CS2223 Algorithms D Term 2008 Homework 3 Solutions By Prof. Ruiz, Yaobin Tang, and Bogomil Tselkov

Problem 1 (By Prof. Ruiz and Bogomil Tselkov)

a) the adjacency matrix:

b d f h k а С е g i i 1 1 0 0 а b 0 0 0 0 с d 0 0 е f 1 1 0 1 0 1 0 0 0 g h 1 1 0 1 1 0 i 0 0 1 0 0 0 0 0 1 i 0 0 0 k 0 0 0 0 0 0 0 0

b) the adjacency list representation

Problem 2 (By Yaobin Tang and Prof. Ruiz)

Assume the graph is connected.

According to P96 of the textbook, a small modification on the BFS algorithm on P90 of the textbook will work.

Input: An undirected graph G=(V,E) in an adjacency list representation **Output:** *true* if the graph G is bipartite and *false* if the input graph G is not bipartite

Algorithm:	Time	Repetitions
Pick any node in V and call it s	C1	
Set Discovered[s]=true and Discovered[v]=false for all other v	C2	n
Set Color[s]=red and Color[v]=uncolored for all other v	C3	n
Initialize L[0] to consist of the single element s	C4	
Set the layer counter i=0	C5	(see below)
While L[i] is not empty	C6	$\overline{\ }$
Initialize an empty list L[i+1]	C8	
For each node u∈L[i]	C9	
Consider each edge (u,v) incident to u	C10)	
If Discovered[v]=false then	C11	
Set Discovered[v]=true	C12	
Add v to the list L[i+1]	C13	
If i+1 is even then	C14	degree(u)
Set Color[v]=red	C15	Σdegree(u)
Else Set Color[v]=blue	C16	all nodes u
Endif		in Level[i+1]
Elself Color[u] equals Color[v] then	C17	
Return False	C18 [/]	
Endif		
Endfor		
Increment the layer counter i by one	C19)
Endwhile		
Return True		

The while loop will be executed as long as L[i] is not empty, and in the worst case each node in V will end up in one of the levels. Hence, the total runtime of the while loop with be:

 Σ Σ degree(u) = 2*m

all levels i all the nodes in Level[i+1]

Hence, the full algorithm will run in T(n,m) = C' * n + C'' * (2m), and so T(n,m) = O(n+m).

Problem 3 (By Bogomil Tselkov)

a) We will show that max_nodes_binary_level(i) = 2^{i} . For this purpose, we'll use the method of mathematical induction.

1) for i = 0, we have only the root => the number of nodes is $2^0 = 1$

2) Let's assume that for all trees of level i = k is true that the max number in the ith level is 2^{i}

3) We will prove that in the next level (Level i+1) there are at most 2ⁱ⁺¹ nodes. Proof:

Since we have a binary tree and we don't have cycles (since we have a tree), then we have at most 2 children coming out of a node from lever i. Using the fact in 2) that we have at most 2^{i} nodes at level i, we can easily conclude that we have at most: $2*2^{i} = 2^{i+1}$ nodes at lever i+1.

Having 1), 2) and 3) is sufficient to prove that max_nodes_binary_level(i) = 2^{i} .

b) Using our result in a), we will show that: max_nodes_binary_tree(h) = $2^{(h+1)} - 1$

If we have a tree with max Level h, let's try to calculate the max number of nodes in each level:

According to a) we have:

Level 0: 2⁰ Level 1: 2¹ Level 2: 2² ... Level h: 2^h

Overall we have maximum $2^0 + 2^1 + ... + 2^h = 2^{(h+1)} - 1$ nodes, which is exactly what we wanted to prove.

Problem 4 (By Yaobin Tang and Prof. Ruiz)

The idea of this solution, as discussed in class, is that an edge (e,f) is contained in a cycle IFF the graph contains at least another path from e to f that doesn't use the edge (e,f) IFF nodes e and f remain connected if the edge (e,f) is removed from the graph. E will be used as the start node of the BFS algorithm.

Input: An undirected graph G=(V,E) in an adjacency list representation, and an edge (e,f) in the graph. **Output:** *yes,* if the edge (e,f) is contained in a cycle in G, and *no,* otherwise.

Algorithm:

/*Run the BSF algorithm on P90 of the textbook with a small modification */ /* e will be used as the start node of the BFS algorithm */

Remove edge(e, f) from the adjacency lists of e and f		O(degree(e))=O(n)	
Set Discovered[e]=true and Discovered[v]=false for all other v		O(n)	
Initialize L[0] to consist of the single element e		O(1)	
Set the layer counter i=0		O(1)	
Set the current BFS tree T=Ø		O(1)	
While L[i] is not empty	O(n+m): Each node visited once (O(1)*n) and each edge twice (O(1)*2m)	
Initialize an empty list L[i+1]			
For each node u∈L[i]			
Consider each edge (u,v) i	ncident to u		
If Discovered[v]=false ther	1		
Set Discovered[v]=true			
Add edge (u,v) to the tree	еT		
Add v to the list L[i+1]			
Endif			
Endfor			
Increment the layer counter	i by one		
Endwhile			
If Discovered[f] = true then		O(1)	
Return Yes			
Else			
Return No			
Endif			

The runtime analysis of this algorithm is identical to that of Problem 2 above. Hence, the time complexity of this algorithm is O(n+m).