CS3133 - A Term 2009: Foundations of Computer Science Prof. Carolina Ruiz

Homework 3

WPI By Li Feng, Shweta Srivastava, and Carolina Ruiz

Chapter 6

Problem 1:

For the regular expressions:
(a UbcU ¢)* in our posted solutions to Exercise 25 of Chapter 2 in Homework 1
(b*ab*ab*ab*)* U b* in our posted solutions to Exercise 26 of Chapter 2 in Homework 1.

1. Construct a finite automaton.

2. Convert your finite automaton into an equivalent regular grammar.

Solution 1:

For regular expression: (a U bc U ¢)*
part 1

O——0O—0O——0

Figure 1: Basic NFAs for a, b, c and bc

By combining the NFAs above with A-transitions we get the NFA below:

Figure 2: Combining NFAs to create NFA with A-transitions

A reduced NFA can be obtained by the following steps:
q0, q1, g2, q7, and g4 are merged into one state called (¢
g8 and q9 are merged into one state called)1
g3, 95, g6, q10, and q11 into one state called Q)2

Figure 3: Reduced NFA

part 2
Based on the NFA in Figure 3, we construct the grammar:

S —aQ2 | cQ2 | bQ1 | Q2
Q1 — cQ2
Q22— S| A

On removing the chain rules we get:

S —aQs2 | Q2| bQ1 | A
Q1 — cQ2
Q2HGQ2|CQ2|bQ1\>\

For regular expression: (b*ab*ab*ab™)* U b*
part 1

Figure 4: NFA for Chap2 26

part 2

Based on the NFA in Figure 4, we construct the grammar:

S— Q1| Qs | Qs
Q1 — bQ1 | aQ2
Q2—>5Q2|GQ3
Q3 — bQ3 | aQ4
Qs — Qs | Q1| Qs
Qs — bQs | Qe
Qs — A

Removing chain rules we obtain the following grammar which is in regular form.

S —bQ1]aQs| A

Q1 — bQ1 | aQ2

Q2 — bQ2 | aQ3
Q3 — bQs3 | aQy

Qs —bQs [bQ1 [aQ2 | A
Qs — bQs | A

Qs — A

Problem 2: For the NFAs from:
Exercise 23 of Chapter 5 and
Exercise 36 of Chapter 5

1. Convert the finite automaton into an equivalent regular expression.
2. Convert your finite automaton into an equivalent regular grammar.
Solution 2:

Exercise 23 of Chapter 5
part a

Figure 5: NFA for Chap5 Question 23

a ab*b=ab”

m ab*b=ab* o
O

Figure 6: Stepl: Remove ¢g; from NFA Chap 5-23

Start to eliminate the state g, and the result is shown in Figure 6. The regular expression is
a*(ab®)(ab™ U aa*abt)*
Note: this regular expression is equivalent to (a™b™) ™.

a*(ab™)(ab™ U aa*ab™)*
atbT(abt U aathh)*

= atbT(atbT)*
= (aTbh)*
partb
Based on the NFA in Figure 5, we can construct the regular grammar:
S —aS|a@Q:
Q1 — Q1 | bQ2
QQ — G,Ql ‘ asS | A
Exercise 36 of Chapter 5
part a

8

b

Figure 8: Step 1: Create a new accepting state
a

X
b'c*Ub*Uc"
Figure 10: Step 3: remove State g

®
a*b*c*U a*b* U a*c’

Figure 11: Step 3: removing the loop on qg

The regular expression is: a*b™c* U a*b* U a*c™

partb
Based on the NFA in Figure 7, we can construct the grammar:

S—>GS|CQ1|Q2
Q1 —cQi| A
Q2 — bQ2 | bQ1 A

On removing the chain rule we get the regular grammar:

S—>CLS|CQ1|bQ2|bQ1 ‘)\
Q1 —cQ1| A
Q2 — bQ2 | bQ1 |A

Problem 3:
For the regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2.
and the regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1.

