
1

Automatic Construction of Anomaly Detectors from
Graphical Models

Erik M. Ferragut
David M. Darmon
Craig A. Shue
Stephen Kelley

Cyberspace Sciences and Information Intelligence Research Group
Oak Ridge National Laboratory

{ferragutem, darmondm, shueca, kelleys}@ornl.gov

Abstract—Detection of rare or previously unseen attacks in
cyber security presents a central challenge: how does one search
for a sufficiently wide variety of types of anomalies and yet
allow the process to scale to increasingly complex data? In
particular, creating each anomaly detector manually and training
each one separately presents untenable strains on both human
and computer resources. In this paper we propose a systematic
method for constructing a potentially very large number of
complementary anomaly detectors from a single probabilistic
model of the data. Only one model needs to be trained, but
numerous detectors can then be implemented. This approach
promises to scale better than manual methods to the complex
heterogeneity of real-life data. As an example, we develop a
Latent Dirichlet Allocation probability model of TCP connections
entering Oak Ridge National Laboratory. We show that several
detectors can be automatically constructed from the model and
will provide anomaly detection at flow, sub-flow, and host (both
server and client) levels. This demonstrates how the fundamental
connection between anomaly detection and probabilistic modeling
can be exploited to develop more robust operational solutions.

I. INTRODUCTION
In recent years, much of society has become heavily de-

pendent on cyberinfrastructure. An important issue raised by
the use of this infrastructure is the threat of cyberattacks.
These attacks can take on many forms: denial-of-service, man-
in-the-middle, etc. In order to detect these attacks, one can
assume that the behavior of malicious individuals is likely
to be anomalous. An anomaly detector is an algorithm that
takes in streaming data and flags the most unusual events as
anomalous and tags them with a score indicating the degree
of anomalousness. The anomaly detection approach is based
on the hypothesis that atypical events are more likely to be of
interest [1]. The concept of operations for anomaly detectors
is typically that human operators will manually analyze the
most anomalous events as time allows.
One issue with anomaly detection is that the notion of

anomalousness is not generally well-defined. For example,
should the system flag as anomalous a daily event that almost
always occurs at 7:15 AM or 7:17 AM, but one day occurs

The submitted manuscript has been authored by a contractor of the
U.S. Government under contract DE-AC05-00OR22725. Accordingly, the
U.S. Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allows others to do so,
for U.S. Government purposes.

at 7:16 AM? If the event time is thought of as a unimodal
random variable (e.g., a normally distributed random variable),
then 7:16 AM event, even though it had not previously been
observed, would be rated more typical than 7:15 AM or
7:17 AM. On the other hand, if the times were treated as
categorical variables, then the previously unobserved event
would likely be flagged as anomalous. Ideally, the anomaly
detection system will be guided by domain experts so that the
more appropriate modeling approach is used.
A second issue with anomaly detection is the need to

test for multiple types of anomalies. If the data are only
comprised of event times, the number of reasonable questions
is limited. However, real-life data are, more often than not,
highly complex and heterogeneous. Given a set of variables,
an anomaly detection question can be asked for each variable
conditional on every subset of the other variables. For example,
if the data are comprised of EVENT TIME, LOCATION,
EVENT LENGTH, and EVENT TYPE, then one can ask (for
example):
1) Is the EVENT TIME anomalous given the LOCATION?
2) Is the EVENT TIME anomalous given the EVENT

LENGTH?
3) Is the LOCATION anomalous given the EVENT TIME
and EVENT TYPE?

4) Is the EVENT LENGTH anomalous given all other vari-
ables?

Clearly a set of n variables will admit n2n−1 such anomaly
detection questions. This explosion of anomaly detectors,
while apparently necessary for completeness has three main
issues. First, training and applying all of these detectors is
likely to be computationally intractable. Second, it is unlikely
that there will be enough data to justify the complexity of
these models. Third, even if computational tractability and
data requirements are met, a very small false positive rate
p will be required in order to keep the expected number of
false positives, pn2n−1 small enough to avoid overwhelming
analysts.
In this paper, we show that mutiple appropriately defined

anomaly detectors can be constructed from a corresponding
well-designed graphical model of the data so that the detec-
tors exhibit good coverage of anomalous events of interest

