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Problem 1 

(1) Trace of the Quicksort and Partition Algorithms: 

Level 0

Level 1

7 6 5 4 8 2 3 6

partition value used is 6

6 5 4 2 3 8 7

partition value used is 3

Level 2

<= 6 > 6

6

2 4 6 5

<= 3 > 3

3

partition value used is 5

4 6

<= 5 > 5

5Level 3

partition value used is 7

7 8

> 7<=7

2 3 4 65 6 7 8Result

 

Step by Step 

Start of Sorting A[1...8]: 7 6 5 4 8 2 3 6 

Start of Partition A[1...8]: 

Partition Value = 6 

i=0,j=1,A[j]=7, A[j] > 6, i unchanged, j increased by 1. 

Array A[1...8] After Operation: 7 6 5 4 8 2 3 6 

i=0,j=2,A[j]=6, A[j] <= 6, i increased by 1, i=1,j=2. Swap A[1] with A[2]. 

Array A[1...8] After Operation: 6 7 5 4 8 2 3 6 

i=1,j=3,A[j]=5, A[j] <= 6, i increased by 1, i=2,j=3. Swap A[2] with A[3]. 



Array A[1...8] After Operation: 6 5 7 4 8 2 3 6 

i=2,j=4,A[j]=4, A[j] <= 6, i increased by 1, i=3,j=4. Swap A[3] with A[4]. 

Array A[1...8] After Operation: 6 5 4 7 8 2 3 6 

i=3,j=5,A[j]=8, A[j] > 6, i unchanged, j increased by 1. 

Array A[1...8] After Operation: 6 5 4 7 8 2 3 6 

i=3,j=6,A[j]=2, A[j] <= 6, i increased by 1, i=4,j=6. Swap A[4] with A[6]. 

Array A[1...8] After Operation: 6 5 4 2 8 7 3 6 

i=4,j=7,A[j]=3, A[j] <= 6, i increased by 1, i=5,j=7. Swap A[5] with A[7]. 

Array A[1...8] After Operation: 6 5 4 2 3 7 8 6 

Put the partition value into right place: Swap A[6] with A[8]. 

The partiton value is place at A[6] 

Array A[1...8] After Operation: 6 5 4 2 3 6 8 7 

End of Partition of A[1...8]. 

After partition, A[1...8] broken into A[1...5], A[6],A[7...8] 

Start of Sorting A[1...5]: 6 5 4 2 3 

Start of Partition A[1...5]: 

Partition Value = 3 

i=0,j=1,A[j]=6, A[j] > 3, i unchanged, j increased by 1. 

Array A[1...5] After Operation: 6 5 4 2 3 

i=0,j=2,A[j]=5, A[j] > 3, i unchanged, j increased by 1. 

Array A[1...5] After Operation: 6 5 4 2 3 

i=0,j=3,A[j]=4, A[j] > 3, i unchanged, j increased by 1. 

Array A[1...5] After Operation: 6 5 4 2 3 

i=0,j=4,A[j]=2, A[j] <= 3, i increased by 1, i=1,j=4. Swap A[1] with A[4]. 

Array A[1...5] After Operation: 2 5 4 6 3 

Put the partition value into right place: Swap A[2] with A[5]. 

The partiton value is place at A[2] 

Array A[1...5] After Operation: 2 3 4 6 5 

End of Partition of A[1...5]. 

After partition, A[1...5] broken into A[1...1], A[2],A[3...5] 

Start of Sorting A[1...1]: 2 

Array A[1...1] After Operation: 2 

End of Sorting A[1...1]. 

Start of Sorting A[3...5]: 4 6 5 



Start of Partition A[3...5]: 

Partition Value = 5 

i=2,j=3,A[j]=4, A[j] <= 5, i increased by 1, i=3,j=3. Swap A[3] with A[3]. 

Array A[3...5] After Operation: 4 6 5 

i=3,j=4,A[j]=6, A[j] > 5, i unchanged, j increased by 1. 

Array A[3...5] After Operation: 4 6 5 

Put the partition value into right place: Swap A[4] with A[5]. 

The partiton value is place at A[4] 

Array A[3...5] After Operation: 4 5 6 

End of Partition of A[3...5]. 

