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Preface to the Reader

Network Appliance continues to evolve its technology and products at a fast pace, with significant new
features and performance enhancements introduced every nine months or less over the past three years.
This paper reflects the nomenclature and product characteristics in March 1995. The basic architecture,
WAFL file system, and RAID-4 implementation details are fundamentally accurate and still apply to NetApp
filers, even though at the time of publication filers were called FAServers. For a more current overview of
NetApp’s architecture please see "Multiprotocol Data Access: NFS, CIFS, and HTTP" (TR-3014).

Abstract

Network Appliance recently began shipping a new kind of network server called an NFS file server appliance,
which is a dedicated server whose sole function is to provide NFS file service. The file system requirements
for an NFS appliance are different from those for a general-purpose UNIX system, both because an NFS
appliance must be optimized for network file access and because an appliance must be easy to use.

This paper describes WAFL
TM

 (Write Anywhere File Layout), which is a file system designed specifically to
work in an NFS appliance. The primary focus is on the algorithms and data structures that WAFL uses to
implement Snapshots , which are read-only clones of the active file system. WAFL uses a copy-on-write
technique to minimize the disk space that Snapshots consume. This paper also describes how WAFL uses
Snapshots to eliminate the need for file system consistency checking after an unclean shutdown.

1. Introduction

An appliance is a device designed to perform a particular function. A recent trend in networking has been to
provide common services using appliances instead of general- purpose computers. For instance,
special-purpose routers from companies like Cisco and Bay Networks have almost entirely replaced
general-purpose computers for packet routing, even though general purpose computers originally handled all
routing. Other examples of network appliances include network terminal concentrators, network FAX servers,
and network printers.

A new type of network appliance is the NFS file server appliance. The requirements for a file system
operating in an NFS appliance are different from those for a general purpose file system: NFS access
patterns are different from local access patterns, and the special-purpose nature of an appliance also affects
the design. WAFL (Write Anywhere File Layout) is the file system used in all Network Appliance Corporation’s
file servers. WAFL was designed to meet four primary requirements:
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It should provide fast NFS service.1.
It should support large file systems (tens of GB) that grow dynamically as disks are added.2.
It should provide high performance while supporting RAID (Redundant Array of Independent Disks).3.
It should restart quickly, even after an unclean shutdown due to power failure or system crash.4.

The requirement for fast NFS service is obvious, given WAFL’s intended use in an NFS appliance. Support
for large file systems simplifies system administration by allowing all disk space to belong to a single large
partition. Large file systems make RAID desirable because the probability of disk failure increases with the
number of disks. Large file systems require special techniques for fast restart because the file system
consistency checks for normal UNIX file systems become unacceptably slow as file systems grow.

NFS and RAID both strain write performance: NFS because servers must store data safely before replying to
NFS requests, and RAID because of the read-modify-write sequence it uses to maintain parity. This led us to
use non-volatile RAM to reduce NFS response time and a write-anywhere design that allows WAFL to write to
disk locations that minimize RAID’s write performance penalty. The write-anywhere design enables
Snapshots, which in turn eliminate the requirement for time-consuming consistency checks after power loss
or system failure.

2. Introduction To Snapshots

WAFL’s primary distinguishing characteristic is Snapshots, which are read-only copies of the entire file
system. WAFL creates and deletes Snapshots automatically at prescheduled times, and it keeps up to 255
Snapshots on-line at once to provide easy access to old versions of files.

Snapshots use a copy-on-write technique to avoid duplicating disk blocks that are the same in a Snapshot as
in the active file system. Only when blocks in the active file system are modified or removed do Snapshots
containing those blocks begin to consume disk space.

Users can access Snapshots through NFS to recover files that they have accidentally changed or removed,
and system administrators can use Snapshots to create backups safely from a running system. In addition,
WAFL uses Snapshots internally so that it can restart quickly even after an unclean system shutdown.

