Packet Forwarding: Name-based Vs. Prefix-based

Craig A. Shue and Minaxi Gupta
Computer Science Department, Indiana University
{cshue, minaXi@cs.indiana.edu

Abstract— Using domain names for routing, instead of IP pre- to be redesigned such that packets can contain domain names
fixes, has the potential to address many of the core outstanding instead of IP addresses. Second, the routing protocolsalsii
issues in today’s Internet. To initiate research in thatQ|reqtlon,h|s have to be redesigned to exchange domain names instead of
paper compares t_he performance of n_ame-based routing in the ce P fi Third labilit ts of “based i
of the Internet with that of IPv4 routing. Our analysis concludes pretixes. Ir ' Scalability %SPeC S of name .ase mguti
that name-based routing is well within the scope of feasibility. tables and forwarding speeds will have to be consideredtirou
support for multi-homing, mobility, and advanced servjcsh

. INTRODUCTION as multicasting and anycasting, will have to be provisioned

Users of popular Internet applications specify service efgnally, since a transition to the new scheme cannot occur
points using human-friendly domain names. The domain nam®gernight, issues in backward compatability would have ¢o b
service (DNS) resolves these domain names into IP addresgggfully examined.
and the underlying communication subsystem uses only the IRn this paper, we take a first step at investigating the féigib
addresses to deliver data. This setup has worked well so {@.name-based routing. Our focus is primarily on comparing
However, today, the unallocated IPv4 address space is so@tperformance of name-based packet forwarding with nmoder
and the DNS infrastructure is vulnerable to many types @bv4 packet forwarding. Specifically, we evaluate the fisitisi
financial and security attacks, including denial-of-seefDoS) of name-based routing in terms of the time required to create
and phishing. look up, and update routing tables in the core of the Internet

Solutions to address both of these concerns have begy the corresponding storage requirements.
proposed. IPv6 [1] proposes to solve the address exhaustiofoward our goal, we use data from the DMOZ Open Directory
problem. However, it is not clear how scalable it would bergject [4], which contains user submitted links, and theit®o
under multi-homing, traffic engineering and sub-optimafpr \iews Project [5], which makes route announcements availab
allocations [2]. DNSSEC [3] proposes to address securstyels g the research community. We implement varitarsyest prefix
related to DNS. Its adoption has been hindered in part dued@orithms used by IPv4 routers in software. The analysis
the lack of key distribution authority in the Internet. produces encouraging results. While the lookup, creatiod, a

This paper takes a fresh approach to solving address exhaysyate times of IPv4 are faster than name-based routing, the
tion and DNS security-related concerns. It envisions ar&tuname-based routing results are of the same order and dgprtain
Internet that replaces the IP-based addressing and rouatihg ot beyond the scope of feasibility. The biggest obstacle fo
Internet with one where hosts are identified only by their dom name-based routing is the size of the routing table, which
names and the routing subsystem forwards packets basedigliires several orders of magnitude more storage than the
domain names. (Subsequently, we refer to the latter scheme-grresponding IPv4 tables. We explore the viability of dagh
name-based routiny Using the widely-accepted domain nameg, reduce the number of entries in the routing table and also
as host identifiers has the advantage that the end users dOH@ﬁlight an approach to perform domain aggregation tchfurt
have to be concerned with aspects of Internet evolutions Thigquce the number of entries.
is important to make transition to the new scheme practi€al. The rest of this paper is organized as follows. In Sectiowd,
adopted, name-based routing would have the following impagytiine currently used approaches for IP routing. In Sectih

Address space:The domain names are infinitely expandabl@e discuss name-based routing and analyze its performance.
in practice. Thus, address space exhaustion concerns &ill §xction 1V discusses approaches to optimize the memory re-

alleviated. _ _ _ quired for the name-based routing. Finally, Sections V ahd V
DNS infrastructure: A translation from domain names to IPoutline related work and open issues respectively.

