
Processes in Unix/Linux

As part of process management, first need to know how to create processes.

Fork

In Unix the system call fork creates new processes. Fork has the following semantics:

• it creates an exact copy of the forking process

• it returns:

– an error (-1) if unsuccessful; the global variable errno gives the specific failure

– 0 to the child process

– process id of child to the parent

• child does not share any memory with the parent

• child and parent share open file descriptors

• the child is said to inherit its environment from its parent.
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Unix Process Creation Example

/* myfork.C */

#include <iostream>

using namespace std;

#include <sys/types.h>

#include <unistd.h>

main(int argc, char *argv[])

/* argc -- number of arguments */

/* argv -- an array of strings */

{

int pid;

int i;

/* print out the arguments */

cout << "There are " << argc << " arguments:\n";

for (i = 0; i < argc; i++)

cout << argv[i] << "\n";

if ((pid = fork()) < 0) {

cerr << "Fork error\n";

exit(1);

}

else if (pid == 0) {

/* child process */

for (i = 0; i < 5; i++)

cout << "child (" << getpid() << ") : " << argv[2] << "\n";

exit(0);

}

else {

/* parent */

for (i = 0; i < 5; i++)

cout << "parent (" << getpid() << ") : " << argv[1] << "\n";

exit(0);

}

}

What will be the output? Important to note the variable “i” is not shared.

exit(n) — terminates the program with a return code of n. Programs that succeed should
exit with a code of 0.
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% g++ -o myfork myfork.C

% myfork a b

There are 3 arguments:

myfork

a

b

parent (7023) : a

child (7024) : b

child (7024) : b

child (7024) : b

child (7024) : b

child (7024) : b

parent (7023) : a

parent (7023) : a

parent (7023) : a

parent (7023) : a

% myfork a b

There are 3 arguments:

myfork

a

b

parent (24722) : a

parent (24722) : a

parent (24722) : a

child (1263) : b

parent (24722) : a

child (1263) : b

parent (24722) : a

child (1263) : b

child (1263) : b

child (1263) : b
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Exec

The system call execve executes a file, transforming the calling process into a new process.
After a successful exec, there can be no return to the calling process.

Arguments to execve(name, argv, envp):

name — name of the file to execute.

argv — NULL-terminated array of pointers to NULL-terminated character strings.

envp — NULL-terminated array of pointers to NULL-terminated strings. Used to pass
environment information to the new process.

When a process first starts up (after having been started via exec), the startup code for a
process does the following:

• makes the arguments passed to exec available as arguments to the main procedure in
the new process.

• places a copy of envp in the global variable environ.
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Exec() Example

/* myexec.C */

#include <iostream>

using namespace std;

#include <unistd.h>

#include <sys/wait.h>

extern char **environ; /* environment info */

main(int argc, char **argv)

/* argc -- number of arguments */

/* argv -- an array of strings */

{

char *argvNew[5];

int pid;

if ((pid = fork()) < 0) {

cerr << "Fork error\n";

exit(1);

}

else if (pid == 0) {

/* child process */

argvNew[0] = "/bin/ls";

argvNew[1] = "-l";

argvNew[2] = NULL;

if (execve(argvNew[0], argvNew, environ) < 0) {

cerr << "Execve error\n";

exit(1);

}

}

else {

/* parent */

wait(0); /* wait for the child to finish */

}

}

Use of wait() wait for the child to finish. Many variants including waitpid() and wait3().
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In addition to execve, Unix provides library routines that provide a more convenient
interface to execve.

• execl(name, arg0, arg1, arg2, ..., 0) — used when the arguments are known
in advance. 0 terminates the argument list.

• execv(name, argv) — where argv is the same as for execve.

• execvp(name, argv) — where argv is the same as for execve. The executable file is
searched for in the path of directories given in the environment.

For these calls, the library routines eventually invoke execve() directly, handing it the
global variable environ in place of the envp argument. Thus, by default, child processes
inherit the parent’s environment.

How does Unix make use of the environment?

Login procedure (hopefully) sets the environment variable TERM to indicate the user’s
terminal type. Programs that move the cursor in non-standard ways (e.g., editors like vi, or
emacs) need to know the effect of different character sequences. You better get it set
correctly when you first log in!

PATH variable defines the set of directories to be searched when the user types a command.

Note:

• Unix provides the mechanism for passing environments; interpretation of the
“environment variables” is application specific.

• Environment useful in cases where passing arguments to commands is too
cumbersome.

Note: the mechanism for passing environment information is used by the csh in Unix.

• setenv is a command processed by the shell.

• printenv displays your current environment.

• source (.e.g., source .cshrc) executes the file .cshrc within the context of the shell.
Normally, commands are executed as new processes. Why is source needed?
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Other Environments

In Java, fork() and exec() rolled into exec() and then use waitfor() (Process object).

In Win32 API, fork() does fork() and exec() of Unix. Then have a WaitForSingleObject()
call.
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