2.1. User Access to Snapshots

Every directory in the file system contains a hidden sub-directory named .snapshot that allows users to
access the contents of Snapshots over NFS. Suppose that a user has accidentally removed a file named
todo and wants to recover it. The following example shows how to list all the versions of todo saved in
Snapshots:

spike% ls -lut .snapshot/*/todo
-rw-r--r-- 1 hitz 52880 Oct 15 00:00 
.snapshot/nightly.0/todo 
-rw-r--r-- 1 hitz 52880 Oct 14 19:00 
.snapshot/hourly.0/todo 
-rw-r--r-- 1 hitz 52829 Oct 14 15:00 
.snapshot/hourly.1/todo 
... 
-rw-r--r-- 1 hitz 55059 Oct 10 00:00
.snapshot/nightly.4/todo 
-rw-r--r-- 1 hitz 55059 Oct 9 00:00 
.snapshot/nightly.5/todo 

With the -u option, ls shows todo’s access time, which is set to the time when the Snapshot containing it was
created. The user can recover the most recent version of todo by copying it back into the current directory:

spike% cp .snapshot/hourly.0/todo .

The .snapshot directories are "hidden" in the sense that they do not show up in directory listings. If .snapshot
were visible, commands like fin would report many more files than expected, and commands like rm -rf would 
fail because files in Snapshots are read-only and cannot be removed.

2.2. Snapshot Administration

The FAServer has commands to let system administrators create and delete Snapshots, but it creates and
deletes most Snapshots automatically. By default, the FAServer creates four hourly Snapshots at various
times during the day, and a nightly Snapshot every night at midnight. It keeps the hourly Snapshots for two
days, and the nightly Snapshots for a week. It also creates a weekly Snapshot at midnight on Sunday, which
it keeps for two weeks.

For file systems that change quickly, this schedule may consume too much disk space, and Snapshots may
need to be deleted sooner. A Snapshots is useful even if it is kept for just a few hours, because users usually
notice immediately when they have removed an important file. For file systems that change slowly, it may
make sense to keep Snapshots on-line for longer. In typical environments, keeping Snapshots for one week
consumes 10 to 20 percent of disk space.

3. WAFL Implementation

3.1. Overview
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WAFL is a UNIX compatible file system optimized for network file access. In many ways WAFL is similar to
other UNIX file systems such as the Berkeley Fast File System (FFS) and TransArc’s Episode file system.
WAFL is a block-based file system that uses inodes to describe files. It uses 4 KB blocks with no fragments.

Each WAFL inode contains 16 block pointers to indicate which blocks belong to the file. Unlike FFS, all the
block pointers in a WAFL inode refer to blocks at the same level. Thus, inodes for files smaller than 64 KB
use the 16 block pointers to point to data blocks. Inodes for files larger than 64 MB point to indirect blocks
which point to actual file data. Inodes for larger files point to doubly indirect blocks. For very small files, data is
stored in the inode itself in place of the block pointers.

3.2. Meta-Data Lives in Files

Like Episode, WAFL stores meta-data in files. WAFL’s three meta-data files are the inode file, which contains
the inodes for the file system, the block-map file, which identifies free blocks, and the inode-map file, which
identifies free inodes. The term map is used instead of bit map because these files use more than one bit for
each entry. The block-map file’s format is described in detail below.

Figure 1: The WAFL file system is a tree of blocks with the root inode, which
describes the inode file, at the top, and meta-data files and regular files 

underneath.

Keeping meta-data in files allows WAFL to write meta-data blocks anywhere on disk. This is the origin of the
name WAFL, which stands for Write Anywhere File Layout. The write-anywhere design allows WAFL to
operate efficiently with RAID by scheduling multiple writes to the same RAID stripe whenever possible to
avoid the 4-to-1 write penalty that RAID incurs when it updates just one block in a stripe.

Keeping meta-data in files makes it easy to increase the size of the file system on the fly. When a new disk is
added, the FAServer automatically increases the sizes of the meta-data files. The system administrator can
increase the number of inodes in the file system manually if the default is too small. Finally, the
write-anywhere design enables the copy-on-write technique used by Snapshots. For Snapshots to work,
WAFL must be able to write all new data, including meta-data, to new locations on disk, instead of overwriting
the old data. If WAFL stored meta-data at fixed locations on disk, this would not be possible.

