
Terminals

Terminal Hardware

Terminals are of three types:

• interface serially with the machine (through RS-232), 25-pin connectors

• memory-mapped terminals

• network terminals

Serial-Line Terminals

UARTs (Universal Asynchronous Receiver Transmitters)—chip to do character-to-serial
and serial-to-character for bits passed over the serial line.

Generally the device driver will output a character at a time, waiting for the interface card
to interrupt when another character can be sent.

Speed between 50-9600 bps (bits/sec). Even at highest rate takes 1 ms to deliver a
character.

Look at Fig 5-14

“tty” is an abbreviation for Teletype. Now represents any terminal.

Now used a lot for terminal emulation windows.

Memory-Mapped Terminals

See Fig 5-38

Interface with special memory called video RAM. Also a video controller. Beam of electrons
is periodically (60 times/sec) scanned across the screen to continually refresh the screen.
Not scanning frequently enough causes flicker.

PC, workstation uses a character-mapped display for the console.

CS 3013 1 week7-terminal.tex



Network Terminals

See Fig 5-45 X Windows where the client has a lot of computing power and memory.

CS 3013 2 week7-terminal.tex



Terminal Software

The device drivers for the terminal interface are referred to collectively as the terminal

driver.

The terminal driver provides a user interface through which users interact with processes
accessing the terminal device.

Processes interact with the driver through the process interface.

The user interface concerns itself with such aspects as:

• echoing characters typed on the terminal

• processing special characters such as backspace and line-kill

• stopping and restarting output (e.g., Q̂ and Ŝ)

• generating the appropriate CR/LF sequence to move the cursor to the start of the
next line

CS 3013 3 week7-terminal.tex



Device Driver Organization

Drivers are typically organized into an upper-half and lower-half.

The upper-half driver implements the device-independent routines such as read and write.
They do not manipulate the devices directly.

The lower-half interacts with the device registers and handles interrupt.

The upper-half and lower half synchronize through a shared data structure. Typically, the
upper-half enqueues requests for service, and the lower-half driver services requests in the
queue.

Interrupt Handler
LOWER-HALF

UPPER-HALF

Interrupts

User Processes

Shared buffer

Generic picture for serial line (terminal or network driver)

The terminal device driver maintains two queues:

• an input buffer holds characters received from the terminal by the interrupt handler,
but not yet read by any upper half routine.

• an output queue for characters received from the upper-half, but not yet transferred
to the device.

The two buffers are needed so that the interface between processes and the device can be
asynchronous.

CS 3013 4 week7-terminal.tex



Synchronization of the Upper and Lower Halves

Both buffers are instances of the bounded buffer problem (producer/consumer):

• for the input buffer, the lower-half produces characters and the upper-half consumes
them

• for the output buffer, the upper-half produces characters, and the lower-half
consumes them

Earlier, we solved the bounded buffer using two semaphores. The producer waits for space
to become available, while the consumer for items to placed in the buffer.

However, the lower-half is invoked as an interrupt handler; thus it cannot wait.

Solution: we can still use semaphores, but change the lower-half so that it never waits for
space.

Output Driver

• instead of having the lower half wait for characters from the upper-half, have the
upper half wait for space in the buffer.

• thus, the lower half never waits for anything.

• When the upper-half deposits a character in the output queue, it “kicks” the driver
to start transmission (if idle). The transmitter continues until the queue has emptied.

Input Driver

• the upper half waits for characters to be placed in the buffer

• the lower half never waits: if the buffer is “full”, the new character is dropped (or
oldest character is over written by the newly arrived character

• when character arrives from terminal, the device “kicks” the lower-half by posting an
interrupt

CS 3013 5 week7-terminal.tex



ttygetc(device)

wait for char to arrive

pick up next char from buffer

return(ch)

lower half: (on interrupt from keyboard device)

if (no space available in buffer)

return;

place char in buffer

signal(char-available)

ttyputc(device, char)

wait(space in buffer)

put char in buffer

start device

lower half (on interrupt when display is ready)

if more chars

send char to device

signal(space in buffer)

else

disable device

CS 3013 6 week7-terminal.tex



Input Processing

The characteristics of the user interface are controlled by the control (ioctl) operation. For
instance, control calls allow:

• a process to turn echoing on or off

• a process to change the mode of processing to:

– RAW — (noncanonical mode in POSIX) driver passes the characters without
interpretation directly to the process. Used by emacs.

– CBREAK — driver handles echoes characters, handles start and stop characters

– COOKED — (canonical mode in POSIX) driver also handles backspace and
line-kill characters. Gives input a line at a time.

Normal Unix I/O is cooked.

echo buffer, should input be echoed (should for full-duplex). For example echoing is turned
off when entering a password.

CS 3013 7 week7-terminal.tex



Watermark Processing

Could apply to sending to a network device.

One problem that arises with programs that print a lot of data is that they quickly
consume all the buffer space and block. The following sequence then occurs:

• process blocks, waiting for space in the buffer

• current character transfer completes, lower half output handler signals the semaphore,
and the waiting process is moved to the ready list

• Waiting process is scheduled, which promptly deposits another character in the queue
and blocks again.

• the entire sequence repeats for each character

Because context-switching is expensive, the above phenomenon is undesirable. The
technique known as watermark processing reduces this cost.

Idea: maintain a high watermark that indicates at what point signaling becomes inefficient.
When the high watermark is reached, the signal operation is delayed until the low

watermark is reached, at which time all the delayed signals are completed.

For example, the output interrupt handler enters a delayed mode when the buffer become
full. As the tty driver drains characters from the queue, the handler delays signaling the
upper half until 20 characters have been transmitted, at which time it it issues 20 signals.

CS 3013 8 week7-terminal.tex


