| CS3133 - A Term 2009: Foundations of Computer Science | Prof. Carolina Ruiz |
| :---: | :---: | :---: |
| | Homework 3 |
| $W P I$ | By Li Feng, Shweta Srivastava, and Carolina Ruiz |

Chapter 6

Problem 1:

For the regular expressions:
$(a \cup b c \cup c)^{*}$ in our posted solutions to Exercise 25 of Chapter 2 in Homework 1
$\left(b^{*} a b^{*} a b^{*} a b^{*}\right)^{*} \cup b^{*}$ in our posted solutions to Exercise 26 of Chapter 2 in Homework 1.

1. Construct a finite automaton.
2. Convert your finite automaton into an equivalent regular grammar.

Solution 1:

For regular expression: $(a \cup b c \cup c)^{*}$ part 1

Figure 1: Basic NFAs for a, b, c and $b c$

By combining the NFAs above with λ-transitions we get the NFA below:

Figure 2: Combining NFAs to create NFA with λ-transitions

A reduced NFA can be obtained by the following steps:
$\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 7$, and q 4 are merged into one state called Q_{0}
q 8 and q 9 are merged into one state called Q_{1}
$\mathrm{q} 3, \mathrm{q} 5, \mathrm{q} 6, \mathrm{q} 10$, and q 11 into one state called Q_{2}

Figure 3: Reduced NFA

part 2

Based on the NFA in Figure 3, we construct the grammar:

$$
\begin{aligned}
& S \rightarrow a Q_{2}\left|c Q_{2}\right| b Q_{1} \mid Q_{2} \\
& Q_{1} \rightarrow c Q_{2} \\
& Q_{2} \rightarrow S \mid \lambda
\end{aligned}
$$

On removing the chain rules we get:

$$
\begin{aligned}
& S \rightarrow a Q_{2}\left|c Q_{2}\right| b Q_{1} \mid \lambda \\
& Q_{1} \rightarrow c Q_{2} \\
& Q_{2} \rightarrow a Q_{2}\left|c Q_{2}\right| b Q_{1} \mid \lambda
\end{aligned}
$$

For regular expression: $\left(b^{*} a b^{*} a b^{*} a b^{*}\right)^{*} \cup b^{*}$ part 1

Figure 4: NFA for Chap2 26
part 2
Based on the NFA in Figure 4, we construct the grammar:

$$
\begin{aligned}
& S \rightarrow Q_{1}\left|Q_{5}\right| Q_{6} \\
& Q_{1} \rightarrow b Q_{1} \mid a Q_{2} \\
& Q_{2} \rightarrow b Q_{2} \mid a Q_{3} \\
& Q_{3} \rightarrow b Q_{3} \mid a Q_{4} \\
& Q_{4} \rightarrow b Q_{4}\left|Q_{1}\right| Q_{6} \\
& Q_{5} \rightarrow b Q_{5} \mid Q_{6} \\
& Q_{6} \rightarrow \lambda
\end{aligned}
$$

Removing chain rules we obtain the following grammar which is in regular form.

$$
\begin{aligned}
& S \rightarrow b Q_{1}\left|a Q_{2}\right| \lambda \\
& Q_{1} \rightarrow b Q_{1} \mid a Q_{2} \\
& Q_{2} \rightarrow b Q_{2} \mid a Q_{3} \\
& Q_{3} \rightarrow b Q_{3} \mid a Q_{4} \\
& Q_{4} \rightarrow b Q_{4}\left|b Q_{1}\right| a Q_{2} \mid \lambda \\
& Q_{5} \rightarrow b Q_{5} \mid \lambda \\
& Q_{6} \rightarrow \lambda
\end{aligned}
$$

Problem 2: For the NFAs from:
Exercise 23 of Chapter 5 and
Exercise 36 of Chapter 5

1. Convert the finite automaton into an equivalent regular expression.
2. Convert your finite automaton into an equivalent regular grammar.

