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Abstract—Interactive TCP applications, such as Telnet and the Web, are par-
ticularly sensitive to network congestion. Indeed, congestion-induced queuing
and packet loss can be a significant cause of large delays and variability, thereby
decreasing user-perceived quality. We consider addressing these effects using
service differentiation, by giving priority to interactive applications’ traffic in
the network. We study different packet marking schemes and handling mecha-
nisms (packet dropping and scheduling) in the network. For marking packets,
two approaches are considered. First, we look into application-based mark-
ing, and show how the protection of Telnet traffic against loss can eliminate
large echo delays caused by retransmit timeouts, and how, by limiting packet
loss for Web page downloads, their delays can be significantly reduced, re-
sulting in enhanced interactivity. Second, we consider differentiation based on
TCP state, where we present a marking algorithm that prioritizes packets at the
source, based on each connection’s window size. In addition, we describe the
shaping mechanisms required for conformance to agreements with the network.
We show how this marking results in good response times for short transfers,
which are characteristic of interactive applications, without significantly affect-
ing longer ones.

I. INTRODUCTION

E have all had the frustrating experience of dealing with

large and variable delays when using interactive Inter-
net applications, such as Telnet and the Web. These applica-
tions clearly have more stringent delay requirements than the
traditional data applications like FTP and email. For exam-
ple, human-computer interaction studies have shown that the
response time of highly interactive tasks (such as teletyping in
Telnet), should be below 150 msec for good user-perceived per-
formance [30]. Beyond that, delays in response time (e.g., Tel-
net echo delays) become noticeable and, eventually, they would
severely hinder the usability of the application, especially if
delay variability increases as well. Comparably stringent con-
straints apply to other highly interactive data applications, such
as remote graphical desktop access and real-time gaming. Sim-
ilarly, Web page downloads should complete in a few seconds
(e.g., less than 5 sec [7]), and should have low variability to
be satisfactory to users. The low delay and high predictabil-
ity requirements have also been found to depend on the per-
ceived importance of the page content and the task at hand. For
example, they are stricter for business applications, such as e-
commerce and online trading, than for normal Web browsing
(for more information on user-perceived performance of inter-
active applications, the reader is referred to [7], [9], [30] and
the references therein). The growing importance of these and
similar Internet applications’ role in our daily life behooves us
to improve their delay performance.

Delays in response time are introduced in the network as well
as in the servers. Clearly, heavily loaded servers may introduce
large delays in response time for interactive (e.g. Web) trans-
fers. A content provider interested in decreasing these delays
can do so by increasing server capacity, by prioritizing requests
based on the application or the importance of the request for in-
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teractivity [14], or by using content replication and caching. In
contrast, network delays, which form a significant part of total
delay for Web transfers [4], [5], [24], [26], are usually outside
the control of the provider or any other single organization, and
are therefore not as easily reduced. In this paper, our focus is
on network delays, and we assume that server performance has
been properly addressed and server delays are therefore negli-
gible.

For a concrete example of the impact of network delays on
interactive applications, consider Telnet. In the common usage
of Telnet, users type characters at a terminal, at speeds up to 5
characters per second [30]. These are sent over a TCP connec-
tion to a server, which echoes them back. Network delay for
Telnet is the time between typing a character and the reception
of the corresponding character echo. It includes transmission,
propagation and queuing in network buffers. Telnet is sensi-
tive to per-packet delays, and therefore these components can
perceptibly affect the end-user experience. Furthermore, if the
packet containing the character or the echo is dropped in the
network, additional delays are introduced as TCP’s reliability
mechanisms are invoked to recover the lost data.

Similarly, network delay for Web browsing is the time be-
tween the generation of a page request and the reception of the
corresponding Web page components (HTML code and in-lined
images)'. Again, this delay includes transmission, propagation
and queuing delays for individual packets. However, the de-
lays due to TCP’s mechanisms for connection establishment,
reliability and congestion avoidance and control are typically
the most significant. This is particularly the case for HTTP/1.0,
where a TCP connection is opened for each component of a
page, adding a non-negligible connection establishment over-
head to the total transaction delay. As discussed in [26], the
use of one, “persistent”, TCP connection to transfer all Web re-
quests and responses between a client and a server eliminates
this overhead. This usage has been adopted in HTTP/1.1.

We are interested here in the delays due to network
congestion-induced queuing and packet loss. TCP was de-
signed with the goal of realizing the maximum throughput over
a path with unknown bandwidth and round trip delay. During
a long transfer, TCP actively probes the network for available
resources by continuously increasing its window and therefore
the amount of data it injects in the network, filling up network
buffers until packet loss occurs. Packet loss is followed by a pe-
riod of idle time, and a possibly severe reduction of the sending
window. Such loss, and the time needed for recovery typically
do not significantly affect the long term average throughput of
a large transfer. However, the impact of large delays in queues

ITo simplify the presentation, we ignore DNS lookup delays. However, we
note that the mechanisms we study should also be used to decrease the network
component of these delays.
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and packet drops for interactive transfers that share the same
network buffers is significant. Indeed, the delays thereby in-
troduced are excessive for delay sensitive applications, and re-
sult in degradation of user-perceived performance. While bot-
tlenecks may not exist in the reputedly over-provisioned back-
bone of the Internet, they tend to naturally occur along the paths
of connections, for example at the boundary between differ-
ent service providers’ networks, or between wired and wireless
networks (which typically have limited bandwidth resources).
Given the burstiness of TCP traffic and the uncontrolled usage
of the network, congestion and packet loss are bound to occur.
Therefore, when examining response time for interactive TCP
applications, there is a strong motivation to address the effects
of network delays due to congestion.

