
CS2223 Algorithms D Term 2008 
Homework 3 Solutions 

By Prof. Ruiz, Yaobin Tang,  and Bogomil Tselkov 
 
Problem 1 (By Prof. Ruiz and Bogomil Tselkov)  
 

a) the adjacency matrix: 
 

 a b c d e f g h i j k 
a 0 1 1 0 0 0 0 0 0 0 0 

b 1 0 1 0 0 0 0 0 0 0 0 

c 1 1 0 1 1 0 0 0 0 0 0 

d 0 0 1 0 1 0 0 0 0 0 0 

e 0 0 1 1 0 0 0 0 0 0 0 

f 0 0 0 0 0 0 1 1 0 0 0 

g 0 0 0 0 0 1 0 1 0 0 0 

h 0 0 0 0 0 1 1 0 1 1 0 

i 0 0 0 0 0 0 0 1 0 0 0 

j 0 0 0 0 0 0 0 1 0 0 0 

k 0 0 0 0 0 0 0 0 0 0 0 

 
b) the adjacency list representation 
 

 
 
 
 
 
 



 
Problem 2 (By Yaobin Tang and Prof. Ruiz) 

 
 

Assume the graph is connected. 

According to P96 of the textbook, a small modification on the BFS algorithm on P90 of the textbook will 

work. 

 

Input: An undirected graph G=(V,E) in an adjacency list representation 

Output: true if the graph G is bipartite and false if the input graph G is not bipartite 

 

Algorithm:        Time  Repetitions 

Pick any node in V and call it s      C1 

Set Discovered[s]=true and Discovered[v]=false for all other v  C2 n 

Set Color[s]=red and Color[v]=uncolored for all other v   C3 n 

Initialize L[0] to consist of the single element s    C4 

Set the layer counter i=0      C5          (see below) 

While L[i] is not empty                                                                         C6                                    

       Initialize an empty list L[i+1]      C8 

       For each node u L[i]      C9  

           Consider each edge (u,v) incident to u    C10  

            If Discovered[v]=false then     C11  

               Set Discovered[v]=true     C12  

               Add v to the list L[i+1]     C13  

               If i+1 is even then     C14     degree(u) 

                  Set Color[v]=red    C15          Σdegree(u) 

               Else Set Color[v]=blue     C16                   all nodes u        

               Endif            in Level[i+1] 

            ElseIf Color[u] equals Color[v] then    C17  

              Return False       C18  

           Endif 

       Endfor 

       Increment the layer counter i by one    C19 

Endwhile 

Return True 

 

The while loop will be executed as long as L[i] is not empty, and in the worst case each node in V will end up in 

one of the levels. Hence, the total runtime of the while loop with be: 

Σ              Σ        degree(u) = 2*m 

     all levels i    all the nodes in Level[i+1]  

 

 Hence, the full algorithm will run in T(n,m) = C’ *n + C’’ *(2m) , and so T(n,m) = O(n+m).   



 
Problem 3 (By Bogomil Tselkov) 
  
a) We will show that max_nodes_binary_level(i) = 2i. For this purpose, we’ll use the method of 
mathematical induction. 
 
1) for i = 0, we have only the root => the number of nodes is  20 = 1 
 
2) Let’s assume that for all trees of level i = k is true that the max number in the ith level is 2i 

 
3) We will prove that in the next level (Level i+1) there are at most 2i+1 nodes. 
Proof: 
 
Since we have a binary tree and we don’t have cycles (since we have a tree), then we have at most 
2 children coming out of a node from lever i. Using the fact in 2) that we have at most 2i nodes at 
level i, we can easily conclude that we have at most: 
2* 2i = 2i+1 nodes at lever i+1. 
 
 
Having 1), 2) and 3) is sufficient to prove that max_nodes_binary_level(i) = 2i. 
 
b) Using our result in a), we will show that: 
 max_nodes_binary_tree(h) = 2(h+1) – 1 
 
 
If we have a tree with max Level h, let’s try to calculate the max number of nodes in each level:  
 
According to a) we have: 
 
Level 0: 20 
Level 1: 21 
Level 2: 22 

 … 
Level h: 2h 
 
Overall we have maximum  20+ 21+….+2h = 2(h+1) – 1 nodes, which is exactly what we wanted to 
prove. 
 
 
 
 
 
 
 

 
 



Problem 4 (By Yaobin Tang and Prof. Ruiz) 
 
The idea of this solution, as discussed in class, is that an edge (e,f) is contained in a cycle IFF the graph 
contains at least another path from e to f that doesn’t use the edge (e,f) IFF nodes e and f remain 
connected if the edge (e,f) is removed from the graph. E will be used as the start node of the BFS 
algorithm. 
 

Input: An undirected graph G=(V,E) in an adjacency list representation, and an edge (e,f) in the graph. 

Output: yes, if the edge (e,f) is contained in a cycle in G,  and no,  otherwise. 

Algorithm:  
/*Run the BSF algorithm on P90 of the textbook with a small modification */ 

/* e will be used as the start node of the BFS algorithm */ 

 

Remove edge(e, f) from the adjacency lists of e and f   O(degree(e))=O(n) 

Set Discovered[e]=true and Discovered[v]=false for all other v  O(n) 

Initialize L[0] to consist of the single element e    O(1) 

Set the layer counter i=0      O(1) 

Set the current BFS tree T=       O(1) 

While L[i] is not empty       O(n+m): Each node visited once (O(1)*n) and each edge twice (O(1)*2m) 

       Initialize an empty list L[i+1] 

       For each node u L[i] 

           Consider each edge (u,v) incident to u 

           If Discovered[v]=false then 

             Set Discovered[v]=true 

             Add edge (u,v) to the tree T 

             Add v to the list L[i+1] 

           Endif 

       Endfor 

       Increment the layer counter i by one 

Endwhile 

If Discovered[f] = true then      O(1) 

   Return Yes 

Else  

   Return No 

Endif 

 

The runtime analysis of this algorithm is identical to that of Problem 2 above. Hence, the time 
complexity of this algorithm is  O(n+m). 


