
UNIX Input/Output Buffering

When a C/C++ program begins execution, the operating system environment is
responsible for opening three files and providing file pointers to them:

• stdout—standard output

• stderr—standard error

• stdin—standard input

For C programs these are declared in <stdio.h> with the the library routine fprintf() is
built on the system call write() for formating output and error messages. It buffers
messages. The library routine scanf() is used for reading formated input. It is built on the
system call read().

For C++ programs, these file pointers are accessed through the objects cout, cerr of the
class ostream and cin of class istream.

Examples:

fprintf(stdout, "The output is %d\n", sum);

printf("The output is %d\n", sum); /* equivalent to above */

cout << "The output is " << sum << ’\n’;

What is the output of the following program?

#include <iostream>

using namespace std;

#include <unistd.h>

main(int argc, char *argv[])

{

cout << "hello there, ";

if (fork())

cout << "this is parent process " << getpid() << ’\n’;

else

cout << "this is child process " << getpid() << ’\n’;

}

Because the output is buffered and then duplicated on the fork(), the output is

CS 3013 1 week2-procco.tex

hello there, this is parent process 8073

hello there, this is child process 8074

Buffer will flush when the process exits or when the routine fflush() is used in C. In C++
use cout.flush() or endl. Be sure to flush when debugging as print statements may be
executed, but the output cached.

CS 3013 2 week2-procco.tex

Process Coordination

Process coordination or concurrency control deals with mutual exclusion and
synchronization.

Mutual exclusion—ensure that two concurrent activities do not access shared data
(resource) at the same time, critical region—set of instructions that only one process can
execute.

Synchronization—using a condition to coordinate the actions of concurrent activities. A
generalization of mutual exclusion. One process waits for another.

When considering process coordination, we must keep in mind the following situations:

1. Deadlock occurs when two activities are waiting each other and neither can proceed.
For example:

Suppose processes A and B each need two resources to continue, but only one
resource has been assigned to each of them. If the system has only 2 such resources,
neither process can ever proceed.

2. Starvation occurs when a blocked activity is consistently passed over and not allowed
to run. For example:

Consider two cpu bound jobs, one running at a higher priority than the other. The
lower priority process will never be allowed to execute. As we shall see, some
synchronization primitives lead to starvation.

CS 3013 3 week2-procco.tex

Mutual Exclusion

A solution to the mutual exclusion problem should satisfy the following requirements:

mutual exclusion — never allow more than one process to execute in a critical section
simultaneously

environment independent — no assumptions on relative process speeds or number of
processors

resources shared only in critical region — no process stopped outside of the critical
region should block other processes

bounded waiting — once a process has made a request to enter a critical region, there
must be a bound on the number of times that other processes are allowed to enter the
critical sections before the request is granted.

CS 3013 4 week2-procco.tex

Critical Sections

A critical section (region) is a group of instructions that must be executed as a unit while
other activity is excluded. Consider two processes A and B:

int balance = 0; /* global shared variable (not Unix!) */

ProcessA()

{

Deposit(10);

cout << "Balance is " << balance << ’\n’;

}

ProcessB()

{

Deposit(10);

cout << "Balance is " << balance << ’\n’;

}

Deposit(int deposit)

{

int newbalance; /* local variable */

newbalance = balance + deposit;

balance = newbalance;

}

If balance starts with an initial value of 0, what will its ending value be?

• 20, (If we are lucky.)

• 10, otherwise

In our example, the statements in Deposit() are a critical section; once execution in the
critical section begins, we must insure that it completes before any other activity executes
that critical section.

Because newbalance is a variable local to Deposit(), the variable will be different for the two
processes.

Race Condition

Where the result depends on the relative timing of the processes.

CS 3013 5 week2-procco.tex

How to ensure that Deposit() is executed as a critical region? Need primitives to enforce
execution as a critical region: BeginRegion() and EndRegion. With mutual exclusion the
program is

int balance = 0; /* global shared variable (not Unix!) */

ProcessA()

{

Deposit(10);

cout << "Balance is " << balance << ’\n’;

}

ProcessB()

{

Deposit(10);

cout << "Balance is " << balance << ’\n’;

}

Deposit(int deposit)

{

int newbalance; /* local variable */

BeginRegion(); /* enter critical region */

newbalance = balance + deposit;

balance = newbalance;

EndRegion(); /* exit critical region */

}

CS 3013 6 week2-procco.tex

Disabling Interrupts (and Context Switching)

One of the simplest ways to enforce mutual exclusion is to:

1. Disable interrupts at the start of the critical section.

2. Ensure that the activity doesn’t give up the CPU before completing the critical
region (e.g., don’t context switch by calling resched or any routine that does).

