
CS CS2223 - D Term 2008: Algorithms Prof. Carolina Ruiz

Homework 2
WPI By Can Ozmen and Prof. Ruiz

Problem 1: (32 Points) Suppose you have algorithms with the running times listed below. Assume these are
the exact number of operations performed as a function of the input size n. Suppose you have a computer that
can perform 1010 operations per second, and you need to compute results in at most

• (8 Points) 1 hour

• (8 Points) 1 week

• (8 Points) 1 year

• (8 Points) 1 century

For each of the algorithms, what is the largest input size n for which you would be able to get the result within
the given time limit? That is, your solutions to this exercise should contain a table like the one below together
with explanations for each of the values you provide in your table.

Solution 1: The following are the number of operations per given time:

1010ops/second× 60 ∗ 60 seconds = 3.60× 1013ops in 1 hour

1010ops/second × 60 ∗ 60 ∗ 24 ∗ 7 seconds = 6.05× 1015ops in 1 week

1010ops/second× 60 ∗ 60 ∗ 24 ∗ 365 seconds = 3.15× 1017ops in 1 year

1010ops/second × 60 ∗ 60 ∗ 24 ∗ 365 ∗ 100 seconds = 3.15× 1019ops in 1 century

These numbers were calculated as follows. Let t be the number of operations that can be performed within

Table 1: Largest input size n versus running time

Complexity 1 hour 1 week 1 year 1 century

1000n3 3.30×103 1.82×104 6.80×104 3.16×105

n4 2.45×103 8.82×103 2.37×104 7.49×104

n2 log10 n 2.38×106 2.85×107 1.95×108 1.84×109

3n 28 33 36 40√
n 1.30×1027 3.66×1031 9.92×1034 9.92×1038

the time limit.

1. If 1000n3 = t then n = 3

√

t/1000.

For a time limit of 1 hour, t = 3.60×1013 ops. Hence n = 3

√

3.60× 1013/1000 = 3
√

3.60× 1010 =
3.30× 103. Similarly for the other time limits.

2. If n4 = t then n = 4
√

t.

For a time limit of 1 hour, t = 3.60×1013 ops. Hence n = 4
√

3.60× 1013 = 2.45 × 103. Similarly for
the other time limits.

2-1



3. If n2 log10 n = t then this equation cannot be solved algebraically for n. Hence, we need to use an
approximation method to find an n that satisfies the fixpoint equation: n =

√

t/(log10 n).

For a time limit of 1 hour, t = 3.60×1013 ops. Hence we need to look for an n that satisfies n =
√

t/(log10 n) Such n is approximately 2.38×106. Similarly for the other time limits.

4. If 3n = t then n = log3 t.

For a time limit of 1 hour, t = 3.60×1013 ops. Hence n = log3 3.60× 1013 = 28. Similarly for the
other time limits.

5. If
√

n = t then n = t2.

For a time limit of 1 hour, t = 3.60×1013 ops. Hence n = 3.60× 10132
= 1.30 × 1027. Similarly for

the other time limits.

Since we know that
√

n = O(n2 log10 n), n2 log10 n = O(n3), 1000n3 = O(n4), n4 = O(3n) we can
reorganize the rows in the previous table to make explicit the increase in time complexity and hence the
reduction in the size of the input allowed in the time limit:

Table 2: Largest input size n versus running time, sorted by time complexity

Complexity 1 hour 1 week 1 year 1 century
√

n 1.30×1027 3.66×1031 9.92×1034 9.92×1038

n2 log10 n 2.38×106 2.85×107 1.95×108 1.84×109

1000n3 3.30×103 1.82×104 6.80×104 3.16×105

n4 2.45×103 8.82×103 2.37×104 7.49×104

3n 28 33 36 40

Problem 2: (15 Points) Assume that k is a fixed constant. Prove that if f(n) = O(n) then f(n)k = O(nk).

Solution 2:
Proof:

f(n) = O(n)

which by definition means that:∃c0 > 0 ∃n0 ∀n ≥ n0 f(n) ≤ c0n

for k ≥ 0 elevating to the k–power preserves the inequality:∃c0 > 0 ∃n0 ∀n ≥ n0 f(n)k ≤ (c0n)k

∃c0 > 0 ∃n0 ∀n ≥ n0 f(n)k ≤ (c0)
knk

∃c1(= (c0)
k) > 0 ∃n0 ∀n ≥ n0 f(n)k ≤ c1n

k

which by definition is:f(n)k = O(nk)

Problem 3: (38 Points) Problem 3 In each of the following cases, determine whether f(n) = O(g(n)), or
f(n) = Ω(g(n)), or both (i.e., f(n) = Θ(g(n))), or none of the above. Prove your answers decisively.

