Homework 2

WPI

By Li Feng, Shweta Srivastava, and Carolina Ruiz

Chapter 4

Problem 1: (10 Points) Exercise 4.3

Solution 1:

S is self-recursive, so we need to introduce a new non-recursive start symbol S' with the associated rule $S' \rightarrow S$. Note that S, A, and B are nullable variables.

 $\begin{array}{l} S' \rightarrow S \mid \lambda \\ S \rightarrow BSA \mid BS \mid SA \mid BA \mid B \mid S \mid A \\ B \rightarrow Bba \mid ba \\ A \rightarrow aA \mid a \end{array}$

The regular expression is $(ba)^*a^*$.

Problem 2: (10 Points) Exercise 4.9

Solution 2:

Note that:

X	$\operatorname{CHAIN}(X)$
S	$\{S, A, C, B\}$
A	$\{A, B\}$
B	$\{B\}$
C	$\{C, B\}$

Eliminating chain rules from the grammar results in:

$$\begin{array}{l} S \rightarrow aA \mid a \mid cC \mid c \mid bB \mid b \\ A \rightarrow aA \mid a \mid bB \mid b \\ B \rightarrow bB \mid b \\ C \rightarrow cC \mid c \mid bB \mid b \end{array}$$

The regular expression for this grammar is:

$$a^+b^* \cup c^+b^* \cup b^+$$

Problem 3: (10 Points) Exercise 4.15

Solution 3:

TERM	PREV
$\{D, F, G\}$	Ø
$\{D \;,\; F \;,\; G \;,\; A\}$	$\{D \ , \ F \ , \ G\}$
$\{D, F, G, A, S\}$	$\{D \ , \ F \ , \ G \ , \ A\}$
$\{D \ , \ F \ , \ G \ , \ A \ , \ S\}$	$\{D, F, G, A, S\}$

$$TERM = \{S, A, F, G, D\}$$

Intermediate Grammar:

S - A - D - F - G -	$ \begin{array}{l} \rightarrow aA \\ \rightarrow aA \mid aD \\ \rightarrow bD \mid b \\ \rightarrow aF \mid aG \mid a \\ \rightarrow a \mid b \end{array} $	
REACH	PREV	NEW
$\{S\}$	Ø	
$\{S \ , \ A\}$	$\{S\}$	$\{S\}$
$\{S , A , D\}$	$\{S \ , \ A\}$	$\{A\}$
$\{S \;,\; A \;,\; D\}$	$\{S \ , \ A \ , \ D \ \}$	$\{D\}$
$REACH = \{S \ , \ A \ , \ D\}$		
Final Grammar:		

 $\begin{array}{l} S \rightarrow aA \\ A \rightarrow aA \mid aD \\ D \rightarrow bD \mid b \end{array}$

Regular Expression : aa^+b^+

```
Problem 4: (10 Points) Exercise 4.19
```

Solution 4:

Transform the rules in G to rules of the form $S \to \lambda$, $A \to a$, $A \to w$ where w is a string with variables only

$$\begin{split} S &\to A'AB'B \mid ABC \mid a \\ A &\to A'A \mid a \\ B &\to B'BC'C \mid b \\ C &\to A'B'C' \\ A' &\to a \\ B' &\to b \\ C' &\to c \end{split}$$

Then rewrite the above grammar such that each rule has exactly 2 variables on the right-hand side

$$\begin{split} S &\rightarrow A'T_1 \mid AT_3 \mid a \\ T_1 &\rightarrow AT_2 \\ T_2 &\rightarrow B'B \\ T_3 &\rightarrow BC \\ A &\rightarrow A'A \mid a \\ B &\rightarrow B'T_4 \mid b \\ T_4 &\rightarrow BT_5 \\ T_5 &\rightarrow C'C \\ C &\rightarrow A'T_6 \\ T_6 &\rightarrow B'C' \\ A' &\rightarrow a \\ B' &\rightarrow b \\ C' &\rightarrow c \end{split}$$

