
Packet Forwarding: Name-based Vs. Prefix-based
Craig A. Shue and Minaxi Gupta

Computer Science Department, Indiana University

{cshue, minaxi}@cs.indiana.edu

Abstract— Using domain names for routing, instead of IP pre-
fixes, has the potential to address many of the core outstanding
issues in today’s Internet. To initiate research in that direction, this
paper compares the performance of name-based routing in the core
of the Internet with that of IPv4 routing. Our analysis concludes
that name-based routing is well within the scope of feasibility.

I. I NTRODUCTION

Users of popular Internet applications specify service end
points using human-friendly domain names. The domain name
service (DNS) resolves these domain names into IP addresses
and the underlying communication subsystem uses only the IP
addresses to deliver data. This setup has worked well so far.
However, today, the unallocated IPv4 address space is scant
and the DNS infrastructure is vulnerable to many types of
financial and security attacks, including denial-of-service (DoS)
and phishing.

Solutions to address both of these concerns have been
proposed. IPv6 [1] proposes to solve the address exhaustion
problem. However, it is not clear how scalable it would be
under multi-homing, traffic engineering and sub-optimal prefix
allocations [2]. DNSSEC [3] proposes to address security issues
related to DNS. Its adoption has been hindered in part due to
the lack of key distribution authority in the Internet.

This paper takes a fresh approach to solving address exhaus-
tion and DNS security-related concerns. It envisions a future
Internet that replaces the IP-based addressing and routingin the
Internet with one where hosts are identified only by their domain
names and the routing subsystem forwards packets based on
domain names. (Subsequently, we refer to the latter scheme as
name-based routing.) Using the widely-accepted domain names
as host identifiers has the advantage that the end users do not
have to be concerned with aspects of Internet evolution. This
is important to make transition to the new scheme practical.If
adopted, name-based routing would have the following impact:

Address space:The domain names are infinitely expandable
in practice. Thus, address space exhaustion concerns will be
alleviated.

DNS infrastructure: A translation from domain names to IP
addresses would no longer be required, eliminating the needto
have the DNS infrastructure1. Thus, all the DNS-related security
attacks will be eliminated.

Provider switch: Currently, IP addresses serve both as iden-
tifiers as well as locators, making it hard for organizationswho
lease network prefixes from their providers to change providers.
Since domain names are provider independent, this restriction
will be eliminated under name-based routing.

Many challenges need to be addressed before name-based
routing can become a reality. First, the IP header will have

1Routing would still have to be secured. This issue would remained unchanged
from today.

to be redesigned such that packets can contain domain names
instead of IP addresses. Second, the routing protocols willalso
have to be redesigned to exchange domain names instead of
IP prefixes. Third, scalability aspects of name-based routing
tables and forwarding speeds will have to be considered. Fourth,
support for multi-homing, mobility, and advanced services, such
as multicasting and anycasting, will have to be provisioned.
Finally, since a transition to the new scheme cannot occur
overnight, issues in backward compatability would have to be
carefully examined.

In this paper, we take a first step at investigating the feasibility
of name-based routing. Our focus is primarily on comparing
the performance of name-based packet forwarding with modern
IPv4 packet forwarding. Specifically, we evaluate the feasibility
of name-based routing in terms of the time required to create,
look up, and update routing tables in the core of the Internet,
and the corresponding storage requirements.

Toward our goal, we use data from the DMOZ Open Directory
Project [4], which contains user submitted links, and the Route
Views Project [5], which makes route announcements available
to the research community. We implement variouslongest prefix
algorithms used by IPv4 routers in software. The analysis
produces encouraging results. While the lookup, creation, and
update times of IPv4 are faster than name-based routing, the
name-based routing results are of the same order and certainly
not beyond the scope of feasibility. The biggest obstacle for
name-based routing is the size of the routing table, which
requires several orders of magnitude more storage than the
corresponding IPv4 tables. We explore the viability of caching
to reduce the number of entries in the routing table and also
highlight an approach to perform domain aggregation to further
reduce the number of entries.

The rest of this paper is organized as follows. In Section II,we
outline currently used approaches for IP routing. In Section III,
we discuss name-based routing and analyze its performance.
Section IV discusses approaches to optimize the memory re-
quired for the name-based routing. Finally, Sections V and VI
outline related work and open issues respectively.