3. Re-enable interrupts at the end of the critical section.

BeginRegion()

{

DisableInterrupts();

}

EndRegion()

{

EnableInterrupts();

}

Disabling interrupts has the following disadvantages:

1. One must be careful not to disable interrupts for too long; devices that raise
interrupts need to be serviced!

2. Disabling interrupts prevents all other activities, even though many may never
execute the same critical region. Disabling interrupts is like using a sledge hammer; a
powerful tool, but bigger than needed for most jobs.

3. Programmer must remember to restore interrupts when leaving the critical section
(may not have user level access)

4. The programmer must be careful about nesting. Activities that disable interrupts
must restore them to their previous settings. In particular, if interrupts are already
disabled before entering a critical region, they must remain disabled after leaving the
critical region. Code in one critical region may call a routine that executes a different
critical region.

5. Technique is ineffective on multiprocessor systems, where multiple processes may be
executing in parallel. Parallel processing execute multiple processes in parallel. This
differs from multiprogramming where only one process can actually execute at one
time; the “parallel” execution is simulated.

CS 3013 7 week2-procco.tex

Busy Waiting

Another approach is to define a boolean (lock) variable that is set to “true” if some activity
is currently executing the critical region, “false” otherwise. One (shortsighted!) solution
might be:

#define TRUE 1

#define FALSE 0

int mutex = 0; /* also called lock variable */

BeginRegion() /* Loop until safe to enter */

{

while (mutex)

; /* do nothing until FALSE */

mutex = TRUE;

}

EndRegion() /* Exit critical section */

{

mutex = FALSE;

}

BeginRegion();

/* code for critical section */

EndRegion();

CS 3013 8 week2-procco.tex

Code for BeginRegion() compiles to

lw $14, mutex ; load mutex into register 14

beq $14, 0, $33 ; branch to $33 if mutex is 0 (FALSE)

$32:

lw $15, mutex ; load mutex into register 15

bne $15, 0, $32 ; branch to $32 if mutex is 1 (TRUE)

$33:

li $24, 1 ; load a 1 (TRUE) into register 24

sw $24, mutex ; store value into mutex

Do our routines work correctly? No! A process that finds mutex set to FALSE may get
past the bne statement but be rescheduled before it actually changes the value of mutex.
While it sits on the ready list, another process that test the value of mutex will find its
value set to FALSE.

Solution: we need a mechanism for atomically fetching and setting the value of mutex.
That is, we want to fetch the value, and if it is FALSE, set it to TRUE, all in one
instruction. If such a step takes more than one instruction, a process could be interrupted
or rescheduled before it has a chance to finish the job.

Software Solutions

Strict alternation.

Peterson’s solution (see Tanenbaum).

CS 3013 9 week2-procco.tex

Test-and-Set Lock Instruction

Most machine provides provide an atomic “test and set” instruction for this purpose. Most
test-and-set instructions have the following semantics (use C++ call-by-reference semantics
to express atomic operation):

// defn for atomic operation

int test_and_set(int &var, int value)

{

int temp;

temp = var; // remember old value of variable

var = value; // store new value

return(temp); // return old value of variable

}

BeginRegion and EndRegion can now be rewritten as:

BeginRegion() /* Loop until safe to enter */

{

while (test_and_set(mutex, TRUE)) ;

/* Loop until return value is false */;

}

EndRegion()

{

mutex = FALSE;

}

Also called a “spin lock”.

Advantages of above approach:

1. It works!

2. It works for any number of processors (used by multiprocessor)

Disadvantage of above approach: CPU busy-waits until it can enter the critical region,
wasting resources.

CS 3013 10 week2-procco.tex

Synchronization

int n = 0; /* shared by all processes */

main()

{

int producer(), consumer();

CreateProcess(producer);

CreateProcess(consumer);

/* wait until done */

}

producer() // "produce" values of n

{

int i;

for (i=0; i<2000; i++)

n++; // increment n

}

consumer() // "Consume" and print values of n

{

int i;

for (i=0; i<2000; i++)

cout << "n is " << n << ’\n’; // print value of n

}

Assume goal is for the consumer to print each value produced. What output does the
program generate?

• impossible to predict — depends on how processes are scheduled

• the number 0, 2000 times, if consumer() executes before producer() begins

• the number 2000, 2000 times, if producer() executes before consumer() begins

• increasing values of n, some values printed many times, others not printed at all

Problem: producer and consumer need to synchronize with each other.