2

while minimizing computational requirements. In particular,
only one graphical model needs to be trained, but an entire
collection of anomaly detectors may then be derived.
Anomaly detectors can be constructed based on various

methods of computational intelligence, including statistical
analysis, machine learning, and probabilistic modeling. Statis-
tical methods provide useful initial exploratory analyses. How-
ever, they are often difficult to apply to complex structured
data, such as observations on a network. Machine learning
offers a ‘black box’ answer: a model (known as a classifier) is
trained on a data set and then future data can be classified using
this model as either normal or anomalous. This approach,
while effective, offers little intuition into the mechanism
behind the data. In addition, machine learning methods, while
general, most typically require the conversion of the data
into numeric vectors, which obscures the structural properties
of the data and forces the machine learning algorithm to
rediscover it.
Probability models explicitly represent the relationships be-

tween variables of interest to produce a model, learn from data,
and perform inference in the presence of uncertainty [2]. As
a result, probability models explicitly incorporate the known
structural information about the data and allow for modeling of
complex structured data. Another advantage of this approach is
that it offers insight into the mechanisms behind the generation
of the data. It also separates the representation of the model
structure from any learning or inference performed on the
model, which allows structural questions (e.g., presence of
dependencies) to be tested. Very importantly for real world
applications, probabilistic modeling does not require data that
has already been classified and thus is suitable for unsuper-
vised learning.
In this paper we use the explicit relationships between

variables as represented in a graphical model to guide the
automated construction of anomaly detectors. Generally, the
anomaly detectors will compute the individual conditional
probabilities associated with a data record or collection (de-
pending on the detector). The advantage of having a constella-
tion of such detectors is that an event found to be anomalous
can be further annotated in terms of which detector discovered
its anomalousness. This provides a rich contextual background
for human analysts by describing the cause of the anomaly,
giving examples of what would have been more typical, and
providing a probability score. Contrast this with a black-box
algorithm where an event is either labeled as anomalous or
normal without further explanation or context.
While previous work [3]–[8] has used probability modeling

as the basis for anomaly detection in cyber security and other
domains, this is the first paper to describe a general methodol-
ogy for doing so. In many cases, previous probability models
can be used to extend the completeness of their anomaly
detection solutions essentially for free in the sense that no
new training is required, but additional anomaly detectors can
be constructed from the model as trained. Also, the particular
usage of Latent Dirichlet Allocation (LDA) used in this work
is new, although the application of LDA to cyber data analysis
in other ways is not [9].
Section II provides a brief introduction to graphical models

and introduces the important example of Latent Dirichlet Al-
location, which will be the central example of this paper. Sec-
tion III describes our methodology for constructing anomaly
detectors from a graphical model in a complete and systematic
way to produce anomaly detectors of three kinds. Section IV
describes the application of LDA to real ORNL cyber data and
enumerates the systematically constructed anomaly detectors
in the LDA example. Section V shows the results of a selection
of the resulting detectors.

II. GRAPHICAL MODELS AND LATENT DIRICHLET
ALLOCATION

A graphical model1 is a probability model that represents
dependencies among random variables by the directed edges
within a graph. In particular, vertices of the graph represent
random variables. A variable x is directly dependent on the
variable y if the graph contains the edge x → y. The
conditional probability distributions for each variable given
the variables on which it directly depends is assumed to be
known. If a variable does not directly depend on any other
variables, then the conditional probability is in fact a marginal
probability.
The graph of variables and dependencies together with the

conditional distribution families of the variables comprise the
structure of the graphical model. This structure is generally
manually determined and then fixed. The parameterizations
of the conditional distributions are learned from data. The
parameters inform the knowledge discovery. A trained graph-
ical model can be used to compute the probabilities of new
observations, which is the key to anomaly detection. This is
described in the next section.
Graphical models generalize many well known machine

learning algorithms including hidden Markov models, naive
Bayes, Bayesian belief networks, and conditional random
fields. They have found successes and represent some of the
best known solutions in voice processing, computer vision,
natural language processing, and bioinformatics.
The remainder of this section describes a particular graph-

ical model developed in the context of natural language
processing. We will be applying (assigned new meaning to
its variables, training it, and using it for inference) this model
to the analysis of cyber data and to anomaly detection within
that data.
In natural language processing, document classification and

topic model training [10] have often employed probabilistic
modeling approaches. One such model is Latent Dirichlet
Allocation (LDA) [11]. LDA is a generative probabilistic
model for a set of observations explained by unobserved
topics. LDA can be used for and was originally developed
to identify latent (i.e., unobserved) topics within a corpus of
text documents based on the distribution of words within and
across those documents.
A recent application of LDA to cyber security focused on

text-mining within blogs [12]. Blog posts were considered as
mixtures of topics, some of which were of security interest.
This work successfully identified interesting topic areas within

1For simplicity of exposition, we discuss only directed graphical models.

