5/2/2014

The World Wide Web

2. Server fetches

Client machine Server machine document from
local file
/
Browser Web server # =
Distributed Computing Systems " - E]
oS
3. Response

The Web P

1. Get document request

* Huge client-server system
¢ Traditionally > Document-based
— Referenced by “Uniform Resource Locator” (URL)

References Outline
e [TSO2] Andrew Tanenbaum and Marten van Steen, ;
Distributed Systems — Principles and Paradigms, * Introduction (done)
Prentice Hall, ©2002 (ch 11) ¢ Document Model (next)

e [KR10] James F. Kurose and Keith W. Ross, Computer Architecture

Networking - A Top-Down Approach (5t ed), Pearson, e Processes
©2010 (ch 2.2.4) _
e Caching
e [SAAFO08] F. Schneider, S. Agarwal, T. Alpcan, and A. e Web 2.0

Feldmann. The New Web: Characterizing AJAX Traffic,
In Proceedings of the Passive and Active Measurement
Conference (PAM), Cleveland, OH, USA, 2008

Document Model

¢ All information in documents
— Typically in Hypertext Markup Language (HTML)
— Different types: ASCII, scripts

<HTML> <!- Start of HTML document -->
<BODY> <I- Start of the main body ~ -->

<H1>Hello World</H1> <I- Basic text to be displayed -->
</BODY> <I- End of main body -->
</HTML> <!I- End of HTML section -->
<HTML> <!- Start of HTML document -->
<BODY> <!- Start of the main body -->

<SCRIPT type = "text/javascript"> <!I- identify scripting language -->
document.writeln ("<H1>Hello World</H1>); /I Write a line of text

</SCRIPT> <!- End of scripting section ~ -->
</BODY> <!I- End of main body -->
</HTML> <!I- End of HTML section ->

e Scripts give you “mobile code” (more later)
e Can also have eXtensible Markup Language (XML)
— Provides structure to document

1)
)
(©)
4
()
(6)
)
®)
9)
(10)
(11)
(12)

XML Document Type Definition

(#PCDATA is
primitive type,
series of chars)

<I[ELEMENT article (title, author+,journal)>
<IELEMENT title (#PCDATA)>
<IELEMENT author (name, affiliation?)>
<I[ELEMENT name (#PCDATA)>
<IELEMENT affiliation (#PCDATA)>
<IELEMENT journal (jname, volume, number?, month? pages, year)>
<IELEMENT jname (#PCDATA)>

<I[ELEMENT volume (#PCDATA)>

<IELEMENT number (#PCDATA)>

<IELEMENT month (#PCDATA)>

<IELEMENT pages (#PCDATA)>

<IELEMENT year (#PCDATA)>

Definition above refers to journal article. Specifies type.
— Document Type Definition (DTD)

— Provides structure to XML documents = can test if XML is valid based
on DTD

XML Document

@ <?xml = version "1.0"> /» ------- previows ot
) <IDOCTYPE article SYSTEM "article.dtd">

®3) <article>

4) <title>Prudent Engineering Practice for Cryptographic Protocols</title>
(5) <author><name>M. Abadi</name></author>

(6) <author><name>R. Needham</name></author>

(@) <journal>

8) <jname>|EEE Transactions on Software Engineering</jname>
) <volume>22</volume>

(10) <number>12</number>

(11) <month>January</month>

(12) <pages>6 — 15</pages>

(13) <year>1996</year>

(14) </journal>

(15) </article>

¢ (An XML document using XML definitions from previous slide)
¢ Formatting rules usually applied by embedding in HTML

Outline
Introduction (done)
Document Model (done)
Architecture (next)
Processes
Caching
Web 2.0

5/2/2014

Architectural Overview

¢ Text documents typically “processed” on client
— But can be done at server, too (e.g., Common Gateway Interface (CGl))

3. Start program

to fetch
document Server machine
2.Process | [\ep server| |
input \
"‘ r 1 4. Database
T > [ee]] interaction
L program €
A ‘ SI L
5. HTML document —
created
Local OS Local database
1 Get document
request sent to v 6 Response sent back

the server
(often with user input, e.g., a form)