In this paper, we achieve the goal of reducing congestion-
induced delays for interactive applications using service dif-
ferentiation mechanisms, such as those defined in the IETF
DiffServ architecture (see [8]), and in the Assured Forward-
ing service in particular. We consider two approaches to the
use of these mechanisms. In the first, preferential treatment
is given to interactive applications in the network, thereby re-
ducing the packet loss rate they incur. Thus, highly interac-
tive applications, such as Telnet, would be given priority over
interactive applications, such as Web transfers, which in turn
are given higher priority over non-interactive applications. We
show that, by properly classifying traffic based on the applica-
tions’ characteristics and requirements, user-perceived quality
can be significantly improved, albeit at the expense of lower
priority traffic. The second approach automatically prioritizes
short (interactive) transfers by basing the priority of packets on
the TCP connection window. A source marking algorithm is
described, which allows fine-grain control on the performance
of individual connections. This approach is shown to improve
the user-perceived performance of interactive transfers, without
significantly affecting others.

The rest of this paper is organized as follows. Section II
describes the simulation setup used in the study. Section III
motivates the work, by illustrating the effects of congestion on
Web page downloads and Telnet echoes. In Section IV, we
present the service differentiation framework assumed for the
study. We describe the different network functions that are ex-
pected in edge and core routers, and in source hosts. In Section
V, we show how prioritizing interactive applications traffic in
the network can improve their performance. Limitations in this
approach lead us to look for a more flexible solution. In Section
VI, we propose a set of generic TCP state-based service differ-
entiation mechanisms that can be used to improve the perfor-
mance of all TCP applications. We conclude in Section VII.

II. SIMULATION SETUP

This study relies on computer simulations, using ns [1].
Therefore, we pay particular attention to the design of an ac-
curate and realistic simulation setup, which we describe in this
section, justifying the choices made along the way. Unless oth-
erwise noted, the parameters specified below were used for all
the experiments in the paper.

Bottleneck router

BTLNK BW
Bottleneck router

1.5Mbps

2nd level router 2nd level router

1st level router

Fig. 1. Network Topology. Ten users are connected to each 15 level router,
8 15t level routers are connected to each 27¢ level router, and 5 2"% level
routers are connected to each bottleneck router.

A. Network Scenario

To illustrate the issues at hand, it is sufficient to consider one
network bottleneck, shared by all connections. We therefore
use a symmetric, multi-hop tree topology, shown in Fig. 1. We
use typical link speeds, starting from the Users side: 1.5Mbps
(e.g. T1), 10Mbps (e.g., 10Mbps) and 45Mbps (e.g., T3). The
bottleneck link speed is varied in the scenarios. Given the rel-
atively high speed links chosen, and in order to generate a re-
alistic traffic aggregate, several hundred traffic sources of the
different types are needed. Furthermore, to capture the effects
of the aggregation of many flows, which may modify the char-
acteristics of individual flows, traffic from different sources is
aggregated at several points before reaching the bottleneck. The
topology thus contains a total of 800 hosts, organized in 400
source-destination pairs communicating across the bottleneck.
We have also experimented with different topologies, lower link
speeds and fewer users, with similar results.

The simulated network only needs to capture the main ag-
gregation points and potential bottlenecks of a larger, more
complex network. Therefore, each link in the topology ef-
fectively represents several actual links, as well as the inter-
mediate nodes. Hence, the propagation delay of each link ac-
counts for the transmission and propagation delays on the links
it represents, and the switching delay in the intermediate nodes.
The delays for the different links in the topology are selected
to lead to a mix of round trip times between different source-
destination pairs (20, 40, 80, 120 and 200msec), thereby cover-
ing a range of RTTs, from metropolitan to inter-continental.

In order to generate network congestion at levels similar to
those seen in the Internet, and since the number of flows in
the simulation is limited, we use buffers that are smaller than
what is common in commercial equipment. On the 1.5Mbps,
10Mbps, 45Mbps and bottleneck links they are 64, 64, 250,
and 500 packets, respectively.
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B. Traffic Models

The simulation results presented in this paper use TCP
NewReno. However, the same experiments were repeated for
the Reno and SACK versions, and identical results were ob-
tained. In order to remove the limitation of small receiver ad-
vertisement on the sending window size, and therefore empha-
size the more interesting role of the congestion window, the re-
ceive buffer size was set to 64KB (maximum unscaled value).
We model traffic from the following representative TCP appli-
cations: Telnet, interactive Web, and FTP, generated in propor-
tions that attempt to roughly approximate their real life coun-
terparts, across the range of bottleneck links used.

Telnet. We model a Telnet client, as regulated by Nagle’s algo-
rithm. The client sends a 100 byte packet? and waits for the ac-
knowledgment (echo). The process is repeated after a random
interval, such that the packet generation rate is approximately
5 characters per sec, the rate for a fast typist [30]. The perfor-
mance measure, echo delay, is the time it takes for a segment
sent by the source to be acknowledged. The aggregate traffic
generated by all the Telnet sources, without other traffic (loss-
less network), amounts to less than 2Mbps.