addresses would no longer be required, eliminating the teed
have the DNS infrastructuteThus, all the DNS-related security Il. BACKGROUND

attacks will be eliminated. . Routing in the Internet is made possible by the border gatewa
_ Provider switch: Currently, IP addresses serve both as idep;qtocol (BGP). BGP allows routers in each domain to exchang
tifiers as well as locators, making it hard for organizatioms reachability information about IPv4 prefixes owned by vasio
lease network prefixes from their providers to change prreid organizations. The end result of this exchange is a forwardi
Since domain names are provider independent, this restrictiaple at each BGP router which contains outgoing interfaces
will be eliminated under name-based routing. corresponding to the prefixes. This table is referred to as th
Many challenges need to be addressed before name-bag@farding information base (FIB) for BGP routers. To forda
routing can become a reality. First, the IP header will haygyckets toward their destination addresses, routers gmeplo

IRouting would still have to be secured. This issue would reediinchanged Ionges_t prefix matcton prefixes Pontained in the FIB. T_hiS)
from today. operation must be performed quickly to accommodate gigabit

Fig. 1. A traditional trie. Fig. 2. Multibit trie with stride length of. Fig. 3. Path compressed trie.

routing speeds. Accordingly, a variety of algorithms exmt as the top level domains (TLDs), e.g., “university.ac.ialong
fast longest-prefix matches [6]. Below, we outline the proenit with their corresponding outgoing interfaces. For sinmipliof
ones. subsequent description, we refer to all entries of the nbased
The classical longest prefix match approach uses a trie deating table asdomain namesNotice that finer granularity
structure. In araditional trie, each node can contain next-hoglomains names, e.g., “cs.university.edu”, do not need texist
and output interface information. An address lookup staoi® in name-based routing tables for core Internet routersediney
the root node and, based on the input address, a link to a ctilth be taken care of by the intra-domain routing. To forward
representing a “1” or a “0” bit is traversed. During each &al, packets toward their destination, name-based routersisélthe
the algorithm stores the values of the next hop and outpimmain name of the destination and perform an equivalent of
interface information of the node, if it exists. Upon reahi today’s longest prefix match on the name-based routing .table
a node without a required child link, the search aborts aed th We compare the performance of IPv4 routers with name-
last recorded hop and output interface information are .used based routers for traditional and path compressed triedesve
Figure 1, we provide an example trie with four prefixes: prefigut multibit tries from our comparison because an even-édnd
A (00%), prefix B (01*), prefix C (001*), and prefix D (1111*). comparison is hard to do when the optimal stride sizes differ
While straight-forward, the above lookup approach requirgghich is likely to be the case because IPv4 prefixes and domain
a memory lookup for each bit in the IPv4 address, yieldingames have fundamentally different characteristics.
sub-optimal performance. To overcome this, work has erpglor
the use ofmultibit tries In multibit tries, each traversal canA. Test Data

consume multiple bits of input. The number of bits consumed |n order to model realistic name-based routing tables, we
in each traversal is called tis¢ride. Thus, instead of just having collected data from the DMOZ Open Directory Project [4].
two children nodes, a trie using a stride btauses each nodeThe project contains user submitted links and is the largest
to contain links for2? = 4 children. The choice of stride lengthand most comprehensive directory of the Web. Our input data,
is important; a good stride choice can increase performangsilected on October 28, 2006, ha$33, 835 unique URLS and
but a poor stride choice may substantially increase the meme 711,181 unique second and third-level domain names, as de-
required to store the trie. Figure 2 shows the impact of usingscribed earlier. We compare this data with the July, 2006lt®s
stride of2 on the trie from Figure 1. From this figure, we cafrom the Internet Systems Consortium (ISC) Internet Domain
see that the number of memory references required to reach durvey [9]. The ISC data indicates there are05, 760 second-
leaves decreases. level domains. Thus, our data includes approximatys%
Another approach to optimize the trie data structure isquerf of the second-level domains. This gives us confidence that
path compression. Tries employing path compresgiath com- we are working with a representative sample of the Intesnet’
pressed triessimply collapse one-way branches. This reduce®mains. For comparison with IPv4 routing tables, we oletgin
the number of memory accesses required and limits the mem@nBGP FIB from one router in the Route Views Project [5]
required to store the trie. PATRICIA [7] first introduced pat on November 15, 2006. The FIB containgd5, 854 entries,
compression. Modification were later made to the PATRICIfewer than expected, possibly because the chosen vantage po
approach, allowing it to be used in longest prefix matchirlg [&does not have all the announced IPv4 prefixes. As a result, the
In Figure 3, we show the impact of path compression on th@rformance of IPv4 that we measure is actually slightlyevet
trie from Figure 1. The branch for prefix D is compressed totan it would be with complete records.
single node, yielding faster lookups for that branch andelow
memory consumption. B. Implementation of Longest Prefix Match Algorithms

