
XML and Relational Database Management Systems:
the Inside Story

Michael Rys

Microsoft
mrys@microsoft.com

Don Chamberlin
IBM

chamberlin@almaden.ibm.com

Daniela Florescu
Oracle

dana.florescu@oracle.com

ABSTRACT
As XML has evolved from a document markup language to a
widely-used format for exchange of structured and semi-
structured data, managing large amounts of XML data has
become increasingly important. A number of companies,
including both established database vendors and startups, have
recently announced new XML database systems or new XML
functionality integrated into existing database systems. This
tutorial will provide an insight into how XML functionality fits
into relational database management systems as seen by three
major relational vendors: IBM, Microsoft and Oracle.

1. INTRODUCTION
XML was originally designed as a simplified form of SGML, a
document markup language with a simple syntax and an
extensible vocabulary. Its use quickly expanded beyond document
markup to encompass general data interchange and representation
of tree-structured data. A number of domain-specific XML
vocabularies such as XBRL [1] and HL7 [2] have been defined.
XML has been widely used in e-commerce and serves as the basis
for web-services-related languages such as SOAP [3] and WSDL
[4]. Increasingly, XML is the format of choice for data that needs
to be self-describing because it is sparse or heterogeneous, or for
data that has an intrinsic order that carries semantic meaning.
Systems for managing XML data fall into two major categories:
specialized systems designed specifically and exclusively for
XML, and more general systems designed to manage XML
among other data formats. The latter category consists primarily
of extended or “universal” relational database systems, and is the
subject of this tutorial. These systems promise to provide
integrated management of structured and unstructured data, with
the capabilities such as concurrency control, backup and recovery,
and automatic optimization that relational database users have
come to expect. In many cases, they also provide additional
XML-related functionality such as management of schema
information and validation of XML documents against a
designated schema.
Management of XML data has been the subject of work by

several industry consortia and standardization bodies. XML itself
is a Recommendation of the World Wide Web Consortium (W3C)
[5] [6]. Other W3C Recommendations include XML Schema, a
type system for XML [7]; XPath, a language for navigating within
XML documents [8, 9]; and XSLT, an XML transformation
language [10, 11]. W3C is also developing a new general-purpose
XML query language called XQuery. XQuery, which is based on
the XML Schema type system and includes XPath as a subset, is
currently in Last Call as a potential W3C Recommendation [12].
At the same time, the owners of the SQL standard, ANSI/INCITS
H2 and ISO WG3 SC32, have published a new set of XML-
related functionality as part of the SQL 2003 standard [13].
This tutorial aims to provide insight into how three major
relational database vendors, IBM, Microsoft, and Oracle, fit XML
and related technologies into a relational database environment. It
will cover the organization and storage of XML data, how data is
typed and validated using XML Schemas, and how it is accessed
and updated using interfaces such as SQL/XML and XQuery.
The tutorial is organized as follows: This introduction provides
general background information and introduces some terminology
and topics upon which the subsequent vendor-specific parts will
expand. In the sections that follow, the individual vendors provide
more detailed information on how integration of XML and
relational data is handled by their respective systems.

2. STORING XML IN RELATIONAL
DATABASE SYSTEMS
The simplest approach to storing XML data in a relational
database system is to use a long-character-string datatype, such as
CLOB in SQL, to store XML documents or fragments as text in
columns of tables. This approach might be said to provide textual
fidelity because it preserves the original XML at the character-
string level. The disadvantage of this approach is that it fails to
take advantage of the structural information that is available in the
XML markup. A generic string datatype does not provide any
specialized support for searching based on semantic content, or
for retrieving XML data at a fine level of granularity.

Another method for storing XML documents in relational
databases, called shredding, distributes the XML information
across the columns of one or more tables, preserving both data
values and structural relationships. This technique is most
commonly used for XML documents whose structure is described
by an XML schema. A mapping is defined from the XML schema
to a relational database design, typically using a different table for
each level of the XML element hierarchy. This approach is called
schema-based shredding. If a schema is not available, other forms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’05, June 14–16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

