
CS 3013 Operating Systems WPI, A Term 2007
Craig E. Wills Project 2 (30 pts)
Assigned: Friday, August 31, 2007 Due: Monday, September 17, 2007

Introduction

This assignment is intended to help you learn about different architectures for building a
server. In particular, you will build a program that can works using a single process, using
multiple processes, or using multiple threads within a single process. You will also learn
about file attributes.

Problem

The basic idea of this assignment is to handle “requests” to a server. Each request will be
a file name. The server needs to determine the type and possibly the size for the given file.
Requests will be read in from stdin (using cin.getline() in C++ or gets() or fgets() in C) with
one file name given on each line of input. Your server should use one of three architectures
to handle requests. The default architecture is a serial architecture, which is a single process
with no threads.

Serial Architecture

In the serial architecture version of your program (the default), your program will read one
file name from input, process it and then continue until all input file names are processed.
Your program should continue to read file names until an EOF is detected on input. The
serial version of your program will allow you to get the file statistic pieces working. The
output of the all architectures should be identical to this architecture.

Your server will be using the Unix system call stat() to determine information about each
file. This system call takes a file name and a statistic buffer of type struct stat (defined
in /usr/include/bits/stat.h) and fills information about the file into the buffer. There is
much information returned about a file, but the fields you will need to use are st mode (the
file mode) and st size (the file size in bytes). More information about this system call can
be found by looking at its man page.

The output of your program will be to print out the following information:

• total number of “bad files.” These are file names causing stat() to return an error.

• total number of directories. You can test if a file is a directory by using the S_ISDIR

macro on the st_mode field.

• total number of “regular” files. These are non-directory and non-special files. Most
files are of this type. You can test for a regular file by using the S_ISREG macro on the
st_mode field.

1

• total number of “special” files. There are three types—block, character and fifo. If a
file is not a directory or a regular file then it is a special file. For example files in the
directory /dev/ are often special types of files as they refer to devices.

• total number of bytes used by regular files. Accumulate the sizes of all regular files.

• total number of regular files that contain all text (see more details below).

• total number of bytes used by text files. Accumulate the sizes of all regular text files.

Text Files

The stat() system call cannot be used to determine if a file contains text. Rather your
program will need to read the contents of the file to determine if it is text. Because the
contents of a file are unknown you cannot use input routines in C/C++ that only work for
text input. Rather you need to use the read() system call to read in the bytes of a file and
then determine if each byte is actually a printable character. The following piece of code
shows how to open a file (stored in variable filename) with the open() system call and read
its content into a buffer. The open() call returns a negative number on failure and read()
returns the number of characters actually read. See the Section 2 of the man pages for more
details on the use of these calls.

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

int cnt; // count of chars read

int fd; // file descriptor

char buf[128]; // buffer for reading

if ((fd = open(filename, O_RDONLY)) >= 0) {

while ((cnt = read(fd, buf, 128)) > 0) {

// further processing

}

close(fd);

}

If a file cannot be successfully opened then it should not be counted as a text file. As
the file contents are processed, your program needs to check if each byte in the buffer is a
printable character. To do so you should use two routines: isprint(), which determines if
a byte value is a printable character; and isspace(), which determines if a byte is a space,
newline, tab, etc. Check the man pages of these routines for details and the needed include
file. You should classify a file as a text file if all bytes of the file are a printable or a space
character. If any byte in the file fails both tests then the file is not a text file. Be sure and
close the file when done processing as there is a limit on the number of open file descriptors
a process may have.

2

Testing

You can test your code by manually entering file names or you can put a list of files into a
text file and redirect it as stdin to your code. Another way to test a set of files is to combine
your program with the ls command using a pipe. If your code is compiled as proj2 then the
following command line will check all files in the current directory.

% ls -1d * | proj2

The options to ls are “1” (the number one), which causes the files to be listed one per
line and “d”, which causes just directory names and not directory contents to be displayed.

Other directories can be specified with ls. For example, here is sample output obtained
from running the code on the /dev/ directory of a Computer Science Department machine.

% ls -1d /dev/* | proj2

Bad Files: 0

Directories: 3

Regular Files: 3

Special Files: 140

Regular File Bytes: 32881

Text Files: 2

Text File Bytes: 16541

Multi-Process Architecture

Once your server can handle each request in a serial manner, it should be modified to also
support a multi-process architecture. You should use this architecture when the argument
“fork” is specified on the command line. In this architecture you should create a worker
child process (using the fork() system call) for each new file name. The worker process should
use the stat() and open()/read() calls to obtain statistics about the file. It should update the
appropriate type count and total byte variables as appropriate. Note that because multiple
processes will now be accessing these variables and because variables are not shared amongst
processes, you will need to allocate storage in shared memory (using the routine shmcreate())
for these variables.