We begin by parsing the links contained in the DMOZ data
into DNS host names. We then aggregate these host names into

To route on DNS names instead of IPv4 addresses, intdomain entries, which are used to populate both traditiandl
domain routers would have to maintain an equivalent of adrordpath compressed tries. To do so, we use a simple heuristic, in
gateway protocol (BGP) FIB. We refer to this table asthene- which generic TLDs are grouped by their second-level domain
based routing tablesubsequently and routers employing thisnd most country code TLDs are grouped by their third level
table asname-based routerd-or common cases, it is sufficientTLDs. Some country codes have second level domains, in which
that this table for core Internet routers contain an entrylfp case an individual host name is considered to be a domain,
each DNS second-level domain, e.g., “university.edu” ahd mtroducing a small overestimate in the number of domains if
each third-level domain for domain names that contain a@st there are multiple hosts in the same domain in our data.

IIl. NAME-BASED ROUTING

In each of the trie implementations, we hierarchically reee they are removed from the input and the process continues as
the DNS names when storing entries and when performibgfore. If they do not match, processing aborts as if a nuldch
lookups. For example, “www.university.edu” is translatem was encountered, since the input cannot exist in the trie.
“edu.university.www.” This allows us to take advantage loét The insertion routine is most affected by path compression.
hierarchical structure of DNS names to obtain better breagch Upon encountering a null child when inserting, the insertio

The BGP FIB from Route Views is also parsed into ASereates a new node, stores the remainder of the input in it,
specific prefixes, which are then used as input to the cornespoand stores the next hop and interface information. Addiiign
ing traditional and path compressed tries. Next, we desdhb if the insertion encounters a node, node A, which is storing
implementation of various tries. multiple characters, it attempts to match its entry with the

1) Traditional Trie: The trie should support three basicstored characters/bits. Upon finding characters/bits dioahot
functionalities: insertion, search, and update. In theecak match, the stored character/bit string is split. The maighi
a name-based routing table, the unit of insertion, seanctl, acharacters/bits are retained in node A. Two new nodes are
update is a domain name while for a IPv4 FIB, the unit is then created: one for the remaining part of the split string,
prefix. The names are made up3if characters, 0-9, A-Z, and node B, and one for the rest of the input in the entry being
a’-' (the ' is treated as a special value) while the prefixas inserted, node C. All of the children on node A are then
only be made of bits '0’ and '1’. The subsequent discussianoved to node B. Nodes B and C are then added as children
describes the routines for insertion, search, and updata iron node A. This process of building the trie takes advantage
name-based routing table whereclaaracteris consumed at a of compression whenever possible while avoiding any specia
time. The traditional trie for IPv4 is populated similarlyaept compression heuristics.
that abit is consumed at a time and bit comparisons are usedWhen looking at a path compressed trie analytically, we again
instead of character comparisons. note that the worst case lookup and update times are O(Lyewhe