HTTP. We use two different HTTP models, one for HTTP/1.0 and
the other for HTTP/1.1. The HTTP/1.0 client sends a request which,
when completed, is followed by the server sending the HTML in-
dex page. When the index is received, up to 4 connections are
opened in parallel to transfer the objects (e.g., images) embed-
ded in the page, as in popular commercial browsers. After each
object is received, the corresponding connection is closed, and
a new one opened if more objects remain to be transferred. In
contrast, the HTTP/1.1 server uses only one “persistent” connec-
tion to send all the objects assuming a pipelined request, i.e. all
requests are considered to be received together and therefore
all objects are sent without inter-object delay. The connection
is closed when the transfer is complete. The performance mea-
sure we use, download time, is the delay from the time a request
is sent, until the whole page is received.

The composition of each Web page in terms of number of
in-lined objects, and the size of each object are drawn at ran-
dom from known distributions, as in [16]. Short, uniformly
distributed user “think time” (2.5 sec average) is used to sim-
ulate heavy Web usage. It would have been possible to gen-
erate the same traffic by adding more users to the simulation,
a more taxing alternative on the simulator. When collecting
download time samples, we use a small number of probe ses-
sions (5 out of the 400) each with a different round trip time,
which download fixed size pages (81KB, 1KB index file with
8 10KB images) to eliminate the variations in download times
due to different page sizes, without losing much of the appli-
cability of the results. The image sizes and number of images
per page for these users are around median values found in a re-
cent Web traffic study [25], which show that the complexity of
Web pages has increased since earlier studies such as [23]. The
aggregate traffic generated by the HTTP sources, when no other
traffic is present (lossless network), amounts to about 33Mbps.

2This approximates the size of a typical Telnet packet containing a few char-
acters, a 40 byte TCP/IP header, as well as the MAC frame overhead. Since the
latter is not present in ns, we include it because the transmission time it adds
on slow links may be perceptible to Telnet users.
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Fig. 2. CCDF of HTTP/1.0 and HTTP/1.1 downloads for different bottleneck
speeds, and drop tail queues in all routers.

FTP. F1P sources send files with Pareto distributed files sizes
(with shape parameter 1.2 and average 200KB, the mean value
of file transfers measured in an Internet backbone study [31])
separated by an exponentially distributed delay, with a 2 second
mean, again to create heavy traffic. The performance measure
for FTP sources is the file transfer time. When collecting trans-
fer time samples, we use 10 probe sessions with different round
trip times, which perform 200KB fixed size transfers, in order
to eliminate transfer time variations due to different file sizes.
The traffic generated by the FTP sources is elastic, but cannot
fully utilize a bottleneck larger than 100Mbps by itself.

FTP sources are also used to create traffic on the reverse (ACK)
path, i.e. from destination to source hosts. Such two-way traf-
fic is important because it is more realistic than one-way traffic,
and involves interesting dynamics in the return queues, where
the queuing and potential loss of ACKs can affect TCP’s bursti-
ness, and performance in general [33].

III. THE EFFECTS OF CONGESTION

To motivate this study, we present in this section the results
of simulations which illustrate the impact of congestion on the
user-perceived performance of HTTP and Telnet.

The traffic scenario is as follows. Each source host has an
active Telnet session, a Web client, and an FTP client at the cor-
responding destination host. Both HTTP implementations are
considered, where one half the clients use HTTP/1.0 and the other
half use HTTP/1.1. Fig. 2 shows the CCDF of page download
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times, that is, the fraction of downloads that exceed a certain
time, assuming negligible server delays. Several curves are
shown, corresponding to bottleneck link speeds ranging from
45Mbps to 175Mbps. The top figure shows the distributions
for HTTP/1.0 download times experienced by the 5 probe ses-
sions, which have different round trip times (ranging from 20 to
200msec). Each curve is labeled with the average packet drop
rate seen at the central link buffer. It is observed that, for all but
the highest link speeds, a significant fraction of the downloads
incur large delays. In addition, large variability can be seen in
page download times for all link speeds. Other experiments we
conducted have shown that, for a fixed total page size, the vari-
ability of HTTP/1.0 download times increases with the number of
objects in the page.

Similar results are shown for HTTP/1.1 in the bottom figure.
The first observation is that the delays incurred here are lower
than those for HTTP/1.0. However, both the delays and variabil-
ity are still larger than desired. Moreover, the use of different
source servers for different objects within a page would reduce
HTTP/1.1’s performance benefits, as already pointed out in [22].
Note that the extent of HTTP/1.1’s deployment is still limited, as
observed in various measurement studies [2], [22], which have
found lack of deployment or compliance on both the client and
server sides. In the rest of the paper, we focus on HTTP/1.0, not-
ing that comparable results are obtained for HTTP/1.1.

Given the link speeds and the page size considered, expected
download times are in the order of a few seconds. To explain the
surprisingly large range of delays that are incurred, one might
consider the different RTTs to be an important factor. However,
this can be easily dismissed by looking at the CCDFs for indi-
vidual probes (graphs not shown). While we find some small
differences in the delay plots for the various RTTs, they all show
the same spread in download times as in Fig. 2. Thus, the
factor to be considered is the packet loss observed in the simu-
lations, which ranges from about 8.5% for the 45Mbps link to
about 1% for the 175Mbps link. Such drop rates are not un-
common in the Internet. For example, a measurement study of
a large number of TCP connections at a busy Web server ob-
served TCP segment loss rates in the Internet ranging from 5 to
7% [4]. However, the study does not show the resulting down-
load delays. Here, we can show the packet drops’ impact on the
user-perceived performance of the Web transfers. In the exper-
iments above, corresponding loss rates are observed for central
link speeds of 100Mbps and 60Mbps respectively. As shown in
Fig. 2, about 15% of HTTP/1.0 page downloads for the 100Mbps
central link (30% for the 60Mbps link) incur delays larger than
10sec, the limit beyond which quality is typically perceived as
low [7]. The percentage of downloads that exceed 10sec for
HTTP/1.1 drops to 5% at 100Mbps, and 20% at 60Mbps.