3.3. Tree of Blocks

A WAFL file system is best thought of as a tree of blocks. At the root of the tree is the root inode, as shown in
Figure 1. The root inode is a special inode that describes the inode file. The inode file contains the inodes that
describe the rest of the files in the file system, including the block-map and inode-map files. The leaves of the
tree are the data blocks of all the files.

Figure 2 is a more detailed version of Figure 1. It shows that files are made up of individual blocks and that
large files have additional layers of indirection between the inode and the actual data blocks. In order for
WAFL to boot, it must be able to find the root of this tree, so the one exception to WAFL’s write-anywhere rule
is that the block containing the root inode must live at a fixed location on disk where WAFL can find it.

 
Figure 2: A more detailed view of WAFL’s tree of blocks.

3.4. Snapshots

Understanding that the WAFL file system is a tree of blocks rooted by the root inode is the key to
understanding Snapshots. To create a virtual copy of this tree of blocks, WAFL simply duplicates the root
inode. Figure 3 shows how this works.
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Figure 3(a) is a simplified diagram of the file system in Figure 2 that leaves out internal nodes in the tree, such
as inodes and indirect blocks.

Figure 3(b) shows how WAFL creates a new Snapshot by making a duplicate copy of the root inode. This
duplicate inode becomes the root of a tree of blocks representing the Snapshot, just as the root inode
represents the active file system. When the Snapshot inode is created, it points to exactly the same disk
blocks as the root inode, so a brand new Snapshot consumes no disk space except for the Snapshot inode
itself.

Figure 3(c) shows what happens when a user modifies data block D. WAFL writes the new data to block D’ on
disk, and changes the active file system to point to the new block. The Snapshot still references the original
block D which is unmodified on disk. Over time, as files in the active file system are modified or deleted, the
Snapshot references more and more blocks that are no longer used in the active file system. The rate at
which files change determines how long Snapshots can be kept on line before they consume an
unacceptable amount of disk space.

Figure 3: WAFL creates a Snapshot by duplicating the root inode that
describes the inode file. WAFL avoids changing blocks in a Snapshot by

writing new data to new locations on disk.

It is interesting to compare WAFL’s Snapshots with Episode’s fileset clones. Instead of duplicating the root
inode, Episode creates a clone by copying the entire inode file. This generates considerable disk I/O and
consumes a lot of disk space. For instance, a 10 GB file system with one inode for every 4 KB of disk space
would have 320 MB of inodes. In such a file system, creating a Snapshot by duplicating the inodes would
generate 320 MB of disk I/O and consume 320 MB of disk space. Creating 10 such Snapshots would
consume almost one-third of the file system’s space even before any data blocks were modified.

By duplicating just the root inode, WAFL creates Snapshots very quickly and with very little disk I/O. Snapshot
performance is important because WAFL creates a Snapshot every few seconds to allow quick recovery after
unclean system shutdowns.

Figure 4 shows the transition from Figure 3(b) to 3(c) in more detail. When a disk block is modified, and its
contents are written to a new location, the block’s parent must be modified to reflect the new location. The
parent’s parent, in turn, must also be written to a new location, and so on up to the root of the tree.

Figure 4: To write a block to a new location, the pointers in the block’s
ancestors must be updated, which requires them to be written to new

locations as well.

WAFL would be very inefficient if it wrote this many blocks for each NFS write request. Instead, WAFL
gathers up many hundreds of NFS requests before scheduling a write episode. During a write episode, WAFL
allocates disk space for all the dirty data in the cache and schedules the required disk I/O. As a result,
commonly modified blocks, such as indirect blocks and blocks in the inode file, are written only once per write
episode instead of once per NFS request.

3.5. File System Consistency and Non-Volatile RAM

WAFL avoids the need for file system consistency checking after an unclean shutdown by creating a special
Snapshot called a consistency point every few seconds. Unlike other Snapshots, a consistency point has no
name, and it is not accessible through NFS. Like all Snapshots, a consistency point is a completely self
consistent image of the entire file system. When WAFL restarts, it simply reverts to the most recent
consistency point. This allows a FAServer to reboot in about a minute even with 20 GB or more of data in its
single partition.