Server-Side Scripts

¢ Like Client, Server can execute JavaScript

1) <HTML>
@ <BODY>

3) <P>The current content of <pre>/data/file.txt</PRE>is:</P>

@ <P>

(5) <SERVER type = "text/javascript"); e e EDVvED - '
®) clientFile = new File("/dataffile.txt"); | (The tag <SERVER...> |
7 if(clientFile.open("r")){ i is system specific) !
8) while (!clientFile.eof()) fTTTTmTTmTTmm et
9) document.writeln(clientFile.readin());

(10) clientFile.close();

(11) }

(12) </SERVER>

(13) </P>

(14) <P>Thank you for visiting this site.</P>

(15) </BODY>
(16) </HTML>

¢ Server can also pass pre-compiled code = applet

<OBJECT codetype="application/java” classid="java.welcome.class”>

* Servlets are applets that run on server side (Architecture next slide)

Architectural Overview

User's Client machine Server machine
terminal - 3
.| f 1 Browser Web servel
i Req r‘ Za
i Proc- | 1 Serviet —
- essing erviet da
AA) ; H2a
Req. | Al
- Applet [— relaqy -
L t . 1 >
- J 2% caGl 3¢
f | [A ogram ¥
Post Post [« ! | Preg yyy
| proc- | proc- 4c 'l'ﬂ———-‘
essing essing T i o
= | b .
Local database
1 - and file system
1 Alternative paths:
s 2a-3a-4a
2b-3b
Zc-3c-4c

HTTP Connections

e Communication based on Hypertext Transfer Protocol (HTTP)
— Client request, server reply protocol

5/2/2014

— Uses TCP
Client Server Client Server
= = 7] =T
References T_ “ kN References T_ = b
A A 4 A A A
! ! ! . ‘!) -
0s os 0s (o]
TCP connection TCP connection
(a) ()

a) Using non-persistent connections (HTTP 1.0)
* TCP connection setup expensive
b) Using persistent connections (HTTP 1.1)

. Can also have requests either serially or in parallel

User-server State: Cookies (1 of 3)

Web servers stateless

Many major Web sites use
cookies to have state at
server

Four components:

1) cookie header line of HTTP
response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s PC,
managed by user’s browser

4) back-end database at Web
site

Example:

Susan always access Internet from
same PC (e.g., in her home)

Visits specific e-commerce site for
first time (e.g., amazon.com)

When initial HTTP requests
arrives at site, site creates:

— unique ID

— entry in backend database for
ID

(see next slide for example)

User-server State: Cookies (2 of 3)

entry

Client Server
—
ebay 8734 usual http request msg | Amazon server
cookie file creates ID
=
ebay 8734

amazon ul68

cookie-

\‘ usual http request msg

—
usual http response o
set-cookie: ul68 ul68 for user create

User-server State: Cookies (3 of 3)

What cookies can bring:
¢ authorization

¢ shopping carts
¢ recommendations
* user session state (Web e-mail)

Cookies and privacy:
¢ Cookies permit some sites to
learn lots about users
— e.g., tracking visits by 3™ party
sites
e Also, persist when session
closed, so next user has
- e.g., public computer
¢ Orstolen (sniffed), or sent to
attacker if script embedded in
primary Web page

cookie: ul68 access
(one week later) specific « P
J usual http response msg | action backend
S database
ebay 8734 access
amazon ul67§ usual http request msg ‘ . /
cookie: ul68 cookie-
> specific
~_| usual http response msg ’ action
Outline
* Introduction (done)
e Document Model (done)
¢ Architecture (done)
* Processes (next)
e Caching
* Web 2.0

5/2/2014

Client Process: Extensible Browser

Make client browser extensible = do more than default
— Aplug-in
— Associated with document type (MIME type)