The large delays and variability observed can be explained by
examining the reaction of TCP’s reliability and congestion con-
trol mechanisms to loss. First, the loss of connection establish-
ment segments (SYN) is very costly to recover, given the large
values commonly used for the initial retransmit timer (e.g., 3
or 6 seconds [10]). With the large number of short connections
used in Web transfers, such loss is not a rare occurrence within
a session. Second, TCP’s loss recovery mechanisms are known
to be inefficient when a connection’s sending window size is
small, as discussed in [15]. Indeed, for a small window, the

HTTP/1.0, All Users, RTO 1sec
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Fig. 3. CCDF of HTTP/1.0 downloads for initial RTO of Isec.

number of duplicate ACKs received by the source is not suf-
ficient to trigger the fast retransmit mechanism. Instead, TCP
has to rely on the retransmit timer, typically resulting in a min-
imum idle time of 1 second®. Given that interactive transfers
are usually short, they operate at small windows and are there-
fore particularly vulnerable to packet drops, as observed in [4].
In addition, the timeout is followed by slow start, where the
connection operates at reduced rate. Finally, the “exponential
retransmit backoff” rule typically doubles the retransmit timer
value when a retransmitted packet is lost [28]. This means that
the loss of successive retransmissions results in very large de-
lays. Similar observations were made in a measurement study
[5], where the causes of transaction delays are profiled by trac-
ing TCP packets exchanged between Web clients and servers.
The study shows the network is a significant component of total
delay for medium sized transfers (Web objects), and packet loss
is the main cause of response time variability.

Telnet is also very susceptible to loss, since it usually has
only one packet in transit at a time. The loss of this packet al-
ways requires waiting for the retransmit timeout which, at 1sec
minimum, introduces delays beyond the limit for good inter-
activity. In addition, successive losses would rapidly result in
clearly unacceptable performance. For example, in the scenario
described above, for the 100Mbps link and the RTT range used,
1 in 10 echo delays takes about 1 second, while the others are
received within acceptable delays, resulting in a bimodal delay
distribution (not shown). Significantly worse results are ob-
tained for slower link speeds, as we show later in the paper.

These aspects of current TCP implementations show that
they are not optimized for use in interactive applications. One
may consider changing TCP’s parameters to reduce the impact
of large default values on performance. For example, the effects
of reducing TCP’s minimum timer value and the granularity of
the timer are studied in [3]. Such modifications to TCP, as well
as reducing the initial retransmit timer value, might improve the
performance of interactive applications by increasing their ag-
gressiveness. For example, using a 1 second initial timeout (in-
stead of the 6 second default used above) results in perceptibly
lower HTTP/1.0 delays, as shown in Fig. 3. However, this value

3The standard RFC for computing the retransmit timer places a 1 sec min-
imum timer requirement, even when the actual timer computation results in a
lower value [28].

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.



may result in performance degradation over long delay paths.
In addition, concerns about the stability of the network may be
raised as a result. Therefore, we do not further investigate such
changes in this paper, and consider TCP implementations as
currently deployed, and which follow the relevant standards for
retransmission [10], [28].

An alternative to modifying TCP’s mechanisms, is to de-
crease the loss rate for interactive applications during conges-
tion episodes, by giving priority to their traffic in the network.
We explore this idea in the following sections.

IV. Q0S FRAMEWORK

In this section, we describe the network QoS mechanisms
that are used in this study. We consider simple mechanisms,
such as those introduced by the IETF DiffServ architecture [8],
and the Assured Forwarding service in particular. We first
present the prioritized dropping function required in routers,
then we discuss the service agreements between the network
and its clients, and the associated mechanisms.

A. Prioritized Dropping

The Assured Forwarding service, standardized in [21], pro-
vides a simple form of differentiation within one queue with
multiple drop priorities. Four AF classes are defined, each
with 3 drop precedence levels. The use of the AF service has
been the subject of many studies, e.g., [11], [19]. These stud-
ies focus on guaranteeing throughput for individual TCP con-
nections, considering that an edge device, e.g. router, would
mark users’ traffic based on an agreed-upon profile. However,
besides the need for appropriate provisioning along each con-
nection’s path (or some form of end-to-end admission control),
this paradigm faces a number of challenges. First, in order to
have control on individual connections’ performance, the router
needs to identify and keep track of all user connections. This
might be prohibitive for short transfers associated with inter-
active applications. Second, it was found to be doubtful that
TCP throughput can be controlled through such marking and
dropping [27], [29]. An alternative to this approach is to have
sources pre-mark their own traffic. Previous work in this area
has also focused on achieving an average rate for long transfers.
Modifications to TCP’s congestion control mechanisms, such
as the use of 2 congestion windows or having different reactions
depending on the marking of the lost packet, were required to
obtain the desired performance [17], [32]. In this study, we are
mainly concerned with short transfers belonging to interactive
applications, which require a fundamentally different type of
service. These have not been addressed in previous AF-related
studies.

Following the AF specification, we consider queues where
3 packet priorities are supported, LOW, MED and HIGH. In this
paper, we only consider TCP traffic. However, marked and po-
liced UDP traffic (e.g., layered video) could have been mixed
in, without affecting our results, or could be mapped to a sep-
arate AF queue. The integrated support of TCP and UDP ap-
plications in a network offering differentiated services is the
subject of our current work.