II. BACKGROUND

Routing in the Internet is made possible by the border gateway
protocol (BGP). BGP allows routers in each domain to exchange
reachability information about IPv4 prefixes owned by various
organizations. The end result of this exchange is a forwarding
table at each BGP router which contains outgoing interfaces
corresponding to the prefixes. This table is referred to as the
forwarding information base (FIB) for BGP routers. To forward
packets toward their destination addresses, routers employ a
longest prefix matchon prefixes contained in the FIB. This
operation must be performed quickly to accommodate gigabit



1

BA

C

D

1

1

1

1

0 1

0

Fig. 1. A traditional trie.

0100 11

A B

1

C D

11

Fig. 2. Multibit trie with stride length of2.

BA

C

1

0 1

0

D

1111

Fig. 3. Path compressed trie.

routing speeds. Accordingly, a variety of algorithms existfor
fast longest-prefix matches [6]. Below, we outline the prominent
ones.

The classical longest prefix match approach uses a trie data
structure. In atraditional trie, each node can contain next-hop
and output interface information. An address lookup startsfrom
the root node and, based on the input address, a link to a child
representing a “1” or a “0” bit is traversed. During each traversal,
the algorithm stores the values of the next hop and output
interface information of the node, if it exists. Upon reaching
a node without a required child link, the search aborts and the
last recorded hop and output interface information are used. In
Figure 1, we provide an example trie with four prefixes: prefix
A (00*), prefix B (01*), prefix C (001*), and prefix D (1111*).

While straight-forward, the above lookup approach requires
a memory lookup for each bit in the IPv4 address, yielding
sub-optimal performance. To overcome this, work has explored
the use ofmultibit tries. In multibit tries, each traversal can
consume multiple bits of input. The number of bits consumed
in each traversal is called thestride. Thus, instead of just having
two children nodes, a trie using a stride of2 causes each node
to contain links for22 = 4 children. The choice of stride length
is important; a good stride choice can increase performance
but a poor stride choice may substantially increase the memory
required to store the trie. Figure 2 shows the impact of usinga
stride of2 on the trie from Figure 1. From this figure, we can
see that the number of memory references required to reach the
leaves decreases.

Another approach to optimize the trie data structure is perform
path compression. Tries employing path compression,path com-
pressed tries, simply collapse one-way branches. This reduces
the number of memory accesses required and limits the memory
required to store the trie. PATRICIA [7] first introduced path
compression. Modification were later made to the PATRICIA
approach, allowing it to be used in longest prefix matching [8].
In Figure 3, we show the impact of path compression on the
trie from Figure 1. The branch for prefix D is compressed to a
single node, yielding faster lookups for that branch and lower
memory consumption.

III. N AME-BASED ROUTING

To route on DNS names instead of IPv4 addresses, inter-
domain routers would have to maintain an equivalent of a border
gateway protocol (BGP) FIB. We refer to this table as thename-
based routing tablesubsequently and routers employing this
table asname-based routers. For common cases, it is sufficient
that this table for core Internet routers contain an entry for 1)
each DNS second-level domain, e.g., “university.edu” and 2)
each third-level domain for domain names that contain countries

as the top level domains (TLDs), e.g., “university.ac.in”,along
with their corresponding outgoing interfaces. For simplicity of
subsequent description, we refer to all entries of the name-based
routing table asdomain names. Notice that finer granularity
domains names, e.g., “cs.university.edu”, do not need to beexist
in name-based routing tables for core Internet routers since they
can be taken care of by the intra-domain routing. To forward
packets toward their destination, name-based routers willuse the
domain name of the destination and perform an equivalent of
today’s longest prefix match on the name-based routing table.

We compare the performance of IPv4 routers with name-
based routers for traditional and path compressed tries. Weleave
out multibit tries from our comparison because an even-handed
comparison is hard to do when the optimal stride sizes differ,
which is likely to be the case because IPv4 prefixes and domain
names have fundamentally different characteristics.