Solution 2:

Exercise 23 of Chapter 5 part a

Figure 5: NFA for Chap5 Question 23

Figure 6: Step1: Remove q_{1} from NFA Chap 5-23

Start to eliminate the state q_{1}, and the result is shown in Figure 6. The regular expression is

$$
a^{*}\left(a b^{+}\right)\left(a b^{+} \cup a a^{*} a b^{+}\right)^{*}
$$

Note: this regular expression is equivalent to $\left(a^{+} b^{+}\right)^{+}$.

$$
\begin{aligned}
& a^{*}\left(a b^{+}\right)\left(a b^{+} \cup a a^{*} a b^{+}\right)^{*} \\
\equiv & a^{+} b^{+}\left(a b^{+} \cup a a^{+} b^{+}\right)^{*} \\
\equiv & a^{+} b^{+}\left(a^{+} b^{+}\right)^{*} \\
\equiv & \left(a^{+} b^{+}\right)^{+}
\end{aligned}
$$

part b
Based on the NFA in Figure 5, we can construct the regular grammar:

$$
\begin{aligned}
& S \rightarrow a S \mid a Q_{1} \\
& Q_{1} \rightarrow b Q_{1} \mid b Q_{2} \\
& Q_{2} \rightarrow a Q_{1}|a S| \lambda
\end{aligned}
$$

Exercise 36 of Chapter 5 part a

Figure 7: NFA for Chap5 Question 36

Figure 8: Step 1: Create a new accepting state

Figure 9: Step 2: remove State q_{1}

Figure 10: Step 3: remove State q_{2}

Figure 11: Step 3: removing the loop on q_{0}

The regular expression is: $a^{*} b^{+} c^{*} \cup a^{*} b^{*} \cup a^{*} c^{+}$
part b
Based on the NFA in Figure 7, we can construct the grammar:

$$
\begin{aligned}
& S \rightarrow a S\left|c Q_{1}\right| Q_{2} \\
& Q_{1} \rightarrow c Q_{1} \mid \lambda \\
& Q_{2} \rightarrow b Q_{2}\left|b Q_{1}\right| \lambda
\end{aligned}
$$

On removing the chain rule we get the regular grammar:

$$
\begin{aligned}
& S \rightarrow a S\left|c Q_{1}\right| b Q_{2}\left|b Q_{1}\right| \lambda \\
& Q_{1} \rightarrow c Q_{1} \mid \lambda \\
& Q_{2} \rightarrow b Q_{2}\left|b Q_{1}\right| \lambda
\end{aligned}
$$

Problem 3:

For the regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2. and the regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1.

1. Construct a finite automaton based on the grammar .
2. Convert your finite automaton into an equivalent regular expression.

Solution 3:

Regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2:

$$
\begin{aligned}
& S \rightarrow a A|a| c C|c| b B \mid b \\
& A \rightarrow a A|a| b B \mid b \\
& B \rightarrow b B \mid b \\
& C \rightarrow c C|c| b B \mid b
\end{aligned}
$$

part \mathbf{a}

part b
We eliminate the state A first, and then state C, and state B to get the regular expression. The detailed steps are shown in Figure 12 to 20.

Figure 12: Step 1: remove State A

Figure 13: Step 2: remove State C

Figure 14: Step 3: remove State B

Figure 15: Step 3: reduce the number of arcs

We can see the regular expression is

$$
a^{+} \cup c^{+} \cup a^{+} b \cup b \cup c^{+} b \cup a^{+} b b^{+} \cup b b^{+} \cup c^{+} b b^{+}
$$

Actually, it is equivalent to the regular expression $a^{+} \cup c^{+} \cup\left(a^{+} b \cup b \cup c^{+} b\right) b^{*}$ in our HW2 solution, because:

$$
\begin{aligned}
& a^{+} \cup c^{+} \cup a^{+} b \cup b \cup c^{+} b \cup a^{+} b b^{+} \cup b b^{+} \cup c^{+} b b^{+} \\
\equiv & a^{+} \cup c^{+} \cup b^{+} \cup a^{+} b \cup c^{+} b \cup a^{+} b b^{+} \cup c^{+} b b^{+} \\
\equiv & a^{+} \cup c^{+} \cup a^{+} b b^{*} \cup b b^{*} \cup c^{+} b b^{*} \\
\equiv & a^{+} \cup c^{+} \cup\left(a^{+} b \cup b \cup c^{+} b\right) b^{*}
\end{aligned}
$$

Regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1

$$
\begin{aligned}
& S \rightarrow a A|b C| a B|b D| \lambda \\
& C \rightarrow a A|b C| \lambda \\
& A \rightarrow a C \mid b A \\
& D \rightarrow a D|b B| \lambda \\
& B \rightarrow a B \mid b D
\end{aligned}
$$

part a

Figure 16: NFA obtained from the grammar

Figure 17: Step 1: Adding a new accepting state

Figure 18: Step 2: remove State C

Figure 19: Step 3: remove State D

Figure 20: Step 4: remove State A

Figure 21: Step 5: remove State B

The regular expression is:
$b^{+} \cup \lambda \cup b a^{*} \cup b^{+} a b^{*} a b^{*} \cup a b^{*} a b^{*} \cup a a^{*} b a^{*} \cup b a^{*} b a^{*} b a^{*}$
$\equiv b^{+} \cup \lambda \cup b a^{*} \cup b^{+} a b^{*} a b^{*} \cup a b^{*} a b^{*} \cup a^{+} b a^{*} \cup b a^{*} b a^{*} b a^{*}$

Problem 4: Solution 4:

Chap 6.7.a
Let $H=\{w \mid w \in L$ and w ends with $a a\}$
Let L_{1} be the language over $\{a, b, c\}$ that contains strings ending with $a a . L_{1}$ is described by the regular expression $(a \cup b \cup c)^{*} a a$. And so L_{1} is regular.
A language that contains all strings that belong to both L and L_{1} can be obtained by the intersection of the two languages. Therefore $H=L \cap L_{1}$. The regularity of H then follows from the closure of the regular languages under intersection.

Chap 6.7.b

Let $H=\{w \mid w \in L$ or w contains an $a\}$
Let L_{1} be the language over $\{a, b, c\}$ of strings that contain an $a . L_{1}$ is described by the regular expression $(a \cup b \cup c)^{*} a(a \cup b \cup c)^{*}$. And so L_{1} is regular.
A language that contains any string that belongs to either L or L_{1} or both, can be obtained by the union of the two languages. Therefore $H=L \cup L_{1}$. The regularity of H then follows from the closure of the regular languages under union.

Chap 6.7.c

Let $H=\{w \mid w \notin L$ and w does not contain an $a\}$
Any $w \notin L$ belongs to \bar{L}. We know that \bar{L} is regular as regular languages are closed under complement. Let L_{1} be the language over $\{a, b, c\}$ of strings that contain an a. We have shown in the previous part(b) that this language is regular. Any w that does not contain an a then belongs to $\overline{L_{1}}$. We know that \bar{L}_{1} is regular as regular languages are closed under complement.
A language that contains all strings that belong to both \bar{L} AND $\overline{L_{1}}$, can be obtained by the intersection of the two languages. Therefore $H=\bar{L} \cap \overline{L_{1}}$. The regularity of H then follows from the closure of the regular languages under complement and intersection.

Chap 6.7.d

Let $H=\{u v \mid u \in L$ and $v \notin L\}$
Any $v \notin L$ belongs to \bar{L}. We know that \bar{L} is regular as regular languages are closed under complement. A language that contains strings formed by the concatenation of two strings belonging to two separate languages, can be obtained by the concatenation of the two languages. Therefore $H=L \bar{L}$. The regularity of H then follows from the closure of the regular languages under complement and concatenation.

Chap 6.14.a

By way of contradiction, we assume $L=\{w \mid w$ is a palindromes over $\{a, b\}\}$ is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $a^{k} b a^{k}$. Clearly, $z \in L$.

By the pumping lemma, z can be written as $u v w$ where:

1. $v \neq \lambda$
2. length $(u v) \leq k$
3. $u v^{i} w \in L$ for all $i \geq 0$

However, by condition $2, v$ must consist of only a 's. Pumping v would produce the string $u v^{2} w$ where the number of a before the b is more than the number of a after the b. Therefore, $u v^{2} w$ is not a palindrome, and $u v^{2} w \notin L$, yielding a contradiction.

Thus, L is not regular.