Browser's interface for plug-in
Ay

3

Plug-in's interface fc;r browser Local file system

Plug-in is loaded
—__ on demand

-In

Flug

Client-Side Process: Web Proxy

¢ Initially, handle connection when browser does not “speak”
language

HTTP request FTP request

Browser Web proxy ETP server

- -«
HTTP response | FTP response

¢ Now, most browsers can handle, but proxies still used for
common cache when many browsers (e.g., NZ) or to get
“rights” of domain (e.g., proxy -wpi . edu)

e Can be useful for debugging Web session

Fiddler

Web Debugging Proxy

Servers

Module Module Module

[0OTp{00}=+++ 00

> v

N

"

&8

Logical flow‘"\._\:. | Apache [“

of control { core r'S
Request Response

Core invokes modules with data

— Actual module path depends upon data type

Phases:

— authentication, response, syntax checking, user-profile, transmission
Extend server to support different types (PHP)

Server Clusters (1 of 3)

¢ Single server can become heavily loaded

Web Web Web Web
server server server server
t | ‘I |
. t = — ?
- ~ - LAN
YYYY

Front end handles
Front all incoming requests
end and outgoing responses

Request T v Response

¢ Front-end replicates request to back-end (horizontal
distribution)

— But can become overloaded still since all connections through

5/2/2014

Server Clusters (2 of 3)
Logically a
s.lngle TCP —‘-‘-:‘"‘:_—-.h_ Regponge . Web
connection N '1H, :_____(_::_-— server
[-;- ¢ ' v Request .
Client eques’ Front | " (handed off) '

Web
server

@)
e TCP handoff — most “work” on response, typically
— But can’t take advantage of document knowledge or caching
— Or, higher-layer has to do more work, making front-end bottleneck

Server Clusters (3 of 3)

6. Server responses

Web
7 5. Forward server Y
- other i | ™., 3. Hand off
'; messages - Distributor ' TCP connection
Other messages .
Client » Switch 4. Inform a?':her
> - switch P
Setup request | & =

1. Pass setup request Al D|str|but0r &

==l 2 Dlspatcher selects
to a distributor

server
Web

senver

(b)

¢ Distributor talks to dispatcher initially, then hands off connection
¢ Front-end switch can stay at TCP layer, told where to send data

Outline
* Introduction (done)
e Document Model (done)
e Architecture (done)
* Processes (done)
e Caching (next)

* Web 2.0

Web Caching

Browser keeps recent requests

— Proxy can be valuable if shared interests

Check cache first, server next

Cache is full. How to decide replacement?

— LRU (what is different than pages or disk blocks?)
—e.g., GreedyDual (value divided by size)

How consistent should client cache be to
server content? What are tradeoffs?

5/2/2014

Caching - Conditional GET

cache server

Goal: don’t send object if

cache has up-to-date —] HTTP request msg
cached version If-modified-since: .

. <date> | object
cache: specify date of not
cached copy in HTTP — i

t: HTTP response modified
request: “ HTTP/1.0
If-modified-since: 304 Not Modified
<date>
server: response contains HTTP
. s . — request msg
no object if cached copy is I1f-modified-since: |,
up-to-date. e.g., <date> object
HTTP/1.0 304 Not modified
Modified HTTP response —
<« HTTP/1.0 200 OK
<data>

Cache Coherency

* Strong consistency

— Validate each access

— Server indicates if invalid

— But requires request to server for each client request
e Weak consistency

— Validate only when client clicks “refresh”

— Or, using heuristic Time To Live (TTL)

SqUId Texpire = cx‘(Tcached - Tlast_modified) + Tcached
o = 0.2 (derived from practice)

* Why not have server push invalidation?
¢ In practice, cache hits low (50% max, only if really large)
— Make “cooperative” caches

Cooperative Web Proxy Caching

Web
server
3. Forward request v 1
to Web server i
1. Lookin
local cache
. Web 2. Ask neighboring proxy caches Web - :
[| - > .
lGagre | Proxy [provy | Gache)
Client, |Client| |Client r 7 Client| |Client |Client|
Web —
[—
HTTP Get request | proxy | | Cache,

Crien] [Cient] [Giient|

Proxy first checks neighbors before asking server
— Shown effective for 10,000+ users
But complicated, and often not clear win over single proxy

