
“Empty Space” Computes:
The Evolution of an Unconventional Supercomputer
Jonathan W. Mills1

Matt Parker
Bryce Himebaugh

Craig Shue

Computer Science Department
School of Informatics

Indiana University
Bloomington, Indiana 47405

USA

Brian Kopecky
Chris Weilemann

ABSTRACT
Lee A. Rubel defined the extended analog computer to avoid
the limitations of Shannon’s general purpose analog
computer. Partial differential equation solvers were a
“quintessential” part of Rubel’s theoretical machine. These
components have been implemented with “empty space,” or
VLSI circuits without transistors, as well as conductive
plastic. For the past decade research at Indiana University has
explored the design and applications of extended analog
computers. The machines have become increasingly
sophisticated and flexible. The “empty” computational area is
devoted to solving partial differential equations. The rest of
the space includes fuzzy logic elements, configuration
memory and input/output channels. This paper describes the
theoretical definition, architecture and implementation of
these unconventional computers. Two parallel applications
are described in detail. Rubel’s model can be viewed as an
abstract specification for a distributed supercomputer. We
close with a description of an inexpensive 64-node processor
that was designed using our current single processor. The next
step is to return to VLSI with an improved understanding of
the architecture—and seek computation speeds approaching
trillions of partial differential equations per second.

Categories and Subject Descriptors

C.1.3 [Other Architecture Systems]: Analog Computers,
B.7.1 [Types and Design Styles]: Advanced Technologies,
VLSI, C.5.1 [Computer System Implementation]: Super
(very large) Computers, G.1.8 [Partial Differential
Equations]: Multigrid and multilevel methods, F.1.2 [Modes
of Computation]: Parallelism and concurrency, Probabilistic
computation

General Terms
Design, Experimentation.

Keywords
Extended analog computer, general purpose analog computer,
Lukasiewicz logic, hybrid digital-analog architecture

1 Telephone: 1-812-855-6486 E-mail: jwmills@indiana.edu

1. INTRODUCTION
In 1995 the MOSIS educational service initially rejected a
series of VLSI circuits because they consisted of 25
connections to “empty space,” that is, silicon p-well, p-
diffusion, n-well and n-diffusion without transistors. MOSIS
staff asked if some of the layers in the design had been
accidentally left out, but were told that the chips were indeed
correct because “empty space” computes. This paper traces
research at Indiana University over the past decade that has
explored the architecture, implementation and applications of
Rubel’s extended analog computer, in which something is
computed by implementing “nothing.” Single processors have
become increasingly flexible as applications have stretched
their capabilities. Now, after inexpensive coprocessors have
proved to be reliable, a prototype for a distributed extended
analog supercomputer has been designed and is being built. A
few nodes are already in use at other universities.

2. DEFINITION OF THE EXTENDED
ANALOG COMPUTER

The extended analog computer (EAC) extends the general
purpose analog computer (GPAC) as an abstract model of
computation [Rubel, Shannon]. Rubel did not believe that the
EAC could be constructed because it was too broad to be
implemented with any single technology. Metal plates for
heat diffusion, soap bubbles to model minimal surfaces, and
vibrating strings and membranes to study the wave equation
were three of the examples he presented. The EAC was
described as an ideal paradigm that could not be implemented,
just as a Turing machine is an ideal with an abstract definition
that cannot be fully constructed, either. However, within
limitations, each machine has been built. Turing machines are
realized as digital computers with finite and bounded (not
unbounded) memory and storage. Generalized EACs can be
built to solve diffusion, surface minimization and the wave
equation electrically, directly implementing diffusion with
charge carriers, modeling surfaces with a 21/2D stack of
processing elements, and using an external oscillator to
generate harmonic “vibrations.”

2.1 Computability and Measurability
Rubel defined the extended analog computer’s operation in
terms of arbitrary real numbers that were not required to be
digitally computable, that is, generated by a Turing machine.
However, during correspondence in 1994 with the primary
author, Rubel restricted the scope of arbitrary real numbers in
his search to prove limits on the computability of the EAC:

“Essentially, there is some [exotic] real number that does any
preset job. I believe in analog computers that work with
genuine real numbers, but not those that have [exotic] real
numbers built into them. My philosophy is that the current
notion of "function" is way too broad, and too far removed
from intuition. This produces lots of pathological examples,
and a badly distorted theory of functions. I am advocating a
kind of return to the mind-set of Euler's time. But, as usual, I
keep running into very hard concrete problems in
mathematics, and it is notoriously slow, hard, and risky work
to solve them. After about five years, I still can't prove that the
EAC cannot generate ALL analytic functions” [Rubel].

Rubel introduced the term “genuine real,” in part, because he
was aware of work that proved how certain “exotic” real
numbers were used to embed non-recursively enumerable
languages under a Cantor set encoding. If these reals were
permitted, and further, if even one such real could be reliably
generated and measured to a finite but unbounded precision,
then super-Turing computations would be physically possible
[Siegelmann & Sontag]. One physicist suggested that this was
not an issue for implementers of the EAC. In his words, “A
real number measurable to tens of thousands of decimal
digits would be perturbed by a grain of sand falling from
another grain of sand on a beach on a planet circling Alpha
Centauri” [Girvin]. This graphic example of the effects of
even infinitesimal noise on Cantor-set-encoded analog
computation was later formalized by a proof that in the
presence of bounded noise no analog computation exceeds the
computability of a Turing machine [Maass and Sontag].

