
CS 2301 Systems Programming for Non-Majors WPI, D Term 2010
Craig E. Wills Program Style
Monday, March 15, 2010

Programming Assignments

Correctness is an important criterion, but does not guarantee a top mark. Grades on pro-
grams will be based on:

1. Correct behavior on normal or typical input; adherence to specifications.

2. Robustness: Correct behavior in extreme or unusual situations; reasonable recovery
from unusual or incorrect inputs or from internal bugs.

3. Readability: comments, mnemonic identifiers, clear structure, indentation, external
documentation. Every program should have external documentation telling how to use
the program and what its limitations are. It should also have internal documentation
that describes data structures and algorithms. Every procedure should be documented
to show what it does and what its parameters mean.

4. Quality of test data: tests that thoroughly exercise the program and explore unusual
cases. You are expected to generate your own test data for every program as well as
demonstrate its accuracy on standard data.

5. Efficiency: avoiding unnecessarily inefficient algorithms or constructs. However, effi-
ciency should never be pursued at the expense of clarity.

Documentation

Documentation for any program falls into two categories: internal and external. Internal
documentation consists of the comments included in the program. They generally fall
in three places: at the heads of procedures, at declarations, and at particularly tricky or
opaque segments of code. Procedure-head comments describe the effects of the procedure
and assumptions about its inputs and outputs. The procedure name should convey as much
of this information as possible. Names of variables, types, constants, and field selectors
should also be as meaningful as possible, with a comment next to the declaration to fill in
extra information. Comments should be written before the rest of the program.

External documentation (which you may include as a long comment right at the
beginning of the program itself) has two types: for the typical user, and for someone who
wants to understand how the program works. The first kind of documentation includes
details of how to call the program, its options, formats of data, limitations, bugs, and special
features. For course programs, part of this information is included in the assignment and
need not be repeated. Emphasize both the negative aspects of your program (limitations,
known bugs) and the positive aspects (extensions, special features). If you do not include the
former, we will assume you didn’t realize the limitations were there. If you do not include
the latter, you may not get credit for special features.

1



Programming Standards

There are a few general programming standards that you are expected to follow in this
course.

1. Begin each module with a comment similar to the following form. The modifica-
tion history section is used to record changes made to an otherwise stable mod-
ule. You may want to include additional information as specified in the Computer
Science Department Documentation Standard available at the Web address http:

//www.cs.wpi.edu/Resources/documentation.html.

/*

* <filename> -- <brief title and/or purpose>

*

* programmer -- <you>

*

* date -- <creation date>

*

* modification history

*

* <date> <change made>

*/

2. C procedures can be difficult to locate when scanning a file. Flag the beginning of each
procedure by a comment of the following form:

/*

* <name> -- <brief statement of action performed in terms of input

* and output parameters along with the value returned.>

*/

3. Use #define to define any constant (numeric, character and string) that has meaning
apart from its literal value. Most numbers other than 0 or 1 fit into this category.

4. Align all statements that appear at the same level. Use four spaces for each nested
level of indentation.

5. Align a comment that describes a block of code with the code. You may precede the
comment with a blank line.

6. Place the curly braces that delimit the body of a procedure in column one and on lines
by themselves. For compound statements, place the opening brace on the line that
begins the compound statement and place the closing brace on a line by itself, in the
column with the line beginning the compound statement. For example,

2



if (i == 0) {

bDone = TRUE;

j++;

}

7. The else clause of a simple if statement is in the same column as the if. An example:

if (bCheck) {

...

}

else if (i > 0) {

...

}

else {

...

}

Naming Conventions

This section describes conventions for creating procedure and variable names. These con-
ventions will be used in examples given in class. You are strongly encouraged to follow these
in your coding.

Procedures/Methods

Where possible, name procedures by the (single) action they perform. In most cases, the
name should be a verb or verb phrase. Capitalize words that appear in the name (for
example, ReadPoly()).

Variables

Variable names should be mnemonic. That is, the name of the variable should relate to some
property of the values that variable can contain. Thus variables will generally have a type
and when necessary a qualifier if there are many variables of the same type.

Common Basic Types

b a boolean. Usually qualified. For example, bEOF might be true if an end-of-file has been
reached on a certain file.

ch a character.

w a word (usually an integer). Used when the actual type defies definition or is not otherwise
interpreted by the procedure.

3



i an index into an array with unspecified domain.

sb a string (for string block). Although represented in C as a pointer to a block of characters
(rgch), strings occur so frequently it is often more convenient to think of them as
members of a primitive type.

fd a Unix file descriptor.

fp a Unix file pointer (such as FILE *fp and used with fopen(), fprintf(), etc).

Compound Types

The naming convention provides type construction rules or schemas that show how to con-
struct compound types from simple types. A large program typically has only a few simple
types. This ability to quickly and easily construct names of variables based on the types
they contain is the real power of the convention.

Let X and Y denote arbitrary tags. Each of the following schemas shows how to construct
a new type from the given simple type.

pX pointer to X. If ‘*’ is the indirection operator then *pX is an X. For example, if ch is a
character then pch is a pointer to a character, and *pch is a character again.

cX counts instances of X. If ch is a character, then cch is a count of characters.

mpXY array (map) with domain X and range Y. mpXY[X] is a Y.

iX index (domain) of an array with range X.

rgX short for mpiXX, array with domain iX and range X.

Note: This convention is often referred to as “Hungarian” after the heritage of its de-
signer, Charles Simonyi. More details are available at http://msdn.microsoft.com/en-

us/library/aa260976%28VS.60%29.aspx for those that are interested.

4