You will also need to prevent concurrent access to these variables by using mutual exclu-
sion for a critical region of code. You can use semaphores to implement mutual exclusion.
Any semaphores for coordination between processes should be created using the routine sem-
create(), as discussed in class. All semaphores and shared memory must be created before
any worker processes are created.

Once a worker process has updated the appropriate variables for its file in shared memory
the process terminates. This approach of creating a worker process for each new request
allows these requests to be processed in parallel. However to avoid too much parallelism, the
maximum number of worker processes that can be executing at one time is also specified on
the command line. This limit is an integer between one and the maximum of 15.

3

Your parent process should work by forking a new process for each new file request until
the limit is reached. At this point, your parent process should not create another process
until it waits for one to complete. Once the number of worker processes is no longer at the
limit your parent process can create another worker process. Your parent process should
continue in this way until all files have been read and worker processes created. Once all file
requests have been read, the parent process needs to wait for all remaining worker processes
to complete.

When all processing is done your main process should print out results, which should be
the same result as for the serial architecture. The final action of the parent process is to
cleanup the shared memory and semaphores. You should use shmdelete() and semdelete()
to cleanup resources.

The object file containing semaphore and shared memory primitives is
/cs/cs3013/public/lib/sem.o. You will also need to include the header file
/cs/cs3013/public/lib/sem.o/cs/cs3013/public/lib/sem.h. You can compile proj2 and
then run your program with the same input as before with at most 10 worker processes using
the following:

% g++ -o proj2 proj2.C /cs/cs3013/public/lib/sem.o

% ls -1d * | proj2 fork 10

Multi-Threaded Architecture

Once your server can support the “fork” option, you can also add support for the “thread”
option. With this option your program should use only one process to handle all requests,
but each request should be handled by a worker thread. You will need to create a thread
to handle each thread using the routine pthread create(). Each thread should determine the
stats for its file and update the appropriate type count and total byte variables as appropriate.
You can store these variables as globals because all threads can access global variables, but
because multiple threads will be accessing these variables you will need to prevent concurrent
access by using thread routines to implement mutual exclusion for a critical region of code.
Note: you should use primitives available with the pthread library for implementing mutual
exclusion of threads, not the primitives used for mutual exclusion amongst processes.

Similar to the multi-process architecture you should impose a limit on the number of
worker threads. When this limit is reached, your main thread must wait (using pthread join())
for a worker thread to complete. However unlike waiting for a process, your main thread
must wait for a thread with a specific identifier. Your program will need to remember the
thread ids that it creates and wait for them in the order of creation. After your main thread
(the one reading in file names) has read all files by detecting EOF on input, it should wait
to make sure all threads have completed and then print out the output statistics.

Watch out! Threads are nice, but they can cause programming problems due to all
threads running in the same address space. Specifically, be wary of passing the file name to
a newly created thread. If you use the same static character array for passing file names to
each thread then each time your main thread reads a new file name it will write over the
previous file name. Even worse, all threads will be pointing to this same buffer and hence

4

the file name could change after the thread is created. Moral of the story: allocate a unique
buffer for the file name passed to each thread.

The following shows how to compile your program using both the semaphore library
for the multi-process architecture and the pthread library for the multi-threaded architec-
ture. It also shows invoking your program with the same example using the multi-threaded
architecture with at most 10 threads.

% g++ -o proj2 proj2.C /cs/cs3013/public/lib/sem.o -lpthread

% ls -1d * | proj2 thread 10

Additional Work

Satisfactory completion of a serial architecture version of the basic objective of this assign-
ment is worth 12 of the 30 points. The multi-process and multi-threaded architectures are
each worth an additional 8 points. For two additional points, you need to also add code to
calculate the total wall-clock time, system and user time used by your program (includes
both parent and child processes for multi-process architecture). You should test your code
on different directories with all three architectures varying the thread and process limits.
Plot separate graphs of program performance versus the number of maximum number of
threads and processes. Also include results obtained for the serial architecture. Make sure
your graph is correctly labeled. You should submit a hard copy plot of the results along with
your explanation of the results to the instructor.

5

Resource Cleanup

For the multi-process architecture, there is a fixed limit on the number of semaphores and
shared memory segments that can be allocated on the system. These resources DO NOT
automatically get cleaned up when a process exits abnormally. It is expected that your
program will cleanup semaphore and shared memory segments that your program has al-
located before it exits. To determine if your program terminates without cleaning up re-
sources use the command ipcs -m -s. This command will list all shared memory, and
semaphore resources that have been allocated. To cleanup your resources use the command
ipcrm -m memid -s semid The following example illustrates use of these commands.

% ipcs -s -m

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x0efd0000 327680 cew 660 1024 0

------ Semaphore Arrays --------

key semid owner perms nsems

0x0efd0000 65536 cew 660 15

% ipcrm -m 327680 -s 65536

% ipcs -s -m

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

------ Semaphore Arrays --------

key semid owner perms nsems

Submission

Use the turnin command to submit your project with the project name of proj2.

6

