Illustration of the K2 Algorithm for Learning Bayes Net Structures

Prof. Carolina Ruiz
Department of Computer Science, WPI
ruiz@cs.wpi.edu
http://www.cs.wpi.edu/~ruiz

The purpose of this handout is to illustrate the use of the K2 algorithm to learn the topology of a Bayes Net. The algorithm is taken from [aEH93].

Consider the dataset given in [aEH93]:

case	x_{1}	x_{2}	x_{3}
1	1	0	0
2	1	1	1
3	0	0	1
4	1	1	1
5	0	0	0
6	0	1	1
7	1	1	1
8	0	0	0
9	1	1	1
10	0	0	0

Assume that x_{1} is the classification target

The K2 algorithm taken from [aEH93] is included below. This algorithm heuristically searches for the most probable belief-network structure given a database of cases.

```
procedure K2;
\{Input: A set of \(n\) nodes, an ordering on the nodes, an upper bound \(u\) on the
    number of parents a node may have, and a database \(D\) containing \(m\) cases. \(\}\)
\{Output: For each node, a printout of the parents of the node.\}
for \(i:=1\) to \(n\) do
    \(\pi_{i}:=\emptyset ;\)
    \(P_{\text {old }}:=f\left(i, \pi_{i}\right) ;\{\) This function is computed using Equation 20.\}
    OKToProceed := true;
    While OKToProceed and \(\left|\pi_{i}\right|<u\) do
            let \(z\) be the node in \(\operatorname{Pred}\left(x_{i}\right)-\pi_{i}\) that maximizes \(f\left(i, \pi_{i} \cup\{z\}\right)\);
            \(P_{\text {new }}:=f\left(i, \pi_{i} \cup\{z\}\right)\);
            if \(P_{\text {new }}>P_{\text {old }}\) then
                    \(P_{\text {old }}:=P_{\text {new }}\);
                    \(\pi_{i}:=\pi_{i} \cup\{z\} ;\)
            else OKToProceed \(:=\) false;
    end \{while\};
    write('Node: ', \(x_{i}\), ' Parent of \(x_{i}\) : ', \(\pi_{i}\) );
end \{for\};
end \(\{K 2\}\);
```

Equation 20 is included below:

$$
f\left(i, \pi_{i}\right)=\prod_{j=1}^{q_{i}} \frac{\left(r_{i}-1\right)!}{\left(N_{i j}+r_{i}-1\right)!} \prod_{k=1}^{r_{i}} \alpha_{i j k}!
$$

where:
π_{i} : set of parents of node x_{i}
$q_{i}=\left|\phi_{i}\right|$
ϕ_{i} : list of all possible instantiations of the parents of x_{i} in database D. That is, if p_{1}, \ldots, p_{s} are the parents of x_{i} then ϕ_{i} is the Cartesian product $\left\{v_{1}^{p_{1}}, \ldots, v_{r_{p_{1}}}^{p_{1}}\right\} \times \ldots \times\left\{v_{1}^{p_{s}}, \ldots, v_{r_{p_{s}}}^{p_{s}}\right\}$ of all the possible values of attributes p_{1} through p_{s}.
$r_{i}=\left|V_{i}\right|$
V_{i} : list of all possible values of the attribute x_{i}
$\alpha_{i j k}$: number of cases (i.e. instances) in D in which the attribute x_{i} is instantiated with its $k^{t h}$ value, and the parents of x_{i} in π_{i} are instantiated with the $j^{\text {th }}$ instantiation in ϕ_{i}.
$N_{i j}=\sum_{k=1}^{r_{i}} \alpha_{i j k}$. That is, the number of instances in the database in which the parents of x_{i} in π_{i} are instantiated with the $j^{\text {th }}$ instantiation in ϕ_{i}.

The informal intuition here is that $f\left(i, \pi_{i}\right)$ is the probability of the database D given that the parents of x_{i} are π_{i}.

Below, we follow the K2 algorithm over the database above.

Inputs:

- The set of $n=3$ nodes $\left\{x_{1}, x_{2}, x_{3}\right\}$,
- the ordering on the nodes x_{1}, x_{2}, x_{3}. We assume that x_{1} is the classification target. As such the Weka system would place it first on the node ordering so that it can be the parent of each of the predicting attributes.
- the upper bound $u=2$ on the number of parents a node may have, and
- the database D above containing $m=10$ cases.

K2 Algorithm.

$\underline{i=1:}$ Note that for $i=1$, the attribute under consideration is x_{1}. Here, $r_{1}=2$ since x_{1} has two possible values $\{0,1\}$.