All physically-realizable models of analog and digital
computability appear to require some notion of instantaneous
precision. In the Turing machine, the value in any cell on the
tape is zero or one, for an instantaneous precision of one bit
(although the tape may store very long, and thus precise,
sequences of bits produced by the computation). In the EAC
and other analog models of computation, the measured value
of any setting, constant or output variable at any instant
ranges from one bit to at most 24 bits. One approach to using
a single output value as the result of the computation is to
define a filter on a compact space centered on a measurable
value [Blair 2005]. Many computations might be “hidden” in
the space near this instantaneous value, but only one rational
approximation would be accessible to the user via a finite
measurement. This does not violate the uniqueness imposed
by the extremely well-posed constraint of the EAC, but only
points out that we cannot distinguish between many unique
outputs. While the ideal EAC computes � exactly for an ideal
user who can measure its value exactly, an actual EAC
computes one of many approximations to �, for an actual
user who can only measure its value approximately.

This does not prevent the EAC from generating large and
precise numbers as its output, but the output would be a
function of the duration of the computation, would depend on
a sequence of instantaneous measurements at each level (each
with a limited precision), and thus would not escape the limits
of effective computation by demanding single precise
measurements that are impossible to obtain in the presence of
noise. These conditions indicate one path toward formally
defining Rubel’s “genuine real” number with real-valued
metric spaces centered on rational (and measurable) numbers.

2.2 Hierarchical Structure
The extended analog computer is defined in terms of a
hierarchy of levels (N, N+1/2), (N+1, N+1+1/2), (N+2,
N+2+1/2), … with each level composed of elements that may
be components, some of which are “black boxes” representing
instances of mathematical operators, such as set projection, or
principles, such as analytic continuation. The hierarchy and
the elements are finite but unbounded, and “connected with a
great deal of feedback” [Rubel]. One consequence of so much
feedback is that the EAC is naturally a dynamical system
(although we do not yet completely understand how to design
applications to exploit this property). Computations at higher
levels are more versatile, a natural result of increasing
computational complexity. All outputs are differentially
algebraic, which for those results that are produced by
ordinary differential equations (and analogously for partial
differential equations) requires the functions to be
differentiable at each level, or Cω.

2.3 Elements
A review of the general purpose analog computer is presented
to set the context for the extended analog computer.

2.3.1 General Purpose Analog Computer
Rubel stated that the general purpose analog computer “is
really a mathematical concept” [Rubel 2]. It has only four
kinds of “black boxes” that are “hooked up with lots of
feedback” like the extended analog computer, but only a
single level of hierarchy, unlike the EAC. Inputs and outputs
of the GPAC were assumed to be real numbers, but no
mention was made about their arbitrariness or computability
by a Turing machine. The GPAC has long been considered to
be less of a “general purpose” machine than a digital
computer because of its lack of precision when implemented.
However, it was recently shown that a Turing machine can be
defined in terms of two GPAC integrators for each cell of the
Turing machine tape [Graca 2005]. Unfortunately, such an
implementation would be inefficient because so many
integrators, each an operational amplifier, would be needed
for even a small computation.

The following are the elements of a GPAC, which are realized
with “black boxes” and other components:

Initial setting and constants. Initial settings and constants
were not as carefully distinguished in the GPAC as they were
later in the EAC. For example, constants of integration, C,
were referred to as the “initial settings” of an integrator.

Independent variables. Outputs of the “black boxes” are the
independent variables of the GPAC. Rubel stated that “any
voltage that can be read in the circuit” is called an “output.”
This is the closest mention of the need to measure values, but
does not reach the notion of instantaneous precision.

Hook-ups and feedback (wires). There are limitations on the
interconnection of the “black boxes” similar to those of the
EAC (for example, no two outputs connected to the same
input) given in a paper by Pour-El [Pour-El].

Adders. An adder sums two values u(t) and v(t), which are
functions of time, to produce the sum u+v at t. The operation
of the GPAC as a function of time (not space) is so pervasive
that the index t is left out of the remaining definitions. The

concatenation operation over some whole number of adders
generates the ∑ operation.

Multipliers. For inputs u and v a multiplier produces u · v. The
concatenation operation over some whole number of
multipliers generates the ∏ operation.

Integrators. For two inputs u and v, an integrator produces the

output ∫0
t u(s)dv(s) + C. The concatenation operation over

some whole number of multipliers generates multiple
integration, ∫0 ∫1 ∫2 …∫k . Because integration is defined as

a function of time, t, and not space, concatenation does not
yield integration over an area or volume in n dimensions.
Rubel added differentiators and the “boundary-value
problem” box to address this limitation.

The next section shows how the idea of machine-as-
mathematical-concept influenced the definition of the EAC.

2.3.2 Extended Analog Computer
The extended analog computer has a more extensive set of
“black boxes” and components than the general purpose
analog computer. Certain operators left undefined in the
GPAC, such as analytic continuation, were made explicit in
the EAC. Other operations, such as substitution and inversion,
were included to support functions that the GPAC could not
compute. As Campagnolo noted, these additions may extend
the computability of an EAC beyond Graca’s construction of
a Turing machine with a GPAC. Rubel wrote, “It is an
unsolved problem whether [the EAC] can produce every real-
analytic function. If it could, the EAC would be too broad to
be interesting” [Rubel].

These are the elements of an EAC, which are realized with
“black boxes” and other components. Those elements that are
implicit in properties of matter, or semantic attribution, are
noted in the definition. Elements that implemented physically
are described in Section 2.5 Explicit Components.

Initial setting and constants. Initial settings s1, s2, s3, … and
constants c1, c2, c3, … are fixed, arbitrary real numbers that are
not required to be rational or digitally computable, that is,
able to be generated by a Turing machine.. The only
distinction between them is that initial settings are only
produced at the first level, N=0, in the machine, while
constants may be produced at any level.

Independent variables. These variables, x1, x2 , x3 , …, are
arbitrary real numbers produced at any level N of the EAC.
Rubel stated no explicit requirement that they be measurable.

