
CS3133 - A Term 2009: Foundations of Computer Science Prof. Carolina Ruiz

Homework 3
WPI By Li Feng, Shweta Srivastava, and Carolina Ruiz

Chapter 6
Problem 1:

For the regular expressions:
(a ∪ bc ∪ c)∗ in our posted solutions to Exercise 25 of Chapter 2 in Homework 1
(b∗ab∗ab∗ab∗)∗ ∪ b∗ in our posted solutions to Exercise 26 of Chapter 2 in Homework 1.

1. Construct a finite automaton.

2. Convert your finite automaton into an equivalent regular grammar.

Solution 1:

For regular expression: (a ∪ bc ∪ c)∗
part 1

Figure 1: Basic NFAs for a, b, c and bc

1

By combining the NFAs above with λ-transitions we get the NFA below:

Figure 2: Combining NFAs to create NFA with λ-transitions

A reduced NFA can be obtained by the following steps:
q0, q1, q2, q7, and q4 are merged into one state called Q0

q8 and q9 are merged into one state called Q1

q3, q5, q6, q10, and q11 into one state called Q2

Figure 3: Reduced NFA

part 2
Based on the NFA in Figure 3, we construct the grammar:

S → aQ2 | cQ2 | bQ1 | Q2

Q1 → cQ2

Q2 → S | λ

On removing the chain rules we get:

S → aQ2 | cQ2 | bQ1 | λ
Q1 → cQ2

Q2 → aQ2 | cQ2 | bQ1 | λ

2

For regular expression: (b∗ab∗ab∗ab∗)∗ ∪ b∗
part 1

Figure 4: NFA for Chap2 26

part 2

Based on the NFA in Figure 4, we construct the grammar:

S → Q1 | Q5 | Q6

Q1 → bQ1 | aQ2

Q2 → bQ2 | aQ3

Q3 → bQ3 | aQ4

Q4 → bQ4 | Q1 | Q6

Q5 → bQ5 | Q6

Q6 → λ

Removing chain rules we obtain the following grammar which is in regular form.

S → bQ1 | aQ2 | λ
Q1 → bQ1 | aQ2

Q2 → bQ2 | aQ3

Q3 → bQ3 | aQ4

Q4 → bQ4 | bQ1 | aQ2 | λ
Q5 → bQ5 | λ
Q6 → λ

Problem 2: For the NFAs from:
Exercise 23 of Chapter 5 and
Exercise 36 of Chapter 5

1. Convert the finite automaton into an equivalent regular expression.

2. Convert your finite automaton into an equivalent regular grammar.

Solution 2:
Exercise 23 of Chapter 5
part a

3

Figure 5: NFA for Chap5 Question 23

Figure 6: Step1: Remove q1 from NFA Chap 5-23

Start to eliminate the state q1, and the result is shown in Figure 6. The regular expression is

a∗(ab+)(ab+ ∪ aa∗ab+)∗

Note: this regular expression is equivalent to (a+b+)+.

a∗(ab+)(ab+ ∪ aa∗ab+)∗

≡ a+b+(ab+ ∪ aa+b+)∗

≡ a+b+(a+b+)∗

≡ (a+b+)+

part b
Based on the NFA in Figure 5, we can construct the regular grammar:

S → aS | aQ1

Q1 → bQ1 | bQ2

Q2 → aQ1 | aS | λ

Exercise 36 of Chapter 5
part a

4

Figure 7: NFA for Chap5 Question 36

Figure 8: Step 1: Create a new accepting state

Figure 9: Step 2: remove State q1

Figure 10: Step 3: remove State q2

Figure 11: Step 3: removing the loop on q0

5

The regular expression is: a∗b+c∗ ∪ a∗b∗ ∪ a∗c+

part b
Based on the NFA in Figure 7, we can construct the grammar:

S → aS | cQ1 | Q2

Q1 → cQ1 | λ
Q2 → bQ2 | bQ1 |λ

On removing the chain rule we get the regular grammar:

S → aS | cQ1 | bQ2 | bQ1 |λ
Q1 → cQ1 | λ
Q2 → bQ2 | bQ1 |λ

Problem 3:
For the regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2.
and the regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1.