3

the blog posts. However, the authors focused on blogs known
to focus on cyber security threats. Thus, this work does not fall
under the umbrella of anomaly detection. Recent work applied
LDA to identifying exfiltration events in artificial network logs
generated for a cyber security challenge [9]. LDA was applied
to individual network connections, treating each connection
as a document composed of several categorical attributes (the
‘words’ of the model). The application of LDA to the network
events identified all exfiltration events present in the challenge.

A. Latent Dirichlet Allocation

In explaining Latent Dirichlet Allocation (LDA), we adopt
the language of text analysis as it is the most natural termi-
nology for describing LDA.
LDA is a probabilistic model for multinomial discrete

data [11]. One of the keys to derivation of LDA is the “bag-
of-words” assumption: we assume that the order of the words
within a document can be neglected. This is the assumption
of exchangeability of the words within a document. The
exchangeability assumption makes the words independent and
identically distributed, conditional on the parameters of the
model. Using this independence, we create the model depicted
in Figure 1. The model is represented using plate notation, a
way of representing variables that repeat within a graphical
model. Using plate notation, a rectangle is used to designate
variables into subgraphs that repeat together, and the number
within the rectangle designates the number of copies of the
subgraph. Therefore, in Figure 1, there are M documents,
N words within each document, and k topics across all the
documents. The method for choosing the words for a document
within a corpus is encoded in this figure. For each document
d, the multinomial distribution of topics θ is sampled from the
Dirichlet prior α. Then a topic z is assigned to each of the
N words within a document by sampling from θ. Based on
the topic z, for each word w within a document, a particular
instance word is chosen from a vocabulary of V words from
the Dirichlet prior β. With a large vocabulary size, there is
the possibility that, given a new document not in a corpus
used for training the model, words will appear that did not
appear in the training corpus. This would result in assigning
zero probability to that document. Thus β is smoothed using
η, conditioned on the data. This is done by drawing each row
of β from η, an exchangeable Dirichlet distribution.

Fig. 1. A graphical model of the smoothed LDA.

B. Variational Approximation Algorithm
In order to make learning and inference using LDA feasible,

we must deal with the posterior distribution P (θ, z|w, α, β),
but this distribution is intractable to compute. There are many
approximate inference algorithms that may be used for LDA,
which include Markov Chain Monte Carlo methods such as
Gibbs sampling [13], [14] and variational algorithms [15]–
[17]. Here, we describe the latter in more detail; its trained
parameters will be used for anomaly detectors below.
The convexity-based variational algorithm works by using

Jensen’s inequality to determine an adjustable lower bound
on the log likelihood of the model. The lower bound is
found by dropping the edges between θ and z, removing
the node w and adding free variational parameters to the
model, as in Figure 2. This gives a simplified approximating
distribution Q(θ, z|γ, φ) with variational parameters γ and
φ. Now tightening the lower bound on the log likelihood
corresponds to the optimization problem

(γ∗, φ∗) = argmin
(γ,φ)

D(Q(θ, z|γ, φ)||P (θ, z|w, α, β))

where D is the Kullback-Leibler divergence between the
variational distribution and the true posterior distribution.

Fig. 2. A graphical model of the variational distribution used to approximate
LDA.