1. Construct a finite automaton based on the grammar .

2. Convert your finite automaton into an equivalent regular expression.

Solution 3:
Regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2:

S—aAla|cC|c|bB|b
A—aAla|bB|b

B —bB|b
C—cC|lc|bB|b

part a

partb
We eliminate the state A first, and then state C, and state B to get the regular expression. The detailed
steps are shown in Figure 12 to 20.

aa*(aUb)=aa*Ua’b

aUbUc

Figure 12: Step 1: remove State A
aa’Ua’bUaUbUc=a"Ua'bUbUc

cc*bUc)=c’bUcc’

Figure 13: Step 2: remove State C'
a'Ua’b UbUc

a c =(a [
(a'bUbUc'b)bb=(abUbUc'b)b* .

c’bUcc”

Figure 14: Step 3: remove State B
a'Ua’b UbUcUc'bUcc’'=a*Uc* U a*b UbUc'b

(a'bUbUc’b)b*=a‘bb* Ubb*Uc'bb*

Figure 15: Step 3: reduce the number of arcs

We can see the regular expression is
at Uct Uuatbubucbuathbt™ U bbt U cTobT

Actually, it is equivalent to the regular expression a™ U ¢™ U (aTbUbU ctb)b* in our HW2 solution,
because:

at Uct Uath ubuUctbUatbbt U bbT U ctbbt
= at Uct Ubt Uat™ UctbUatbbt U ctbbt
= at U ct Uatbb* U bb* U cThb*
= at Uch U (atbUbuchb)b

Regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1

S —aA|bC|aB|bD | A
C—aA|bC |\
A—aC|bA

D —aD |bB |\

B — aB | bD

part a

Figure 16: NFA obtained from the grammar

>
| @

1

Figure 17: Step 1: Adding a new accepting state
b a

Figure 18: Step 2: remove State C'

Figure 19: Step 3: remove State D

b* UA U ba* U b*ab*ab* U ab*ab*

Figure 20: Step 4: remove State A

b* UA U ba* U b*ab*ab* U ab*ab* U aa*ba* U ba*ba*ba*

©

Figure 21: Step 5: remove State B

10

The regular expression is:
bt UAUba* UbTab*ab* Uab*ab* U aa*ba* U ba*ba*ba*
=bT UANUba* UbTab*ab* Uab*ab* Uatba* U ba*ba*ba*

Problem 4: Solution 4:

Chap 6.7.a
Let H = {w|w € L and w ends with aa}

Let L be the language over {a, b, ¢} that contains strings ending with aa. L is described by the regular
expression (a U b Uc)*aa. And so Ly is regular.
A language that contains all strings that belong to both L and L; can be obtained by the intersection of the
two languages. Therefore H = L N Ly. The regularity of H then follows from the closure of the regular
languages under intersection.

Chap 6.7.b
Let H = {w|w € L or w contains an a }

Let L; be the language over {a, b, ¢} of strings that contain an a. L1 is described by the regular expression
(aUbUc)*a(aUbUc)*. And so L is regular.
A language that contains any string that belongs to either L or L; or both, can be obtained by the union of
the two languages. Therefore H = L U Lq. The regularity of H then follows from the closure of the regular
languages under union.

Chap 6.7.c
Let H = {w|w ¢ L and w does not contain an a }

Any w ¢ L belongs to L. We know that L is regular as regular languages are closed under complement.
Let L, be the language over {a, b, ¢} of strings that contain an a. We have shown in the previous part(b) that
this language is regular. Any w that does not contain an a then belongs to L;. We know that L is regular as
regular languages are closed under complement.

A language that contains all strings that belong to both L AND L, can be obtained by the intersection of the
two languages. Therefore H = L N L;. The regularity of H then follows from the closure of the regular
languages under complement and intersection.

Chap 6.7.d
Let H = {uv|u € Landv ¢ L}

Any v ¢ L belongs to L. We know that L is regular as regular languages are closed under complement.
A language that contains strings formed by the concatenation of two strings belonging to two separate lan-
guages, can be obtained by the concatenation of the two languages. Therefore H = LL. The regularity of H
then follows from the closure of the regular languages under complement and concatenation.

