CS 3013 Operating Systems WPI, A Term 2006
Craig E. Wills Midterm Exam (100 pts)
Given: Friday, September 15, 2006

NAME:

This is a closed book (and notes) examination. Answer all questions on the exam itself.
Take the number of points assigned to each problem and the amount of space provided for
your answer as a measure of the length and difficulty of the expected solution. The exam
totals 100 points.



SCORE:

1. (16 points) Mutual exclusion problem.

(a) One of the requirements for a solution to the mutual exclusion problem is to
be environment independent. What is this requirement? Give an example of a
potential solution that is not environment independent.

utual exclusion involves a critical section (region). at is a critical section
b) Mutual exclusion invol itical secti gi What i itical secti
(region) as it relates to the mutual exclusion problem?



2. (22 points) As shown below, processes can be in one of three states: running, ready and
blocked. There are six possible state transitions (labeled 1-6). For each label, indicate
whether the transition is valid or inwvalid. If valid, indicate when the transition is used
for a process. If the transition is not valid then indicate why.

State transitions:

(a) 1: Blocked to Running

(b) 2: Running to Blocked

(c) 3: Ready to Blocked

(d) 4: Blocked to Ready

(e) 5: Ready to Running

(f) 6: Running to Ready

(g) Which transition (1-6) takes place for a voluntary context switch? Which transi-
tion takes place for an involuntary context switch?



3. (8 points) One means of designing an operating system is to organize it using a vir-
tual machine approach. What is this approach and why is it used? Are there any
disadvantages?

4. (13 points) In Project 1, you used various system calls for executing a command and
gathering statistics about its execution.

(a) Is it possible that a call to fork() can fail? If it cannot fail explain why, if it can
fail give an example of when it would fail.

(b) Is it possible that a call to ezecve() (execvp()) can fail? If it cannot fail explain
why, if it can fail give an example of when it would fail.

(c¢) The following is a “simplified” version of the doit program you wrote for Project
1. Explain the outcome(s) of running this code with command line arguments
similar to those used in Project 1. Remember to consider all return codes for

fork() and execvp().

main(int argc, char *argv[])

{
fork();
execvp(argv([1l], &argv([1]); /* shift arguments */
cout << "program finished\n";

}



5. (22 points) Process scheduling.

(a) From the standpoint of system performance, name an advantage and a disadvan-
tage of the shortest job first (shortest process next) process scheduling policy.

(b) From the standpoint of system performance, name an advantage and a disadvan-
tage of the first-come, first-served process scheduling policy.

(c) Suppose that an operating system scheduling policy favors those processes that
have used the least processor time in the recent past. Will this policy favor either
short processes or long processes? Why?



6. (7 points) In terms of process coordination, what is a race condition?

7. (12 points) Assume that the integer variable m is a single mailbox shared among all
processes in a system (this is not Unix/Linux). Processes put a value in the mailbox
using the routine SendMsg() and remove the value from the mailbox using the routine
RecvMsg(). If the mailbox already contains a value, then any process calling SendMsg ()
should block until the previous value has been removed. If the mailbox contains no
value, then any process calling RecvMsg() should block until a value is available.

Write the code for SendMsg() and RecvMsg() using semaphores to coordinate their
activity. Show code in the Initialization() routine for any initialization that is
needed.

int m; /* shared mailbox (an integer) */
Initialization()

{

}

/* place the given value in the mailbox */
SendMsg(int value)

{

/* remove the value from the mailbox and return in the
given address */

RecvMsg(int &value)

{



