
CS2223 Algorithms D Term 2008
Homework 3 Solutions

By Prof. Ruiz, Yaobin Tang, and Bogomil Tselkov

Problem 1 (By Prof. Ruiz and Bogomil Tselkov)

a) the adjacency matrix:

 a b c d e f g h i j k
a 0 1 1 0 0 0 0 0 0 0 0

b 1 0 1 0 0 0 0 0 0 0 0

c 1 1 0 1 1 0 0 0 0 0 0

d 0 0 1 0 1 0 0 0 0 0 0

e 0 0 1 1 0 0 0 0 0 0 0

f 0 0 0 0 0 0 1 1 0 0 0

g 0 0 0 0 0 1 0 1 0 0 0

h 0 0 0 0 0 1 1 0 1 1 0

i 0 0 0 0 0 0 0 1 0 0 0

j 0 0 0 0 0 0 0 1 0 0 0

k 0 0 0 0 0 0 0 0 0 0 0

b) the adjacency list representation

Problem 2 (By Yaobin Tang and Prof. Ruiz)

Assume the graph is connected.

According to P96 of the textbook, a small modification on the BFS algorithm on P90 of the textbook will

work.

Input: An undirected graph G=(V,E) in an adjacency list representation

Output: true if the graph G is bipartite and false if the input graph G is not bipartite

Algorithm: Time Repetitions

Pick any node in V and call it s C1

Set Discovered[s]=true and Discovered[v]=false for all other v C2 n

Set Color[s]=red and Color[v]=uncolored for all other v C3 n

Initialize L[0] to consist of the single element s C4

Set the layer counter i=0 C5 (see below)

While L[i] is not empty C6

 Initialize an empty list L[i+1] C8

 For each node u L[i] C9

 Consider each edge (u,v) incident to u C10

 If Discovered[v]=false then C11

 Set Discovered[v]=true C12

 Add v to the list L[i+1] C13

 If i+1 is even then C14 degree(u)

 Set Color[v]=red C15 Σdegree(u)

 Else Set Color[v]=blue C16 all nodes u

 Endif in Level[i+1]

 ElseIf Color[u] equals Color[v] then C17

 Return False C18

 Endif

 Endfor

 Increment the layer counter i by one C19

Endwhile

Return True

The while loop will be executed as long as L[i] is not empty, and in the worst case each node in V will end up in

one of the levels. Hence, the total runtime of the while loop with be:

Σ Σ degree(u) = 2*m

 all levels i all the nodes in Level[i+1]

 Hence, the full algorithm will run in T(n,m) = C’ *n + C’’ *(2m) , and so T(n,m) = O(n+m).

Problem 3 (By Bogomil Tselkov)

a) We will show that max_nodes_binary_level(i) = 2i. For this purpose, we’ll use the method of
mathematical induction.

1) for i = 0, we have only the root => the number of nodes is 20 = 1

2) Let’s assume that for all trees of level i = k is true that the max number in the ith level is 2i

3) We will prove that in the next level (Level i+1) there are at most 2i+1 nodes.
Proof:

Since we have a binary tree and we don’t have cycles (since we have a tree), then we have at most
2 children coming out of a node from lever i. Using the fact in 2) that we have at most 2i nodes at
level i, we can easily conclude that we have at most:
2* 2i = 2i+1 nodes at lever i+1.

Having 1), 2) and 3) is sufficient to prove that max_nodes_binary_level(i) = 2i.

b) Using our result in a), we will show that:
 max_nodes_binary_tree(h) = 2(h+1) – 1

If we have a tree with max Level h, let’s try to calculate the max number of nodes in each level:

According to a) we have:

Level 0: 20
Level 1: 21
Level 2: 22

 …
Level h: 2h

Overall we have maximum 20+ 21+….+2h = 2(h+1) – 1 nodes, which is exactly what we wanted to
prove.

Problem 4 (By Yaobin Tang and Prof. Ruiz)

The idea of this solution, as discussed in class, is that an edge (e,f) is contained in a cycle IFF the graph
contains at least another path from e to f that doesn’t use the edge (e,f) IFF nodes e and f remain
connected if the edge (e,f) is removed from the graph. E will be used as the start node of the BFS
algorithm.

Input: An undirected graph G=(V,E) in an adjacency list representation, and an edge (e,f) in the graph.

Output: yes, if the edge (e,f) is contained in a cycle in G, and no, otherwise.

Algorithm:
/*Run the BSF algorithm on P90 of the textbook with a small modification */

/* e will be used as the start node of the BFS algorithm */

Remove edge(e, f) from the adjacency lists of e and f O(degree(e))=O(n)

Set Discovered[e]=true and Discovered[v]=false for all other v O(n)

Initialize L[0] to consist of the single element e O(1)

Set the layer counter i=0 O(1)

Set the current BFS tree T= O(1)

While L[i] is not empty O(n+m): Each node visited once (O(1)*n) and each edge twice (O(1)*2m)

 Initialize an empty list L[i+1]

 For each node u L[i]

 Consider each edge (u,v) incident to u

 If Discovered[v]=false then

 Set Discovered[v]=true

 Add edge (u,v) to the tree T

 Add v to the list L[i+1]

 Endif

 Endfor

 Increment the layer counter i by one

Endwhile

If Discovered[f] = true then O(1)

 Return Yes

Else

 Return No

Endif

The runtime analysis of this algorithm is identical to that of Problem 2 above. Hence, the time
complexity of this algorithm is O(n+m).

