
Introduction to Database Systems 1

Object-Oriented
& Object-Relational DBMSs

Module 9, Lecture 3

����������	
�	��������������������
���	��

�������������
�������������	
�������	��������

Introduction to Database Systems 2

Motivation
❖ Relational model (70’s): Clean and simple.

– Great for administrative data.
– Not as good for other kinds of data (e.g.,

multimedia, networks, CAD).

❖ Object-Oriented models (80’s): Complicated,
but some influential ideas.
– Complex data types.
– Object identity/references.
– ADTs (encapsulation, behavior goes with data).
– Inheritance.

❖ Idea: Build DBMS based on OO model.

Introduction to Database Systems 3

Example App: Asset Management

❖ Old world: data models a business
❖ New world: data IS business

– 1011010111010100010100111 = $$$$$!
– Software vendors, entertainment industry, direct-

mail marketing, etc.
– This data is typically more complex in structure

than administrative data.

❖ Emerging apps mix these two worlds.

Introduction to Database Systems 4

An Asset Management Scenario

❖ Dinky Entertainment Corp.
– Assets: cartoon videos, stills, sounds
– Herbert films show worldwide
– Dinky licenses Herbert videos, stills, sounds for

various purposes:
◆ action figures
◆ video games
◆ product endorsements

– DBMS must manage assets and business data

Herbert the Worm

Introduction to Database Systems 5

Why not a Standard RDBMS?

❖ Binary Large Objects (BLOBs) can be stored
and fetched.

❖ User-level code must provide all logic for
BLOBs.

❖ Scenario: Client (Machine A) requests
“thumbnail” images for all frames in DBMS
(Machine B).
– Inefficient, too hard to express queries.

create table frames (frameno integer, image BLOB,
 category integer)

Introduction to Database Systems 6

Solution 1: Object-Oriented DBMS
❖ Idea: Take an OO language like C++, add

persistence & collections.
class frame {

int frameno;

jpeg *image;

int category;

}

persistent set <frame *> frames;

foreach (frame *f, frames)

return f->image->thumbnail();

❖ Shut down the program. Start it up again.
Persistent vars (e.g. frames) retain values!

Introduction to Database Systems 7

OODBMS, cont.

❖ New collection types:
– Type constructors: set<>, bag<>, list<>
– Iterators to loop through collection types.

❖ Gives a rudimentary “query language”.
– How to do selection? projection?
– “join” set<emp *>emps, set<dept *>depts?
– Can have pointers in this data model, with

efficient pointer-based joins.
– What RDBMS feature is missing here?

Introduction to Database Systems 8

OODBMS applications

❖ OODBMSs good for:
– complex data
– fixed set of manipulations (no ad-hoc queries)
– special-purpose applications written by hackers

❖ Problems:
– no query support
– application bugs trash persistent data
– security problems: no protection w/in a page!
– schema evolution very difficult
– some argue it’s back to the network data model

❖ A modest success in the marketplace

Introduction to Database Systems 9

Solution 2: Object-Relational

❖ Idea: Add OO features to the type system of
SQL. I.e. “plain old SQL”, but...
– columns can be of new types (ADTs)
– user-defined methods on ADTs
– columns can be of complex types
– reference types and “deref”
– inheritance and collection inheritance
– old SQL schemas still work! (backwards

compatibility)

❖ Relational vendors all moving this way
(SQL3). Big business!

Introduction to Database Systems 10

An Example ORDBMS Schema
create table frames (frameno integer, image jpeg,

category integer);

create table categories (cid integer, name text,
lease_price float, comments text);

create type theater_t row (tno integer, name
text, address text, phone integer)

create table theaters theater_t;

create table nowshowing (film integer, theater
ref(theater_t), start date, end date);

create table films (filmno integer, title text,
stars setof(text), director text, budget
float);

create table countries (name text, boundary
polygon, population integer, language text)

complex
types

ADTs

reference
types

Introduction to Database Systems 11

Complex Types

❖ User can use type constructors to generate
new types:
– setof(foo)
– arrayof(foo)
– listof(foo)
– row (n1 t1, ..., nk tk)

❖ Can be nested:
– setof(arrayof(int))

Introduction to Database Systems 12

ADTs: User-Defined Atomic Types

❖ Built-in SQL types (int, float, text, etc.) are
limited.
– Even these types have simple methods

associated with them (math, LIKE, etc.)
❖ ORDBMS: User can define new atomic types

(& methods) if a type cannot be naturally
defined in terms of the built-in types:

create type jpeg (internallength = variable,

 input = jpeg_in, output = jpeg_out);

❖ Need input & output methods for types.
–e.g., Convert from text to internal type and back.

Introduction to Database Systems 13

Reference Types & Deref.

❖ In most ORDBMS, every object has an OID.
❖ So, can “point” to objects -- reference types!

– ref(theater_t)
❖ Don’t confuse reference and complex types!

