CS2223 Algorithms D Term 2008 Homework 3 Solutions By Prof. Ruiz, Yaobin Tang, and Bogomil Tselkov

Problem 1 (By Prof. Ruiz and Bogomil Tselkov)
a) the adjacency matrix:

$$
\begin{array}{llllllllllll}
& \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & \mathrm{f} & \mathrm{~g} & \mathrm{~h} & \mathrm{i} & \mathrm{j} & \mathrm{k} \\
\mathrm{a} & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{~b} & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{c} & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{~d} & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{e} & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{f} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\mathrm{~g} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\mathrm{~h} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
\mathrm{i} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\mathrm{j} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\mathrm{k} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

b) the adjacency list representation

Problem 2 (By Yaobin Tang and Prof. Ruiz)

Assume the graph is connected.

According to P96 of the textbook, a small modification on the BFS algorithm on P90 of the textbook will work.

Input: An undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in an adjacency list representation
Output: true if the graph G is bipartite and false if the input graph G is not bipartite

Algorithm:

Pick any node in V and call it s
Set Discovered[s]=true and Discovered[v]=false for all other v
Set Color[s]=red and Color[v]=uncolored for all other v
Initialize L[0] to consist of the single element s
Set the layer counter $\mathrm{i}=0$
While L[i] is not empty
Initialize an empty list L[i+1]
For each node uEL[i]
Consider each edge (u, v) incident to u
If Discovered[v]=false then
Set Discovered[v]=true
Add v to the list $L[i+1]$
If $\mathbf{i}+1$ is even then
Set Color[v]=red
Else Set Color[v]=blue
Endif
Elself Color[u] equals Color[v] then
Return False
Endif
Endfor
Increment the layer counter i by one
Endwhile
Return True

Time Repetitions
C1
C2 n
C3 n
C4
C5
C6
C8
C9
C10
C11
C12
C13
C14

C15
C16
C17
C18

C19
(see below)

The while loop will be executed as long as L[i] is not empty, and in the worst case each node in V will end up in one of the levels. Hence, the total runtime of the while loop with be:

$$
\Sigma \quad \Sigma \quad \operatorname{degree}(u)=2 * m
$$

all levels $i \quad$ all the nodes in Level[i+1]

Hence, the full algorithm will run in $T(n, m)=C^{\prime} * n+C^{\prime \prime} *(2 m)$, and so $T(n, m)=O(n+m)$.

Problem 3 (By Bogomil Tselkov)

a) We will show that max_nodes_binary_level $(i)=2^{i}$. For this purpose, we'll use the method of mathematical induction.

1) for $\mathrm{i}=0$, we have only the root $\Rightarrow>$ the number of nodes is $2^{0}=1$
2) Let's assume that for all trees of level $i=k$ is true that the max number in the $i^{\text {th }}$ level is 2^{i}
3) We will prove that in the next level (Level $i+1$) there are at most 2^{i+1} nodes.

Proof:

Since we have a binary tree and we don't have cycles (since we have a tree), then we have at most 2 children coming out of a node from lever i. Using the fact in 2) that we have at most 2^{i} nodes at level i, we can easily conclude that we have at most:
$2^{*} 2^{i}=2^{i+1}$ nodes at lever $\mathrm{i}+1$.

Having 1), 2) and 3) is sufficient to prove that max_nodes_binary_level $(\mathrm{i})=2^{\mathrm{i}}$.
b) Using our result in a), we will show that:
max_nodes_binary_tree $(h)=2^{(h+1)}-1$

If we have a tree with max Level h, let's try to calculate the max number of nodes in each level:
According to a) we have:
Level 0: 2^{0}
Level 1: 2^{1}
Level 2: 2^{2}
Level h: $2^{\text {h }}$
Overall we have maximum $2^{0}+2^{1}+\ldots .+2^{h}=2^{(h+1)}-1$ nodes, which is exactly what we wanted to prove.

Problem 4 (By Yaobin Tang and Prof. Ruiz)

The idea of this solution, as discussed in class, is that an edge (e,f) is contained in a cycle IFF the graph contains at least another path from e to f that doesn't use the edge (e,f) IFF nodes e and f remain connected if the edge (e, f) is removed from the graph. E will be used as the start node of the BFS algorithm.

Input: An undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in an adjacency list representation, and an edge (e,f) in the graph. Output: yes, if the edge (e,f) is contained in a cycle in G , and no, otherwise.

Algorithm:

/*Run the BSF algorithm on P90 of the textbook with a small modification */
/* e will be used as the start node of the BFS algorithm */

Remove edge(e, f) from the adjacency lists of e and f

Set Discovered[e]=true and Discovered[v]=false for all other v
Initialize L[0] to consist of the single element e
Set the layer counter $\mathrm{i}=0$
Set the current BFS tree $T=\varnothing$
While L[i] is not empty Initialize an empty list L[i+1]
For each node $u \in L[i]$
Consider each edge (u, v) incident to u
If Discovered[v]=false then
Set Discovered[v]=true
Add edge (u, v) to the tree T
Add v to the list $L[i+1]$
Endif
Endfor
Increment the layer counter i by one
Endwhile
If Discovered[f] = true then
O(1)

Return Yes

Else

Return No
Endif

The runtime analysis of this algorithm is identical to that of Problem 2 above. Hence, the time complexity of this algorithm is $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