Chap 6. 14. b

By way of contradiction, we assume $L=\left\{a^{n} b^{m} \mid n<m\right\}$ is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $a^{k} b^{k+1}$. Clearly, $z \in L$.

By the pumping lemma, z can be written as $u v w$ where:

1. $v \neq \lambda$
2. length $(u v) \leq k$
3. $u v^{i} w \in L$ for all $i \geq 0$

However, by condition $2, v$ must consist of only a 's. Pumping v would produce the string $u v^{2} w$ which contains at least as many a 's and b 's. Therefore, $u v^{2} w \notin L$, yielding a contradiction. Thus, L is not regular.

Chap 6. 14. c

By way of contradiction, we assume $L=\left\{a^{i} b^{j} c^{2 j} \mid i \geq 0, j \geq 0\right\}$ is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $b^{k} c^{2 k}$. Clearly, $z \in L$.

By the pumping lemma, z can be written as $u v w$ where:

1. $v \neq \lambda$
2. length $(u v) \leq k$
3. $u v^{i} w \in L$ for all $i \geq 0$

However, by condition $2, v$ must consist of only b 's. Pumping v would produce the string $u v^{2} w$ which could not contain as twice as many as c 's as b 's. Therefore, $u v^{2} w \notin L$, yielding a contradiction. Thus, L is not regular.

Chap 6. 14. d

By way of contradiction, we assume $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $a^{k} b a^{k} b$. Clearly, $z \in L$.

By the pumping lemma, z can be written as $u v w$ where:

1. $v \neq \lambda$
2. length $(u v) \leq k$
3. $u v^{i} w \in L$ for all $i \geq 0$

However, by condition $2, v$ must consist of only a 's. Pumping v would produce the string $u v^{2} w$ where the number of a 's before the first b is greater than the number of a 's between the two b s. Therefore, $u v^{2} w \notin L$, yielding a contradiction. Thus, L is not regular.

Chap 6. 14. f

L is the set of string over $\{a, b\}^{*}$ in which the number of a 's is a perfect cube. By way of contradiction, we assume L is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $a^{k^{3}}$. Clearly, $z \in L$, because number_of_a $(z)=k^{3}$,

By the pumping lemma, z can be written as $u v w$ where:

1. $v \neq \lambda$
2. length $(u v) \leq k$
3. $u v^{i} w \in L$ for all $i \geq 0$

However, by condition $1, v$ must not be λ. It means that $0<l e n g t h(v) \leq k$. Because v consists of a s, we have number_of_a $(v)=$ length (v), and $0<n u m b e r_{_} o f_{-} a(v) \leq k$. This observation can be used to compute the upper bound of $n u m b e r _o f_{_} a\left(u v^{2} w\right)$:

$$
\begin{aligned}
\text { number_of_a } a\left(u v^{2} w\right) & =\text { number_of_ } a(u v w)+\text { number_of_ } a(v) \\
& \left.=k^{3}+\text { length }^{2} v\right) \\
& \leq k^{3}+k \\
& <k^{3}+3 k^{2}+3 k+1 \\
& =(k+1)^{3}
\end{aligned}
$$

Thus, $u v^{2} w$ must not be in L. The assumption that L is regular yields a contradiction and therefore L is not regular.

Chap 6. 15

Prove that the set of nonpalindromes over $\{a, b\}$ is not a regular language.
We shall prove this by way of contradiction. Let us assume that H be the set of nonpalidromes over $\{a, b\}$ and that H is regular. Then \bar{H} that is the set of palindromes over $\{a, b\}$ will also be regular. However we have proved in Exercise 6.14, part(a) that \bar{H} is not regular. This implies that the complement of \bar{H} that is equal to H is also not regular. This contradicts our assumption of H being regular.

Chap 6. 16

Let L be a regular language and let $L_{1}=\{u u \mid u \in L\}$ be the language L "doubled". Is L_{1} necessarily regular? Prove your answer.

No, L_{1} is not necessarily regular. Let us take the language $\left\{w w \mid w \in\{a, b\}^{*}\right\}$ in exercise 6.14, part(d). We have shown that this language is not regular even though the language $\{a, b\}^{*}$ is regular.