When storing an entry, the insertion routine recursivelysaddl is the length of the input. However, the memory requireraent
one character at a time from left to right, starting at thet.rdd are O(N), where N is the number of entries that must be stored.
each hop, the routine finds the child node that matches the fikote that the storage requirements are independent of fhe in
character in the input domain name. The insertion routies thlength, since the entire input can be compressed into aesingl
removes the first character of the input and recursivelyscatode.
itself using the child node as the new insertion point. Up
encountering a null child, the insertion routing createsea n
node for the child, inserts it into its parent node, removes t To compare the performance of name-based routing with 1Pv4
first character of input, and recursively calls itself. Omdiethe ~for both traditional and path compressed tries, we examioed
input has been consumed, the next hop and output interface &tch approach: 1) the time required to create routing taBjes
stored at a terminal node off the last child. the time required to lookup entries during packet forwagdin

The search routine also proceeds recursively, consuming)athe time required to update tables when entries get added
character of input at each hop. In the name-based appros@hdeleted, and 4) the storage requirements for routingesabl
the search routine checks for the existence of the next-hdp &\l the performance trials were conducted on a machine with a
output interface information at each “” entry and recordi i Pentium IV 3.2 GHz processor with 2GBytes RAM. To measure
it exists. In the IPv4 approach, the search routine checks b€ timings, we use thBDTSC instruction, which can be used
next-hop and output interface information at every hop. pd0 measure the elapsed cycle count, yielding nanosecoraigtim
encountering a null child, the search process aborts andheet resolution.
the next-hop and output interface it last recorded. 1) Routing Table Creation Timesn Table I, we show the

An update is simply a deletion and insertion paired togeth@verage time required to create the name-based routing tabl
The deletion routine proceeds similarly to the search neuti Which had 2,711,181 entries and the IPv4 FIB, which had
Upon encountering a null child, the deletion process abor8&d, 853 entries. We make comparisons both for traditional and
without changing the structure, since no exact match isdoufath compressed tries. Though the name-based routingstable
in the structure. When the deletion has consumed all of tkke orders of magnitude more time to load, these times are
input data, the deletion routine removes the next hop anpuoutunlikely to impact forwarding speeds since the tables @ipic
interface information from the current node. The routinenth need to be loaded only every few minutes.
completes.

08. Comparison with IPv4

Traditional Trie | Path Compressed Tri¢

When looking at a traditional trie analytically, we note that Name-based 51383 16531
the worst case lookup time is O(L), where L is the length of the IPv4 0.612 0.384
input. This is because the trie traversal is based on thigthen TABLE |
consuming one character at each node. Similarly, the wasst ¢ AVERAGE ROUTING TABLE CREATION TIMES(IN SECONDS).

for an update is O(L). The memory requirements are O(L*N),
where N is the number of entries than must be stored.

2) Path Compressed Trieln a path compressed trie, each The ISC Internet Domain Survey indicates that there has
node can contain multiple characters or bits that it reprissén been a growth of roughlyp0,000 second-level domains every
addition to the characters/bits represented from its pi@ee in six months over the lasi years. If this trend continues, there
the trie. Accordingly, the search and deletion routines gara will be roughly 4.25 million second-level domains in January,
these additional characters/bits with their input. If tialymatch, 2018. This time-frame seems sufficiently large to deterntiiree

scalability of our approach. Projecting 425 million domains, of the routing table entries. Table Il shows the results tfor

we find that the creation time for the name-based routingetalame-based routing table and the IPv4 FIB. Though updates
becomesl0.86 seconds for the traditional trie ad.73 seconds in the name-based tables cost more than IPv4 lookups for both
for the path compressed trie. Both of these times fall wethini types of tries, they are still reasonable, since updatesranach

the typical update times for modern routers. We concludé tHass regularly than lookups.

routing table creation times are a non-issue for name-based

routing. Traditional Trie Path Compressed Trie
. . . Avg | Min Max Avg | Min Max
2) Lookup Times:To determine lookup performance, we Name-based 16|013‘ 5,790‘ 41,508 14,603‘ 7,425‘ 36,520
searched a randomly sampled 1% of the unique domains for both | IPv4 5,949 | 3,365 | 19,810 | 5,358 | 3,808 | 14,855
traditional and path compressed tries. Table Il shows thelte TABLE Il

for the name-based routing table and the IPv4 FIB. Though
lookups in the name-based tables cost more than IPv4 lookups
for both types of tries, they are of the same order.