Between consistency points, WAFL does write data to disk, but it writes only to blocks that are not in use, so
the tree of blocks representing the most recent consistency point remains completely unchanged. WAFL
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processes hundreds or thousands of NFS requests between consistency points, so the on-disk image of t he
file system remains the same for many seconds until WAFL writes a new consistency point, at which time the
on-disk image advances atomically to a new state that reflects the changes made by the new requests.
Although this technique is unusual for a UNIX file system, it is well known for databases. Even in databases it
is unusual to write as many operations at one time as WAFL does in its consistency points.

WAFL uses non-volatile RAM (NVRAM) to keep a log of NFS requests it has processed since the last
consistency point. (NVRAM is special memory with batteries that allow it to store data even when system
power is off.) After an unclean shutdown, WAFL replays any requests in the log to prevent them from being
lost. When a FAServer shuts down normally, it creates one last consistency point after suspending NFS
service. Thus, on a clean shutdown the NVRAM doesn’t contain any unprocessed NFS requests, and it is
turned off to increase its battery life.

WAFL actually divides the NVRAM into two separate logs. When one log gets full, WAFL switches to the
other log and starts writing a consistency point to store the changes from the first log safely on disk. WAFL
schedules a consistency point every 10 seconds, even if the log is not full, to prevent the on-disk image of the
file system from getting too far out of date.

Logging NFS requests to NVRAM has several advantages over the more common technique of using
NVRAM to cache writes at the disk driver layer. Lyon and Sandberg describe the NVRAM write cache
technique, which Legato’s Prestoserve NFS accelerator uses.

Processing an NFS request and caching the resulting disk writes generally takes much more NVRAM than
simply logging the information required to replay the request. For instance, to move a file from one directory
to another, the file system must update the contents and inodes of both the source and target directories. In
FFS, where blocks are 8 KB each, this uses 32 KB of cache space. WAFL uses about 150 bytes to log the
information needed to replay a rename operation. Rename with its factor of 200 difference in NVRAM usage
is an extreme case, but even for a simple 8 KB write, caching disk blocks will consume 8 KB for the data, 8
KB for the inode update, and for large files another 8 KB for the indirect block. WAFL logs just the 8 KB of
data along with about 120 bytes of header information. With a typical mix of NFS operations, WAFL can store
more than 1000 operations per megabyte of NVRAM.

Using NVRAM as a cache of unwritten disk blocks turns it into an integral part of the disk subsystem. An
NVRAM failure can corrupt the file system in ways that fsck cannot detect or repair. If something goes wrong
with WAFL’s NVRAM, WAFL may lose a few NFS requests, but the on-disk image of the file system remains
completely self consistent. This is important because NVRAM is reliable, but not as reliable as a RAID disk
array.

A final advantage of logging NFS requests is that it improves NFS response times. To reply to an NFS
request, a file system without any NVRAM must update its in-memory data structures, allocate disk space for
new data, and wait for all modified data to reach disk. A file system with an NVRAM write cache does all the
same steps, except that it copies modified data into NVRAM instead of waiting for the data to reach disk.
WAFL can reply to an NFS request much more quickly because it need only update its in-memory data
structures and log the request. It does not allocate disk space for new data or copy modified data to NVRAM.

3.6. Write Allocation

Write performance is especially important for network file servers. Ousterhout observed that as read caches
get larger at both the client and server, writes begin to dominate the I/O subsystem [Ousterhout89]. This
effect is especially pronounced with NFS which allows very little client-side write caching. The result is that
the disks on an NFS server may have 5 times as many write operations as reads.

WAFL’s design was motivated largely by a desire to maximize the flexibility of its write allocation policies. This
flexibility takes three forms:

(1) WAFL can write any file system block (except the one containing the root inode) to any
location on disk. In FFS, meta-data, such as inodes and bit maps, is kept in fixed locations on
disk. This prevents FFS from optimizing writes by, for example, putting both the data for a
newly updated file and its inode right next to each other on disk. Since WAFL can write
meta-data anywhere on disk, it can optimize writes more creatively.