A. Test Data

In order to model realistic name-based routing tables, we
collected data from the DMOZ Open Directory Project [4].
The project contains user submitted links and is the largest
and most comprehensive directory of the Web. Our input data,
collected on October 28, 2006, has9, 633, 835 unique URLs and
2, 711, 181 unique second and third-level domain names, as de-
scribed earlier. We compare this data with the July, 2006 results
from the Internet Systems Consortium (ISC) Internet Domain
Survey [9]. The ISC data indicates there are3, 105, 760 second-
level domains. Thus, our data includes approximately73.38%

of the second-level domains. This gives us confidence that
we are working with a representative sample of the Internet’s
domains. For comparison with IPv4 routing tables, we obtained
a BGP FIB from one router in the Route Views Project [5]
on November 15, 2006. The FIB contained155, 854 entries,
fewer than expected, possibly because the chosen vantage point
does not have all the announced IPv4 prefixes. As a result, the
performance of IPv4 that we measure is actually slightly better
than it would be with complete records.

B. Implementation of Longest Prefix Match Algorithms

We begin by parsing the links contained in the DMOZ data
into DNS host names. We then aggregate these host names into
domain entries, which are used to populate both traditionaland
path compressed tries. To do so, we use a simple heuristic, in
which generic TLDs are grouped by their second-level domains
and most country code TLDs are grouped by their third level
TLDs. Some country codes have second level domains, in which
case an individual host name is considered to be a domain,
introducing a small overestimate in the number of domains if
there are multiple hosts in the same domain in our data.



In each of the trie implementations, we hierarchically reverse
the DNS names when storing entries and when performing
lookups. For example, “www.university.edu” is translatedto
“edu.university.www.” This allows us to take advantage of the
hierarchical structure of DNS names to obtain better branching.

The BGP FIB from Route Views is also parsed into AS-
specific prefixes, which are then used as input to the correspond-
ing traditional and path compressed tries. Next, we describe the
implementation of various tries.

1) Traditional Trie: The trie should support three basic
functionalities: insertion, search, and update. In the case of
a name-based routing table, the unit of insertion, search, and
update is a domain name while for a IPv4 FIB, the unit is a
prefix. The names are made up of37 characters, 0-9, A-Z, and
a ’-’ (the ’.’ is treated as a special value) while the prefixescan
only be made of bits ’0’ and ’1’. The subsequent discussion
describes the routines for insertion, search, and update ina
name-based routing table where acharacter is consumed at a
time. The traditional trie for IPv4 is populated similarly except
that abit is consumed at a time and bit comparisons are used
instead of character comparisons.

When storing an entry, the insertion routine recursively adds
one character at a time from left to right, starting at the root. At
each hop, the routine finds the child node that matches the first
character in the input domain name. The insertion routine then
removes the first character of the input and recursively calls
itself using the child node as the new insertion point. Upon
encountering a null child, the insertion routing creates a new
node for the child, inserts it into its parent node, removes the
first character of input, and recursively calls itself. Onceall the
input has been consumed, the next hop and output interface are
stored at a terminal node off the last child.

The search routine also proceeds recursively, consuming a
character of input at each hop. In the name-based approach,
the search routine checks for the existence of the next-hop and
output interface information at each “.” entry and records it if
it exists. In the IPv4 approach, the search routine checks for
next-hop and output interface information at every hop. Upon
encountering a null child, the search process aborts and returns
the next-hop and output interface it last recorded.

An update is simply a deletion and insertion paired together.
The deletion routine proceeds similarly to the search routine.
Upon encountering a null child, the deletion process aborts
without changing the structure, since no exact match is found
in the structure. When the deletion has consumed all of the
input data, the deletion routine removes the next hop and output
interface information from the current node. The routine then
completes.

When looking at a traditional trie analytically, we note that
the worst case lookup time is O(L), where L is the length of the
input. This is because the trie traversal is based on this length,
consuming one character at each node. Similarly, the worst case
for an update is O(L). The memory requirements are O(L*N),
where N is the number of entries than must be stored.

2) Path Compressed Trie:In a path compressed trie, each
node can contain multiple characters or bits that it represents, in
addition to the characters/bits represented from its placement in
the trie. Accordingly, the search and deletion routines compare
these additional characters/bits with their input. If theyall match,

they are removed from the input and the process continues as
before. If they do not match, processing aborts as if a null child
was encountered, since the input cannot exist in the trie.