III. CONSTRUCTION OF ANOMALY DETECTORS
In this section, we assume that we have a graphical model

and a mapping from our data set features to the variables
within the model. We identify three natural classes of anomaly
detectors based, respectively, on dependency, plate, and index
schemes.
Dependency. For every variable, we can consider its condi-

tional distribution based on the variables on which it directly
depends. These conditional distributions are precisely what
was learned from the data. As a result, these distributions
can easily be evaluated on new data. There will be one such
anomaly detector for every variable represented by the new
data record.
Plate. The plates in the graphical model represent replica-

tions of random variables of the same kind. This suggests
the comparison of one such variable to all others of the
same kind. These anomaly detectors require the ability to
perform this comparison. If the parameter average of the
distributions is computable and meaningful, then one might

4

consider a distribution similarity or distance measure between
the excluded distribution and the average of the others. (We
will use the Kullback-Liebler Divergence for this below.)
Index. In some cases, replicated plates, rather than being

indexed by a single integer are more naturally multivariate. If
a plate is indexed by i1, i2, . . . , ik, we can fix all indices but,
say, ij for some j = 1, 2, . . . , k. Then we can compare the
distribution for ij = t against the average across all ij "= t.
This is a refinement of the Plate anomaly detector2.
In each case, the required information for the anomaly

detector is either directly in the trained graphical model or is
easily computed from it (as, say, an average). Hence, there
is no additional computation required. This means that a
potentially large number of anomaly detectors can be derived
from a single graphical model. In practice, many of these will
be uninteresting to the operational analysts.
However, the probabilities produced by these anomaly

detectors in the null hypothesis case that the data fit the
model will vary considerably potentially making it difficult to
compare across detectors. This is an issue when a large number
of detectors are used in parallel. One way to address this
issue is via synthesized thresholds where we use the graphical
model to synthesize a large number of events and compute the
anomaly detector scores for each. From these synthesized data,
we can estimate thresholds for a pre-decided false positive
rate. Each anomaly detector receives its own threshold and
the resulting flagged anomalies are then at least filtered to
meet the same minimal requirement of anomalousness.

IV. METHODOLOGY

This section describes the collection and preprocessing of
the data, as well as the specifics of how LDA was used to
model and learn from the data.

A. Data Collection and Preprocessing
Internet Protocol (IP) addresses and port information were

collected for all connections crossing the Oak Ridge National
Laboratory (ORNL) network perimeter. The logs contained a
single record for every Transmission Control Protocol (TCP)
connection and a record for each User Datagram Protocol
(UDP) and Internet Control Message Protocol (ICMP) packet.
The data were parsed to obtain TCP packets with SYN flags.
These packets indicate the beginning of a directed communi-
cation between a client and server.
Further preprocessing was performed on the TCP packets.

The ‘to’ port for each packet was classified as follows: a port
below 1024 was labeled with the port number if the port was
present in the Internet Assigned Number Authority (IANA)
directory and as unknown otherwise3. All ports greater than
1024 were labeled unknown. The data were then partitioned
into from-to pairs with the ‘to’ IP always within ORNL.
The data used during this study was collected from July 18

to July 23, 2010 and corresponds to approximately 74 million
2We could in fact consider allowing more than one index to vary, comparing

one value against the average of all others. This produces exponentially many
anomaly detectors in the dimensionality of the indexing scheme.
3See http://www.iana.org/assignments/port-numbers for a list of well-known

ports.

IP to-from pairs (approximately 3 million of which are unique)
and 193 unique port labels.

B. Application of Latent Dirichlet Allocation
In analogy to text analysis, each IP address pair corresponds

to a document, each ‘to’ port label corresponds to a word, and
each behavior corresponds to a topic. The vocabulary of the
corpus is the unique ports used by IP pairs. A document is
composed of the count of ports used by a given IP address
pair, resulting in a typical behavioral profile for each from-to
IP address pair.
A variational expectation-maximization (EM) algorithm was

used to learn the posterior parameters β and γ of the LDA
model. The model was trained using both five and ten topics.
For all runs, an initial value of αi = 0.1 was used for the
Dirichlet prior. The distribution of β was smoothed using
k randomly selected documents. The EM algorithm was run
with a convergence criterion of 1×10−6. The total variational
algorithm was run with a convergence criterion on the change
in the log likelihood of the model of 1 × 10−6.