Hook-ups and feedback (wires). The initial settings, constants,
independent variables, and the inputs u1, u2, u3, … and outputs
v1, v2, v3, … of all the varieties of “black boxes” are connected
by wires defined by pairs (wi, wj) from the Cartesian product
W = (s1, s2, s3, … × c1, c2, c3, …× x1, x2, x3, … × u1, u2, u3, …
× v1, v2, v3, …). There are three constraints: (1) the outputs of
any level N can only be used as inputs at level N+1/2, N+1 and
higher, (2) no two outputs can be connected to the same input,
and (3) each input must be connected to at least one output.

There is a problem with this definition. Rubel was vague
about the topology of interconnections, but stated that there
was “a lot of feedback.” Yet, according to this definition,

feedback is only possible locally within a half-level N or
N+1/2, but not more widely. Our implementations have not
followed this restriction in practice, akthough in general the
machine operates without recursion as computation
progresses “upward” from one level to the next.

Adders. Adders sum the vectors u1(x1, x2, x3, … xk) and u2(x1,
x2, x3, … xk) to yield u1(x1, x2, x3, … xk) + u2(x1, x2, x3, … xk)
This operation is similar to the concatenated adders in a
general purpose analog computer. Adders are implicitly
implemented in the conductive sheets and the fuzzy logic
units, with operation governed by Kirchhoff’s Current Law
(itself based on the Law of Conservation of Energy).

Multipliers. Multipliers input the vectors u1(x1, x2, x3, … xk)
and u2(x1, x2, x3, … xk) to yield u1(x1, x2, x3, … xk) · u2(x1, x2,
x3, … xk). This is similar to the concatenated multipliers in a
general purpose analog computer. Multipliers are implicit
operations of the conductive sheet (scaling by a resistive
constant) and the fuzzy logic functions (slope of a curve).

Substituters. For a vector of values v(x1, x2, x3, … xl) and the
input vector u1(x1, x2, x3, … xk), …, ul(x1, x2, x3, … xk) the
EAC replaces each x1 in v(x1, x2, x3 , … xl) with the
corresponding value ui(x1, x2, x3, … xk) to yield v(u1(x1, x2, x3,
… xk), …, ul(x1, x2, x3, … xk)). Substituters are implicit
functions of the connection of one component, such as a
conductive sheet, to another, introducing value(s) to be
substituted from the outputs of other conductive sheets or
fuzzy logic functions.

Inverters. For a well-defined Cω function, the inverter “locks
down” the outputs and generates the inverse of the function,
yielding the inputs u1(x1, x2, x3, … xk), …, ul(x1, x2, x3, … xk)
that yield ƒ(u1(x1, x2, x3, … xk), …, ul(x1, x2, x3, … xk)).
Inverters are semantic attributions of a level of the EAC,
which solves the inverse of a function, for example, by
implementing backpropagation in a neural network as used to
implement a character recognizer [Mills 96].

Differentiators. For ƒ(x1, x2, x3, … xk) a differentiator outputs
a possibly mixed partial derivative Dƒ(x1, x2, x3, … xk)

Dƒ = ∂α1+α2+α3+… +αnƒ .

 ∂x1
α1 ∂x2

α2 ∂x3
α3 … ∂xn

αn)

Holding a variable xi fixed is implemented by forcing it to a
constant k, or, over a series of points in space, a function of
the variable ƒ(xi) such that it is not influenced by the partial
derivatives of the other variables. Differentiators are implicit
in the conductive sheets. Simpler versions are semantic
attributions of Lukasiewicz logic elements, which model
Laplacian differentiators, well-known as edge detectors
[Laplace].

Set theoretic operators: >0, ≥0, union, intersection,
projection. The set theoretic operators provide comparison
and combinations of functions of variables ƒ(x1, x2, x3, … xk).
It should be noted that in finite time it is not possible to
exactly compare any value to zero, because the sequence of
digits in a real number such that its partial representation is
0.00000000… may have some digit beyond those checked
that is non-zero. This is not an issue for a theoretical model,

but is an example of the limits of measurability for a physical
implementation. These operators are implicit in the
connections between sheets, which are passed through the
fuzzy logic functions. An example of the comparisons that
occur between sheets is found in a radiosity-based image
rendering application designed by Ololoweye, where the
intensity of light absorbed by an illuminated object was “cut
off” by a fuzzy logic element before being passed to the
display (the two dark squares in Figure 1) [Bayo].

Figure 1. Set theoretic comparison X>0

“Boundary-value problem” box. This is the “quintessential
black box,” according to Rubel, and our work has supported
this. It directly solves a system of partial differential
equations, including some ordinary differential equations,
subject to some boundary conditions. In the architecture of the
EAC this element is explicitly implemented with conductive
sheets, known since the 1950’s to solve Laplacian and
Poisson PDEs using materials such as carbon paper or
resistive films [Karplus]. Silicon and conductive plastics
continue this historical technique using modern materials.

Restricted limits. The restriction on taking limits is enforced
by only permitting boundary values that have been computed
at the immediately prior level N–1 in the EAC. Permitting an
unbounded series of boundary value computations would
permit the EAC to compute all Cω-functions. Then, as Rubel
wrote, “we would have no “computer” at all” [Rubel]. In
implementation this is a constraint on the physical
connections between components—and one we ignore, as
there are so few levels, even in the prototype supercomputer
(no more than 64 at present), as to take “unrestricted” limits.

Analytic continuations. The analytic continuation “black box”
is a mathematical property of a function such that one point
defines other points with a neighborhood. Practically, this is a
condition of interpolation, and barring discontinuities in the
material from which the EAC is fabricated, is implicit in the
regularity of matter at the macroscopic, classical level.

Extremely well-posed determinism. This form of determinism
enforces a compact space on the output at any point in the
computation. This does not say that there cannot be sharp
gradients or rapid changes in a function, but it does demand
that any perturbation by some small amount ε produces a
change in the resulting output that is a Cω-function ƒ(ε).
Extremely well-posedness is also enforced by the Law of
Conservation of Energy, which prevents gross discontinuities
in the output of the EAC. For example, taking the derivative
of a 0-to-1 step function, such as occurs at the edge of an
image, is theoretically infinite but in practice is limited by the
available power in the circuit, This has been observed in
Lukasiewicz logic arrays acting as a Laplacian differentiators.