The insertion routine is most affected by path compression.
Upon encountering a null child when inserting, the insertion
creates a new node, stores the remainder of the input in it,
and stores the next hop and interface information. Additionally,
if the insertion encounters a node, node A, which is storing
multiple characters, it attempts to match its entry with the
stored characters/bits. Upon finding characters/bits thatdo not
match, the stored character/bit string is split. The matching
characters/bits are retained in node A. Two new nodes are
then created: one for the remaining part of the split string,
node B, and one for the rest of the input in the entry being
inserted, node C. All of the children on node A are then
moved to node B. Nodes B and C are then added as children
on node A. This process of building the trie takes advantage
of compression whenever possible while avoiding any special
compression heuristics.

When looking at a path compressed trie analytically, we again
note that the worst case lookup and update times are O(L), where
L is the length of the input. However, the memory requirements
are O(N), where N is the number of entries that must be stored.
Note that the storage requirements are independent of the input
length, since the entire input can be compressed into a single
node.

C. Comparison with IPv4

To compare the performance of name-based routing with IPv4
for both traditional and path compressed tries, we examinedfor
each approach: 1) the time required to create routing tables, 2)
the time required to lookup entries during packet forwarding,
3) the time required to update tables when entries get added
or deleted, and 4) the storage requirements for routing tables.
All the performance trials were conducted on a machine with a
Pentium IV 3.2 GHz processor with 2GBytes RAM. To measure
the timings, we use theRDTSC instruction, which can be used
to measure the elapsed cycle count, yielding nanosecond timing
resolution.

1) Routing Table Creation Times:In Table I, we show the
average time required to create the name-based routing table
which had 2, 711, 181 entries and the IPv4 FIB, which had
155, 853 entries. We make comparisons both for traditional and
path compressed tries. Though the name-based routing tables
take orders of magnitude more time to load, these times are
unlikely to impact forwarding speeds since the tables typically
need to be loaded only every few minutes.

Traditional Trie Path Compressed Trie
Name-based 24.383 19.231
IPv4 0.612 0.384

TABLE I

AVERAGE ROUTING TABLE CREATION TIMES(IN SECONDS).

The ISC Internet Domain Survey indicates that there has
been a growth of roughly50, 000 second-level domains every
six months over the last3 years. If this trend continues, there
will be roughly 4.25 million second-level domains in January,
2018. This time-frame seems sufficiently large to determinethe



scalability of our approach. Projecting to4.25 million domains,
we find that the creation time for the name-based routing table
becomes40.86 seconds for the traditional trie and31.73 seconds
for the path compressed trie. Both of these times fall well within
the typical update times for modern routers. We conclude that
routing table creation times are a non-issue for name-based
routing.

2) Lookup Times:To determine lookup performance, we
searched a randomly sampled 1% of the unique domains for both
traditional and path compressed tries. Table II shows the results
for the name-based routing table and the IPv4 FIB. Though
lookups in the name-based tables cost more than IPv4 lookups
for both types of tries, they are of the same order.

Traditional Trie Path Compressed Trie
Avg Min Max Avg Min Max

Name-based 6,842 2,070 54,140 6,460 2,290 51,238
IPv4 2,618 1,070 10,455 2,525 910 5,283

TABLE II

LOOKUP TIMES (IN NANOSECONDS).

Next, we looked at the distribution of lookup times obtained
above. The cumulative distribution functions (CDFs) of the
lookup times are shown in Figure 4. These CDFs indicate that
the average lookup times for name-based routing are worse than
those for IPv4 because a larger percentage of lookups for IPv4
finish in a small amount of time. In particular,50% of the name-
based lookups take4, 531 nanoseconds or less and about90%

of the lookups take7, 656 nanoseconds or less. For IPv4, the
corresponding percentage of lookups take2, 656 nanoseconds or
less and2, 969 nanoseconds or less respectively. Thus, name-
based routing can benefit from optimizing lookup times for
popular entries.

Fig. 4. CDFs for distribution of lookup times for name-based and IPv4
approaches.

Projecting the average lookup times to4.25 million second-
level domains projected by the ISC Internet domain survey in
January, 2018, we get7, 629 nanoseconds for traditional trie
and 7, 644 nanoseconds for the path compressed trie. These
numbers seem to indicate that the lookup times do not increase
in proportion to the number of entries in the name-based table.

3) Updating the Routing Table:Next, we observed the times
required to update the routing tables. We randomly updated 1%

of the routing table entries. Table III shows the results forthe
name-based routing table and the IPv4 FIB. Though updates
in the name-based tables cost more than IPv4 lookups for both
types of tries, they are still reasonable, since updates occur much
less regularly than lookups.