1. $\pi_{1}:=\emptyset$
2. $P_{o l d}:=f(1, \emptyset)=\prod_{j=1}^{q_{1}} \frac{\left(r_{1}-1\right)!}{\left(N_{1 j}+r_{1}-1\right)!} \prod_{k=1}^{r_{1}} \alpha_{1 j k}$!

Let's compute the necessary values for this formula.

- Since $\pi_{1}=\emptyset$ then $q_{1}=0$. Note that the product ranges from $j=1$ to $j=0$. The standard convention for a product with an upper limit smaller than the lower limit is that the value of the product is equal to 1 . However, this convention wouldn't work here since regardless of the value of $i, f(i, \emptyset)=1$. Since this value denotes a probability, this would imply that the best option for each node is to have no parents.
Hence, j will be ignored in the formula above, but not i or k. The example on page 13 of [aEH93] shows that this is the authors' intended interpretation of this formula.
- $\alpha_{1 _1}=5: \#$ of cases with $x_{1}=0($ cases $3,5,6,8,10)$
- $\alpha_{1 _2}=5: \#$ of cases with $x_{1}=1($ cases $1,2,4,7,9)$
- $N_{1-}=\alpha_{1 _1}+\alpha_{1 _2}=10$

Hence,

$$
P_{o l d}:=f(1, \emptyset)=\frac{\left(r_{1}-1\right)!}{\left(N_{1-}+r_{1}-1\right)!} \prod_{k=1}^{r_{1}} \alpha_{1_{-} k}!=\frac{(2-1)!}{\left(N_{1-}+2-1\right)!} \prod_{k=1}^{2} \alpha_{1_{-} k}!=\frac{1}{11!} * 5!* 5!=1 / 2772
$$

3. Since $\operatorname{Pred}\left(x_{1}\right)=\emptyset$, then the iteration for $i=1$ ends here with $\pi_{1}=\emptyset$.
$\underline{i=2}$: Note that for $i=2$, the attribute under consideration is x_{2}. Here, $r_{2}=2$ since x_{2} has two possible values $\{0,1\}$.
4. $\pi_{2}:=\emptyset$
5. $P_{\text {old }}:=f(2, \emptyset)=\prod_{j=1}^{q_{2}} \frac{\left(r_{2}-1\right)!}{\left(N_{2 j}+r_{2}-1\right)!} \prod_{k=1}^{r_{2}} \alpha_{2 j k}$!

Let's compute the necessary values for this formula.

- Since $\pi_{2}=\emptyset$ then $q_{2}=0$. Note that the product ranges from $j=1$ to $j=0$. The standard convention for a product with an upper limit smaller than the lower limit is that the value of the product is equal to 1 . However, this convention wouldn't work here since regardless of the value of $i, f(i, \emptyset)=1$. Since this value denotes a probability, this would imply that the best option for each node is to have no parents.
Hence, j will be ignored in the formula above, but not i or k. The example on page 13 of [aEH93] shows that this is the authors' intended interpretation of this formula.
- $\alpha_{2 _1}=5: \#$ of cases with $x_{2}=0($ cases $1,3,5,8,10)$
- $\alpha_{2 _2}=5: \#$ of cases with $x_{2}=1$ (cases $\left.2,4,6,7,9\right)$
- $N_{2_{-}}=\alpha_{2 _1}+\alpha_{2 _2}=10$

Hence,
$P_{\text {old }}:=f(2, \emptyset)=\frac{\left(r_{2}-1\right)!}{\left(N_{2_{-}}+r_{2}-1\right)!} \prod_{k=1}^{r_{2}} \alpha_{2 _k}!=\frac{(2-1)!}{\left(N_{2 _}+2-1\right)!} \prod_{k=1}^{2} \alpha_{2 _k}!=\frac{1}{11!} * 5!* 5!=1 / 2772$
3. Since $\operatorname{Pred}\left(x_{1}\right)=\left\{x_{1}\right\}$, then the only iteration for $i=2$ goes with $z=x_{1}$.
$P_{\text {new }}:=f\left(2, \pi_{2} \cup\left\{x_{1}\right\}\right)=f\left(2,\left\{x_{1}\right\}\right)=\prod_{j=1}^{q_{2}} \frac{\left(r_{2}-1\right)!}{\left(N_{2 j}+r_{2}-1\right)!} \prod_{k=1}^{r_{2}} \alpha_{2 j k}!$