Misc Caching

* Static vs. Dynamic documents

— Caching only effective for static docs (non CGl)
¢ But Web increasingly dynamic (personalized)
* Cookies used since server (mostly) stateless

— Make proxies support active caching
¢ Generate HTML
¢ Need copies of server-side scripts/code
* Accessing databases harder
* Caching large documents
— Can only send changes from original
— But in many cases, connection request is largest cost

5/2/2014

Server Replication

* Clusters (covered)
* Deploy entire copy of Web site at another site
(mirror)

— Often done with file transfer networks (e.g., FTP
servers)

— But non-transparent (i.e., explicitly choose mirror)
e Content Delivery Network (CDN)

— Have network of cooperative caches run by
provider (next)

Akamai CDN

4a. Get embedded documents
from local cache or server

RS) (if not already cached)
| Son —
server Ly -
3.6 bedded A T N
-doet!:nr:enets "/ 5.Embedded 4b. Embedded ™
documents documents \
(“Close” S
CONserver ¥ 1. Get base document ‘_—“
resolved by Client * Original
DNS) - | server

2. Document with refs to
embedded documents

* Embedded documents have names that are resolved by Akamai DNS
to local CDN server
— Use Internet “map” to determine local server
e Local server gets copy from original server
* Akamai has many CDN servers “close” to clients

Outline
* Introduction (done)
e Document Model (done)
e Architecture (done)
* Processes (done)
e Caching (done)
* Web 2.0 (next)

The Web 1.0

* World Wide Web most popular application
running over HTTP

e Users click on links embedded in documents
to fetch additional documents

e Thus, in basic Web 1.0, HTTP request-
response loads new page in response to each
user request

5/2/2014

The Web 2.0

Shift away from class request-response, to
asynchronous communication

Web browsers request data without human
intervention (e.g., without clicking on link/button)
Such requests can mask latency or limited bandwidth
— pre-fetching or

— displaying before all data has arrived

HTTP requests are becoming automated, rather than
human generated

AJAX is one such supporting technology

AJAX —What is it?

AJAX — acronym for Asynchronous JavaScript
and XML

— Despite name, doesn’t have to be XML (often
JSON, a JavaScript text-based notation)

Not stand-alone language or technology

Methods for client-side code to create Web
applications

Clients send and receive data asynchronously,
without interfering with display

AJAX Technologies

AJAX uses:

— Javascript (for altering page)
— XML or JSON (for information exchange)
— ASP or JSP (server side)
Key is the XMLHttpRequest object
All modern browsers support XMLHttpRequest object
— Note: IE5 and IE6 uses an ActiveXObject.

XMLHttpRequest object exchanges data with server
asynchronously
— Update parts of Web page, without reloading whole page

(illustration next)

AJAX versus Normal Web Browsing

Gel requests
(@) Classle User responses over HTTP ¢
Web browsing > >
Browser
I Q Output € ——
| L —
Screen]‘ ePly E
data over — —
(DOM) rah
TR Web.
User server
Web browser
. Flace Get requests
(b) AJAX enabled Tespanses over HTTP 2
Web browsing —_— JavaScript =1
) Browser Engine
) ¥ " —
, ‘E Ouput (Client side) Gy
Screen €————— m : |
1 data over —
(DOM) Wel
HITP ¢b-
User server
JavaScript-enabled-browser

(e.g. Firefox, IE, Safan)

5/2/2014

Web 2.0 Applications

* Google Maps was early adopter of AJAX
— Encouraged others to use for interactive apps

* Many Web-email offerings use AJAX
technologies to rival desktop mail clients

Gouogle o
? e e
e e = 1 L__"_

The Problem

* Prediction algorithms may fetch data that is
not needed - add extra data to Web
browsing

e Fetching no longer limited by user read and
click speed, but driven by JavaScript code logic

* Traditional Web traffic models (e.g., data rate
for browsing, number of objects per page)
may not hold