UPDATE TIMES (IN NANOSECONDS).

When projecting the average update times4td5 million

Traditi I Tri Path C d Tri . .
avg | Min | Max | Avg | Min | Max second-level domains, we get, 749 nanoseconds for tradi-
Name-based| 6,842 | 2,070 | 54,140 | 6,460 | 2,290 | 51,238 tional trie and16, 529 nanoseconds for the path compressed trie.
IPv4 2618 | 1.070] 10455 | 2525 | 910 | 5283 These numbers again seem to indicate that the update times do
TABLE I not increase in proportion to the number of entries in thearam

LOOKUP TIMES (IN NANOSECONDS). based table.

4) Memory Requirementsto determine the amount of mem-

o . . Qry required to store the name-based routing table, we phieli
Next, we looked at the distribution of lookup times obtaine : . :
above. The cumulative distribution functions (CDFs) of thﬁ]e number of entries by the size of each entry. The first two

. A . Eolumns of Table IV show the storage requirements of the
lookup times are shown in Figure 4. These CDFs indicate trﬁ’gime—based routing table and the IPv4 FIB. Clearly, the path

the average lookup times for name-based routing are woase tr&ompressed tries fare much better for both name-based and IP

t_hqse .for IPv4 because a "'?“ger perce_ntage of lookups fak II:)t\ébles and the memory requirements of the name-based goutin
finish in a small amount of time. In particuld@(% of the name-

based lookups také, 531 nanoseconds or less and ab&at; table are very demanding.

of the Iookgps taker, 656 nanoseconds or less. For IPv4, the iPva | Name-based Top 16% of | Top 4% of
corresponding percentage of lookups take56 nanoseconds or (full rie) | name-based name-based

. entries entries
less and2,969 nanoseconds or less .re_sp_ectlvely. Thgs, name-—rgiionar Trie 130 5008 555 195
based routing can benefit from optimizing lookup times for | Path Compressed Tri¢ 8.9 163.7 29.1 7.2
popular entries. TABLE IV

COMPARISON OF STORAGE REQUIREMENT$IN MBYTES).

100%

. 90% f i

2 so% 4 & o . .

2 oo f Frd When projecting the storage requirements4tas million

] 600; A Frd second-level domains, we gét2.18 MBytes for traditional trie

3 500/" i i/ and264.11 MBytes for the path compressed trie.

5 g

= 40% .' ff} IV. OPTIMIZING MEMORY REQUIREMENTS FOR

o 0% i }[NAME-BASED ROUTING TABLES

e 20% é
10% 4 V4 The greatest difficulty for the name-based approach seems to
0% M be the storage requirements, which are two orders of maigitu

greater than IPv4 for both traditional and path compressesl. t
As a result, the memory required to store the entire name-
based trie may be too much to fit into the faster SRAM on
routers. Previous work indicates that a significant portadn
traffic is destined to a small subset of destinations [10]],[1
[12]. Guided by this observation, we now explore the trafie-o
of storing high usage domains in fast memory and using the
Projecting the average lookup times4@5 million second- slower memory, such as DRAM, for cache misses.
level domains projected by the ISC Internet domain survey in\We estimate domain popularity using the number of times a
January, 2018, we ge€t, 629 nanoseconds for traditional triedomain appears in the unique URLs contained in the DMOZ
and 7,644 nanoseconds for the path compressed trie. Thedata. For each link, we determine the domain associateditwvith
numbers seem to indicate that the lookup times do not inered§e then add the number of times each domain appears in the list
in proportion to the number of entries in the name-basedttabhnd take this as an indication of domain popularity. As shown
3) Updating the Routing TableNext, we observed the timesFigure 5, the DMOZ data revealed a heavy tail distribution. |
required to update the routing tables. We randomly upda¥%d Particular, the topl% most popular domains account &.75%

780 2340 3910 5470 7030 8590 10160 11720 13280 14840
Lookup Time (ns)
—=— Name-based, path compressed —— Name-based, traditional
- 4- |Pv4, path compressed —e- |Pv4, traditional