Traditional Trie Path Compressed Trie
Avg Min Max Avg Min Max

Name-based 16,013 5,790 41,508 14,603 7,425 36,520
IPv4 5,949 3,365 19,810 5,358 3,808 14,855

TABLE III

UPDATE TIMES (IN NANOSECONDS).

When projecting the average update times to4.25 million
second-level domains, we get16, 749 nanoseconds for tradi-
tional trie and16, 529 nanoseconds for the path compressed trie.
These numbers again seem to indicate that the update times do
not increase in proportion to the number of entries in the name-
based table.

4) Memory Requirements:To determine the amount of mem-
ory required to store the name-based routing table, we multiplied
the number of entries by the size of each entry. The first two
columns of Table IV show the storage requirements of the
name-based routing table and the IPv4 FIB. Clearly, the path
compressed tries fare much better for both name-based and IPv4
tables and the memory requirements of the name-based routing
table are very demanding.

IPv4 Name-based Top 16% of Top 4% of
(full trie) name-based name-based

entries entries
Traditional Trie 13.0 400.8 83.2 19.5
Path Compressed Trie 8.9 163.7 29.1 7.2

TABLE IV

COMPARISON OF STORAGE REQUIREMENTS(IN MBYTES).

When projecting the storage requirements to4.25 million
second-level domains, we get642.18 MBytes for traditional trie
and264.11 MBytes for the path compressed trie.

IV. OPTIMIZING MEMORY REQUIREMENTS FOR

NAME-BASED ROUTING TABLES

The greatest difficulty for the name-based approach seems to
be the storage requirements, which are two orders of magnitude
greater than IPv4 for both traditional and path compressed tries.
As a result, the memory required to store the entire name-
based trie may be too much to fit into the faster SRAM on
routers. Previous work indicates that a significant portionof
traffic is destined to a small subset of destinations [10], [11],
[12]. Guided by this observation, we now explore the trade-offs
of storing high usage domains in fast memory and using the
slower memory, such as DRAM, for cache misses.

We estimate domain popularity using the number of times a
domain appears in the unique URLs contained in the DMOZ
data. For each link, we determine the domain associated withit.
We then add the number of times each domain appears in the list
and take this as an indication of domain popularity. As shownin
Figure 5, the DMOZ data revealed a heavy tail distribution. In
particular, the top4% most popular domains account for35.75%



of URLs and the top16% most popular domains account for
50.06% of URLs.

Fig. 5. Cumulative distribution function for domain popularity.

To evaluate the performance of caching tries corresponding
to popular domains, we modify our code to include a smaller,
cached trie as well. Entries are either inserted into the cached
trie or the regular trie, depending on its popularity. Lookups and
updates are first conducted on the cached trie and proceed to the
regular trie only if no match is found in the cached trie.

We perform these tests for both path-compressed and tradi-
tional tries. We experimented with two cases: when the smaller
trie contains16% of the most popular unique domains and when
it contains4% of the most popular unique domains. Table IV
shows the storage requirements for the caches. The cached tries
containing 4% entries come very close to the corresponding
traditional IPv4 tries. For the path compressed trie, the cached
trie with 4% entries is well within the bounds of the SRAM in
modern routers.

As shown in Figure 6, caching 4% of the entries reduces
the lookup times for more than60% of the lookups. Caching
16% of the entries does not yield as great results, indicating
costs of traversing a larger cache trie offset the higher cache hit
percentage. These caching benefits come at the cost of increased
lookup times for the less popular domains, since they must
look through two tries. We note this analysis is all performed
in software and DRAM, which does not show the advantage
of caching in higher speed memory. As future work, we will
examine caching in hardware with faster memory.

Fig. 6. Comparison of CDFs for lookups in name-based path-compressed tries
with and without caching.

A. Future Work

Our present caching analysis only accounts for link popularity,
which is different from the amount of traffic destined to a
particular domain. Also, traffic other than web traffic is not
taken into account. To overcome these limitations, as part of
future work, we plan to analyze Netflow [13] traffic logs from
the Internet2 backbone to determine the distribution of traffic
volume across domains.