1. Construct a finite automaton based on the grammar .

2. Convert your finite automaton into an equivalent regular expression.

Solution 3:
Regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2:

S → aA | a | cC | c | bB | b
A→ aA | a | bB | b
B → bB | b
C → cC | c | bB | b

part a

part b
We eliminate the state A first, and then state C, and state B to get the regular expression. The detailed

steps are shown in Figure 12 to 20.

6

Figure 12: Step 1: remove State A

Figure 13: Step 2: remove State C

Figure 14: Step 3: remove State B

Figure 15: Step 3: reduce the number of arcs

7

We can see the regular expression is

a+ ∪ c+ ∪ a+b ∪ b ∪ c+b ∪ a+bb+ ∪ bb+ ∪ c+bb+

Actually, it is equivalent to the regular expression a+ ∪ c+ ∪ (a+b ∪ b ∪ c+b)b∗ in our HW2 solution,
because:

a+ ∪ c+ ∪ a+b ∪ b ∪ c+b ∪ a+bb+ ∪ bb+ ∪ c+bb+

≡ a+ ∪ c+ ∪ b+ ∪ a+b ∪ c+b ∪ a+bb+ ∪ c+bb+

≡ a+ ∪ c+ ∪ a+bb∗ ∪ bb∗ ∪ c+bb∗

≡ a+ ∪ c+ ∪ (a+b ∪ b ∪ c+b)b∗

Regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1

S → aA | bC | aB | bD | λ
C → aA | bC | λ
A→ aC | bA
D → aD | bB | λ
B → aB | bD

part a

Figure 16: NFA obtained from the grammar

8

Figure 17: Step 1: Adding a new accepting state

Figure 18: Step 2: remove State C

9

Figure 19: Step 3: remove State D

Figure 20: Step 4: remove State A

Figure 21: Step 5: remove State B

10

The regular expression is:
b+ ∪ λ ∪ ba∗ ∪ b+ab∗ab∗ ∪ ab∗ab∗ ∪ aa∗ba∗ ∪ ba∗ba∗ba∗
≡ b+ ∪ λ ∪ ba∗ ∪ b+ab∗ab∗ ∪ ab∗ab∗ ∪ a+ba∗ ∪ ba∗ba∗ba∗

Problem 4: Solution 4:

Chap 6.7.a
Let H = {w|w ∈ L and w ends with aa}

Let L1 be the language over {a, b, c} that contains strings ending with aa. L1 is described by the regular
expression (a ∪ b ∪c)∗aa. And so L1 is regular.
A language that contains all strings that belong to both L and L1 can be obtained by the intersection of the
two languages. Therefore H = L ∩ L1. The regularity of H then follows from the closure of the regular
languages under intersection.

Chap 6.7.b
Let H = {w|w ∈ L or w contains an a}

Let L1 be the language over {a, b, c} of strings that contain an a. L1 is described by the regular expression
(a ∪ b ∪ c)∗a(a ∪ b ∪c)∗. And so L1 is regular.
A language that contains any string that belongs to either L or L1 or both, can be obtained by the union of
the two languages. Therefore H = L ∪ L1. The regularity of H then follows from the closure of the regular
languages under union.

Chap 6.7.c
Let H = {w|w /∈ L and w does not contain an a}

Any w /∈ L belongs to L̄. We know that L̄ is regular as regular languages are closed under complement.
Let L1 be the language over {a, b, c} of strings that contain an a. We have shown in the previous part(b) that
this language is regular. Any w that does not contain an a then belongs to L̄1. We know that L̄1 is regular as
regular languages are closed under complement.
A language that contains all strings that belong to both L̄ AND L̄1, can be obtained by the intersection of the
two languages. Therefore H = L̄ ∩ L̄1. The regularity of H then follows from the closure of the regular
languages under complement and intersection.

Chap 6.7.d
Let H = {uv|u ∈ L and v /∈ L}

Any v /∈ L belongs to L̄. We know that L̄ is regular as regular languages are closed under complement.
A language that contains strings formed by the concatenation of two strings belonging to two separate lan-
guages, can be obtained by the concatenation of the two languages. Therefore H = LL̄. The regularity of H
then follows from the closure of the regular languages under complement and concatenation.

Chap 6.14.a

By way of contradiction, we assume L = {w | w is a palindromes over {a, b}} is regular. Let M be a
DFA that accepts L, and k be the number of states in M . Consider the string z equal to akbak. Clearly,
z ∈ L.