945

of shredding can be used. In general, as the structure of the stored
XML documents becomes less regular and predictable, the
mapping of these documents into relational tables becomes more
generic and less efficient. Shredding can accommodate a certain
degree of flexibility in document structure—for example, the
children of an element may be optional and may vary in
cardinality. However, the shredding technique is not efficient for
sparse elements (in which content varies widely from one element
to another), or for elements with mixed content (containing both
text and child elements). Furthermore, shredding generally fails to
preserve some of the XML-centric aspects of stored data, such as
document order and processing instructions.
Systems that use shredding to transform XML data into relational
data generally provide an inverse transformation, often called
XML publishing, to reconstruct XML documents from tabular
data. XML publishing is also used by pure relational systems to
export relational data in XML format, using markup to represent
structural and semantic information. New syntax in support of
XML publishing was added to the SQL standard in 2003 [13]. In
the XML publishing approach, selective retrieval of stored data is
accomplished by SQL rather than by an XML query language.
XML storage systems based on shredding and XML publishing
are said to provide relational fidelity, because the authoritative
form of the stored data is relational rather than XML. Examples
of systems that use these techniques include Microsoft SQL
Server 2000, Oracle 8i, and IBM DB2 Version 8.
While shredding and XML publishing are adequate for many
important use cases, a more general storage technique is needed to
take advantage of the structural information in unconstrained
XML documents. For this purpose, the SQL-2003 standard
provides a new datatype called XML for storing well-formed XML
documents and fragments, based on the XML Information Set
[14] and–in an upcoming revision of the standard–on the XQuery
Data Model [15]. Since this data model can represent all aspects
of a well-formed XML document, systems based on the XML
datatype are said to provide XML fidelity. These systems are able
to preserve XML-centric information such as document order and
namespace bindings, and to exploit this information using an
XML-based query language such as XQuery. For these reasons,
this level of support is often referred to as native XML.
The logical data model on which the XML datatype is based does
not specify any particular organization for physical storage. Many
physical storage techniques are possible, providing various
tradeoffs for time and space efficiency under query and update. In
addition, access aids such as indexes may be created to improve
query performance. Index creation and maintenance are more
complex in a native XML system than in a pure relational system,
since the XML data model is less constrained than the relational
data model. XML indexes may support access to data at various
levels of the element hierarchy, and the objects indexed may vary
in cardinality and datatype. In general, native XML databases
raise new challenges for all aspects of query optimization,
including join planning, index selection, and cost estimation.
The vendor-specific sections that follow will provide more detail
on the storage and access techniques used and the level of fidelity
provided by their respective implementations, as well as their
strategies for indexing XML data and optimizing XML queries.

3. XML TYPING AND VALIDATION
In addition to storing documents, native XML storage systems
often provide a way to store XML schemas and to validate stored
documents with respect to specific schemas. Facilities may be
provided to constrain the contents of a given column to
documents that have been validated against a given schema or set
of schemas. In addition to guaranteeing the integrity of stored
data, the validation process generates type information that can be
useful during query optimization and execution.
The operators of XQuery are defined both for untyped data and
for data of a known type such as xs:string or xs:decimal.
In general, XQuery operators attempt to coerce untyped data into
a type that they understand—for example, numeric operators
attempt to cast untyped data into a numeric type. This
polymorphic behavior incurs a certain amount of overhead for
run-time dispatching of the proper operation, which can be
avoided for data that has a known type due to schema validation.
Another potential use for schema type information lies in static
type-checking of queries. If schema definitions are available for
the elements and attributes referenced in a query, those definitions
can be exploited to infer the result-types of various expressions.
By static analysis of the query, then, certain kinds of errors can be
detected and type information can be extracted that is useful in
query optimization. A set of static type inference rules has been
defined as an optional feature of the XQuery language [16].
Integration of the XML and relational type systems presents many
challenges. The primitive types are different and the mechanisms
for deriving new types from existing types are different. The
notion of a null value, widely used in relational databases, is
missing from XML. The notions of sequences and ordering,
central to the XML data model, are missing in relational
databases. In order to accommodate XML data, the basic semantic
primitives of a relational database system must be expanded and
adapted in interesting ways.
The vendor-specific sections that follow will provide more detail
on how schemas and type information are stored and exploited by
their respective implementations.

4. QUERYING AND MANIPULATING
XML DATA
Among the most important aspects of an XML storage facility are
the interfaces provided to access and manipulate the stored data.
For this purpose, several XML-related languages have been
defined. XPath [8, 9] provides a navigation facility within XML
documents but does not provide an ability to transform structures
or to construct new elements. XSLT [10, 11] supports
transformation and construction, but its recursive template-driven
nature is not well-suited to optimization or static analysis.
XQuery [12] includes XPath as a subset, and provides a complete
set of query facilities, including transformation and construction.
The syntax and processing model of XQuery are similar enough
to SQL to be familiar to relational users and amenable to the
kinds of optimization often used by relational systems.
The next version of the SQL/XML standard [13] provides syntax
whereby an XQuery can be invoked from within an SQL
statement for retrieving data at a fine level of granularity from
within a stored XML document. The data returned by XQuery to