The dropping function we use in network queues is a sim-
ple 3-priority version of Random Early Detection (RED) [18].

Fig. 4. Drop function used in network buffer management.

Three average queue sizes are computed, one for each drop pri-
ority (HIGH,;, MED, and LOW,), using the Exponentially
Weighted Moving Average (EWMA) filter as in RED. When com-
puting the queue size for a certain priority, packets that are at
this priority level or higher are counted. We use the same EWMA
weight (e.g., 0.5), and maxp for the three levels (e.g., 0.1). The
drop threshold values, as a percentage of buffer size are shown
in Fig. 4. These settings have been validated through their use
in numerous scenarios, spanning a large range of topologies,
number of users, link speeds and traffic scenarios, where they
consistently provided satisfactory performance.

B. SLAs and Policing

To limit the aggregate rate of HIGH and MED priority packets
in the network, service level agreements (SLASs) exist between
the users and the network. We consider that SLAs specify per-
user rate limits and allowable burst sizes for each of these two
priorities, in the form of a token bucket profile. It is up to the
users to pre-mark their traffic according to these contracts or to
defer the marking to the service provider. On the other hand, it
is the service providers’ responsibility to ensure that SLAs are
established in relation with the available network resources.

We do not assume that any kind of trust must exist between
the network and the users. In order to police the marked traf-
fic injected in the network, per-user mechanisms are present at
the network edge. Policing actions may consist of dropping of-
fending packets, or remarking them with a lower priority. Thus,
the edge nodes effectively limit the aggregate rates of HIGH and
MED priority packets that are admitted to the network. A key
point we make is that, for scalability reasons, per-user agree-
ments rather than per-connection agreements are made, i.e. the
agreements cover the aggregate rate sent by the user which, at
any one time, could be generated by only one or by many dif-
ferent connections. Given the policed rate agreements with the
network, it is to the best interest of sources which mark their
own traffic to implement shaping mechanisms that ensure con-
formance with the agreed-upon traffic profiles.

V. APPLICATION-BASED DIFFERENTIATION

In this section, we show the benefits of reducing the packet
loss experienced by interactive TCP applications through giv-
ing priority to their traffic in the network.

We first consider the use of one AF class for TCP traffic. Us-
ing the 3 drop priorities available in an AF class, a natural map-
ping would be to send highly interactive applications’ traffic,
such as Telnet and network gaming, at highest priority (HIGH);
interactive applications’ traffic, such as Web, at medium pri-
ority (MED); and less interactive and more robust applications’
traffic, such as FTP, at lowest priority (LOW). Thus, in the event
of congestion, no Telnet packets would be lost, and the loss rate
of HTTP packets would be limited.
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Fig. 5. Application-based differentiation mechanisms.

The mechanisms required for such classification can be im-
plemented in edge routers. Note that the router does not need to
keep track of individual connections, since the marking could
be determined on a per-packet basis (e.g., a simple scheme
would use the well known port numbers). An obvious advan-
tage of router-based marking is that no changes would be re-
quired in the stations. On the other hand, source-based mecha-
nisms have the benefit of off-loading routers, and may also be
the only possible option when using an end-to-end IP layer en-
cryption scheme such as IPsec [6]. Indeed, IPsec hides all up-
per layer information beyond IP, and TCP and application-level
information would only be available at the source.

In our simulator, we implemented the required mechanisms
in the traffic sources, as shown in Fig. 5. When segments are re-
leased by TCP, the networking stack marks the appropriate field
in the IP header based on the connection’s application type. The
sending of HIGH and MED priority packets is regulated using two
token bucket shapers. Thus, for such packets to be transmitted
by the source, sufficient tokens must be present in the corre-
sponding token bucket shaper. This ensures that the marked
traffic generated complies with the policer state at the router.

We repeat the experiment of Section III, with this mapping of
application traffic to priority levels. The aggregate marked traf-
fic in the reverse direction is chosen such that the link speeds
studied range from under-provisioned to over-provisioned. In
Fig. 6, we show the CCDF of HTTP/1.0 page download times,
for 2 MED token bucket profiles (110Kbps, 6,000 bytes - dashed
lines, and 250Kbps, 6,000 bytes - solid lines). These rates cover
the interesting range of performance for the network conditions
and the application requirements we are interested in. The to-
ken bucket profile for HIGH priority is large enough to minimize
the delay of Telnet packets at the source (250Kbps, 6,000B).
As would be expected, download times are larger for the lower
token rate, due to shaping delays at the source. Nevertheless,
when the bottleneck link speed can accommodate the aggregate
HIGH and MED traffic generated in both directions, the perfor-
mance of HTTP is good for both profiles. Not shown is a similar
plot for HTTP/1.1.

