Mutual Exclusion using Monitors
Some programming languages, such as Concurrent Pascal, Modula-2 and Java provide
mutual exclusion facilities called monitors.

They are similar to modules in languages that provide abstract data types in that:

e programmer defines a set of data types and procedures that can manipulate the data.
e procedures can be exported to other modules, which may import them.
e system invokes initialization routine before execution begins.

Monitors differ in that they support guard procedures. Java programmers can use the

keyword synchronized to indicate methods of a class where only one method can execute at
a time.

Guard procedures (synchronized methods) have the property that:

e only one process can execute a guard procedure at a time.

e When a process invokes a guard procedure, its execution is delayed until no other
processes are executing a guard procedure (important)

CS 3013 1 week3-monitor.tex



Monitor Example with Java Class

Look at Java class where the keyword synchronized is used to indicate a “guard”
procedure.

public class Account {
private int balance;

public Account() {
balance = 0; // initialize balance to zero

}

// use synchronized to prohibit concurrent access of balance
public synchronized void Deposit(int deposit) {
int newbalance; // local variable

newbalance = balance + deposit;
balance = newbalance;

public synchronized int GetBalance() {
return balance; // return current balance

}

Monitors are a higher-level, making parallel programming less-error prone than with
semaphores.

Note, however, that they are implemented using a lower level facility provided by the
hardware or operating system (such as semaphores).

CS 3013 2 week3-monitor.tex



Synchronization using Monitors

As described above, monitors solve the mutual exclusion problem. Monitors use conditions
to solve the synchronization problem:
e new variable type called condition

e wait(condition) — blocks the current process until another process signals the
condition

e signal(condition) — unblocks exactly one waiting process (does nothing if no
processes are waiting)
Look at Fig. 2-27 as an example. Java provides wait(), notify(), and notifyAll(). However,

Java only uses a single condition. Look at an example later.

Like semaphores, but no counters and do not accumulate signals. Must use own counters
to keep track of states.

Problem:

e when does the blocked process continue?

e if immediately, we violate the invariant that only one process may execute a guard at
any one time.

e if later, the condition being waiting on may no longer hold

Precise definitions vary in the literature. One solution:
e Suspend the signaling process.

e Process that issues a signal immediately exits the monitor. (Justification: most
signals occur at end of guard anyway)

CS 3013 3 week3-monitor.tex



Other primitives: event counters, sequencers, path expressions

Message Passing

System calls for direct message passing between processes

send(destpid, &message)

receive(srcpid, &message). srcpid can be ANY to receive from any destination.
Can also use indirect message passing where messages are sent to mailboxes or ports.

Design issues:

e buffering messages (mailbox) — allowed? how big?

e blocking or non-blocking operations. What to do if there is no buffer space on send.
What to do if there is no message available on receive.

e Rendezvous? does the sender block until the receiver receives? Minix-style.
e fixed or variable sized messages

e synchronous vs. asynchronous reception. Only on receive or can a message handler

be defined.

Look at Fig. 2-29.

Barriers

Multiple processes must synchronize before proceeding.

Look at Fig. 2-30.

CS 3013 4 week3-monitor.tex



Summary

Equivalence of primitives. Assignment is to build a message passing system on top of
semaphores and shared memory.

Talked about:

e mutual exclusion—two activities competing for shared resource.

e synchronization—activity waiting on a condition (one process waiting on another’s
completion).

e hybrid schemes—using both mutual exclusion and synchronization.
Producer/Consumer problem with multiple producers and large buffer. Or complex
locks using both spin locks and blocking if will wait too long.

e Methods—hardware techniques (interrupts) to operating system constructs
(semaphores) to programming-language constructs (monitors).

e Facilities available—what language the operating system is written in, what facilities
are offered by the operating system.

Want to avoid race conditions—timing dependent outcomes!

CS 3013 5 week3-monitor.tex