C. Enumeration of Constructed Anomaly Detectors
We consider the three classes of natural anomaly detectors

described in III. Detectors 1–4 are dependency-based, detec-
tors 5–7 are plate-based, and detectors 8–9 are index-based.
Below, we use the notationM(X Xi) to denote the “mean” of
the distributions of the variables Xj with j "= i. Here, mean
refers to a properly weighted average of the parameters of
the distributions, if averaging is meaningful. Kullback-Liebler
divergence is denoted by D.
1) Which words are least (and most) likely given the topic
and word distributions? P (w | z, β)

2) Which word distributions are significantly different from
the prior distribution? (These are represent significant
deviations implied by the data and may be thought of
especially cogent word distributions or likely meaningful
topics.) P (β | η)

3) Which topics are especially atypical within a document?
P (z | θ)

4) Which documents have topic distributions that are sign-
ficantly different from the prior distribution? P (θ | α)

5) Which topics have the most distinctive word choice
(given η, which is common across word distributions)?
D (βi||M(β βi))

6) Which document topic distributions are the most distinc-
tive (given the topic prior α, which is common across
documents)? D (θi||M(θ θi))

7) Which word topics are most atypical within a document
(given the topic distribution, θ, for that document)?
D (zi||M(z zi))

8) Given a destination IP address, which source IP ad-
dresses exhibit the most atypical behavior?

9) Given a source IP address, which destination IP ad-
dresses exhibit the most atypical behavior?

The most and least frequent words per topic, as described in
detector 1, could be used to identify words (which in our cyber

5

data example are ports) as being anomalous within topics.
Since topics are assigned to maximize likelihood, a rare word
for a topic is in reality a word that is never deduced to come
from that topic (assuming another topic uses that word with
greater probability). As a result, using detector 1 for anomaly
detection is not meaningful. However, it is useful to look at
the most frequent words as these give an indication of the
semantics of the topic.
Detector 2 is useful in the case where documents are select-

ing words approximately uniformly and there is not enough
deviation from uniformity to force the word distribution to
deviate from the prior distribution. This detector serves more
as a diagnostic tool as it may indicate topics that are not
meaningful. However, a more common convergence issue is
for multiple topics to be essentially the same, which would
not be picked up by this detector.
Detector 3 helps to detect anomalous connections within a

flow on the basis of port usage. In an operational setting, this
would detect anomalies at a sub-flow level. In practice, it may
be wise to take into account other features in addition to port
when searching for sub-flow anomalies.
Detector 4 is important to help distinguish various types

of document anomalies. It is possible that a document fits a
single topic or a topic distribution very strongly. However, it is
also possible that a document does not appear to fit any topic
distribution. In this case, it will likely be relatively close to
the prior distribution; this detector will find such anomalous
documents.
Detector 5 may be useful in a post hoc analysis of topic

distributions as it may, for example, assist in clustering topics
or validating topic assignments on labeled documents. In terms
of anomaly detection it is not expected that a document that
heavily uses a topic that is distinct from the otheres would
indicate anomalousness in any meaningful sense.
Detector 6 is probably the first detector an operational

analyst would devise on their own, since it measures the
anomalousness of a flow. In contrast to the machine-focused
detectors 8 and 9, this detector is focused on finding individual
flows that stand out against the entire corpus of flows.
Detector 7, like detector 3, is focused on sub-flow anomaly

detection. Rather than analyze the topics based on their
distribution θ, it compares the topics across documents using
the divergence between distributions. Nevertheless, detectors
3 and 7 appear to carry essentially the same information.
Detectors 8 and 9 are alternative versions of detector 6. In

particular, detector 8 is focused on finding anomalous clients
and detector 9 is focused on finding anomalous servers.
Of these 9 systematic anomaly detectors, we see that three

(1, 2, and 5) are appropriate for diagnostic or post hoc analysis,
5 (3, 4, 6, 8, and 9) are appropriate for operational detectors,
and one (7) is redundant. We have therefore constructed
five interesting and meaningful operational anomaly detectors
where a more traditional approach would have settled for one.
Our detectors include detectors for anomalous flows, con-
nections, clients, and servers. Operational anomaly detection
requires the analysis of data at all of these scales. Using a
graphical model as the basis for a set of anomaly detectors
unifies the approach and multiplies the number of meaningful

detectors, but does not increase the computational demands on
training the model.