2.4 Architecture
The extended analog computer is a restricted form of direct
implementation architecture, generalizing an idea proposed
for digital computers [Hoevel and Flynn]. As used here, it
defines an EAC composed of one or more levels, each
containing one partial differential equation (PDE) solver,
some fuzzy logic functions, their internal and external
interconnections, and a variety of input and output interfaces.
The general architecture is shown below (Figure 2).

Figure 2. EAC general architecture

Only five elements are explicitly implemented in the
architecture. These “carry” the rest of the EAC’s elements,
which are not physically distinguishable but are implicitly
embodied in the physical properties and semantic attributions
of “empty space” (that is, the conductive surfaces or solids),
the fuzzy logic units, and the wires that connect all
components. Even the wires compute in an EAC.

Digital-to-analog converters (DACs) and analog-to-digital
converters (ADCs) are included to interface the EAC to
digital systems, sensors and networks, including the
worldwide web. Even the earliest VLSI implementations
included digital registers to configure the machines. For
flexibility, the current version of the machine uses discrete
emulations of the fuzzy piecewise linear functions. However,
these could be implemented with Lukasiewicz logic arrays, as
they were in earlier versions.

2.5 Explicit Components
Initial setting and constants. Initial settings and constants are
input points to the EAC. In the most recent version they are
produced by the output of DACs precise to 10 bits that control
current sources of slightly less precision due to noise that are
connected to the conductive sheet and the fuzzy logic units.

Independent variables. These variables correspond to
measurement points in the EAC. In the current version of the
EAC these may be voltages measured directly by ADCs
precise to 12 bits, or currents computed by Ohm’s Law that
are converted to digital values and sent back to an input DAC.

Hook-up and feedback wires need no further description. In
the most recent version of the EAC the topology of the
connections is configurable.

Conductive sheets and solids have been mentioned, and can
be implemented easily. Any conducting or semiconducting
material that can be formed into a sheet, layers of sheets, or a
solid, and to which connections can be attached as ohmic
point, line or area contacts will work. Silicon VLSI (“empty
space”), conductive plastic foam, and gelatin “doped” with
table salt have all been used in our machines.

Lukasiewicz logic arrays (fuzzy logic units). Lukasiewicz
logic is used to implement the fuzzy logic units because of a
theorem by McNaughton, which proves that sentences in
Lukasiewicz logic approximate algebraic differential
equations (ADEs) arbitrarily closely [McNaughton]. Because
the general purpose analog computer computes ADEs, this
correspondence implicitly includes the functionality of the
elements of a GPAC.

3. IMPLEMENTATIONS OF THE
EXTENDED ANALOG COMPUTER

The implementation of the extended analog computer is
simple. The architecture is mapped to a conductive sheet, one
or more arrays of fuzzy logic function units, current sources,
current sinks, inputs and outputs, all connected by a
reconfigurable array of wires. Input is obtained from
potentiometers, digital-to-analog converters, or sensors
(which may also be computing elements as is the case in the
silicon VLSI single-pixel retina [Mills 1996]). Output is
measured directly, or through analog-to-digital converters.

3.1 Breadboarded “Foamputer”
The “foamputer,” a primitive extended analog computer,
implemented one level of the EAC. The photograph shows the
first prototype ever built (Figure 3).

Figure 3. First EAC (1995)

On the left is a PDE solver cut from conductive plastic foam.
Inputs were generated by twelve potentiometers on the right,
that produced variable values for each “frame” of a
computation, although some were treated as constants.
Outputs were measured on the foam with a volt-ohmmeter.
The same general structure with greatly improved flexibility
and functionality is used today.

3.2 VLSI Circuits
A photomicrograph of a VLSI EAC built in 1996 illustrates
its similarity to the general architecture (Figure 4).

Figure 4. VLSI EAC (1996)

This circuit is still in use ten years later, having proven
resistant to humidity, transient electrical shocks and dust,
needing only to be cleaned occasionally with a soft brush. The
VLSI sheet is enclosed in a lateral “ring” diode to prevent
migration of charge carriers across the boundary of the sheet,
“sharpening” the gradient manifold generated by the
conductive surface (Figure 5).

ring diode

analog
inputs

conductive
sheet

sensor/processor

Lukasiewicz
logic arrays
(LLAs)

analog
outputs

digital LLA address bus

digital LLA configuration bus

Figure 5. VLSI EAC block diagram

3.3 Unconventional Non-Silicon Designs
Several factors led to the design and implementation of
unconventional non-silicon extended analog computers. The
VLSI circuits, although digitally reconfigurable, needed
complex interface circuitry. These chips were also difficult to
use because their design had been “frozen” too early, before
we understood the paradigm they represented. More time was
spent trying to operate the circuits than exploring applications
for them. By 1998, we had lost the departmental staff and
expertise that supported the fabrication of VLSI circuits
(under state law, Indiana University does not have a school of
engineering, or an electrical engineering department).

This turned out to be fortunate. Several years were spent
modeling EACs with MatLab and Mathematica® . The
understanding gained from this exercise led to an improved
series of EAC designs. We returned to the material used in the
first prototype, conductive plastic foam, which protects digital
integrated circuits from electrical shocks during shipment. It
is cheap, readily available, and can be “fabricated” for use in
minutes with a pair of scissors. Unconventional computers
were built out of necessity, yet by choice. Plastic and discrete
components permitted a cycle of rapid prototyping: design-
application-redesign. This cycle has continued for over five
years, and led to the EACs described in the next sections.

3.3.1 Networked Extended Analog Computer
The design of the VLSI extended analog computer was
extended by adding additional fuzzy logic units (Lukasiewicz
Logic Arrays, or LLAs) and programmable current sources
and current sinks. Digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs) were added to automate
readouts and interface the EAC to digital computers and
networks, including the worldwide web. Some memory was
also provided to configure the machines digitally.