Fig. 4. CDFs for distribution of lookup times for name-based dRv4
approaches.

of URLs and the topl6% most popular domains account forA. Future Work

50.06% of URLSs.
Our present caching analysis only accounts for link pojitylar

100% which is different from the amount of traffic destined to a
o 0% particular domain. Also, traffic other than web traffic is not
g 8% taken into account. To overcome these limitations, as part o
E ;8: future work, we plan to analyze Netflow [13] traffic logs from
S sou the Internet2 backbone to determine the distribution dffitra
2 400 volume across domains.
8 a0 Thus far, we have assumed that individual domains are stored
E 20% in the name-based routing table. In practice, multiple dama
10% are often co-located in the same network. In fact, previoogkw
0%{% . indicates that more “than 87% of a(;tive domain names are
Percent of Networks found to share their IP addresses ... with one or more additio
domains, and more than two thirds of active domain namegshar
Fig. 5. Cumulative distribution function for domain poputgi their addresses with fifty or more additional domains” [14].

Accordingly, groups of domains can be aggregated together

To evaluate the performance of caching tries correspondiitgo a single identifier. This observation can significamégluce
to popular domains, we modify our code to include a smallehe number of entries in the core routing tables. We plan to
cached trie as well. Entries are either inserted into thé@@c investigate the benefits of this compaction as part of owréut
trie or the regular trie, depending on its popularity. Lop&and work.
updates are first conducted on the cached trie and procebd to t
regular trie only if no match is found in the cached trie.

We perform these tests for both path-compressed and tradi-

tional tries. We experimented with two cases: when the &mall \jany research works have been considering alternate kttern
trie containsl 6% of the most popular unique domains and wheQchitectures. In TRIAD [15], the authors focus on content
it contains4% of the mqst popular unique domains. Taple 'Vouting, a much different goal from our own. However, to
shows the storage requirements for the caches. The cadeed {tansparently cache content, the architecture requiredses of
containing4% entries come very close to the corresponding,iers to store forwarding tables based on host names. DRIA
traditional IPv4 tries. For the path compressed trie, thehed iffers from our approach in that the host names are only used
trie with 4% entries is well within the bounds of the SRAM iNduring connection establishment, not for actual data packe
modern routers. o _ In IPNL [16], the authors propose to solve the Internet askire
As shown in Figure 6, caching 4% of the entries reduc@gnhaustion issue by making network address translatioT (A
the lookup times for more tha60% of the lookups. Caching first class citizen. They leave the core of the Internet ungbd
16% of the ent.nes does not yleld.as great resglts, mdgauand instead propose to change the edge networks to route
costs of traversing a Iarger cache.tne offset the h|ghehea_dim on fully qualified domain names (FQDNSs) during connection
percentage. These caching benefits come at the cost of setreqsiaplishment. In contrast to ours, their scheme leaveBN®E
lookup times for the less popular domains, since they Mygfrastructure unchanged. By allowing the core of the nekwo

look through two tries. We note this analysis is all perfodmey, change, our approach will eliminate the DNS infrastreetu
in software and DRAM, which does not show the advantagg well.

of caching in higher speed memory. As future work, we will
examine caching in hardware with faster memory.

V. RELATED WORK

Many other works have focused on outstanding Internet
issues, including address exhaustion and mobility. IPvVH [1
was designed mainly to increase the address space avditable
end-hosts. In the face of traffic engineering, multi-homiagd
prefix de-aggregation, its scalability remains questitadB].
FARA [18] and i3 [19] focus on mobility and utilize rendez\e®u
mechanisms to facilitate communication. In Nimrod [20]e th
authors propose an architecture to support varying quality
service requirements and restrictions. In HIP [21], thehargt
use public key cryptography to create secure identities. In
Layered Naming [22], the authors use separate identifiers to
distinguish between services and hosts, allowing for deieg