Thus far, we have assumed that individual domains are stored
in the name-based routing table. In practice, multiple domains
are often co-located in the same network. In fact, previous work
indicates that more “than 87% of active domain names are
found to share their IP addresses ... with one or more additional
domains, and more than two thirds of active domain names share
their addresses with fifty or more additional domains” [14].
Accordingly, groups of domains can be aggregated together
into a single identifier. This observation can significantlyreduce
the number of entries in the core routing tables. We plan to
investigate the benefits of this compaction as part of our future
work.

V. RELATED WORK

Many research works have been considering alternate Internet
architectures. In TRIAD [15], the authors focus on content
routing, a much different goal from our own. However, to
transparently cache content, the architecture requires a subset of
routers to store forwarding tables based on host names. TRIAD
differs from our approach in that the host names are only used
during connection establishment, not for actual data packets.
In IPNL [16], the authors propose to solve the Internet address
exhaustion issue by making network address translation (NAT) a
first class citizen. They leave the core of the Internet unchanged
and instead propose to change the edge networks to route
on fully qualified domain names (FQDNs) during connection
establishment. In contrast to ours, their scheme leaves theDNS
infrastructure unchanged. By allowing the core of the network
to change, our approach will eliminate the DNS infrastructure
as well.

Many other works have focused on outstanding Internet
issues, including address exhaustion and mobility. IPv6 [17]
was designed mainly to increase the address space availableto
end-hosts. In the face of traffic engineering, multi-homing, and
prefix de-aggregation, its scalability remains questionable [2].
FARA [18] and i3 [19] focus on mobility and utilize rendezvous
mechanisms to facilitate communication. In Nimrod [20], the
authors propose an architecture to support varying qualityof
service requirements and restrictions. In HIP [21], the authors
use public key cryptography to create secure identities. In
Layered Naming [22], the authors use separate identifiers to
distinguish between services and hosts, allowing for delegation
of duties, which benefits load balancing. Finally, in ROFL [23],
the authors demonstrate that routing on flat labels cannot be
casually dismissed, even if the current performance is inferior
to IPv4 routing. Our approach differs from ROFL in that we pro-
pose to route on DNS names, eliminating the need for the DNS
infrastructure. ROFL on the other hand, will require a DNS-
equivalent in order to allow human-friendly host identifiers.



VI. D ISCUSSION

Our goal in this paper was to determine the feasibility of
routing on DNS names. Through a software implementation
of longest prefix match forwarding algorithms, we determined
that while modern IPv4 routing has better performance, the
performance of our name-based routing implementation is of
the same order of magnitude, indicating it may be a feasible
approach for routing. Our results encourage further exploration
into the named routing realm.

In our analysis, we considered effective second level do-
mains to estimate the size of routing tables for core name-
based routers. Implicitly, this assumed one entry in the routing
table per organization. While this assumption is true for most
domains, some domains may be an exception. In particular, a
large international company may have several sites. For example,
company.com may be an entry that goes to the company’s
corporate headquarters, whileuk.company.com may be a
route to the company’s site in the United Kingdom. The effect
of this de-aggregation is similar to the de-aggregation in the
CIDR approach for IPv4. Effectively, there would be more
entries in the name-based FIBs, which would increase table
sizes. (Forwarding such entries is a non-issue because the tries
already support longer prefix match.) We note that the domain
aggregation approach we mentioned in Section IV-A would have
the opposite effect on the size of name-based FIBs. The net
effect of the extra entries and domain aggregation on the size
of name-based routing tables remains to be explored.

There are several other open issues. A redesign of the routing
protocols and IP header is required to enable a transition to
the proposed name-based scheme. Partial deployment scenarios
necessitate using legacy infrastructure between deploying sites.
This could be accomplished by adding aname-layeron top of
the IPv4 header. The issue of encoding domain names in the
network layer would also require careful consideration. Clearly,
DNS host names are longer than IPv4 addresses and encoding
them in each packet’s header will cause the packet header size
to increase. However, the extra overhead may not be worse than
IPv6. This can be seen in Figure 7, where we plot a CDF of the
character length of the full host names from our DMOZ data set.
We note that99.59% of host names are36 characters or shorter.
Further,67.62% are21 characters are shorter. Since each domain
name character can be encoded in6 bits, a21 character name
would require only15.75 bytes whereas an IPv6 address would
require16 bytes. If an efficient variable-length encoding were
used, it is possible that the name-based headers would actually
be shorter than IPv6 for the majority of traffic.