D. Leave-One-Out IP Pair Characterization
The trained LDA model was used to characterize the typical

behavior of an individual IP address internal to ORNL. The
γi values are approximately equal to the αi values plus the
expected number of ports allocated to each behavior of a
particular IP pair. Thus, these values characterize the typical
mixing of behaviors for a given IP pair. For a given ‘to’ IP
address, there are n connections with associated γ values:
γi,1, γi,2, . . . , γi,n. For each IP connection, the leave-one-out
weighted average of the γi,n is

γq =

∑
j #=i Njγi,j∑

j #=i Nj

where the weight, Nj , is the number of times the particular IP
pair occurred in the data set. The Kullback-Leibler divergence
is then computed between the held out γp and the associated
weighted average γq:

D(γq||γp) = log
Γ(γq,tot)

Γ(γp,tot)
+

n∑

i=1

log
Γ(γp(i))

Γ(γq(i))

+
n∑

i=1

[γq(i) − γp(i)][Ψ(γq(i)) − Ψ(γq,tot)]

where
γr,tot =

n∑

i=1

γr(i) for r = p, q,

and Ψ(·) is the digamma function, the first derivative of log
Γ(·).

V. RESULTS
Multiple methods of inference were performed on the data.

The first method, discussed in V-A, investigates the port labels
typical of a given behavior (i.e., detector 1). The second
method, discussed in V-B, examines the behaviors of a given
server (i.e., detector 5). The third method, discussed in V-C
and V-D, analyzes the incoming IP connections to a particular
server to identify anomalies (i.e., detector 9).

A. Typical Port Behaviors
This subsection explores the results from detector 1 as

defined in Subsection IV-C. From the derivation of the LDA
model in [11], it is known that

β = log P (w|z = k).

Thus, β can be used to identify the most likely port labels
within each behavior. Table I lists behaviors and their associ-
ated ports for a model trained with five behaviors. The model
was trained using only IP addresses internal to ORNL that
also acted as ‘to’ addresses.
By inspection of the top ports within a behavior, we can

hypothesize as to the role that would lead to such behavior.
The first behavior and second behavior, with large fractions

6

TABLE I
A TYPICAL DISTRIBUTION OF TCP PORTS FOR A MODEL TRAINED WITH

FIVE BEHAVIORS.

Port TCP Protocol Fraction of Behavior
443 HTTPS 0.8011
993 IMAPS 0.1623
389 LDAP 0.0223
143 IMAP 0.0047
515 Printer 0.0028

Port TCP Protocol Fraction of Behavior
80 HTTP 0.9934
21 FTP 0.0059
389 LDAP 0.0003

Port TCP Protocol Fraction of Behavior
53 DNS 0.9325
706 SILC Server 0.0090
910 KINK 0.0060
651 IEEE-MMS 0.0057
419 Ariel 0.0054

Port TCP Protocol Fraction of Behavior
25 SMTP 0.9862
113 Authorization 0.0075
587 Secondary SMTP 0.0026

Port TCP Protocol Fraction of Behavior
UNK N/A 0.9632
22 SSH 0.0365

of HTTPS or HTTP, most likely correspond to web servers.
The third behavior, with a large fraction of DNS, most likely
corresponds to DNS servers. The fourth behavior, with a
large fraction of SMTP, most likely corresponds to a mail
server. The classification of the fifth port is non-obvious:
the large fraction of ports not in the IANA well-known list
could indicate any number of roles behind this behavior. This
behavior is further discussed in V-D
When the model was trained using ten behaviors, it was

found that many of the behaviors were exact duplicates. Thus,
ten topics were determined to be too many.

B. Ground Truth Validation
This subsection explores the results from detector 5 as de-

fined in Subsection IV-C. A set of known ORNL IP addresses
were used to validate the usefulness of the model from the
previous section. The set contains four mail servers, four DNS
servers, and one web server. It was found that one of the DNS
servers was never accessed during the one week period in
which the data were collected. For the remaining servers, γ
was used to classify the mixture of behaviors characteristic of
their IP address. The normalized γs are displayed in Figure 3.
From Figure 3, it is clear that the model properly identified

useful behaviors for the given set of servers. Servers of the
same type can be grouped by a similar mixture of behaviors.

Fig. 3. The distribution of behaviors from Table I for known servers within
ORNL.

Additionally, it is clear that the behaviors correspond to the
labeling in V-A. It is also evident that the unknown fifth
behavior is most typical of DNS servers.