After partition, A[3...5] broken into A[3...3], A[4],A[5...5] 

Start of Sorting A[3...3]: 4 

Array A[3...3] After Operation: 4 

End of Sorting A[3...3]. 

Start of Sorting A[5...5]: 6 

Array A[5...5] After Operation: 6 

End of Sorting A[5...5]. 

Array A[3...5] After Operation: 4 5 6 

End of Sorting A[3...5]. 

Array A[1...5] After Operation: 2 3 4 5 6 

End of Sorting A[1...5]. 

Start of Sorting A[7...8]: 8 7 

Start of Partition A[7...8]: 

Partition Value = 7 

i=6,j=7,A[j]=8, A[j] > 7, i unchanged, j increased by 1. 

Array A[7...8] After Operation: 8 7 

Put the partition value into right place: Swap A[7] with A[8]. 

The partiton value is place at A[7] 

Array A[7...8] After Operation: 7 8 

End of Partition of A[7...8]. 

After partition, A[7...8] broken into A[7...6], A[7],A[8...8] 

Start of Sorting A[7...6]: 

Array A[7...6] After Operation: 

End of Sorting A[7...6]. 



Start of Sorting A[8...8]: 8 

Array A[8...8] After Operation: 8 

End of Sorting A[8...8]. 

Array A[7...8] After Operation: 7 8 

End of Sorting A[7...8]. 

Array A[1...8] After Operation: 2 3 4 5 6 6 7 8 

End of Sorting A[1...8]. 

(2) Quicksort Correctness Proof: 

Preliminary: 

Before proving that the quicksort algorithm works correctly, let us first look at the partition algorithm. 

We want to prove that the partition algorithm partitions the original array (let us call the original array A) 

into 3 parts: a single value d which is used to partition the original array, a sub-array which contains all 

the elements (except d itself) that are less or equal than d (let us call this sub-array LTE), a sub-array 

which contains all the elements that are larger than d (let us call this sub-array GT). 

The idea of the partition algorithm is to maintain the following invariance before and during the process 

of the for-loop:  A[p..i] contains elements from A that are less than or equal to the pivot value (A[r]), 

A[i+1..j] contains elements from A that are larger than the pivot value. 

Before the for-loop:  i=p-1,  j undefined, so A[p..i] is empty, and A[i+1,j] has no meaning (since j has not 

been defined yet). The invariance trivially holds. 

During the for-loop: Let us assume right after the kth iteration (with j = m), the invariance holds, and 

now we enter the beginning of the (k+1)-th iteration (with j=m+1).  Because invariance is maintained 

right after the k-th iteration (our assumption), we know A[p..i] contains elements from A that are less 

than or equal to the pivot value, and A[i+1..m] contains elements from A that are larger than the pivot 

value. However, since in the (k+1)-th iteration, j is incremented from m to m+1, the invariance “A*i+1..j+ 

contains elements from A that are larger than the pivot value” may not be true. That is because A[j] = 

A[m+1] may be less than or equal to the pivot value. If A[m+1] is really less than or equal to the pivot 

value, in order to maintain the invariance, we need to swap A[m+1] with some value that is sure to be 

larger than the pivot value. Because we know from the assumption, A[i+1] is larger than the pivot value, 

we can swap A[m+1] with A[i+1]. Now A[p..i+1] contains elements from A that are less than or equal to 

the pivot value, and A[i+2..j] contains elements from A that are larger than the pivot value. To maintain 

the form of the invariance, we need to update i to i+1. Then after the (k+1)-th iteration, the invariance is 

still maintained. 

After the for-loop: We know A[p..i] contains elements from A that are less than or equal to the pivot 

value (A[r]), A[i+1..r-1] contains elements from A that are larger than the pivot value. If we swap A[i+1] 

with A[r], we know A[p..i] is the sub-array LTE, A[i+1] is the pivot value, and A[i+2..r]  is the sub-array GT. 



After looking at the partition algorithm, let us prove the quicksort algorithm works correctly. 

Proof by Induction. 

Let us induct on the size of the array to sort. 

If the size is 1, it is trivial that the algorithm works correctly. 

Let us assume the quicksort algorithm works correctly for any size <= K. 

We need to prove that the quicksort algorithm still works correctly when size is K+1. 