Fig. 7. CDF of the percentage of hosts with given number of characters.

Further, our paper leverages the limited character set in DNS,

allowing our nodes to have a set branch factor of 37 within
labels (26 letters, 10 digits, and the “-” character). A series of
works introduce an approach to map international domain name
characters into the current character set, avoiding changes to the
actual DNS infrastructure [24], [25], [26]. This approach could
also be used in our architecture, though its ramifications merit
further study.

Finally, we note that multi-homing is as natural to incorporate
in name-based routing as it is in the case of IP. Finally, the
name-based approach can support host mobility because names
are not tied to location by design.

REFERENCES

[1] “IPv6 information page,” http://www.ipv6.org.
[2] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on

Routing and Addressing,” IETF Internet Draft, December 2006.
[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS

Security Introduction and Requirements,” RFC 4033 (Proposed Standard),
2005. [Online]. Available: http://www.ietf.org/rfc/rfc4033.txt

[4] DMOZ, “Open directory project.”
[5] U. o. O. Advanced Network Technology Center, “Route views project,”

http://www.routeviews.org/.
[6] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy

of IP address lookup algorithms,”IEEE Network, vol. 15, no. 2, pp. 8–23,
2001.

[7] D. Morrison, “Patricia - practical algorithm to retrieve information coded
in alphanumeric,”Journal of the ACM, vol. 15, no. 4, pp. 514–534, October
1968.

[8] K. Sklower, “A tree-based packet routing table for Berkley Unix,” in Winter
Usenix, January 1991.

[9] I. S. Consortium, “Internet domain survey,” http://www.isc.org/index.pl?
/ops/ds/.

[10] W. Fang and L. Peterson, “Inter-as traffic patterns and their implications,”
GLOBECOM, 1999.

[11] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “Bgp routing stability of pop-
ular destinations,” ACM SIGCOMM Workshop on Internet measurement,
2002.

[12] N. Taft, S. Bhattacharyya, J. Jetcheva, and C. Diot, “Understanding traffic
dynamics at a backbone pop,” SPIE, 2003.

[13] B. Claise, “Cisco systems netflow services export version 9,” IETF RFC
3954, October 2004.

[14] B. Edelman, “Web sites sharing IP addresses: Prevalenceand significance,”
September 2003, http://cyber.law.harvard.edu/people/edelman/ip-sharing/.

[15] D. Cheriton and M. Gritter, “TRIAD: A new next generation Internet
architecture,” Stanford Computer Science, Tech. Rep., March 2000.

[16] P. Francis and R. Gummadi, “IPNL: A NAT-extended Internetarchitec-
ture.” ACM SIGCOMM, 2002.

[17] S. Deering and R. Hinden, “Internet protocol, version 6(IPv6) specifica-
tion,” IETF RFC 2460, December 1998.

[18] D. Clark, R. Braden, A. Falk, and V. Pingali, “FARA: Reorganizing the
addressing architecture,” inACM SIGCOMM Computer Communication
Review, vol. 33, no. 4, October 2003, pp. 313–321.

[19] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure.” ACM SIGCOMM, 2006.

[20] I. Castineyra, N. Chiappa, and M. Steenstrup, “The Nimrod routing
architecture,” IETF RFC 1992, August 1996.

[21] R. Moskowitz and P. Nikander, “Host identity protocol (HIP) architecture.”
IETF RFC 4423.

[22] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Sto-
ica, and M. Walfish, “A layered naming architecture for the Internet,”ACM
SIGCOMM Computer Communication Review, vol. 34, no. 4, pp. 343–352,
October 2004.

[23] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I.Stoica, and
S. Shenker, “ROFL: Routing on flat labels.” ACM SIGCOMM, 2006.

[24] P. Faltstrom, P. Hoffman, and A. Costello, “Internationalizing Domain
Names in Applications (IDNA),” RFC 3490 (Proposed Standard), 2003.
[Online]. Available: http://www.ietf.org/rfc/rfc3490.txt

[25] P. Hoffman and M. Blanchet, “Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN),” RFC 3491 (Proposed Standard),
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3491.txt

[26] A. Costello, “Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA),” RFC3492
(Proposed Standard), 2003. [Online]. Available: http://www.ietf.org/rfc/
rfc3492.txt


