CS548 Spring 2015 Clustering II

Showcase by Michael Barry, Cheng Deng, Junwei Guan, Xing Liu, Robert Van Reenen

Showcasing work by James Biagioni and Jacob Eriksson from the University of Illinois at Chicago and Jia Qiu, Ruisheng Wang, and Xin Wang from the University of Calgary

on Inferring Road Networks from GPS Traces

References

J. Biagioni and J. Eriksson, "Inferring Road Maps from GPS Traces: Survey and Comparative Evaluation," in *91st Annual Meeting of the Transportation Research Board*, 2012.

J. Biagioni and J. Eriksson, "Map Inference in the Face of Noise and Disparity," In *SIGSPATIAL GIS*, *ACM*, 2012, pp. 79-88.

J. Qiu, R. Wang et al., "Inferring Road Maps from Sparsely-Sampled GPS Traces," In *Canadian Conference on AI*, 2014, pp. 339-344.

T. Duong, "An introduction to kernel density estimation," http://www.mvstat. net/tduong/research/seminars/seminar-2001-05/

Inferring Road Networks from GPS Traces

Boston Cl Museum

Google uses them for traffic

Google uses them for traffic

lets users make updates

But we can't do this yet...

Papers Surveyed

2010	2011	2012	2013	2014	2015
2011 Biagioni a techniques use	nd Eriksson surv d since 2000	/ey			
	201 thei upo GPS	2 Biagioni and Eri r own hybrid pipeli n current state of t S traces from vehi	ksson devise ine to improve the art - test on cles.		
			2014 pipel oppo from	2014 Qui, et al. create their own pipeline, focusing on sparser, opportunistically collected traces from mobile devices	

Existing Map Inference Papers

Paper	Year	Class
Edelkamp & Schrodl	2003	k-means
Schroedl et.al.	2004	k-means
Davies et. al.	2006	KDE
Worral & Nebot	2007	k-means
Guo, Iwamura & Koga	2007	k-means
Chen & Cheng	2008	KDE
Niehofer et al.	2009	trace merge

Paper	Year	Class
Cao & Krumm	2009	trace merge
Shi, Shen & Liu	2009	KDE
Jang, Kim & Lee	2010	k-means
Agamennoni et al.	2011	k-means
Biagioni & Eriksson	2012	hybrid
Qiu et al.	2014	DBSCAN

Summary of Existing Literature

Out of the 13 papers on automatic map generation

- K-means based methods (6)
- Density estimation methods (4)
- Trace merging methods (2)
- Hybrid (1)

Map Inference (Trace Merging)

Map Inference (Density Estimation)

Visual illustration of each algorithm

A Hybrid Map Inference Pipeline

Density Estimation

Raw GPS traces

Density estimate

Density Estimation

- Bin trace data into 2D histogram
 - 1x1 m cells

- Calculate Kernel Density Estimate (KDE)
 - Approximated by convolution with Gaussian
 - N(0, σ^2), $\sigma = 8.5$ m
 - based on GPS error and road width

Why (not) histograms

Histogram with breaks at n.0 and n.5 binwidth=0.5

Histogram with breaks at n.25 and n.75 binwidth=0.5

Log Span

Log Span

Kernel Density Estimate (KDE)

'Histogram' with blocks centred over data points

Optimally smoothed

KDE Thresholds

Applying high threshold to KDE Applying low threshold to KDE

> Neither high nor low thresholds produce good results. Biagioni and Eriksson used skeletonization instead.

DBSCAN with Orientation Constraint

- Define neighborhood with 2 components:
 - ε distance from center
 - α difference of orientation (angle)

Definition 1: The ε -neighborhood with orientation constraint of a point p, denote by N_p , is defined by $N_p = \{q \in P | dis(p,q) \leq \varepsilon \land diffAngle(p,q) \leq \alpha\}$, where P is the whole set of points, dis(p,q) is the Euclidian distance between point p and q, and diffAngle(p,q) is the orientation difference of point p and q.

- MinPts = 2,
$$\epsilon$$
 = 15 m, α = 1°

DBSCAN

DBSCAN with Orientation Constraint

With $\alpha = 1^{\circ}$, each cluster represents a nearly straight road segment!

- Nearly Straight Curve Reconstruction
- 1. Assign seeds of the point cluster
- 2. Adjust the seeds by K-means algorithms

3. Judge the measurement and repeat step 2 until it fulfill the threshold in the end

prefered range or value for the parameters:

- β: $[105^{\circ}, 150^{\circ}]$ (In general β = 120°)
- l: 5 meters is desirable

In the end: set the sequenced seeds as "**centerline**"

Weighted transition probabilities

Initial Generated Map

- Based on VTrack (Thiagarajan et al., 2009)

Trace goodness of fit

 $RMSD(\tau,e) = \sqrt{\frac{1}{|\tau|}\sum_{p\in\tau}dist(p,e)^2}$

Topology Refinement

Topology & Geometry Refinement

Quantitative Evaluation

Qualitative Evaluation

Limitation

Sparsely Sampled Road Maps