Problem 5: (10 Points) Exercise 4.23

Solution 5:

Grammar after removing λ -rules:

 $\begin{array}{l} S \rightarrow \lambda \mid A \mid ABa \mid Ba \mid AbA \mid bA \mid Ab \mid b\\ A \rightarrow Aa \mid a\\ B \rightarrow Bb \mid BC\\ C \rightarrow CB \mid CA \mid bB \end{array}$

Grammar after removing chain rules: $CHAIN(S) = \{S, A\}$

$$\begin{array}{l} S \rightarrow \lambda \mid Aa \mid a \mid ABa \mid Ba \mid AbA \mid bA \mid Ab \mid b\\ A \rightarrow Aa \mid a\\ B \rightarrow Bb \mid BC\\ C \rightarrow CB \mid CA \mid bB \end{array}$$

Now, let's look for useless symbols:

$$\begin{array}{c|c} TERM & PREV \\ \hline \{S \ , \ A\} & \emptyset \\ \{S \ , \ A\} & \{S \ , \ A\} \\ \hline TERM = \{S \ , \ A\} \end{array}$$

Grammar G_T :

$S \to \lambda \mid Aa \mid Aa \mid A \to Aa \mid a$	$a \mid AbA \mid$	$bA \mid Ab \mid b$
REACH	PREV	NEW
$\{S\}$	Ø	
$\{S, A\}$	$\{S\}$	$\{S\}$
$\{S \ , \ A \ \}$	$\{S, A\}$	$\{A\}$
REAC	$CH = \{S,$	$A\}$

Grammar G_U :

$$S \rightarrow \lambda \mid Aa \mid a \mid AbA \mid bA \mid Ab \mid A$$

Final Grammar in Chomsky Normal Form:

$$\begin{split} S & \rightarrow \lambda \mid AA' \mid a \mid AT_1 \mid B'A \mid AB' \mid b \\ T_1 & \rightarrow B'A \\ A & \rightarrow AA' \mid a \\ A' & \rightarrow a \\ B' & \rightarrow b \end{split}$$

Problem 6: (10 Points) Exercise 4.27

Solution 6: a.) $aab^*(aba)b^*(ab \cup ba)^* \cup b^*abab^*$ b.)

 $\begin{array}{l} S \rightarrow A \mid B \\ A \rightarrow aaB \mid aaBZ \\ Z \rightarrow abZ \mid baZ \mid ab \mid ba \\ B \rightarrow bB \mid aba \mid bBY \mid abaY \\ Y \rightarrow bY \mid b \end{array}$

Problem 7: (10 Points) Exercise 4.30

Solution 7:

$$S \rightarrow aAB' \mid a$$

$$A \rightarrow aAB'A'AB' \mid aAB'A' \mid aA'AB' \mid aA'|b$$

$$A' \rightarrow a$$

$$B' \rightarrow b$$

Chapter 5

Problem 8: (10 Points) Exercise 5.2

Solution 8: part a

Figure 1: Chap 5 Question 2.a

part b

part c

part d

	Problem	9: ((10)	Points) Exe	ercise	5	.3
--	---------	------	------	---------------	-------	--------	---	----

Solution 9: part a

δ	a	b
q_0	q_1	q_0
q_1	q_1	q_2
q_2	q_0	q_1

part b

Accepted strings are baab, abaaab.

$$[b\cup [aa^*b(ba^*b)^*a]]^*aa^*b(ba^*b)^*$$

Problem 10: (10 Points) Exercise 5.13

Solution 10:

Figure 2: Chap5 Question 13

Problem 11: (10 Points) Exercise 5.23

Solution 11: part a

$$\begin{array}{c|ccc} \delta & a & b \\ \hline q_0 & \{q_0, q_1\} & \emptyset \\ q_1 & \emptyset & \{q_1, q_2\} \\ q_2 & \{q_0, q_1\} & \emptyset \end{array}$$

part b

See the parallel execution tree in Figure 3

. . 1

Figure 3: Chap5 Question 23(b): Parallel Execution Tree for input aaabb

part c YES. part d

 $[a \cup [ab^*b(ab^*b)^*a]]^*ab^*b(ab^*b)^*$

Problem 12: (10 Points) Exercise 5.25 (d)