One of the four Internet-accessible EACs is shown with its
components labeled (Figure 6). The analog (continuous-
valued) Lukasiewicz logic arrays are digitally configurable
(A). An Ethernet interface connects the EAC to the worldwide
web (B). Analog-to-digital converters translate outputs to
digital values for transmission and measurement (C).

Figure 6. Networked EAC (2004)

A socket permits different components to be used (D). A
VLSI chip is shown here, but Jell-O® brand gelatin was also
connected to the EAC to study three-dimensional colloidal
computers (Figure 8). Cultured neural tissue, organic
semiconductors, and other materials can be used instead. The
prototype is configured with a sheet of conductive foam that
solves partial differential equations in microseconds (E). The
VLSI chip at (D) solves the same PDEs in nanoseconds. The
schematic is shown below, labeled accordingly (Figure 7).

Figure 7. Networked EAC block diagram

3.3.2 Prototype 3D Extended Analog Computer
A prototype 3D extended analog computer was built with
unflavored Jell-O® brand gelatin (Figure 8) [Miller].

Figure 8. Prototype 3D EAC (2005)

Sodium chloride (table salt) was added to the mixture before
use. The resulting conductive gel had a 3×3×3 grid of
electrodes on non-conductive plastic rods molded into it. Its
operation was more accurate than the 2D foam. Several
experiments were run with heterogeneous gels, adding plastic
chips or short lengths of stripped wire. Their ability to model
systems such as extraction of oil from shale is promising.

Conductive plastics and semiconductors can be injection
molded or formed in layers with electrodes embedded or
sandwiched between them. Further research into 3D EAC
design is supported by the success of this prototype.

3.3.3 USB Networked Extended Analog Computer
The networked extended analog computer designed in 2004
used connections to the conductive sheet and VLSI circuit
that were placed manually. This was soon found to be a
severe limitation when students began to evolve EAC
configurations with genetic algorithms (GAs). Even though
the configuration of the EAC matched the genome closely,
and efficient configurations were obtained in as few as a few
thousand trials in ten or fewer generations, the results were
limited to topological structures manually placed in advance.

A fully digitally-configurable EAC that was compact, low
power, and portable (so students could take it home for
research) was designed in response [Himebaugh] (Figure 9).

Figure 9. USB networked EAC (2006)

Every element that can be configured, from the selection of
input and output contacts, values of current sources and sinks,
even the shape of the emulated fuzzy logic functions, can be
evolved under the control of a digital host computer with a
USB port. The schematic is shown below (Figure 10).

Figure 10. USB networked EAC block diagram

4. APPLICATIONS
The extended analog computer operates by analogy. Two
systems are brought into congruence with each other. One
system is the problem to be solved or, more generally, an
application—a set of similar problems to be solved on a broad
range of data sets—and the second is the EAC. This
agreement between systems is first devised by visualizing it,
then sending instructions to the EAC to configure it. These
instructions resemble an assembly language program for a
digital computer. This mode of configuring an EAC is just as
tedious as is assembly language programming for a digital
computer. Two research projects address this issue.

4.1 Visual Development Environment
Research is underway to devise a visual configuration
interface that will permit the user to interactively “sculpt” an
exemplar configuration using force-reflective gloves and
stereo eyeglasses in an interactive three-dimensional
environment, then observe its application to a large and varied
data set. The first primitive example of this “Virtual Light”
interface, implemented using Indiana University’s computer-
assisted virtual environment (CAVE), lets the user adjust the
parameters of the EAC as it simulates a tissue-level neural
network model of exclusive-OR (Figure 11) [Williams].

Figure 11. “Virtual Light” development environment

4.2 Compiler for Semantic Specialization
The semantic gap between the physical system and the EAC
is small. In our experience, it is often easier to devise a visual
model that describes some physical system and then map the
application directly to the EAC than it is to translate the
system of partial differential equations alone into a
configuration. However, most potential users immediately ask
how to automatically compile a system of PDEs directly to
the EAC. At present this is poorly understood.

One approach to the problem is to examine how one “thinks
up” the configuring analogy. Butterfly wing pattern
generation illustrates the mapping of an analogy and its
associated partial differential equations for reaction–diffusion
to an EAC. This operation is “semantic specialization,” or the
assignment of meaning to the EAC. Examining the equations
immediately shows the relationship between the partial
derivatives and the conductive sheets. Coefficients match
fuzzy logic functions, but less clearly. However, the topology

of the system is not present in the equation. Thus some form
of visual or spatial annotation is necessary (Figure 12).

Figure 12. Semantic specialization

This approach is supported by the experience of students who
are introduced for the first time to the EAC. While direct
semantic specialization, or thinking analogically instead of
algorithmically, is initially an unfamiliar mode of thought for
them, they eventually use both ways of thinking to develop
applications. The students’ first exercise is to generate the
letters from the “butterfly alphabet” (Figure 12) [Sandved].

Figure 13. The “butterfly alphabet”

Nijhout’s source-sink model of butterfly wing pattern
formation was used, rather than a trivial “dot-matrix” solution
(Figure 14) [Nijhout]. As a result students learned to devise
an analogy for the spatial system, then apply their experience
creating algorithms to write the configuration “program.” This
process could be performed by a compiler designed for
semantic specialization, and is the subject of current study.