As would be expected, sending Telnet traffic at HIGH priority
eliminates packet drops for all link speeds, and the correspond-
ing delays (results not shown). On the other hand, as discussed
earlier, Telnet is not only sensitive to delays from packet loss,
but also to queuing delay. Multiple priority levels within one
queue can be used to reduce packet drop rate, but not queuing
delay. Therefore, if a Telnet connection’s path goes over a low
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Fig. 6. CCDF of HTTP/1.0 downloads for different bottleneck speeds.
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Fig. 7. Telnet echo delays for multi-queue and single queue differentiation.

speed link, it may become necessary to use multiple queues,
served by a weighted round robin (WRR) scheduler for exam-
ple, to avoid long delays in a shared buffer. To illustrate this,
we scale down by a factor of 10 all the link speeds in the topol-
ogy, i.e. users are now connected to the network with 150Kbps
links and the bottleneck link speed is 10Mbps. We use a traf-
fic scenario comparable to the previous experiments. In Fig.
7, we show the CCDF of echo delays for a connection with
80msec RTT, without differentiation (drop tail -DT- and RED),
with application-based differentiation (APPL), and with multi-
queue differentiation for different scheduler weights (lines la-
beled with the WRR scheduler weight of the Telnet queue). Al-
though the shorter queue sizes associated with RED improve the
packet delays compared to drop tail, it is clear that the quality
obtained is poor for both, with large delays (several seconds)
caused by packet loss and retransmissions. The application-
based prioritization provides significantly better performance,
with all echos taking about 700msec. However, the delays ob-
tained are still larger than desired. Only with a separate queue,
and with a large enough scheduler weight (e.g., 20% or more),
can Telnet obtain the quality it requires.

The improvements in Web and Telnet performance come at
the cost of decreased performance for LOW priority traffic. In
Fig. 8, we show how the LOW priority FTP traffic is penalized,
for different MED token rates and a 75Mbps bottleneck link. The
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Fig. 8. CCDF of FTP file transfer times for application-based differentiation.

scenarios considered use 10 FTP probe sessions, with 200KB
fixed file sizes, to isolate the variations in transfer times that are
due to TCP’s congestion control mechanisms. The plots show
that the transfer times corresponding to the application-based
differentiation are larger than for drop tail and RED, and increase
with the MED token rate. For lower bottleneck speeds, where the
aggregate of HIGH and MED traffic approach the link’s speed, the
degradation in FTP’s performance is significantly more severe.
Nevertheless, the radical improvements in interactive applica-
tions’ performance might justify the degradation in other appli-
cations’ performance. Furthermore, as the plots for the different
MED token rates indicate, the effects on low priority applica-
tions can be limited if the contracted aggregate rates of higher
priority traffic do not fully consume the network’s resources.
Unfortunately, in DiffServ, the lack of explicit resource reser-
vation complicates network provisioning, and the likelihood of
over-subscription on some links can be high.

Another limitation of this approach resides in the large vari-
ability among different sessions of one application type. For ex-
ample, Web traffic (i.e. carried by HTTP) does not only consist
of HTML code and small images for Web pages, or other interac-
tive transfers. Indeed, measurement studies, such as [12], con-
firm what most Internet users know, that is, HTTP is also used to
transfer large text documents and multimedia (audio and video)
files. Without differentiating between HTTP sessions, interactive
Web transfers may be affected by longer, less interactive ones.
If source-marking is performed, a solution would be to assign
transfers to the LOW priority class based on the transfer size.*
However, this solution has the following drawbacks. First, the
document size is not always available at connection setup time
(e.g., for dynamically created content). Second, since some
connections transfer different objects of different size and im-
portance, as in HTTP/I.1, it might be necessary to modify the
connections’ priority during their lifetime. Finally, the selec-
tion of the appropriate size thresholds for mapping documents
to the different priority levels may be difficult. Another option
would be to add more levels of service (drop priorities) cor-
responding to the sub-categories within applications, e.g. by
using several AF classes for TCP applications. Finally, it might

4In this case, the network would be emulating the Shortest Remaining Pro-
cessing Time scheduling studied in the context of HTTP servers in [13].

be possible to achieve our goals without using more priorities,
by assigning individual packets rather than entire connections
to the different priority levels, as shown in the next section.

VI. TCP-STATE BASED DIFFERENTIATION

The limitations in the application-based approach lead us to
look for generic mechanisms, which can be used for any con-
nection regardless of the application, and which would auto-
matically prioritize short, interactive transfers while avoiding
large negative impact on longer transfers associated with strict
application-based prioritization. In this section, we show how
the service differentiation available in one AF class can be used
to achieve these goals.

User Station

Fig. 9. TCP-state based service differentiation mechanisms.

Instead of mapping entire TCP connections to one drop pri-
ority, we propose here that the priority of each packet be de-
termined individually. We describe a simple TCP-state based
marking algorithm, and supporting mechanisms that are re-
quired at the sources of traffic: an application programming
interface (API) and an output link scheduler (see Fig. 9). The
API would provide the applications access to the settings of the
marking and scheduling modules, or simply use default set-
tings, based on each connection’s application type. We do not
go into further details concerning the API in this paper. The
marking and scheduling mechanisms are described in more de-
tail below.

A. Marking Algorithm

A source host may have active connections to several dif-
ferent clients, going over widely different paths, and with cor-
respondingly different performance. Given a limited budget
of high priority tokens, it is important to carefully select the
packets among the different connections to be marked as such.
Therefore, in addition to taking into account the application the
connection belongs to, the marking of individual packets for
each connection should be based on the current state of the TCP
connection.