Solution 12:

See Figure 4.

```
Problem 13: (10 Points) Exercise 5.36
```

Solution 13: part a

 $\begin{array}{l} \lambda - \text{closure}(q_0) = \{q_0, q_2\} \\ \lambda - \text{closure}(q_1) = \{q_1\} \\ \lambda - \text{closure}(q_2) = \{q_2\} \end{array}$

part b

Input transition function t for M.

The input transition function of a state q on input symbol a is given by the following formula:

Figure 4: Chap5 Question 25 (d)

$$t(q, a) = \bigcup_{q_j \in \lambda - \text{closure}(q)} \lambda - \text{closure}(\delta(q_j, a))$$

Hence,

$$\begin{split} t(q_0, a) &= \lambda - \operatorname{closure}(\delta(q_0, a)) \cup \lambda - \operatorname{closure}(\delta(q_2, a)) \\ &= \lambda - \operatorname{closure}(q_0) \cup \lambda - \operatorname{closure}(\emptyset) \\ &= \{q_0, q_2\} \cup \emptyset \\ &= \{q_0, q_2\} \\ t(q_0, b) &= \lambda - \operatorname{closure}(\delta(q_0, b)) \cup \lambda - \operatorname{closure}(\delta(q_2, b)) \\ &= \lambda - \operatorname{closure}(\emptyset) \cup \lambda - \operatorname{closure}(q_1, q_2) \\ &= \emptyset \cup \{q_1, q_2\} \\ &= \{q_1, q_2\} \\ t(q_0, c) &= \lambda - \operatorname{closure}(\delta(q_0, c)) \cup \lambda - \operatorname{closure}(\delta(q_2, c)) \\ &= \lambda - \operatorname{closure}(q_1) \cup \lambda - \operatorname{closure}(\emptyset) \\ &= \{q_1\} \cup \emptyset \\ &= \{q_1\} \cup \emptyset \\ t(q_1, b) &= \lambda - \operatorname{closure}(\delta(q_1, b)) = \emptyset \\ t(q_1, c) &= \lambda - \operatorname{closure}(\delta(q_1, c)) = \lambda - \operatorname{closure}(\{q_1\}) = \{q_1\} \\ t(q_2, a) &= \lambda - \operatorname{closure}(\delta(q_2, a)) = \emptyset \\ t(q_2, b) &= \lambda - \operatorname{closure}(\delta(q_2, b)) = \lambda - \operatorname{closure}(\{q_1, q_2\}) = \{q_1, q_2\} \\ t(q_2, c) &= \lambda - \operatorname{closure}(\delta(q_2, c)) = \emptyset \end{split}$$