C. Identification of Anomalous Events
This subsection is the first of two that explore the results

from detector 9 as defined in Subsection IV-C; this one focuses
on labeled servers. To validate the usefulness of the LDA
model for anomaly detection, three of the known servers from
the set in V-B were investigated manually. The leave-one-out
Kullback-Liebler divergence was then computed for each of
those servers. By ranking the from-to pairs by their divergence,
it was possible to determine the pairs that varied most from
the average behavior of the server and thus identify anomalous
activity linked to a specific ‘from’ IP address.
The most anomalous connection (D =26844.15) on the web

server was characterized by the usage of 389/tcp : LDAP.
The three next most anomalous connections (D =11758.59,
10417.77, and 9758.78) were characterized by repeated access
to 80/tcp : HTTP and 443/tcp : HTTPS, on the order of 103

and 104 times, respectively. Though this seems like typical
behavior for a web server, the least anomalous connection
(D =3.3998) was characterized by access to 80/tcp : HTTP
and 443/tcp : HTTPS 888 and 24 times, respectively. Because
γ for this server has a negligible representation of behaviors
beyond the second behavior, and due to the large number of
connections associated with this server, it is the purity of the
behavior that is anomalous.
The most anomalous connection (D =285.67) for the mail

server corresponded to attempts to access 80/tcp : HTTP.
Using nslookup, the IP address for the ‘from’ connection
was found to be a webcrawler. Similar behavior, as well
as an nslookup, classified the eight next most anomalous
connections as webcrawlers attempting to access the mail
server through port 80/tcp. Typical behavior for this server
(D = 1.97× 10−3) was accessing port 25/tcp : SMTP on the
order of 102 times.
The DNS server exhibited the strangest behavior. The top

four most anomalous events (D = 2317.61) corresponded to

7

attempts at connections to ports greater than 1024. During
the one week period, each IP address attempted to make 458
connections. The attempts at connections were synchronized:
the first IP attempted to make a connection to the same port
twice in a five second period, and then five seconds later the
next IP address made the same double attempt at the same port,
etc. These cycles of four IP addresses were consistently three
to nine minutes apart. Using a geolookup on the IP addresses,
all four were found to originate from the same city within a
sensitive country.
The behavior exhibited by these four IP addresses is typical

of port scanning [18]. During port scanning, an attacker sends
TCP requests to ports on a target machine and, based on
the responses, determines whether those ports are in use.
One drawback for the attacker is that port scanning leaves
an obvious fingerprint for port auditing tools. One way to
circumvent auditing tools is to perform a stealthy port scan.
For this type of port scan, the attacker tries to mask their
behavior so that the auditing tool does not register it as
malicious. One possible method for performing this type of
port scan is to scan slowly, over the course of a day or week.
The approach taken by these four IP addresses demonstrates
an alternative method: spreading the port scanning over four
different IP addresses. However, if this was the goal of these IP
addresses, the stealthy port scan was poorly executed, since all
four IP addresses attacked the same port in quick succession.
An alternative hypothesis to explain the four anomalies is

that they were attempting to use port knocking, a cryptographic
scheme originally used for authentication [19]. For example,
if A, B, C, and D are ports, then accessing the sequence
AABCB on a server might indicate that port D should be
opened for the user. Although this technique was originally
created for legitimate use, a malicious insider could use this
technique to hide a port used for data exfiltration. It is possible
that a synchronized port knocking scheme could be carried out
by four IP addresses. However, the lag time between cycles
of ports is not typical.

D. Characterization of Servers Exhibiting the Fifth Behavior
This subsection is the second of two to explore the re-

sults from detector 9 as defined in Subsection IV-C. The
connections into ORNL were ranked according to γ for
the fifth behavior from V-A. Recall that this behavior was
characterized by ports not in the IANA well-known list. The
IP addresses with the five largest values of γ for this behavior
were examined. All five IP addresses accessed either one or
two ports greater than 1024 for a total on the order of 106

times. They also accessed 22/tcp, 25/tcp, 80/tcp, and 443/tcp,
most of which were accessed only one to ten times. 80/tcp
was accessed on the order of 104 times for two of these IP
addresses.
After consulting with the networking staff, it was deter-

mined that the internal servers involved in these connections
use Splunk, a network and systems activity logging tool.
This service tracks the activities on a user’s computer and
compiles them into a searchable repository. This software runs
on all government-owned computers at ORNL. When users

take these computers off-site, Splunk continues to report back
on network behavior, but its attempts are blocked by ORNL’s
firewall.

