)

�  = O(kn2). 

b. The off-line caching problem exhibits optimal substructure. 

 

A problem exhibits optimal substructure if an optimal solution to the problem contains 

within it optimal solutions to subproblems.  

 

Let 2	 = 	 {'�, '�, … , '�} be a list of requests, and . the cache of size. Let also 3	 =	{4�, 4�, … , 4�} be a list of evictions, where each 4
 is either “cache hit”, if	'
 is in the cache at 

time 	, or  the name of the cache element to be evicted at time 	 because of a cache miss 

occurred at that time. Let’s assume that 3 is optimal for 2 and .. That is, 3 contains the 

minimum possible number of evictions (= cache misses) for the list of requests 2 and a 

cache of size ..  

 

In order to show that the off-line caching problem exhibits optimal substructure , we need 

to show that any subsequence of 3, 3
 =	 {4
, 4
*�, … , 4�} is optimal for the sublist of 

requests 2
 =	 {'
, '
*�, … , '�} of 2	starting with the cache content at time 	. It suffices to 

show that this is true for 	 equal to the time when the first cache miss occurred, and then 

apply the same argument for other cache misses afterwards. So let 	, 1	 ≤ 	 ≤ �, be the first 

time when a cache miss occurred. Assume by way of contradiction that the solution 3
 =	 {4
, 4
*�, … , 4�} is NOT optimal for the sublist of requests 2
 =	 {'
, '
*�, … , '�} starting 

with the cache content at time 	 right when the cache miss was detected. Hence, there 

must be another solution ! = 	 {5
, 5
*�, … , 5�} which incurs in fewer cache misses on 2
 =	 {'
, '
*�, … , '�} than 3
, starting with the same cache content that 3
 does at time 	. In 

that case, the list of evictions 64�	 = 	 74�, 4�, … , 4
(�,5
, 5
*�, … , 5�8 is a solution for 2 with 

fewer cache misses than 3. This is a contradiction, as 3 is optimal for 2. Hence, as claimed, 3
 is optimal for 2
. 
 

c. The furthest-in-future strategy produces the minimum possible number of cache misses. 

See a proof of this fact in the slides of Chapter 4 of Jon Kleinberg's and Éva Tardos' 

Algorithm Design textbook.  Available at Prof. Kevin Wayne's Algorithms Course Webpage at 

Princeton University. See Greedy Algorithms Part I  slides 34-43 at 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf . 

 



Problem III. By Yun Lu. 

 

The key idea of this problem is to find a graph that has at least two optimal paths, which of 

course will have the same weight. Furthermore, we’ll construct these two paths in such a 

way that Dijkstra’s algorithm will relax the edges of one of the paths in the order in which 

they occur in the path, but will not do so for the other path. 

 

Consider the following example G= (V,E) with V={s, u, v, x, y} and 

E={(s,x),(s,u),(u,v),(u,x),(v,y),(x,y)}, where the weights of these edges are given below: 
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Applying Dijkstra’s algorithm to the above graph: 
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In the execution of Dijkstra’s algorithm above, the edges are relaxed (in yellow) in the 

following order: (s,x), (s,u), (x,y), (u,x), (u,v), (v,y). 

 

Note that there are three paths from s to y: 9: → < → � → =: → < → > → =: → > → =  

all of them with weight 2, hence all three paths are optimal. The edges in the path : → < → > → = are relaxed out of order since (x,y) is relaxed before (u,x). 

 

 