(2) WAFL can write blocks to disk in any order. FFS writes blocks to disk in a carefully
determined order so that fsck(8) can restore file system consistency after an unclean
shutdown. WAFL can write blocks in any order because the on-disk image of the file system
changes only when WAFL writes a consistency point. The one constraint is that WAFL must
write all the blocks in a new consistency point before it writes the root inode for the consistency
point.

(3) WAFL can allocate disk space for many NFS operations at once in a single write episode.
FFS allocates disk space as it processes each NFS request. WAFL gathers up hundreds of
NFS requests before scheduling a consistency point, at which time it allocates blocks for all
requests in the consistency point at once. Deferring write allocation improves the latency of
NFS operations by removing disk allocation from the processing path of the reply, and it avoids
wasting time allocating space for blocks that are removed before they reach disk.

These features give WAFL extraordinary flexibility in its write allocation policies. The ability to schedule writes
for many requests at once enables more intelligent allocation policies, and the fact that blocks can be written
to any location and in any order allows a wide variety of strategies. It is easy to try new block allocation
strategies without any change to WAFL’s on-disk data structures.

The details of WAFL’s write allocation policies are outside the scope of this paper. In short, WAFL improves
RAID performance by writing to multiple blocks in the same stripe; WAFL reduces seek time by writing blocks
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to locations that are near each other on disk; and WAFL reduces head- contention when reading large files by
placing sequential blocks in a file on a single disk in the RAID array. Optimizing write allocation is difficult
because these goals often conflict.

4. Snapshot Data Structures And Algorithms

4.1. The Block-Map File

Most file systems keep track of free blocks using a bit map with one bit per disk block. If the bit is set, then the
block is in use. This technique does not work for WAFL because many snapshots can reference a block at
the same time. WAFL’s block-map file contains a 32-bit entry for each 4 KB disk block. Bit 0 is set if the active
file system references the block, bit 1 is set if the first Snapshot references the block, and so on. A block is in
use if any of the bits in its block-map entry are set.

Figure 5 shows the life cycle of a typical block-map entry. At time t1, the block-map entry is completely clear,
indicating that the block is available. At time t2, WAFL allocates the block and stores file data in it. When
Snapshots are created, at times t3 and t4, WAFL copies the active file system bit into the bit indicating
membership in the Snapshot. The block is deleted from the active file system at time t5. This can occur either
because the file containing the block is removed, or because the contents of the block are updated and the
new contents are written to a new location on disk. The block can’t be reused, however, until no Snapshot
references it. In Figure 5, this occurs at time t8 after both Snapshots that reference the block have been
removed.

 
Figure 5: The life cycle of a block-map file entry.

4.2. Creating a Snapshot

The challenge in writing a Snapshot to disk is to avoid locking out incoming NFS requests. The problem is
that new NFS requests may need to change cached data that is part of the Snapshot and which must remain
unchanged until it reaches disk. An easy way to create a Snapshot would be to suspend NFS processing,
write the Snapshot, and then resume NFS processing. However, writing a Snapshot can take over a second,
which is too long for an NFS server to stop responding. Remember that WAFL creates a consistency point
Snapshot at least every 10 seconds, so performance is critical.

WAFL’s technique for keeping Snapshot data self consistent is to mark all the dirty data in the cache as
IN_SNAPSHOT. The rule during Snapshot creation is that data marked IN_SNAPSHOT must not be
modified, and data not marked IN_SNAPSHOT must not be flushed to disk. NFS requests can read all file
system data, and they can modify data that isn’t IN_SNAPSHOT, but processing for requests that need to
modify IN_SNAPSHOT data must be deferred.

To avoid locking out NFS requests, WAFL must flush IN_SNAPSHOT data as quickly as possible. To do this,
WAFL performs the following steps:

(1) Allocate disk space for all files with IN_SNAPSHOT blocks. WAFL caches inode data in two
places: in a special cache of in-core inodes, and in disk buffers belonging to the inode file.
When it finishes write allocating a file, WAFL copies the newly updated inode information from
the inode cache into the appropriate inode file disk buffer, and clears the IN_SNAPSHOT bit on
the in-core inode. When this step is complete no inodes for regular files are marked
IN_SNAPSHOT, and most NFS operations can continue without blocking. Fortunately, this step
can be done very quickly because it requires no disk I/O.