– mytheater row(tno integer, name text,
address text, phone integer)

– theater ref(theater_t)

❖ Both look same at output, but are different!!
– Deletion, update, “sharing”
– Similar to “by value” vs. “by reference” in PL

Introduction to Database Systems 14

Dinkey Schema Revisited
create table frames (frameno integer, image jpeg,

category integer); -- images from films

create table categories (cid integer, name text,
lease_price float, comments text); -- pricing

create type theater_t tuple(tno integer, name
text, address text, phone integer)

create table theaters theater_t; -- theaters

create table films (filmno integer, title text,
stars setof(text), director text, budget
float); -- Dinkey films

create table nowshowing (film integer, theater
ref(theater_t), start date, end date);

create table countries (name text, boundary
polygon, population integer, language text)

Introduction to Database Systems 15

An Example Query in SQL-3
❖ Clog cereal wants to license an image of

Herbert in front of a sunrise:

– The thumbnail method produces a small image.
– The Sunrise method returns T iff there’s a sunrise

in the picture.
– The Herbert method returns T iff Herbert’s in pic.

select F.frameno, thumbnail(F.image),
 C.lease_price

 from frames F, categories C
 where F.category = C.cid
 and Sunrise(F.image)
 and Herbert(F.image);

Introduction to Database Systems 16

Another SQL-3 Example

❖ Find theaters showing Herbert films within
100 km of Andorra:

– theater attribute of nowshowing: ref to an object in
another table. Use -> as shorthand for
deref(theater).name

– Set-valued attributes get compared using set
methods.

select N.theater->name, N.theater->address, F.name
 from nowshowing N, frames F, countries C
 where N.film = F.filmno
 and Radius(N.theater->location, 100) || C.boundary
 and C.name = ‘Andorra’

 and F.stars ∋ ‘Herbert the Worm’

Introduction to Database Systems 17

Example 2, cont.

❖ join of N and C is complicated!
– Radius returns a circle of radius 100 centered at

location
– || operator tests circle,polygon for spatial overlap

select N.theater->name, n.theater->address, F.name
 from nowshowing N, frames F, countries C
 where N.film = F.filmno
 and Radius(N.theater->location, 100) || C.boundary
 and C.name = ‘Andorra’

 and F.stars ∋ ‘Herbert the Worm’

Introduction to Database Systems 18

New features in SQL-3 DML

❖ Built-in ops for complex types
– e.g. the typical set methods, array indexing, etc.
– dot notation for tuple types

❖ Operators for reference types
– deref(foo)
– shorthand for deref(foo).bar: foo->bar.

❖ User-defined methods for ADTs.
❖ Syntax has not been completely decided yet

Introduction to Database Systems 19

Path Expressions
❖ Can have nested row types (Emp.spouse.name)

❖ Can have ref types and row types combined
– nested dots & arrows. (Emp->Dept->Mgr.name)

❖ Generally, called path expressions
– Describe a “path” to the data

❖ Path-expression queries can often be
rewritten as joins. Why is that a good idea?

❖ What about Emp.children.hobbies?

select E->Dept->Mgr.name
 from emp E;

select M.name
 from emp E, Dept D, Emp M
 where E.Dept = D.oid
 and D.Mgr = M.oid;

Introduction to Database Systems 20

User-Defined Methods
❖ New ADTs will need methods to manipulate

them:
– e.g., for jpeg images: thumbnail, crop,

rotate, smooth, etc.
– Expert user writes these methods in a

language like C and compiles them.
– Methods must be registered with

ORDBMS, which then dynamically links
the functions into server.

create function thumbnail(jpeg) returns jpeg

 as external name ‘/a/b/c/Dinkey.o’

Introduction to Database Systems 21

Inheritance

❖ As in C++, useful to “specialize” types:

create type theatercafe_t under

theater_t (menu text);

❖ Methods on theater_t also apply to its subtypes.
– Can redefine some of these methods.
– Can define additional methods.

Introduction to Database Systems 22

Inheritance

❖ “Collection hierarchies”: Inheritance on tables
– create table student_emp under emp (gpa
float);

– Queries on emp also return tuples from
student_emp (unless you say “emp only”)

❖ “Type extents”:
– All objects of a given type can be selected from a

single view (e.g., select * from theater_t)

Introduction to Database Systems 23

Modifications to support ORDBMS

❖ Parsing
– Type-checking for methods pretty complex.

❖ Query Rewriting
– Often useful to turn path exprs into joins!
– Collection hierarchies → Unions

❖ Optimization
– New algebra operators needed for complex types.

◆ Must know how to integrate them into
optimization.

– WHERE clause exprs can be expensive!
◆ Selection pushdown may be a bad idea.

Introduction to Database Systems 24

Modifications (Contd.)

❖ Execution
– New algebra operators for complex types.
– OID generation & reference handling.
– Dynamic linking.
– Support “untrusted” methods.
– Support objects bigger than 1 page.
– Method caching: much like grouping.

◆ f(x) for each x is like AVG(major) for each major.

Introduction to Database Systems 25

Modifications (Contd.)

❖ Access Methods
– Indexes on methods, not just columns.
– Indexes over collection hierarchies.
– Need indexes for new WHERE clause

exprs (not just <, >, =)!
◆ GiST can help here.

❖ Data Layout
– Clustering of nested objects.
– Chunking of arrays.

Introduction to Database Systems 26

Stonebraker’s Application Matrix

No Query Query

Complex Data

Simple Data File System

OODBMS

RDBMS

ORDBMS

Thesis: Most applications will move to
 the upper right.

Introduction to Database Systems 27

OO/OR-DBMS Summary

❖ Traditional SQL is too limited for new apps.
❖ OODBMS: Persistent OO programming.

– Difficult to use, no query language.
❖ ORDBMS: Best (?) of both worlds:

– Catching on in industry and applications.
– Pretty easy for SQL folks to pick up.
– Still has growing pains (SQL-3 standard

still a moving target).

Introduction to Database Systems 28

Summary (Contd.)

❖ ORDBMS offers many new features.
– But not clear how to use them!
– Schema design techniques not well

understood
– Query processing techniques still in

research phase.
◆ A moving target for OR DBA’s!

❖ Prediction: You will use an ORDBMS in the
future.