Web 2.0 Outline

* Introduction (done)
* Approach (next)
* Results

¢ Conclusions

Approach

Pick four popular, “representative”,
AJAX apps and study their traffic:

— Google Maps

— Google Mail
— Gmx.de (popular German
Webmailer)
— Lokalisten.de (popular German social jox LR ""'%
network)

Traces from networks in Munich,

Germany and Berkeley, USA

Highlight differences in Web 2.0

traffic compared to traditional Web

1.0 traffic fj{:o

apps

AlHTTP

Google Google

5/2/2014

10

Google Maps Internals

Google Maps is AJAX
application

— Sometimes called the
“canonical” AJAX app

Prefetches tiles

Opens multiple TCP
connections to different
servers

Uses cookies to identify users
HTTP 1.1 transfers data via
persistence and pipelining

— Mostly to fetch new image tiles

— Also control, GUl-related
pictures, user queries

Maps Local Search [Directics

Google wacoinim

Maps
Candlestick R V Park
(415) 8222299
- 650 Gilman Ao Iy
| San Francizco, CA 124 il
C Directions To hers - From here
(23]

Analysis

e Extract standard HTTP request from all
connections

— Identified Google Maps via initial request to
maps.google. com plus session cookies Google uses

* Studied:
— Number of bytes transferred (HTTP payload)
— Number of HTTP requests
— Inter-request times
* Colors:
— Red/Pink — All HTTP
— Green — Google Maps

Web 2.0 Outline

Introduction
Approach
Results
Conclusions

(done)
(done)
(next)

Bytes Per Connection (HTTP Payload)

AJAX Apps:

maost connections
transfer more bytes
than ALL-HTTP

100%
L

ul

10%

T
£ ,
8 i
=)
3 All-HTTP:
E‘c: =4 4 largest
o i3
o —— MWN=07 AlI-HTTP % PR —
[—— MWN-07 Google Maps e A
=3 ——— MWN-07 Google Mail
e —— MWN-07 GMX order of
S 1O —— MWN-OT lokalisten magnitude
8 I T T T T T T T ~r more bytes
= 1 10 100 1K 10K 100K 1M 10M 100M Y

u [bytes]

5/2/2014

11

Bytes Per Connection (HTTP Payload)

w
o
o MWN=07 All=-HTTP
- MWN-07 Google Maps
o MWN-07 Google Mail
< LBNL-0Y Geogle Maps
=2 -
E o
5]
8o y
=
9 | 4
= %
2
=) R :
Sl L : .= 3 . e
100 1082 1044 106 108

HTTP payload data [bytes]

Compare HTTP 1.0, Maps to the right,
(HTTP 1.0 has not changed much since 1997)

Bytes Per Session (HTTP Payload)

& MWN-07 AlI-HTTP
= MWN-07 Google Maps
= MWN-07 Remaining 3
IS i
292 AJAX Apps:
£° transfer
E 2 | more
S bytes per
o) [session
o
c‘ 1
@
2|

1 10 100 1K 10K 100K 1M 10M 100M 1G
HTTP payload data [bytes]

Requests per Session

All-HTTP:

significantly less
requests per
session

CCDF PDF

£

- Ee s MWNR=0T AR=HTTP

. . e, MWN-0T Google Maps
2 — \ i MWN-07 Remaining 3
A S A g LENL-O7 Google Maps
i« S . z3
f % i
cE .y g *
£s MWN-O7 Al-HTTP o A .
e MWNR-OT Google Maps = _ % M,

2 M / e " vy

MWN-OT GMX # ”

£ MWN-=07 lokalisten de = [# byt e ,

8]

=) 100 1" 1K 1 10 100 ® 10K

u [Frequests] v SHTTP requests
All-HTTP: 50% of the sessions consist of only two requests ﬁ

Conclusions

On average, versus All-HTTP, AJAX apps

— Transfer more bytes per connection and per
session

— Have more requests per session

— Have significantly shorter inter-request times
Larger sessions and burstier traffic with AJAX
applications

Existing Web traffic models still applicable, but
need new parameterization

5/2/2014

12