Figure 14. Nijhout’s source-sink model

4.2 Pattern Generation and Image
Recognition

Image recognition is used to maneuver robots and unmanned
vehicles, to identify faces for security purposes, and one day
may identify objects in images for data mining. Digital
computers match patterns with complex serial computations.
However, an extended analog computer can analyze all parts
of the image at one moment, “seeing” it as a whole image
rather than as several edges and areas. Previously, silicon
“retinas” performed image recognition subtasks, such as edge-
detection, corner recognition, and motion detection [1, 2, 3].
A single-sensor continuous retina used a semiconducting
photosensitive silicon sheet to merge these tasks, and as an
example of its function, was used to differentiate between two
letters of the alphabet [Mills]. That experiment was limited
because it used a 3x3 array of sampling points on the sensor,
summed their outputs by wires, and learned to distinguish
letters by selecting from only 27 fuzzy logic functions. We
recently evolved letter recognition for all 26 letters of the
Roman alphabet, extending that work substantially.

4.2.1 Approach
Instead of devising a setup of lights and lenses to focus an
image on the silicon chip, a photosensitive array was built and
attached to the screen of a computer monitor. Its output was
sent to the conductive sheet on a networked EAC (Figure 15).

Figure 15. EAC as evolvable image recognizer

The evolved linear functions emulated customizable LLA
functions digitally. Customizable LLA functions have been
implemented in the USB networked EACs (Section), but they
were not available at the time this work was performed.

Training was evolutionary, using a genetic algorithm to
represent the form of each of four LLA functions. After a
letter appeared on the screen and the voltages were output to
the sheet, each of the four current readings from the
conductive sheet went through their own digital LLA. The
chromosome for each individual letter was made up of 128
genes of 6 bits each. Each LLA was given 32 genes.

A program automatically drew white letters on the screen
under the photosensitive array. There were 26 populations,
one for each letter, with 256 individuals each, used with a
standard genetic algorithm with two point crossover and
1/300 chance of mutation for every bit. Each letter remain on
the screen for about 1.5 seconds before the output filters
produced an accurate reading. The effects of noise required

readings for all 26 letters several times, sharing them
throughout the entire evolution over all generations. If this
had not been done, each population would recognize their
letter only as it was read once, without handling variance.

After a letter was displayed for the active generation, each
individual in the population would load its chromosomes into
the digital LLA functions and test its recognition of each letter
of the alphabet. The individual’s fitness was determined as a
summation of the letters that were correctly identified.
“Fitness” points were added for correctly identifying the
letter, as well as correctly rejecting the letter, but zero points
were added for incorrect identification. The points scheme
prevented evolution of a premature solution by neutralizing
incorrect evaluations.

4.2.1 Results
Evolving the linear functions using this setup, we were able to
successfully recognize each of the 26 capital letters of the
Roman alphabet, distinguishing them from all other capital
letters in the alphabet.

Because the population was so large, nearly immediately
there appeared some perfectly fit individuals. These
individuals, though testing once perfectly, often did not test
perfectly again, because there is a noise in the EAC. On an
EAC that is intended to be in a steady state, the current may
varies up to 0.1mA, or about 5% of the full range. To
compensate for this, the current was read 12 times in a row
and averaged for each letter reading. The error was further
distributed over the entire population, with each member
evolving in the “letter ecology” to become fit enough to
recognize a specific letter.

All 26 populations ran for 70 generations, an example of the
reduction in generations observed previously when
configurations for exclusive-OR and the random early
dropout algorithm were evolved [Deckard]. The graph for the
evolution of the letter “I” is shown below (Figure 16).

Figure 16. Evolution and accuracy of recognizer for “I”

The fitness clearly improved as each individual in the
population correctly identified its own letter and 24 of the
other letters repeatedly, only misidentifying two. Some of the
populations did not learn to identify their letters as
successfully as the “I” populations (two misidentifications).
In some cases this is because the letters are similar to many
other letters, like “R”, “D”, and “B”. In other cases this may
have due to the light for a critical portion of the letter not
shining directly onto a photoresistor.

The average fitness of the populations at times dipped
drastically down for a generation. This is because the EAC is
very sensitive to changes in the environment; even turning on
fluorescent lights in another room was observed to slightly
change the behavior. In the earlier fitness generations the
reading from the letters was affected by noise, but the genetic
algorithm was able to compensate. The results of this research
are a step toward more complicated image recognition

problems using an EAC, such as recognizing a DDoS
“alphabet” (Section 4.3.4 Results Using Ring Method).

The results show how GAs can evolve EACs for difficult
tasks. Analog computers are not encumbered in their
structure by serial computations. It is natural in analog
computers to compute in parallel because they compute using
the parallel physics of the classical world. To solve a problem
such as image recognition, an appropriate model can solve a
massively parallel problem nearly instantaneously.

4.3 Detecting Distributed Denial of Service
Attacks

The ability of the EAC to recognize patterns very rapidly,
especially in silicon VLSI, suits it to the task of detecting
distributed denial of service (DDoS) attacks. This application
was first proposed to Nortel as an embedded system in a core
router, which would also implement quality of service (QoS)
traffic management [Mills Nortel].

Regular, desirable traffic can be characterized by a set of
patterns. Traffic during a DDoS attack will generally not
behave the same way as legitimate traffic. By quickly
discovering an attack in progress, evasive measures could be
taken to limit its effectiveness or stop it all together. One
method for combating an attack would be to implement
connection push-back [3] in core routers, preventing the
attack from reaching the intended victim.

4.3.1 Approach
Two approaches were used to detect DDoS attacks. In the
first, inputs corresponding to the traffic queues were
positioned linearly at opposing ends of the board (figure 16).

Figure 16. Linear configuration method

In the second, a ring of queue inputs were placed with an
LLA in the center (Figure 17)

Figure 17. Ring configuration method

4.3.2 Traffic Simulation
In order to evaluate both configurations, a distribution of IP
addresses determined the amount of current to apply to the
EAC. The source IP addresses from a packet capture were
hashed into one of eight bins. After 50 source addresses were
placed into the bin, current proportional to the number of
entries in each bin were written to corresponding source and
sink points on the board. The packet capture we originally
intended to use was for the Abilene backbone network [9].
Unfortunately, this capture was not representative of even
“normal” traffic due to its high degree of private IP addresses.
Therefore the normal traffic patterns were modeled by
selecting random numbers between 0 and 7 inclusively and
distributing these into their respective hash bins. To simulate
a denial of service attack, we biased the random selection to
have the fifth bin populated an additional 10% of the time.
This was equivalent to seeing the same IP address more often,
resulting in a higher bin count (Figure 18).