VI. CONCLUSION
We developed a probabilistic graphical model for the net-

work traffic through ORNL over a one week period. Using
this model, a small number of port behaviors were found
to characterize the majority of IP profiles. This model was
then tested against a ground truth of known servers and found
to properly identify the correct port behavior expected for a
given server type. We have captured normal server behavior
in a simple topic model. This model was applied to anomaly
detection and successfully identified behavior indicative of
stealthy port scanning or port knocking from four IP addresses
from a sensitive country. The ability to identify this behavior
without specifically looking for it exemplifies the advantages
of probability modeling for anomaly detection schemes.
More importantly, we have demonstrated how the automatic

construction of anomaly detectors from a graphical model
provides a meaningful, efficient, and scalable way to augment
operational detectors. The detectors are meaningful in that they
detect anomalies that align with the graphical model, which is
presumably designed to model the interesting properties of the
data. The detector generation is efficient because it can be done
systematically (with manual determination of usefulness). The
training and application of the anomaly detectors is scalable
since it follows as a computationally free by-product of
training the graphical model. This work motivates the usage of
graphical models for cyber security, since anomaly detection
will follow for free from the systematic construction described
in this paper.

REFERENCES
[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a survey,”

ACM Computing Surveys, vol. 41, no. 3, 2009.
[2] D. Koller and N. Friedman, Probabilistic graphical models: principles

and techniques. Cambridge, MA: Massachusetts Institute of Technol-
ogy, 2009.

[3] C. Siaterlis and B. Maglaris, “Towards multi-sensor data fusion for
DoS detection,” in Proceedings of the ACM Symposium on Applied
Computing. ACM Press, 2004, pp. 439—446.

[4] A. A. Sebyala, T. Olukemi, and L. Sacks, “Active platform security
through intrusion detection using naive Bayesian network for anomaly
detection,” in Proceedings of the London Communications Symposium.,
2002.

[5] A. Valdes and K. Skinner, “Adaptive, model-based monitoring for cyber
attack detection,” in Proceedings of the 3rd International Workshop on
Recent Advances in Intrusion Detection. Springer-Verlag, 2000, pp.
80–92.

[6] A. Bronstein, J. Das, M. Duro, R. Friedrich, G. Kleyner, M. Mueller,
S. Singhal, and I. Cohen, “Bayesian networks for detecting anomalies in
Internet-based services,” in Proceedings of the International Symposium
on Integrated Network Management, 2001.

[7] D. Janakiram, V. Reddy, and A. Kumar, “Outlier detection in wireless
sensor networks using Bayesian belief networks,” in Proceedings of the
1st International Conference on Communication System Software and
Middleware, 2006, pp. 1–6.

[8] K. Das and J. Schneider, “Detecting anomalous records in categorical
datasets,” in Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM Press,
2007.

[9] D. Robinson, “Statistical language analysis for automatic exfiltration
event detection,” Sandia National Laboratories Report, 2010.

8

[10] M. Steyvers and T. Griffiths, Probabilistic topic models, D. McNamara,
T. Landauer, S. Dennis, and W. Kintsch, Eds. Mahwah, NJ: Erlbaum,
2005.

[11] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” Journal of
Machine Learning Research, vol. 50, no. 3, 2003.

[12] F. Tsai and K. Chan, Blog data mining for cyber security threats, L. Cao,
P. Yu, C. Zhang, and H. Zhang, Eds. New York, NY: Springer Science,
2009.

[13] C. Andrieu, “An introduction to mcmc for machine learning,” 2003.
[14] M. Chen, Q. Shao, and J. Ibrahim, Monte Carlo methods in Bayesian

computation. Springer, 2001.

[15] M. J. Beal, “Variational algorithms for approximate bayesian inference,”
Tech. Rep., 2003.

[16] D. M. Blei, “Latent Dirichlet allocation in C,” Web page, October
2010. [Online]. Available: http://www.cs.princeton.edu/∼blei/lda-c

[17] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction to
variational methods for graphical models,” Machine Learning, vol. 37,
no. 2, pp. 183–233, 1999.

[18] P. Mateti. (2010) Port scanning. [Online]. Available: http://www.cs.
wright.edu/∼pmateti/InternetSecurity/Lectures/Probing/index.html

[19] M. Krzywinski, “Port knocking from the inside out,” SysAdmin Maga-
zine, vol. 12, no. 6, pp. 12–17, 2003.