11

By the pumping lemma, z can be written as uvw where:

1. v 6= λ

2. length(uv) ≤ k

3. uviw ∈ L for all i ≥ 0

However, by condition 2, v must consist of only a’s. Pumping v would produce the string uv2w where
the number of a before the b is more than the number of a after the b. Therefore, uv2w is not a palindrome,
and uv2w /∈ L, yielding a contradiction.

Thus, L is not regular.

Chap 6. 14. b
By way of contradiction, we assume L = {anbm|n < m} is regular. Let M be a DFA that accepts L, and

k be the number of states in M . Consider the string z equal to akbk+1. Clearly, z ∈ L.
By the pumping lemma, z can be written as uvw where:

1. v 6= λ

2. length(uv) ≤ k

3. uviw ∈ L for all i ≥ 0

However, by condition 2, v must consist of only a’s. Pumping v would produce the string uv2w which
contains at least as many a’s and b’s. Therefore, uv2w /∈ L, yielding a contradiction. Thus, L is not regular.

Chap 6. 14. c
By way of contradiction, we assume L =

{
aibjc2j |i ≥ 0, j ≥ 0

}
is regular. LetM be a DFA that accepts

L, and k be the number of states in M . Consider the string z equal to bkc2k. Clearly, z ∈ L.
By the pumping lemma, z can be written as uvw where:

1. v 6= λ

2. length(uv) ≤ k

3. uviw ∈ L for all i ≥ 0

However, by condition 2, v must consist of only b’s. Pumping v would produce the string uv2w which
could not contain as twice as many as c’s as b’s. Therefore, uv2w /∈ L, yielding a contradiction. Thus, L is
not regular.

Chap 6. 14. d
By way of contradiction, we assume L =

{
ww|w ∈ {a, b}∗

}
is regular. Let M be a DFA that accepts L,

and k be the number of states in M . Consider the string z equal to akbakb. Clearly, z ∈ L.
By the pumping lemma, z can be written as uvw where:

1. v 6= λ

2. length(uv) ≤ k

3. uviw ∈ L for all i ≥ 0

12

However, by condition 2, v must consist of only a’s. Pumping v would produce the string uv2w where the
number of a’s before the first b is greater than the number of a’s between the two bs. Therefore, uv2w /∈ L,
yielding a contradiction. Thus, L is not regular.

Chap 6. 14. f
L is the set of string over {a, b}∗ in which the number of a’s is a perfect cube. By way of contradiction,

we assume L is regular. Let M be a DFA that accepts L, and k be the number of states in M . Consider the
string z equal to ak3

. Clearly, z ∈ L, because number of a(z) = k3, .
By the pumping lemma, z can be written as uvw where:

1. v 6= λ

2. length(uv) ≤ k

3. uviw ∈ L for all i ≥ 0

However, by condition 1, v must not be λ. It means that 0 < length(v) ≤ k. Because v consists of as,
we have number of a(v) = length(v), and 0 < number of a(v) ≤ k. This observation can be used to
compute the upper bound of number of a(uv2w):

number of a(uv2w) = number of a(uvw) + number of a(v)
= k3 + length(v)
≤ k3 + k
< k3 + 3k2 + 3k + 1
= (k + 1)3

Thus, uv2w must not be in L. The assumption that L is regular yields a contradiction and therefore L is
not regular.

Chap 6. 15
Prove that the set of nonpalindromes over {a, b} is not a regular language.

We shall prove this by way of contradiction. Let us assume thatH be the set of nonpalidromes over {a, b}
and that H is regular. Then H̄ that is the set of palindromes over {a, b} will also be regular. However we
have proved in Exercise 6.14, part(a) that H̄ is not regular. This implies that the complement of H̄ that is
equal to H is also not regular. This contradicts our assumption of H being regular.

Chap 6. 16
Let L be a regular language and let L1 = {uu|u ∈ L} be the language L “doubled”. Is L1 necessarily
regular? Prove your answer.

No, L1 is not necessarily regular. Let us take the language {ww|w ∈ {a, b}∗} in exercise 6.14, part(d).
We have shown that this language is not regular even though the language {a, b}∗ is regular.

13