- ϕ_{2} : list of unique π-instantiations of $\left\{x_{1}\right\}$ in $D=\left(\left(x_{1}=0\right),\left(x_{1}=1\right)\right)$
- $q_{2}=\left|\phi_{2}\right|=2$
- $\alpha_{211}=4: \#$ of cases with $x_{1}=0$ and $x_{2}=0($ cases $3,5,8,10)$
- $\alpha_{212}=1$: \# of cases with $x_{1}=0$ and $x_{2}=1$ (case 6)
- $\alpha_{221}=1$: \# of cases with $x_{1}=1$ and $x_{2}=0$ (case 1)
- $\alpha_{222}=4: \#$ of cases with $x_{1}=1$ and $x_{2}=1($ case $2,4,7,9)$
- $N_{21}=\alpha_{211}+\alpha_{212}=5$
- $N_{22}=\alpha_{221}+\alpha_{222}=5$

$$
P_{\text {new }}=\prod_{j=1}^{q_{2}} \frac{\left(r_{2}-1\right)!}{\left(N_{2 j}+r_{2}-1\right)!} \prod_{k=1}^{2} \alpha_{2 j k}!=\frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{21 k}!* \frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{22 k}!
$$

$$
=\frac{1}{6!} * \alpha_{211}!* \alpha_{212}!* \frac{1}{6!} * \alpha_{221}!* \alpha_{222}!=\frac{1}{6!} * 4!* 1!* \frac{1}{6!} * 1!* 4!=\frac{1}{6 * 5} * \frac{1}{6 * 5}=1 / 900
$$

4. Since $P_{\text {new }}=1 / 900>P_{\text {old }}=1 / 2772$ then the iteration for $i=2$ ends with $\pi_{2}=\left\{x_{1}\right\}$.
$\underline{i=3:}$ Note that for $i=3$, the attribute under consideration is x_{3}. Here, $r_{3}=2$ since x_{3} has two possible values $\{0,1\}$.
5. $\pi_{3}:=\emptyset$
6. $P_{\text {old }}:=f(3, \emptyset)=\prod_{j=1}^{q_{3}} \frac{\left(r_{3}-1\right)!}{\left(N_{3 j}+r_{3}-1\right)!} \prod_{k=1}^{r_{3}} \alpha_{3 j k}$!

Let's compute the necessary values for this formula.

- Since $\pi_{3}=\emptyset$ then $q_{3}=0$. Note that the product ranges from $j=1$ to $j=0$. The standard convention for a product with an upper limit smaller than the lower limit is that the value of the product is equal to 1 . However, this convention wouldn't work here since regardless of the value of $i, f(i, \emptyset)=1$. Since this value denotes a probability, this would imply that the best option for each node is to have no parents.
Hence, j will be ignored in the formula above, but not i or k. The example on page 13 of [aEH93] shows that this is the authors' intended interpretation of this formula.
- $\alpha_{3 _1}=4: \#$ of cases with $x_{3}=0($ cases $1,5,8,10)$
- $\alpha_{3 _2}=6: \#$ of cases with $x_{3}=1($ cases $2,3,4,6,7,9)$
- $N_{3_{-}}=\alpha_{3 _1}+\alpha_{3 _2}=10$

Hence,

$$
P_{o l d}:=f(3, \emptyset)=\frac{\left(r_{3}-1\right)!}{\left(N_{3-}+r_{3}-1\right)!} \prod_{k=1}^{r_{3}} \alpha_{3_{-} k}!=\frac{(2-1)!}{\left(N_{\left.3_{-}+2-1\right)!}\right.} \prod_{k=1}^{2} \alpha_{3_{-} k}!=\frac{1}{11!} * 4!* 6!=1 / 2310
$$

3. Note that $\operatorname{Pred}\left(x_{3}\right)=\left\{x_{1}, x_{2}\right\}$. Initially, $\pi_{3}=\emptyset$. We need to compute $\operatorname{argmax}\left(f\left(3, \pi_{3} \cup\right.\right.$ $\left.\left.\left\{x_{1}\right\}\right), f\left(3, \pi_{3} \cup\left\{x_{2}\right\}\right)\right)$.