Figure 18. Normal traffic vs. DDoS attack traffic

4.3.3 Results Using Linear Method
The key difference between the two approaches was the
amount of digital post-processing required to evaluate the
EAC’s output. While the linear method does not require the
use of an LLA to perform the computation, it requires
substantial digital analysis of the EAC’s output. The ring
method, on the other hand, does not require this digital
computation because the LLA was intended to handle the
determination of whether or not a DDoS attack was detected.

Using the linear method, normal Internet traffic appeared as a
relatively steady gradient from a source to its corresponding
sink at the opposite end of the board (Figure 20).

Figure 20. Output of linear method for normal traffic

During the simulated DDoS attack, a disproportionate amount
of current flowed out of a given source and created a local
maximum (Figure 21).

Figure 21. Output of linear method during DDoS attack

The gradients were read back from the EAC and processed by
a digital computer to determine if an attack was in progress,
based on the values sampled from the gradient manifold.

4.3.4 Results Using Ring Method
The ring method was less sensitive to the dimensions of the
EAC board. To configure the board, we chose a point near the
center of the EAC and connected that point to a Lukasiewicz
logic array (LLA). We then formed a circle of queue inputs
with this LLA as its focus. An outer ring of sinks which are
equally spaced from their matching source ring points were
added to dissipate input currents locally.

Using this configuration, normal Internet traffic would result
in the sinks absorbing the majority of the source point’s
current (Figure 22; note scale of graph).

Figure 22. Output of ring method for normal traffic

When faced with a denial of service attack, the simulated
DDoS traffic produced a noticeable spike was in the graph,
reflecting the abnormal traffic from that queue (Figure 23;
note scale of graph).

Figure 23. Output of ring method during DDoS attack

Unfortunately, the center of the ring was still flat, indicating
that this abnormal distribution of source current did not create
a substantial imbalance in the center, although it did create a
recognizably different pattern. These results indicate that a
single LLA positioned in the center of the ring would not be
able to distinguish normal traffic from DDoS attack traffic.

However, the difference in these patterns is sufficient to be
recognized by adding more LLA fuzzy logic units. DDoS
attack detection can be viewed as an adaptation of the single-
pixel retina [Mills] or an evolvable image recognizer (Section
4.2). In its simplest form, inputs that do not generate a
balanced, low-intensity ring of traffic peaks—the letter
“O”—would represent abnormal traffic. A better approach is
to design an “alphabet” of traffic peaks to ascertain which
queues are receiving the abnormal traffic (Figure 24).

Figure 24. Internet traffic “alphabet”

Adding additional EACs to accumulate packet addresses in
multiple bins over a period of time could be used to detect
flash crowds as well as DDoS attacks if the results were
communicated with the other boards. Thus we recognize the
importance of the original continuous retina developed by
Mills [Mills] for pattern recognition, applying it to “look” at
Internet traffic instead of letters in the “butterfly alphabet.”

4.4 The Variety of Applications Prototyped
The two application described here in detail are only two of
the many that have been studied and developed over the past
six years. Students have configured extended analog
computers to solve problems in a wide range of categories.

Pattern recognition: recognize commercial airliner
silhouettes, recognize “Captcha” disguised text, identification
of images of galaxies, and data mining as pattern recognition.

Artificial intelligence: use genetic algorithms to evolve neural
network models for exclusive-OR, model gait generators for
walking and flying, evolve simple artificial organisms whose
actions are specified by the McCulloch-Kilmer-Blum RETIC
model of behavior generation, model stereausis in the Barn
Owl, develop artificial tissues to embody an artificial
organism (Tyto computatrix, the electronic barn owl project).

Analog models of algorithms: generate random numbers (a
weak form of super-Turing computation), evolve random
early dropout (RED) algorithms for queue management in
Internet routers, solve small instances of the NP-complete
problem Hamiltonian Circuit by “looking” at graphs, model
digital error-correcting codes as recurrent systems, generate
tones and noise as outputs of the EAC, and study dynamical
and chaotic systems.

Biological and scientific computing: model neuronal
avalanching as a function of physical randomness, model
weather systems, model Lindenmayer systems of plant
growth, explore simple models of protein folding, render
three-dimensional images using a method similar to radiosity,
model galactic evolution.

Where do we intend to go from here?

5. A DISTRIBUTED ANALOG
SUPERCOMPUTER PROTOTYPE

After developing these applications, it became apparent that
problems suitable for solution by an extended analog
computer are characterized by a need to process data in the
terabyte or petabyte range, or that involve systems of
thousands of partial differential equations, that yield answers
which can tolerate some degree of imprecision, that are best
displayed visually, and that must be computed quickly. In
other words, the EAC is suited to solve Grand Challenge
problems in high-performance computing.

One example of such a problem is protein folding. In nature,
proteins fold in microseconds. On a digital computer,
searching out possible configurations may take hours or even
days. This is because the molecular components of proteins
and their bond interactions are modeled using electron
repulsion integrals. Solving these integrals is time-consuming.
However, on an EAC, the electron clouds are represented by
gradient manifolds. These model local and global interactions
between parts of the protein as it collapses into a stable form.

Computation speed is even more important when real-time
weather prediction models are used to identify the emergence
of tornadoes in rapidly-changing weather systems. With their
ability to “look” at patterns of sensor data in real time, a
network of EACs could provide timely warnings of tornadoes
as well as DDoS attacks. These examples motivate our design
of the distributed analog supercomputer prototype (DASP).