Two basic premises are behind the marking algorithm. First,
TCP’s throughput is typically equal to the ratio of the send
window size and the RTT, and therefore the window size is a
good indication of the current performance of each connection.
Hence, by prioritizing the connections based on their send win-
dow, a minimum level of performance can be guaranteed for
each. Furthermore, the packets sent by a connection going over
an uncongested path would be marked at low priority, freeing
up high priority tokens, to be used for connections that need
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them. Second, as discussed in Section III, the loss of some seg-
ments within a TCP connection has more impact than others on
the performance of the connection. These segments are (i) the
connection establishment segments, which are extremely im-
portant to the RTT sampling and the calibration of the retransmit
timer, (ii) the segments sent when the connection has a small
window, and (iii) the segments sent after a timeout or a fast re-
transmit>. The loss of such segments results in large idle time,
as the connection waits for a retransmit timeout. Therefore, by
sending them at HIGH priority, it is possible to improve TCP’s
resilience to congestion and packet loss. Therefore, we base
the marking of packets on the size of the send window, and we
identify other “special” packets and prioritize them when nec-
essary®. With this marking, the network during congestion can
conceptually be seen as implementing a form of round robin
service, where each connection is given a quantum of service
in turn, allowing short connections to finish in predictable time.

A pseudo-code description of the algorithm is given in Alg.
1. The italicized code corresponds to a randomized version
which we describe below. The algorithm uses two window
size thresholds, HIG H;pyesn and M E Dyppesh, to switch from
HIGH to MED marking, and MED to LOW marking respectively.
Basically, as the window increases and crosses the thresholds,
packets are marked with decreasing priority. This means that a
TCP connection has high priority as long as it is operating be-
low a certain sending rate. Varying the setting of the thresholds
allows fine grained control on the priority of a connection.

This marking algorithm, although based on TCP-state, re-
quires no modification to the TCP mechanisms, and is appli-
cable to all TCP versions, with minor modifications related to
the internals of each version.” As is clear from the pseudo-
code, its addition to the TCP stack requires only a few lines of
code. Since it does not change the congestion control mecha-
nisms of TCP, the oscillations inherent to TCP’s behavior are
not eliminated. Instead, they are regulated, and the occurrence
of extended idle times is minimized. As a result, long-lived
connections performance appears steady at time scales relevant
to humans (e.g., 2 or 4 second intervals).

Notice that the window-based marking as described above
abruptly switches between priorities as the window crosses
thresholds. We have also experimented with a randomized
variation that attempts to keep a fixed number of HIGH pri-
ority packets outstanding at all times (e.g., equal to the
HIGH;pesh), with the goal of preventing sudden changes in
performance. This is implemented through additional steps,
shown italicized in Alg. 1, which mark packets with an
appropriately chosen probability function (HIG H;pyresn, and
MEDqpresn are approximate limits on the number of HIGH
and MED priority packets marked this way). A potential benefit
could be an increase in the number of drops that are recovered
through fast retransmit.

The marking thresholds provide control knobs that should be
set according to the characteristics and requirements of appli-
cations. For Telnet, they are set at maximum window size in or-

5For NewReno, we also prioritize segments sent during fast recovery.

6Typically, TCP’s congestion window size is 1 segment when the SYN and
timeout-retransmitted segment are sent. Therefore, the window-based marking
would automatically prioritize these packets.

"This version pertains to Reno and NewReno.

Algorithm 1 Marking Algorithm.

if sendwnd < HIGHpresh
mark packet as HIGH
else if SYN or fast retransmit or fast recovery
mark packet as HIGH
else if sendwnd < M ED¢presh
with probability TLG  threan
mark packet as HIGH

mark packet as MED

else

with probability L ihresh

mark packet as HIGH
> 45 MED;pres
with probability = ——thresh
mark packet as M ED

mark packet as LOW

= | S| =L

Application Application
class 1 class 2 class 3

Priority Multiplexer

update

To network interface

Fig. 10. Scheduler/shaper structure.

der for all packets to be sent at HIGH priority. Appropriately set
thresholds automatically protect short transfers, such as most
HTTP page downloads, and guarantee a minimum throughput
for an FTP download.

With this marking, differentiation at finer granularities than
application-level is possible, for instance, at the level of indi-
vidual sessions of the same application (e.g., prioritize a stock
trading session over a regular “surfing” session by using higher
thresholds). In a client-server context, the marking settings
could be chosen by the server based on the connection’s RTT,
the application, the requested content, and/or the client (e.g.,
the user would “purchase” a certain service quality, leading to
increased user satisfaction and optimized system usage [7]).

B. Output Link Scheduler

We describe in this section the mechanisms that we use for
shaping the marked aggregate at the source to comply with
SLAs with the network. For this purpose, we implemented a
hybrid scheduler/shaper module, conceptually represented by
the structure in Fig. 10, in order to prioritize the allocation of
high priority tokens to the different active connections, accord-
ing to connections’ importance.

The structure consist of a set of queues, one per connection,
and a scheduler that services them. Having one queue per con-
nection prevents sending packets from one connection out of
order, and allows explicit control by the scheduler on the share
of high priority tokens and output link resources received by
each connection. The scheduler also ensures that the aggregate
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traffic generated complies with the traffic profiles specified in
the agreements with the network. For this study, where mul-
tiple application types are present at the sources, we make the
following design choices.