CS 3013 11 week2-procco.tex

Semaphores

Semaphores are an abstract entity provided by an operating system (not the hardware).
Semaphores (counting):

• are named by a unique semaphore id

• consist of a tuple (id, count, queue), where count is an integer and queue is a list of
processes.

– a non-negative count always means that the queue is empty

– a count of negative n indicates that the queue contains n waiting processes.

– a count of positive n indicates that n resources are available and n requests can
be granted without delay.

• sem = semcreate(val) — creates a semaphore with the given initial value

• semdelete(sem) — delete a semaphore

• wait(sem) — decrement the semaphore count. if negative, suspend the process and
place in queue. (Also referred to as P(), down in literature.)

• signal(sem) — increment the semaphore count, allow the first process in the queue to
continue. (Also referred to as V(), up in literature.)

First introduced by Dijkstra (1965) as binary semaphores and the operations were P (wait)
and V (signal).

Can be used to implement mutual exclusion:

int sem;

sem = semcreate(1);

BeginRegion()

{

wait(sem);

}

EndRegion()

{

signal(sem);

}

CS 3013 12 week2-procco.tex

Example with Fix

int psem, csem; /* semaphores */

int n = 0;

main()

{

int producer(), consumer();

csem = semcreate(0);

psem = semcreate(1);

CreateProcess(producer);

CreateProcess(consumer);

// wait until done

}

producer()

{

int i;

for (i=0; i<2000; i++) {

wait(psem);

n++; // increment n by 1

signal(csem);

}

}

consumer()

{

int i;

for (i=0; i<2000; i++) {

wait(csem);

cout << "n is " << n << ’\n’; // print value of n

signal(psem);

}

}

Now consumer prints all values of n (1-2000).

CS 3013 13 week2-procco.tex

Points to note:

• Why not a single semaphore like mutual exclusion? Because we need to synchronize
the two processes!!

• If consumer() starts executing first, it will block, because the count of semaphore
csem will be -1.

• If producer() starts executing first, it will increment the value, but then block when it
issues wait on psem a second time.

• When consumer() signals psem, its count will go to zero, and the suspended process
producer() will be moved to the ready list.

Advantages of semaphores:

• Processes do not busy wait while waiting for resources. While waiting, they are in a
“suspended” state, allowing the CPU to perform other chores.

• Works on (shared memory) multiprocessor systems.

• User controls synchronization.

Disadvantages of semaphores:

1. can only be invoked by processes—not interrupt service routines because interrupt
routines cannot block

2. user controls synchronization—could mess up.

CS 3013 14 week2-procco.tex

UNIX version (with our routines)

// prodcons.C

#include <iostream>

using namespace std;

#include <unistd.h>

#include "sem.h"

int CreateProcess(void (*)()); /* func. prototype */

int psem, csem; /* semaphores */

int *pn;

main()

{

void producer(), consumer();

pn = (int *)shmcreate(sizeof(int));

*pn = 0;

csem = semcreate(0);

psem = semcreate(1);

CreateProcess(producer);

consumer(); // let parent be the consumer

semdelete(csem);

semdelete(psem);

shmdelete((char *)pn);

}

void producer()

{

int i;

for (i=0; i<5; i++) {

semwait(psem);

(*pn)++; // increment n by 1

semsignal(csem);

}

}

void consumer()

{

int i;

for (i=0; i<5; i++) {

semwait(csem);

cout << "n is " << *pn << ’\n’; // print value of n

semsignal(psem);

}

}

CS 3013 15 week2-procco.tex

int CreateProcess(void (*pFunc)())

{

int pid;

if ((pid = fork()) == 0) {

(*pFunc)();

exit(0);

}

return(pid);

}

CS 3013 16 week2-procco.tex

More on Semaphores

How does the Operating System implement semaphores? Like the process table, it disables
interrupts (or uses spin lock on multiprocessor) when manipulating the semaphore table.

Look at Fig. 2-24 in text. Why the mutex semaphore? Because there could be multiple
producers and consumers and the buffer size is greater than one.

Summarizing Semaphores

What are the number of semaphores and the initial counts for each of the following
situations:

1. mutex for two processes: one semaphore with init count of 1

2. mutex for three processes: same

3. one producer/one consumer, single shared value: two sems, count of 0 and 1

4. one producer/one consumer, n shared values: two sems, count of 0 and n

5. two producers/two consumers, single shared value: two sems, count of 0 and 1

6. two producers/two consumers, n shared values: three sems, count of 0, n and 1 (for
mutex).

CS 3013 17 week2-procco.tex