After the partition algorithm, the original array is partitioned into LTE, d, GT. 

The size of LTE, and the size of GT are <= K, so we can use the quicksort algorithm to correctly sort each 

of them separately (our assumption). 

Since any element in LTE is less than or equal to d, and any element in GT is larger than d, the 

concatenation of sorted LTE, d, sorted GT is the correct sorting of the original array. 

(3) Worst-case partitioning for quicksort: Runtime Analysis of the Partitioning Algorithm 

Let n=p-r+1 

partition(A,p,r) { 

    x := A[r]      Θ(1) 

    i := p-1 Θ(1) 

    For j := p to r-1 do {   Θ(1) x n 

        If A[j] ≤ x then {   Θ(1) x n 

            i := i+1     Θ(1) x n 

            exchange A[i] with A[j] Θ(1) x n 

        } 

    } 

    exchange A[i+1] with A[r]  Θ(1) 

    return i+1     Θ(1) 

} 

So the total time complexity is Θ(n). 



(4) Worst-case partitioning for quicksort: Runtime Analysis  

T(n) = T(n-1) + Θ(n).  Hence, T(n) ≤ T(n-1) + cn, for some constant c > 0 

Recursion-tree method 

 

Level 0: # of nodes 1, runtime per node cn, total runtime of the level c*n 

Level 1: # of nodes 1, runtime per node c(n-1), total runtime of the level c*(n-1) 

… 

Level k: # of nodes 1, runtime per node c(n-k), total runtime of the level c*(n-k) 

… 

The total runtime is the sum of runtimes over all the levels:  

T(n) ≤ 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐 𝑛 − 2 + ⋯+ 2𝑐 + 𝑐 = 𝑐 ∙
 𝑛+1 𝑛

2
= 𝑂(𝑛2) 

Substitution Method 

Let Θ n = f(n) ≤ dn, d > 0 

Basis: (This boundary condition does not appear in the problem statement, added here for 

completeness. It is sort of arbitrary.) T(1)=e, e>0. 

Guess:  𝑇 𝑛 ≤ 𝑐𝑛2 + 𝑐𝑛, 𝑐 ≥ max  
𝑑

2
,
𝑒

2
 .  



Induction Hypothesis:  𝑇 𝑛 − 1 ≤ 𝑐(𝑛 − 1)2 + 𝑐(𝑛 − 1) 

Induction: 

T(n) = T(n-1) + Θ(n) ≤   𝑐(𝑛 − 1)2 + 𝑐(𝑛 − 1) +  Θ n = 𝑐𝑛2 − 𝑐𝑛 + Θ n ≤ 𝑐𝑛2 − 𝑐𝑛 + 𝑑𝑛   

Since 𝑐 ≥
𝑑

2
,  T(n) ≤ 𝑐𝑛2 − 𝑐𝑛 + 𝑑𝑛 ≤ 𝑐𝑛2 + 𝑐𝑛   

hence  𝑐𝑛2 + 𝑐𝑛 = 𝑂(𝑛2), and so T(n)=O(𝑛2). 

 

(5) Best-case partitioning for quicksort: Runtime Analysis  

𝑇 𝑛 = 2𝑇  
𝑛

2
 + Θ n  

This is the same recurrence that describes the runtime of the Mergesort algorithm analyzed in class 

and in the textbook. See Section 5.1 of the textbook, p210. Hence,  𝑇 𝑛 = O n log2 n . 

Problem 2 

(1) Recursion-tree method 

 

Level 0: # of nodes 1, runtime per node n, total runtime of the level 1*n 

Level 1: # of nodes 41, runtime per node 
𝑛

3
, total runtime of the level  41 ∗

𝑛

3
 



Level 2: # of nodes 42, runtime per node 
𝑛

32, total runtime of the level  42 ∗ 
𝑛

32 

…… 

Level k: # of nodes 4𝑘 , runtime per node 
𝑛

3𝑘, total runtime of the level  4𝑘 ∗
𝑛

3𝑘 

…… 

Let 
𝑛

3𝑘  = 1,  we have k=log3 𝑛.  So we know log3 𝑛  is the maximum level. 