Chap 6.14.a
By way of contradiction, we assume L = {w | w is a palindromes over {a, b} } is regular. Let M be a

DFA that accepts L, and k be the number of states in M. Consider the string z equal to a®ba”. Clearly,
z€ L.

11

By the pumping lemma, z can be written as uvw where:
. v# X

2. length(uv) < k

3. wvtw € Lforalli >0

However, by condition 2, v must consist of only a’s. Pumping v would produce the string uv?w where
the number of a before the b is more than the number of a after the b. Therefore, uv?w is not a palindrome,
and uv?w ¢ L, yielding a contradiction.

Thus, L is not regular.

Chap 6. 14. b

By way of contradiction, we assume L = {a™b™|n < m} is regular. Let M be a DFA that accepts L, and
k be the number of states in M. Consider the string z equal to a*b**+1. Clearly, z € L.

By the pumping lemma, z can be written as uvw where:

1. v# A
2. length(uv) < k
3. wviw € Lforalli >0

However, by condition 2, v must consist of only a’s. Pumping v would produce the string uv?w which
contains at least as many a’s and b’s. Therefore, uv?w ¢ L, yielding a contradiction. Thus, L is not regular.

Chap 6. 14. ¢

By way of contradiction, we assume L = {aibj c¥i>0,7> O} is regular. Let M be a DFA that accepts
L, and k be the number of states in M. Consider the string z equal to b*c?*. Clearly, z € L.

By the pumping lemma, z can be written as uvw where:

1. v# A
2. length(uv) < k
3. wvtw € Lforalli >0

However, by condition 2, v must consist of only b’s. Pumping v would produce the string uv2w which
could not contain as twice as many as c¢’s as b’s. Therefore, uv?w ¢ L, yielding a contradiction. Thus, L is
not regular.

Chap 6. 14. d

By way of contradiction, we assume L = {ww|w € {a,b}"} is regular. Let M be a DFA that accepts L,
and k be the number of states in M. Consider the string z equal to a*ba*b. Clearly, z € L.

By the pumping lemma, z can be written as uvw where:

L. v# A
2. length(uv) < k

3. wv'w € Lforalli >0

12

However, by condition 2, v must consist of only a’s. Pumping v would produce the string uv?w where the
number of a’s before the first b is greater than the number of a’s between the two bs. Therefore, uv?w ¢ L,
yielding a contradiction. Thus, L is not regular.

Chap 6. 14. f

L is the set of string over {a, b}" in which the number of a’s is a perfect cube. By way of contradiction,
we assume L is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the
string z equal to a*”. Clearly, z € L, because number_of _a(z) = k3, .

By the pumping lemma, 2z can be written as uvw where:

. v# A
2. length(uv) < k
3. wvtw € Lforalli >0

However, by condition 1, v must not be A. It means that 0 < length(v) < k. Because v consists of as,
we have number_of_a(v) = length(v), and 0 < number_of_a(v) < k. This observation can be used to

compute the upper bound of number_of _a(uv?w):

number_of _a(uv?

w) = number_of_a(uvw) + number_of_a(v)
= k3 + length(v)
<K +k
< k3 +3k*+3k+1
=(k+1)3

Thus, vv?w must not be in L. The assumption that L is regular yields a contradiction and therefore L is
not regular.

Chap 6. 15
Prove that the set of nonpalindromes over {a, b} is not a regular language.

We shall prove this by way of contradiction. Let us assume that H be the set of nonpalidromes over {a, b}
and that H is regular. Then H that is the set of palindromes over {a, b} will also be regular. However we
have proved in Exercise 6.14, part(a) that H is not regular. This implies that the complement of H that is
equal to H is also not regular. This contradicts our assumption of H being regular.

Chap 6. 16
Let L be a regular language and let L; = {uu|u € L} be the language L “doubled”. Is L; necessarily
regular? Prove your answer.

No, L; is not necessarily regular. Let us take the language {ww|w € {a,b}*} in exercise 6.14, part(d).
We have shown that this language is not regular even though the language {a, b}* is regular.

13