946

the SQL environment can then be processed further using SQL
facilities such as grouping and aggregation.
Most SQL/XML implementations also support the inverse of this
facility, in which relational data can be accessed from within an
XQuery. The next version of the SQL/XML standard will define a
facility for binding SQL data to XQuery variables. Some systems
also provide implementation-defined XQuery functions that
accept SQL queries and return their results to XQuery for further
processing. For example, when XML documents are stored in
columns of tables, an XQuery might call a function that invokes
an SQL query to extract its input documents.
The similarities in syntax and processing model between XQuery
and SQL, and the facilities in each language for invoking the
other, make the two languages complementary and well-suited for
a hybrid system that stores and manages both XML and relational
data. With some variations, each of the systems described in the
vendor-specific sections that follow is such a hybrid system.
In addition to query facilities, a database management system
needs facilities for inserting, deleting, and modifying data.
Currently, the XQuery specification does not provide any
definition of these facilities. For XML data, the minimum
necessary facility must be able to insert documents and document
fragments into the data store and to delete them. If the XML data
is stored in table columns, this functionality can be provided using
the SQL language. A future version of XQuery is expected to
provide a syntax for updating stored instances of the XML data
model at a finer granularity. A working draft containing
requirements for such an update facility has been published by the
XML Query Working Group [17]. Until this work is complete,
each XQuery implementation is addressing the data manipulation
requirement in its own way.
XQuery Version 1.0 is now in “last call” status and may soon
become a W3C Recommendation. This version of the language
includes only facilities for exact queries—that is, queries with
well-defined results. However, the XML Query Working Group
has created a task force to study full-text search functionality, in
which a query ranks a set of input documents with respect to
some criterion to find the most relevant documents. Full-text
search takes word proximity into account and uses techniques
such as synonyms and stem-matching. Because of the heuristic
techniques used, the result of a full-text search is not well-
defined. Working drafts containing a proposed syntax for full-text
searching in XQuery and a set of example use cases have been
published by the task force [18, 19]. This functionality is
particularly important for information-retrieval applications where
XML is used in its original role as a document markup language.
The vendor-specific sections that follow provide more details
about the query interfaces supported by their respective systems
and how these systems deal with requirements for data
manipulation and full-text search. Consideration is also given to
how XML data fits into the general administrative tools and
interfaces of the respective systems.

5. REFERENCES
[1] Extensible Business Reporting Language. See

http://www.xbrl.org/home.
[2] Health Level 7 XML Special Interest Group (R. H. Dolin and

P. V. Biron, editors). Using XML as a Supplementary

Messaging Syntax for HL7 Version 2.3.1. See
http://www.hl7.org/special/committees/sgml/hl7v231xmlFIN
AL.zip.

[3] W3C XML Protocol Working Group (M. Gudgin et al,
editors). SOAP Version 1.2 Part 1: Messaging Framework.
See http://www.w3.org/TR/soap12.

[4] E. Christensen et al. Web Services Definition Language
(WSDL) 1.1. W3C Note. See http://www.w3.org/TR/wsdl.

[5] World Wide Web Consortium (W3C). See
http://www.w3.org.

[6] T. Bray et al. Extensible Markup Language (XML) 1.0. W3C
Recommendation. See http://www.w3.org/REC-xml.

[7] W3C Schema Working Group (H. Thompson et al, editors).
XML Schema, Parts 0, 1, and 2. See
http://www.w3.org/TR/xmlschema-0, -1, and -2.

[8] W3C XSL and Linking Working Groups (J. Clark and S.
DeRose, editors). XML Path Language (XPath) Version 1.0.
See http://www.w3.org/TR/xpath.

[9] W3C Query and XSL Working Groups (A. Berglund et al,
editors). XML Path Language (XPath) Version 2.0. See
http://www.w3.org/TR/xpath20.

[10] W3C XSL Working Group (J. Clark, editor). XSL
Transformations (XSLT) Version 1.0. See
http://www.w3.org/TR/xslt.

[11] W3C XSL Working Group (M. Kay, editor). XSL
Transformations (XSLT) Version 2.0. See
http://www.w3.org/TR/xslt20.

[12] W3C Query Working Group (S. Boag et al, editors). XQuery
1.0: An XML Query Language. See
http://www.w3.org/TR/xquery.

[13] International Organization for Standardization (ISO).
Information Technology—Database Language SQL—Part
14: XML-Related Specifications (SQL/XML). Standard No.
ISO/IEC 9075:2003. Available from American National
Standards Institute, New York.

[14] W3C XML Core Working Group (J. Cowan and R. Tobin,
editors). XML Information Set. See
http://www.w3.org/TR/xml-infoset.

[15] W3C Query and XSL Working Groups (M. Fernandez et al,
editors). XQuery 1.0 and XPath 2.0 Data Model. See
http://www.w3.org/TR/xpath-datamodel.

[16] W3C Query and XSL Working Groups (D. Draper et al,
editors). XQuery 1.0 and XPath 2.0 Formal Semantics. See
http://www.w3.org/TR/xquery-semantics.

[17] W3C Query Working Group (D. Chamberlin and J. Robie,
editors). XQuery Update Facility Requirements. See
http://www.w3.org/TR/xquery-update-requirements.

[18] W3C Query and XSL Working Groups (S. Amer-Yahia et al,
editors). XQuery 1.0 and XPath 2.0 Full-Text. See
http://www.w3.org/TR/xquery-full-text.

[19] W3C Query and XSL Working Groups (S. Amer-Yahia and
P. Case, editors). XQuery 1.0 and XPath 2.0 Full-Text Use
Cases. See http://www.w3.org/TR/xquery-full-text-use-
cases.

947