- $f\left(3, \pi_{3} \cup\left\{x_{1}\right\}\right)=f\left(3,\left\{x_{1}\right\}\right)=\prod_{j=1}^{q_{3}} \frac{\left(r_{3}-1\right)!}{\left(N_{3 j}+r_{3}-1\right)!} \prod_{k=1}^{r_{3}} \alpha_{3 j k}$!
- ϕ_{3} : list of unique π-instantiations of $\left\{x_{1}\right\}$ in $D=\left(\left(x_{1}=0\right),\left(x_{1}=1\right)\right)$
$-q_{3}=\left|\phi_{3}\right|=2$
$-\alpha_{311}=3: \#$ of cases with $x_{1}=0$ and $x_{3}=0($ cases $5,8,10)$
$-\alpha_{312}=2: \#$ of cases with $x_{1}=0$ and $x_{3}=1$ (case 3,6$)$
$-\alpha_{321}=1: \#$ of cases with $x_{1}=1$ and $x_{3}=0$ (case 1)
$-\alpha_{322}=4: \#$ of cases with $x_{1}=1$ and $x_{3}=1$ (case $\left.2,4,7,9\right)$
$-N_{31}=\alpha_{311}+\alpha_{312}=5$
$-N_{32}=\alpha_{321}+\alpha_{322}=5$
$f\left(3,\left\{x_{1}\right\}\right)=\prod_{j=1}^{q_{3}} \frac{\left(r_{3}-1\right)!}{\left(N_{3 j}+r_{3}-1\right)!} \prod_{k=1}^{2} \alpha_{3 j k}!=\frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{31 k}!* \frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{32 k}$!
$=\frac{1}{6!} * \alpha_{311}!* \alpha_{312}!* \frac{1}{6!} * \alpha_{321}!* \alpha_{322}!=\frac{1}{6!} * 3!* 2!* \frac{1}{6!} * 1!* 4!=\frac{1}{6 * 5 * 2} * \frac{1}{6 * 5}=1 / 1800$
- $\left.f\left(3, \pi_{3} \cup\left\{x_{2}\right\}\right)=\right)=\prod_{j=1}^{q_{3}} \frac{\left(r_{3}-1\right)!}{\left(N_{3 j}+r_{3}-1\right)!} \prod_{k=1}^{r_{3}} \alpha_{3 j k}$!
$-\phi_{3}$: list of unique π-instantiations of $\left\{x_{2}\right\}$ in $D=\left(\left(x_{2}=0\right),\left(x_{2}=1\right)\right)$
$-q_{3}=\left|\phi_{3}\right|=2$
$-\alpha_{311}=4: \#$ of cases with $x_{2}=0$ and $x_{3}=0($ cases $1,5,8,10)$
$-\alpha_{312}=1: \#$ of cases with $x_{2}=0$ and $x_{3}=1$ (case 3)
$-\alpha_{321}=0: \#$ of cases with $x_{2}=1$ and $x_{3}=0$ (no case)
$-\alpha_{322}=5: \#$ of cases with $x_{2}=1$ and $x_{3}=1$ (case 2,4,6,7,9)
$-N_{31}=\alpha_{311}+\alpha_{312}=5$
$-N_{32}=\alpha_{321}+\alpha_{322}=5$
$f\left(3,\left\{x_{2}\right\}\right)=\prod_{j=1}^{q_{3}} \frac{\left(r_{3}-1\right)!}{\left(N_{3 j}+r_{3}-1\right)!} \prod_{k=1}^{2} \alpha_{3 j k}!=\frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{31 k}!* \frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{32 k}!$
$=\frac{1}{6!} * \alpha_{311}!* \alpha_{312}!* \frac{1}{6!} * \alpha_{321}!* \alpha_{322}!=\frac{1}{6!} * 4!* 1!* \frac{1}{6!} * 0!* 5!=\frac{1}{6 * 5} * \frac{1}{6}=1 / 180$
Here we assume that $0!=1$

4. Since $f\left(3,\left\{x_{2}\right\}\right)=1 / 180>f\left(3,\left\{x_{1}\right\}\right)=1 / 1800$ then $z=x_{2}$. Also, since $f\left(3,\left\{x_{2}\right\}\right)=$ $1 / 180>P_{\text {old }}=f(3, \emptyset)=1 / 2310$, then $\pi_{3}=\left\{x_{2}\right\}, P_{\text {old }}:=P_{\text {new }}=1 / 180$.
5. Now, the next iteration of the algorithm for $i=3$, considers adding the remaining predecessor of x_{3}, namely x_{1}, to the parents of x_{3}.

$$
f\left(3, \pi_{3} \cup\left\{x_{1}\right\}\right)=f\left(3,\left\{x_{1}, x_{2}\right\}\right)=\prod_{j=1}^{q_{3}} \frac{\left(r_{3}-1\right)!}{\left(N_{3 j}+r_{3}-1\right)!} \prod_{k=1}^{r_{3}} \alpha_{3 j k}!
$$