5.1 Design of the DASP
The hardware design was simple. The factors that led to the
implementation of the USB networked EAC (Section 3.3.3)
produced a node that is easily fabricated and that can be used
either in a local network or over the Internet. Inexpensive
USB hubs attached to a digital host create useful subnets that
can be expanded as funds become available (Figure 24).

Figure 25. DASP Subnet

This concept has proved attractive. Researchers in the field of
unconventional computing have supported the DASP. We
have proposed a 64-node DASP cluster with a 1,600-point
output array. The network shown below will cost US$16K
(Figure 25). We are now seeking funding while we continue
to implement the DASP network on an ad hoc basis.

Figure 26. Proposed DASP network

5.2 Diffusion of Innovative Artifacts
Mentioning this is a matter of some delicacy, but we have
found that it is more difficult to obtain a small amount of
funding than it is to obtain a much larger amount of funding.
However, another phenomenon is recurring that may
overcome the funding difficulty. We saw it once before in
1992 when a small hexapod robot, Stiquito, was invented by
the primary author. It was so small and inexpensive that it was
used widely, even though it was difficult to build. Now, 14
years later, tens of thousands of these small robots have been
purchased. The most recent Stiquito book contains a
microprocessor controller as well as a robot kit [Conrad].

The “Stiquito phenomenon” is an example diffusion of
innovation, in this case an inexpensive artifact [Rogers]. It is
similar to the spread of the worldwide web, which began
when free web browsers were released for use on the Internet.
As we distribute nodes in the DASP, we may be watching this
kind of intellectual diffusion repeat itself. Faculty at a few
universities in the US, the UK and Canada have either
purchased EACs or have had earlier versions donated to them.
Even a group of students at the University of Illinois at
Urbana-Champaign has purchased several EACs for their
biocomputing research. If several hundred DASP nodes or
subnets become connected to the Internet, portal software that
runs in the background of workstations, similar to that used in
the SETI screensaver, could permit users to share DASP
computing time. The next generation supercomputer might
not be funded by any single agency or institution at all, but by
users with a few hundred or a few thousand dollars available!

In the long run, the design of wafer-scale (or at least multi-
square-centimeter VLSI chips) fault-tolerant arrays of silicon
VLSI EACs will allow us to implement supercomputers such
as the DASP in a workstation or laptop. Such devices might
solve trillions of partial differential equations per second This
research goal, as inexpensive as it is, will open the door on a
completely new generation of computer architectures.

5.3 Towards One Trillion Partial
Differential Equations Per Second

In 1994 the response time of an early version of a silicon
retina was measured at two nanoseconds as a laser beam was
swept across it [Biswas]. Conductive plastic foam is slower,
with a response less than a microsecond based on input from a
frequency generator. Maximum throughput for an EAC
solving a Laplacian partial differential equation thus range
from 106 to 108 PDEs per second after configuration.

Figure 27. One-dimensional von Neumann bottleneck

To get a sense of the potential performance of the DASP, the
fundamental architectural difference between the EAC and a
digital computer is presented. In a digital processor,
computation is limited by the one-dimensional von Neumann
bottleneck, which limits parallelism as instructions are fetched
from memory (Figure 27). But in the EAC the “Rubel”
bottleneck is two-dimensional. Once the machine is
configured, which can be done in parallel if one digital
processor is assigned to each input-output point, the EAC can
process a sequence of two-dimensional inputs. Data is
streamed through the device in a manner reminiscent of a
digital signal processor (Figure 28).

Figure 28. Two-dimensional “Rubel” bottleneck

If implemented in silicon, the DASP, with 64 two-
dimensional “bottlenecks” would solve approximately 3×1011

PDES per second. Performance would be limited by data
availability and even packet flight time through the Internet.
Yet thousands of nodes and subnets could increase grid
performance into the range of trillions of PDEs per second.

6. CONCLUSION
At the keynote address for the 2002 International Symposium
on Computer Architecture, Bob Colwell of Intel predicted that
the failure of Moore’s Law would lead to a new epoch in
computer architectures and systems. He attempted to predict
what the new epoch might bring, but admitted that any
predictions would be unlikely to match the future. He was
right. While it is impossible to accurately predict the
future—magazines from the 1950’s were full of flying
automobiles, for example—ten years ago as we began this
research it was not anticipated that Rubel’s extended analog
computer would lead to operational Internet-accessible
prototypes costing only $250 apiece, about 1/6th of the cost
of a modern workstation PC. It was out of our conception to
predict that the EAC would result in a distributed
supercomputer. The scope of this modern paradigm for analog
computing has grown as we gained experience with it.

Even though we still do not know what the future holds, we
are working to create it. We believe that the need for robust,
efficient, inexpensive, flexible and fast computer architectures
will not go away, and that Rubel’s extended analog computer
is a straightforward way to satisfy it.

7. ACKNOWLEDGEMENTS
We are grateful for previous support from the NSF for
Lukasiewicz logic arrays (1990-1992) and Indiana University
for development of working EACs (2000-2005). Although
they cannot all be named, the students in the primary author’s
VLSI design course from 2000 to the present are warmly
thanked for their tireless and patient efforts to understand and
apply this initially unfamiliar paradigm of computing.

8. REFERENCES
[1] Blair, B., Debray, S. K., and Peterson, L. L. Reasoning

about naming systems. ACM Trans. Program. Lang.
Syst., 15, 5 (Nov. 1993), 795-825.

[2] Conrad, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[3] Deckard, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[4] Girvin, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[5] Graca, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[6] Himebaugh, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[7] Karplus, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[8] Maass, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[9] McNaughton, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[10] Miller, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[11] Mills, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[12] Mills, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[13] Nijhout, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[14] Pour-El, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[15] Rubel, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[16] Rubel, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[17] Sandved, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

[18] Shannon, W., and Marchionini, G. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-97-
40, University of Maryland, College Park, MD, 1997.

