Logic-Based Systems

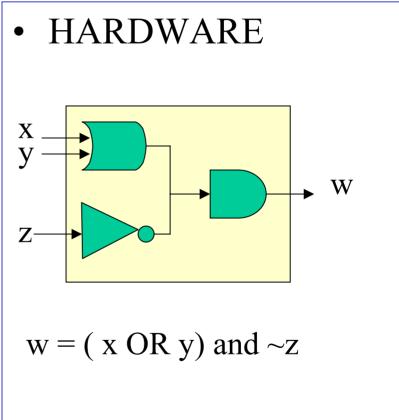
AI Lecture Prof. Carolina Ruiz Worcester Polytechnic Institute

Using Theorem Provers

AS REASONING SYSTEMS

 to implement independent agents that make decisions and act on their own. AS ASSISTANTS tool for mathemathicians

- Proof-Checkers:
 - mathematician provides a sketch of the proof and TP checks it and fills in the details.
- Socratic Reasoners:
 - (e.g. ONTIC).
 Mathematician and TP construct proof together.

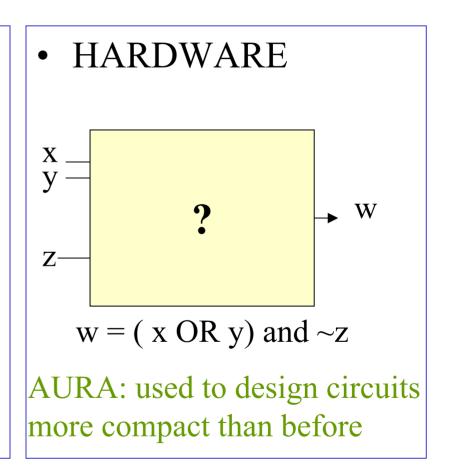

Practical uses of Theorem Provers (TPs)

SAM	Semi-automated math. Guard et al, 1969	Lattice theory
AURA	Wos & Winker, 1983	Open questions in several areas of mathematics
BOYER & MOORE	Boyer & Moore, 1979	Produced 1 st fully computerized proof of Godel's incompleteness thm
OTTER	Organized techniques for theorem proving McCure 1992	Open questions in combinatorical logic

AI Lecture - Prof. Carolina Ruiz

CS/ECE: Verification of Systems

 SOFTWARE procedure swap(x,y)Х var t; ${Pre: x = C1, y = C2}$ Z t := x;x:= y; y := t{Post: x = C2, y = C1}


CS/ECE: Verification of Systems

- SOFTWARE
 - Boyer & Moore:
 - verified the RSA public key encryption algorithm
 - verified the Boyer & Moore string matching algorithm

- HARDWARE
 - Aura:
 - Verifies design of a 10-bit adder
 - MRS:
 - performs diagnosis of computer systems

CS/ECE: Synthesis of Systems

 SOFTWARE procedure swap(x,y) ${Pre: x = C1, y = C2}$ {Post: x = C2, y = C1} Prove that there exists a program satisfying the specification. If the proof is constructed, a program can be extracted.

Inside a Logic-based System

Knowledge Representation First order logic

Problem Solving Strategy Refutation using resolution

Knowledge representation 1st order logic

- Everybody who can read is literate
 −∀ x, r(x) -> l(x)
- Dolphins are not literate
 → ∀ x, d(x) → !l(x)
- Some dolphins are intelligent
 Э х, [d(х) & i(х)]
- Some who are intelligent cannot read

 $- \exists x, [i(x) \& !r(x)]$

Problem Solving Problem Statement

- A1: Everybody who can read is literate
 V x, r(x) -> l(x)
- A2: Dolphins are not literate

 $- \forall x, d(x) \rightarrow !!l(x)$

• A3: Some dolphins are intelligent

 $- \Im x, [d(x) \& i(x)]$

Conclusion: Some who are intelligent cannot read
 - Э x, [i(x) & !r(x)]

Problem Solving Proof by Refutation

- A1: Everybody who can read is literate $-\forall x, r(x) \rightarrow l(x)$
- A2: Dolphins are not literate
 - $\forall x, d(x) \rightarrow !l(x)$
- A3: Some dolphins are intelligent
 Э x, [d(x) & i(x)]
- Conclusion: it is not the case that some who are intelligent cannot read

 $- ! \exists x, [i(x) \& !r(x)] = \forall x, [!i(x) || !!r(x)] = \forall x, [!i(x) || r(x)]$

Problem Solving Proof by Refutation using Resolution translating formulas into clausal form

- A1: $\forall x, r(x) \rightarrow l(x)$
- A2: $\forall x, d(x) \rightarrow !!l(x)$
- A3: Э x, [d(x) & i(x)]
- !C: $\forall x, [!i(x) || r(x)]$

- A1: $\forall x, !r(x) || l(x)$
- A2: $\forall x, !d(x) || !l(x)$
- A3: Э x, [d(x) & i(x)]
- !C: $\forall x, [!i(x) || r(x)]$

Problem Solving Proof by Refutation using Resolution translating formulas into clausal form – done!

- A1: $\forall x, !r(x) || l(x)$
- A2: $\forall x, !d(x) \parallel !l(x)$
- A3: Э x, [d(x) & i(x)]
- !C: $\forall x, [!i(x) || r(x)]$

- A1: !r(x) || l(x)
- A2: $!d(x) \parallel !l(x)$
- A3.1: d(a)
- A3.2: i(a)
- !C: !i(x) || r(x)

Problem Solving Resolution

- A1: !r(x) || l(x)
- A2: ||d(x)|| ||l(x)|
- A4: |r(x)|| !d(x)
- A3.1: <u>d(a)</u>
- A5: !r(**a**)
- !C: !i(x) || r(x)
- A6: !i(**a**)
- A3.2: <u>i(a)</u>

Hence C is a logical consequence of A1,A2,A3

• A7:
AI Lecture - Prof. Carolina Ruiz

- A1: $!r(x) \parallel l(x)$
- A2: $!d(x) \parallel !l(x)$
- A3.1: d(a)
- A3.2: i(a)
- **!C**: **!i**(x) || r(x)