100%
90%
80% 7
70%
60%
50%
40%
30%
20%
10%

Percent of Lookups

0% BRIV T T T T T T T
780 1720 2810 3910 5000 6090 7190 8280 938010470 11720 12970 14220 15470 of duties, which benefits load balancing. Finally, in ROFB][2
Lookup Time (nanoseconds) the authors demonstrate that routing on flat labels cannot be
m 16% cache # 4% cache 'V No Cache casually dismissed, even if the current performance isimfe

to IPv4 routing. Our approach differs from ROFL in that wepro
Fig. 6. Comparison of CDFs for lookups in name-based path-cesspd tries POS€ to route on DNS names, eliminating the need for the DNS
with and without caching. infrastructure. ROFL on the other hand, will require a DNS-

equivalent in order to allow human-friendly host identigier

VI. DISCUSSION allowing our nodes to have a set branch factor of 37 within

Our goal in this paper was to determine the feasibility dfbels (26 letters, 10 digits, and the “-" character). A egrof
routing on DNS names. Through a software impIementaticWPrkS introduce an approach to map international domainenam
of longest prefix match forwarding algorithms, we deterrdinecharacters into the current character set, avoiding ctzatogthe
that while modern IPv4 routing has better performance, ti@tual DNS infrastructure [24], [25], [26]. This approaatutd
performance of our name-based routing implementation is @po be used in our architecture, though its ramificationstme
the same order of magnitude, indicating it may be a feasidigther study.
approach for routing. Our results encourage further exgion Finally, we note that multi-homing is as natural to incosmger
into the named routing realm. in name-based routing as it is in the case of IP. Finally, the

In our analysis, we considered effective second level dBame-based approach can support host mobility becausesname
mains to estimate the size of routing tables for core nanf:€ not tied to location by design.
based routers. Implicitly, this assumed one entry in thdimgu
table per organization. While this assumption is true for tmos , , _

“IPv6 information page,” http://www.ipv6.org.

doma'lns, some domains may be an exceptlon. In particular, /g 5 Meyer, L. Zhang, and K. Fall, “Report from the IAB Worksh on
large international company may have several sites. Fanpbey Routing and Addressing,” IETF Internet Draft, December 2006
conmpany. commay be an entry that goes to the company'd3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rod2NS

. Security Introduction and Requirements,” RFC 4033 (Prop&tandard),
corporate headquarters, whilek. conpany. com may be a 2005. [Online]. Available: http:/Awww.ietf.org/rfc/r033.txt

route to the company'’s site in the United Kingdom. The effects] bmoz, “Open directory project.”
of this de-aggregation is similar to the de-aggregationhia t [5] U. 0. O. Advanced Network Technology Center, “Route \seproject,’

; http://www.routeviews.org/.
CIDR approach for IPv4. Effectively, there would be more 6] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey xonomy

entries in the name-based FIBs, which would increase table of IP address lookup algorithmsEEE Network vol. 15, no. 2, pp. 8-23,
sizes. (Forwarding such entries is a non-issue becauseid¢se t 2001

- {7] D. Morrison, “Patricia - practical algorithm to retrievinformation coded
already support longer prefix match.) We note that the domam in alphanumeric,Journal of the ACMvol. 15, no. 4, pp. 514-534, October

aggregation approach we mentioned in Section IV-A woulcchav ~ 1968.
the opposite effect on the size of name-based FIBs. The ni8t K.Sklower, "Atree-based packet routing table for Begklnix,” in Winter

. . . . Usenix January 1991.
effect of the extra entries and domain aggregation on the Sl%g] I. S. Consortium, “Internet domain survey,” http://wwsciorg/index.pl?

of name-based routing tables remains to be explored. Jops/ds/.

There are several other open issues. A redesign of the gouti’] W. Fang and L. Peterson, “Inter-as traffic patterns dwdrtimplications,”

. . B GLOBECOM, 1999.
protocols and IP header is required to enable a transition 10, 5" gexford, 3. Wang, Z. Xiao, and Y. Zhang, “Bgp routingtsity of pop-

the proposed name-based scheme. Partial deployment issenar ~ ular destinations,” ACM SIGCOMM Workshop on Internet measuent,
necessitate using legacy infrastructure between degoasites. 2002.