We consider that the connections are organized into 3 differ-
ent classes, depending on the application they belong to, in de-
creasing order of scheduling priority: highly interactive (Class
1), interactive (Class 2), and non-interactive (Class 3). We use
the following service discipline. If any HIGH priority packet
can be sent from a connection at Class 1, given the state of
the shaper, it is dispatched to the network interface. Other-
wise, MED priority packets, if any, are checked, followed by
LOW priority packets. When all Class 1 connections are exam-
ined, and no packet can be sent, Class 2 connections are sim-
ilarly checked, followed by Class 3 connections. These rules
guarantee the lowest delay for the highest priority class, and
derive from the classification we assume. If a packet is blocked
waiting for a token of a certain marking priority at one class,
no packet can be sent with the same marking priority at lower
classes. This prevents a lower priority connection that uses a
small packet size from starving higher priority ones. Within one
class, connections are served in a weighted round-robin fash-
ion, which, along with the marking thresholds, provides means
for differentiation between connections belonging to the same
class. In particular, connections marked with higher threshold
potentially require a larger share of the tokens, and the sched-
uler weights should be set accordingly. While the importance
of regulating access to the link deceases as link speed increases,
the rate of high priority tokens could be limited, and regulat-
ing the access to them would prove beneficial. This scheduler
therefore allows control on the differentiation between connec-
tions at the source as well as in the network. Note that other
classifications, designs and scheduling rules are possible and
could be more appropriate for different contexts. In particular,
a simpler scheduler would be more adequate for a large server
which handles only one application, such as a Web server.

C. Results

The source marking and scheduling mechanisms described
above were implemented in our simulator, and their perfor-
mance has been validated through extensive simulations, for
a variety of topologies and traffic scenarios. In this section,
we present sample results which illustrate the performance im-
provements made possible. We show first that the TCP-state
based approach provides similar improvements in interactive
application performance to application-based differentiation.
Then, we show that the performance of other applications (e.g.,
FTP) is not significantly affected.

In the scenarios considered, the following settings were used
for all HTTP and FTP connections: HIGHpresn, = 4 and
MEDypresn = 8, and acknowledgments are marked with the
priority of the data they correspond to. Since in these scenar-
ios all connections are identically marked, equal weights within
each application class are used in the scheduler. In Fig. 11 we
plot the HTTP/1.0 CCDF for TCP-state based differentiation, for
the same experiment as in Sections III and V. In this case, as
the bottleneck link is increased to 60Mbps, all Web downloads
complete within desirable delay limits, and with a high degree
of predictability. In Fig. 7, the Telnet performance for this ap-
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Fig. 11. CCDF of HTTP/1.0 for TCP-DS, HIGH 250Kbps, MED 500Kbps.

proach (TCP-DS), shows slightly more delays than application-
based (800 vs 700msec), due to a higher queue occupancy.

A summary of performance results for interactive applica-
tions is shown in Fig. 12. In these figures we show the per-
formance of drop tail, RED, application-based differentiation
(for 250K and 110K MED rates), TCP-state based differenti-
ation (regular and randomized), and token bucket marking at
edge routers (ER-TBM, 250Kbps HIGH and S00Kbps MED), for a
100Mbps bottleneck link. The ideas that are illustrated here are
the following. The applications’ performance without service
differentiation are comparable, whether drop tail or RED buffer
management are used. In addition, marking of user aggregate
traffic at the edge router with a token bucket marker, the “typi-
cal” approach for the AF service, does not give adequate perfor-
mance, even when all connections face the same network con-
ditions, and may actually result in worse performance than drop
tail and RED. In general, different connections originating from
the same source and going to different destinations may expe-
rience vastly different conditions. Then, a long transfer going
over an uncongested path and performing significantly better
than the other connections would receive most of the high pri-
ority markings at the router. This denies the benefits of differ-
entiation to the connections that need it most. By explicitly se-
lecting the packets to be prioritized, TCP-based differentiation
at the source provides good performance to interactive appli-
cations, similarly to application-based differentiation. Finally,
the randomization in TCP marking does not have a large im-
pact. Indeed, extensive simulations have shown that, although
it results in better performance for HTTP/1.1 and file transfers in
some cases, its effects are not quantifiable. Therefore, the use
of the simpler algorithm is sufficient.

An advantage of the TCP-state based approach over
application-based differentiation is that lower priority applica-
tions are not heavily penalized. Overall, the CCDF of all FTP
transfer times is very close to that of drop tail and RED (with-
out differentiation). In addition, the performance is compa-
rable in terms of the number of files transmitted per unit of
time (see Fig. 13). In contrast, the performance of FTP for the
application-based approach at link speeds below 100Mbps is
very poor. Moreover, individual CCDF plots show that the trans-
fer times are made more predictable for individual users. These
improvements are obtained because important FTP packets are
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Fig. 12. CCDF of HTTP/1.0 downloads and Telnet echos for different schemes.

prioritized as well. This means that users who are exclusively
using FTP are not penalized to the benefit of others.

For lack of space, we leave out results of simulations with
long transfers, which show that the same mechanisms can
be used to significantly reduce the variation in throughput
achieved by long FTP connections with different round trip
times. In addition, the throughput is considerably smoother
than for drop tail and RED, as evidenced by a variation coef-
ficient (%) of throughput samples which is lower by half.

VII. CONCLUSIONS

In this paper, we focus on congestion-induced delays in re-
sponse times of interactive TCP applications. We show how
these delays can be reduced using multiple service levels in
the network, by giving preferential treatment to interactive ap-
plications’ traffic in the network. We study an application-
based and a TCP-state based approach to service differenti-
ation, and describe the mechanisms required in the network
and in traffic sources. Using simulations, with a large num-
ber of users and realistic traffic models, we show that both can
achieve the goal of improving the performance of interactive
TCP applications during network congestion episodes. Good
user-perceived performance is obtained at times where severe
degradation would have otherwise been experienced. In ad-
dition, by allowing other applications to use the high priority
levels, the TCP-state based approach has the benefit of limiting
the performance degradation they incur.
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Fig. 13. Number of files transmitted by the probes for different schemes.
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