(2) Update the block-map file. For each block-map entry, WAFL copies the bit for the active file
system to the bit for the new Snapshot.

(3) Write all IN_SNAPSHOT disk buffers in cache to their newly-allocated locations on disk. As
soon as a particular buffer is flushed, WAFL restarts any NFS requests waiting to modify it.

(4) Duplicate the root inode to create an inode that represents the new Snapshot, and turn the
root inode’s IN_SNAPSHOT bit off. The new Snapshot inode must not reach disk until after all
other blocks in the Snapshot have been written. If this rule were not followed, an unexpected
system shutdown could leave the Snapshot in an inconsistent state.

Once the new Snapshot inode has been written, no more IN_SNAPSHOT data exists in cache, and any NFS
requests that are still suspended can be processed. Under normal loads, WAFL performs these four steps in
less than a second. Step (1) can generally be done in just a few hundredths of a second, and once WAFL
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completes it, very few NFS operations need to be delayed.

Deleting a Snapshot is trivial. WAFL simply zeros the root inode representing the Snapshot and clears the bit
representing the Snapshot in each block-map entry.

5. Performance

It is difficult to compare WAFL’s performance to other file systems directly. Since WAFL runs only in an NFS
appliance, it can be benchmarked against other file systems only in the context of NFS. The best NFS
benchmark available today is the SPEC SFS (System File Server) benchmark, also known as LADDIS. The
name LADDIS stands for the group of companies that originally developed the benchmark: Legato, Auspex,
Digital, Data General, Interphase, and Sun.

LADDIS tests NFS performance by measuring a server’s response time at various throughput levels. Servers
typically handle requests most quickly at low load levels; as the load increases, so does the response time.
Figure 6 compares the FAServer’s LADDIS performance with that of other well-known NFS servers.

Using a system level benchmark, such as LADDIS, to compare file system performance can be misleading.
One might argue, for instance, that Figure 6 underestimates WAFL’s performance because the FAServer
cluster has only 8 file systems, while the other servers all have dozens. On a per file system basis, WAFL
outperforms the other file systems by almost eight to one. Furthermore, the FAServer uses RAID (which
typically degrades file system performance substantially for the small request sizes characteristic of NFS),
whereas the other servers do not use RAID.

On the other hand, one might argue that the benchmark overestimates WAFL’s performance, because the
entire FAServer is designed specifically for NFS, and much of its performance comes from NFS-specific
tuning of the whole system not just to WAFL.

Given WAFL’s special purpose nature, there is probably no fair way to compare its performance to general
purpose file systems, but it clearly satisfies the design goal of performing well with NFS and RAID.

6. Conclusion

WAFL was developed, and has become stable, surprisingly quickly for a new file system. It has been in use
as a production file system for over a year, and we know of no case where it has lost user data.

We attribute this stability in part to WAFL’s use of consistency points. Processing file system requests is
simple because WAFL updates only in-memory data structures and the NVRAM log. Consistency points
eliminate ordering constraints for disk writes, which are a significant source of bugs in most file systems. The
code that writes consistency points is concentrated in a single file, it interacts little with the rest of WAFL, and
it executes relatively infrequently.

Figure 6: Graph of SPECnfs_A93 operations per second. (For clusters, 
the graph shows SPECnfs_A93 cluster operations per second.)

More importantly, we believe that it is much easier to develop high quality, high performance system software
for an appliance than for a general purpose operating system. Compared to a general purpose file system,
WAFL handles a very regular and simple set of requests. A general purpose file system receives requests
from thousands of different applications with a wide variety of different access patterns, and new applications
are added frequently. By contrast, WAFL receives requests only from the NFS client code of other systems.
There are few NFS client implementations, and new implementations are rare. Of course, applications are the
ultimate source of NFS requests, but the NFS client code converts file system requests into a regular pattern
of network requests, and it filters out error cases before they reach the server. The small number of
operations that WAFL supports makes it possible to define and test the entire range of inputs that it is
expected to handle.

These advantages apply to any appliance, not just to file server appliances. A network appliance only makes
sense for protocols that are well defined and widely used, but for such protocols, an appliance can provide
important advantages over a general purpose computer.
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