part c

State	Symbol	λ -closure of NFA Transition	Next State
λ -closure({ q_0 })	a	$\lambda - \text{closure}(\delta(q_0, a)) = \lambda - \text{closure}(\{q_0\}) = \{q_0, q_2\}$	$\{q_0, q_2\} \cup \emptyset = \{q_0, q_2\}$
$= \{q_0, q_2\}$		λ -closure($\delta(q_2, a)$) = λ -closure(\emptyset) = \emptyset	[Same as $t(q_0, a) \cup t(q_2, a)$]
	b	λ -closure($\delta(q_0, b)$) = λ -closure(\emptyset) = \emptyset	$\emptyset \cup \{q_1, q_2\} = \{q_1, q_2\}$
		$\lambda - \text{closure}(\delta(q_2, b)) = \lambda - \text{closure}(\{q_1, q_2\}) = \{q_1, q_2\}$	[Same as $t(q_0, b) \cup t(q_2, b)$]
	c	λ -closure($\delta(q_0, c)$) = λ -closure($\{q_1\}$) = $\{q_1\}$	$\{q_1\} \cup \emptyset = \{q_1\}$
		λ -closure($\delta(q_2, c)$) = λ -closure(\emptyset) = \emptyset	[Same as $t(q_0, c) \cup t(q_2, c)$]
$\{q_1, q_2\}$	a	λ -closure($\delta(q_1, a)$) = λ -closure(\emptyset) = \emptyset	$\emptyset \cup \emptyset = \emptyset$
		λ -closure($\delta(q_2, a)$) = λ -closure(\emptyset) = \emptyset	[Same as $t(q_1, a) \cup t(q_2, a)$]
	b	λ -closure($\delta(q_1, b)$) = λ -closure(\emptyset) = \emptyset	$\emptyset \cup \{q_1, q_2\} = \{q_1, q_2\}$
		$\lambda - \text{closure}(\delta(q_2, b)) = \lambda - \text{closure}(\{q_1, q_2\}) = \{q_1, q_2\}$	[Same as $t(q_1, b) \cup t(q_2, b)$]
	c	λ -closure($\delta(q_1, c)$) = λ -closure($\{q_1\}$) = $\{q_1\}$	$\{q_1\} \cup \emptyset = \{q_1\}$
		λ -closure($\delta(q_2, c)$) = λ -closure(\emptyset) = \emptyset	[Same as $t(q_1, c) \cup t(q_2, c)$]
$\{q_1\}$	a	λ -closure($\delta(q_1, a)$) = λ -closure(\emptyset) = \emptyset	\emptyset [Same as $t(q_1, a)$]
	b	λ -closure($\delta(q_1, b)$) = λ -closure(\emptyset) = \emptyset	\emptyset [Same as $t(q_1, b)$]
	c	λ -closure($\delta(q_1, c)$) = λ -closure($\{q_1\}$) = $\{q_1\}$	$\{q_1\}$ [Same as $t(q_1, c)$]

See the state diagram of the resulting DFA in Figure 5.

Figure 5: Chap5 Question 36 (c)

part d $a^*[b^* \cup [c \cup (b^*b)]c^*]$

A good exercise is to determine whether or not the regular expression above is equivalent to $a^*b^*c^*$.

Problem 14: (10 Points) Exercise 5.41

Solution 14:

See the constructed NFA in Figure 6.

Figure 6: Chap5 Question 41 NFA

 $\begin{array}{l} \lambda \text{-closure}(q_0) = \{q_0, q_2\} \\ \lambda \text{-closure}(q_1) = \{q_1\} \\ \lambda \text{-closure}(q_2) = \{q_2\} \\ \lambda \text{-closure}(q_3) = \{q_3\} \end{array}$

Input transition function t for the NFA

$t(q_0, a) = \{q_1\},\$	$t(q_1, a) = \emptyset,$	$t(q_2, a) = \emptyset,$	$t(q_3, a) = \{q_2\}$
$t(q_0, b) = \{q_3\},\$	$t(q_1, b) = \{q_0, q_2\},\$	$t(q_2, b) = \{q_3\},\$	$t(q_3, b) = \emptyset$

Constructing the states and transitions of an equivalent DFA:

State	Symbol	Next State
λ -closure({ q_0 })	a	$t(q_0, a) \cup t(q_2, a) = \{q_1\} \cup \emptyset = \{q_1\}$
$= \{q_0, q_2\}$	b	$t(q_0, b) \cup t(q_2, b) = \{q_3\} \cup \{q_3\} = \{q_3\}$
$\{q_1\}$	a	$t(q_1, a) = \emptyset$
	b	$t(q_1, b) = \{q_0, q_2\}$
$\{q_3\}$	a	$t(q_3, a) = \{q_2\}$
	b	$t(q_3, b) = \emptyset$
$\{q_2\}$	a	$t(q_2, a) = \emptyset$
	b	$t(q_2, b) = \{q_3\}$

The resulting DFA, equivalent to the original NFA, is depicted in Figure 7.

Figure 7: Chap5 Question 41 DFA