: : : _ [12] N. Taft, S. Bhattacharyya, J. Jetcheva, and C. Diot,dé&hstanding traffic
This could be accomplished by addingname-layeron top of dynamics at a backbone pop.” SPIE. 2003,

the IPv4 header. The issue of encoding domain names in thg B. Claise, “Cisco systems netflow services export ver€lg IETF RFC
network layer would also require careful consideratioreatly, 3954, October 2004.

B. Edelman, “Web sites sharing IP addresses: Prevakemgsignificance,”
DNS host names are longer than IPv4 addresses and enCO&ﬁb September 2003, http://cyber.law.harvard.edu/peopéieah/ip-sharing/.

them in each packet's header will cause the packet head®r $iz] p. Cheriton and M. Gritter, “TRIAD: A new next generationternet
to increase. However, the extra overhead may not be worge tha architecture,” Stanford Computer Science, Tech. Rep., Maaoo.

: : :] P. Francis and R. Gummadi, “IPNL: A NAT-extended Interaethitec-
IPv6. This can be seen in Figure 7, where we plot a CDF of tHe ture” ACM SIGCOMM, 2002.

character length of the full host names from our DMOZ data s¢t7] s. Deering and R. Hinden, “Internet protocol, versioiBv6) specifica-
We note thab9.59% of host names arg6 characters or shorter. tion,” IETF RFC 2460, December 1998.

. 18] D. Clark, R. Braden, A. Falk, and V. Pingali, “FARA: Remmizing the
Further,67.62% are21 characters are shorter. Since each domalitf addressing architecture.” IACM SIGCOMM Computer Communication

name character can be encodedibits, a21 character name Review vol. 33, no. 4, October 2003, pp. 313-321.

would require onlyl5.75 bytes whereas an IPv6 address woult9] _l-dS_toiC_a, D-fAdkinSv S. ZhAuéR/?YS% ng&fmeréoggd S. Syramternet
. . . . indirection infrastructure.” s .

require 16 bytes. If an efficient variable-length encoding WEr® |. Castineyra, N. Chiappa, and M. Steenstrup, “The Ninmouting

used, it is possible that the name-based headers wouldllgictua ~ architecture,” IETF RFC 1992, August 1996.

be shorter than IPv6 for the majority of traffic. [21] R. Moskowitz and P. Nikander, “Host identity protocéllP) architecture.”
IETF RFC 4423.

[22] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamyhgnigr, I. Sto-

REFERENCES

» 100% . . . N

8 0% e iniinlia ica, and M. Walfish, “A layered naming architecture for theelnet,” ACM
E s ,.,.—"’r- SIGCOMM Computer Communication Revjewl. 34, no. 4, pp. 343-352,
Z 0% o October 2004.

g oo% ra [23] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanaigteica, and
% jg;) S. Shenker, “ROFL: Routing on flat labels.” ACM SIGCOMM, 2006
= 30,,/: Wl [24] P. Faltstrom, P. Hoffman, and A. Costello, “Internatibziag Domain
8 0% _//' Names in Applications (IDNA),” RFC 3490 (Proposed Standagf)03.
T 10% Online]. Available: http://www.ietf.org/rfc/rfc349&t

L —_ [| P 9

[25] P. Hoffman and M. Blanchet, “Nameprep: A Stringprep Peoffor
Internationalized Domain Names (IDN),” RFC 3491 (Proposeth&ard),
2003. [Online]. Available: http://www.ietf.org/rfc/rB491.txt

[26] A. Costello, “Punycode: A Bootstring encoding of Unieo for

Fig. 7. CDF of the percentage of hosts with given number of attars. Internationalized Domain Names in Applications (IDNA),” RF&192

(Proposed Standard), 2003. [Online]. Available: httpaiwietf.org/rfc/

Further, our paper leverages the limited character set i§, DN rfc3492.txt

6 7 8 91011121314 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Host Name Length (in characters)