Level log3 𝑛: # of nodes 4log 3 𝑛 , runtime per node 1, total runtime of the level 4log 3 𝑛 ∗ 1 

 

Sum up runtime of each level, we get 

 𝑇 𝑛  =   4𝑖log 3 𝑛
𝑖=0

𝑛

3𝑖 = 𝑛   
4

3
 
𝑖log 3 𝑛

𝑖=0  

According to the formula of geometric series,  𝑟𝑘𝑛
𝑘=0 =

𝑟𝑛+1−1

𝑟−1
, 

So  

   
4

3
 
𝑖

log 3 𝑛

𝑖=0

=

 
4
3
∙  

4
3
 

log 3 𝑛

 − 1

4
3
−  1

= 4 ∙ (
4

3
)log 3 𝑛 − 3 = 4 ∙

4log 3 𝑛

3log 3 𝑛
− 3 = 4 ∙

4log 3 𝑛

𝑛
− 3 

Above, we used the fact that 3log 3 𝑛 = 𝑛. So 

𝑇 𝑛 = 𝑛   
4

3
 
𝑖log 3 𝑛

𝑖=0 = 𝑛  
4

𝑛
∙ 4log 3 𝑛 − 3 = 4 ∙ 4log 3 𝑛 − 3𝑛 =  4 ∙ 4log 3 𝑛 − 3𝑛 = 4 ∙ 𝑛log 3 4 − 3𝑛  

Note that 4log 3 𝑛 = 𝑛log 3 4,  or more generally 𝑎log 𝑏 𝑛 = 𝑛log 𝑏 𝑎 . 

Note that log3 4 > 1, therefore 𝑛log 3 4 > 𝑛. So according to the definition of Big O, we have 𝑇 𝑛 =

𝑂(𝑛log 3 4). 

 

(2) Substitution Method 

Basis: (This boundary condition does not appear in the problem statement, added here for 

completeness. It is sort of arbitrary.) T(1)=1 

Guess: 𝑇 𝑛 ≤ 𝑐𝑛log 3 4 + 𝑑𝑛. 

Induction Hypothesis: 𝑇 𝑚 ≤ 𝑐 𝑚log 3 4 + 𝑑𝑚, for all m < n. 



Induction: Since n/3 < n: 

𝑇 𝑛 = 4𝑇  
𝑛

3
 + 𝑛 ≤ 4  𝑐(

𝑛

3
)log 3 4 +

𝑑𝑛

3
 + 𝑛 

= 4  𝑐
𝑛log 3 4

4
+

𝑑𝑛

3
 + 𝑛 = 𝑐𝑛log 3 4 +

4

3
𝑑𝑛 + 𝑛 

In order to make 𝑇 𝑛 ≤ 𝑐𝑛log 3 4 + 𝑑𝑛, we try to make 𝑐𝑛log 3 4 +
4

3
𝑑𝑛 + 𝑛 =  𝑐𝑛log 3 4 + 𝑑𝑛. 

↔
4

3
𝑑𝑛 + 𝑛 =  𝑑𝑛 ↔ 𝑑 = −3 

Revising our guess to be:  𝑇 𝑛 ≤ 𝑐𝑛log 3 4 − 3𝑛  

and our induction hypothesis to be:  𝑇 𝑚 ≤ 𝑐 𝑚log 3 4 − 3𝑚, for all m < n 

we have proven that  𝑇 𝑛 ≤ 𝑐𝑛log 3 4 − 3𝑛. Since  log3 4 > 1, then  𝑛log 3 4 > 𝑛 and then we 

have 𝑇 𝑛 = 𝑂(𝑛log 3 4). 

 

Problem 3 

According to the rule of matrix multiplication,  
𝑎 𝑏
𝑐 𝑑

 ∙  
𝑎 𝑏
𝑐 𝑑

 =  
𝑎2 + 𝑏𝑐 𝑏(𝑎 + 𝑑)

𝑐(𝑎 + 𝑑) 𝑐𝑏 + 𝑑2   

So we only need five multiplications: a*a, b*c, b*(a+d), c*(a+d), d*d. 

Note than since a, b, c, d are numbers (and not submatrices) and commutatively of number 

multiplication holds, then bc=cb;  a*b + b*d = b*(a+d);  and  c*a + d*c = c*(a+d). 

 