Solution 3:

2-2



1

f(n) = 3n2 + 10n + 8, g(n) = n2

lim
n→+∞

f(n)

g(n)
= lim

n→+∞

3n2 + 10n + 8

n2
= 3

Hence, f(n) = Θ(g(n))

2

f(n) = 2n, g(n) = 2n+7

lim
n→+∞

f(n)

g(n)
= lim

n→+∞

2n

2n+7
= 2−7

Hence, f(n) = Θ(g(n))

3

f(n) = n(log n)2, g(n) = n3

lim
n→+∞

f(n)

g(n)
= lim

n→+∞

n(log n)2

n3
= lim

n→+∞

(log n)2

n2
= 0

Hence, f(n) = O(g(n))

4

f(n) = 3n, g(n) = 2n

lim
n→+∞

f(n)

g(n)
= lim

n→+∞

3n

2n
= lim

n→+∞

(1.5)n = +∞

Hence, f(n) = Ω(g(n))

5

f(n) =
√

n, g(n) = n

lim
n→+∞

f(n)

g(n)
= lim

n→+∞

√
n

n
= lim

n→+∞

√
n√

n
√

n
= lim

n→+∞

1√
n

= 0

Hence, f(n) = O(g(n))

6

f(n) = (2n)log2
2n, g(n) = nlog

2
n

lim
n→+∞

f(n)

g(n)
= lim

n→+∞

(2n)log2
2n

nlog
2

n

= lim
n→+∞

(2n)log2
2+log

2
n

nlog
2

n

= lim
n→+∞

(2n)1+log
2

n

nlog
2

n

= lim
n→+∞

2n ∗ (2n)log2
n

nlog
2

n

= lim
n→+∞

2n ∗ 2log
2

n ∗ nlog
2

n

nlog
2

n

= lim
n→+∞

2n ∗ 2log
2

n = lim
n→+∞

2n ∗ n == lim
n→+∞

2n2 = +∞

Hence, f(n) = Ω(g(n))

2-3



Problem 4: (15 Points) Let k be a fixed constant, and let f1, f2, ..., fk be functions such that fi = O(fi+1)
for all i, 1 ≤ i < k. Prove that f1 + f2 + ... + fk = Θ(fk).

Solution 4: Proof:
Possible solution 1:
Since f1 = O(f2), f2 = O(f3), f3 = O(f4), . . . , fk−1 = O(fk), after several applications of

the Transitivity property of O (see Fact (2.2)(a) on page 38 of the textbook), then f1 = O(f3), f1 =
O(f4), . . . , f1 = O(fk). Similarly for every 1 ≤ i < k after several applications of the Transitivity property
of O: fi = O(fi+2), fi = O(fi+3), . . . , fi = O(fk). Hence for all i, 1 ≤ i < k: fi = O(fk).

Now using Fact (2.5) on page 39 of the textbook, we have that f1 + f2 + f3 + . . . + fk−1 + fk = O(fk).
(Study the proof of this Fact in the textbook.)

On the other hand, since we assume that for all i, 1 ≤ i < k: fi is a positive function, that is fi(n) > 0
for all n, then:

f1 + f2 + f3 + . . . + fk−1 + fk ≥ fk and so f1 + f2 + f3 + . . . + fk−1 + fk = Ω(fk), with constant
c = 1 and n0 = 0.

Since we just proved that f1+f2+f3+. . .+fk−1+fk = O(fk) and f1+f2+f3+. . .+fk−1+fk = Ω(fk),
then f1 + f2 + f3 + . . . + fk−1 + fk = Θ(fk).

Solution 4: Proof:
Possible solution 2: By induction on k
Basis: k = 2

f1 = O(f2)

f1 + f2 = O(f2)

Inductive Hypothesis: k = n
Assume f1 + f2 + · · · + fn = Θ(fn)

Inductive Step: k = n + 1

f1 + f2 + · · · + fn + fn+1 ≤ c0fn + fn+1

≤ c0(c1fn+1) + fn+1

≤ (c0c1 + 1)fn+1

f1 + f2 + · · · + fn + fn+1 = O(fn+1)

f1 + f2 + · · · + fn + fn+1 ≥ fn+1

f1 + f2 + · · · + fn + fn+1 = Ω(fn+1)

f1 + f2 + · · · + fn + fn+1 = Θ(fn+1)

2-4