- ϕ_{3} : list of unique π-instantiations of $\left\{x_{1}, x_{2}\right\}$ in $D=\left(\left(x_{1}=0, x_{2}=0\right),\left(x_{1}=0, x_{2}=\right.\right.$ 1), $\left.\left(x_{1}=1, x_{2}=0\right),\left(x_{1}=1, x_{2}=1\right)\right)$
- $q_{3}=\left|\phi_{3}\right|=4$
- $\alpha_{311}=3: \#$ of cases with $x_{1}=0, x_{2}=0$ and $x_{3}=0($ cases $5,8,10)$
- $\alpha_{312}=1$: \# of cases with $x_{1}=0, x_{2}=0$ and $x_{3}=1$ (case 3)
- $\alpha_{321}=0: \#$ of cases with $x_{1}=0, x_{2}=1$ and $x_{3}=0$ (no case)
- $\alpha_{322}=1$: \# of cases with $x_{1}=0, x_{2}=1$ and $x_{3}=1$ (case 6)
- $\alpha_{331}=1$: \# of cases with $x_{1}=1, x_{2}=0$ and $x_{3}=0$ (case 1)
- $\alpha_{332}=0: \#$ of cases with $x_{1}=1, x_{2}=0$ and $x_{3}=1$ (no case)
- $\alpha_{341}=0: \#$ of cases with $x_{1}=1, x_{2}=1$ and $x_{3}=0$ (no case)
- $\alpha_{342}=4: \#$ of cases with $x_{1}=1, x_{2}=1$ and $x_{3}=1$ (case $2,4,7,9$)
- $N_{31}=\alpha_{311}+\alpha_{312}=4$
- $N_{32}=\alpha_{321}+\alpha_{322}=1$
- $N_{33}=\alpha_{331}+\alpha_{332}=1$
- $N_{34}=\alpha_{341}+\alpha_{342}=4$

$$
\begin{aligned}
& f\left(3,\left\{x_{1}, x_{2}\right\}\right)=\prod_{j=1}^{q_{3}} \frac{\left(r_{3}-1\right)!}{\left(N_{3 j}+r_{3}-1\right)!} \prod_{k=1}^{2} \alpha_{3 j k}! \\
& =\frac{(2-1)!}{(4+2-1)!} * \prod_{k=1}^{2} \alpha_{31 k}!* \frac{(2-1)!}{(1+2-1)!} * \prod_{k=1}^{2} \alpha_{32 k}!* \frac{(2-1)!}{(1+2-1)!} * \prod_{k=1}^{2} \alpha_{33 k}!* \frac{(2-1)!}{(4+2-1)!} * \prod_{k=1}^{2} \alpha_{34 k}! \\
& =\frac{1}{5!} * \alpha_{311}!* \alpha_{312}!* \frac{1}{2!} * \alpha_{321}!* \alpha_{322}!* \frac{1}{2!} * \alpha_{331}!* \alpha_{332}!* \frac{1}{5!} * \alpha_{341}!* \alpha_{342}! \\
& =\frac{1}{5!} * 3!* 1!* \frac{1}{2!} * 0!* 1!* \frac{1}{2!} * 1!* 0!* \frac{1}{5!} * 0!* 4!=\frac{1}{5 * 4} * \frac{1}{2} * \frac{1}{2} * \frac{1}{5}=1 / 400
\end{aligned}
$$

6. Since $P_{\text {new }}=1 / 400<P_{\text {old }}=1 / 180$ then the iteration for $i=3$ ends with $\pi_{3}=\left\{x_{2}\right\}$.

Outputs: For each node, a printout of the parents of the node.

Node: x_{1}, Parent of $x_{1}: \pi_{1}=\emptyset$
Node: x_{2}, Parent of $x_{2}: \pi_{2}=\left\{x_{1}\right\}$
Node: x_{3}, Parent of $x_{3}: \pi_{3}=\left\{x_{2}\right\}$

This concludes the run of K2 over the database D. The learned topology is

$$
x_{1} \rightarrow x_{2} \rightarrow x_{3}
$$

References

[aEH93] Gregory F. Cooper Edward Herskovits. A bayesian method for the induction of probabilistic networks from data. Technical Report KSL-91-02, Knowledge Systems Laboratory. Medical Computer Science. Stanford University School of Medicine, Stanford, CA 94305-5479, Updated Nov. 1993. Available at: http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-91-0355.html.

