
Sensitive Data Requests: Do Sites Ask Correctly?
Craig A. Shue and Minaxi Gupta

Computer Science Department
Indiana University

{cshue, minaxi}@cs.indiana.edu

Abstract— To ensure the security of sensitive Web content, an
organization must use TLS and do so correctly. However, little is
known about how TLS is actually used on the Web. In this work,
we perform large-scale Internet-wide measurements to determine
if Web sites use TLS when needed and when they do, if they use
it correctly. We find hundreds of thousands of pages where TLS
is either not used when it should be or is used improperly, putting
sensitive data at risk.

I. INTRODUCTION

The Web offers unprecedented opportunities for e-
commerce. The security of such transactions is commonly
provided through the use of the Transport Layer Security
(TLS) protocol [1], the standards track successor of the Secure
Sockets Layer (SSL) protocol. TLS allows clients to verify
the authenticity of the servers they access and ensures the
confidentiality of the communication between the client and
server. While previous work has analyzed TLS certificates and
the protocol itself, little work has focused on its Web usage.

This paper is motivated by the desire to learn how TLS is
being used on the Web today. A large portion of Web content
is publicly available and does not require confidentiality. In
many cases, such as reading news articles or using search
engines, the benefits of TLS protection do not outweigh
the performance overheads associated with the protocol. In
other cases, sensitive information is transmitted and should
be protected by TLS. However, simply using TLS is not
enough; it must still be used correctly. To investigate TLS
usage on the Web, we ask two primary questions: Are there
sites on the Web that are not using TLS when they should?
Do the sites that use TLS do so correctly? The motivation
for the first question is that sensitive information can be
easily intercepted by an eavesdropper unless TLS is used.
The second question is motivated by the observation that TLS
protection must begin before the Web server transmits a form
to the client. Otherwise, a page containing the form can be
altered by an attacker, allowing the interception of sensitive
data. Several large organizations, including amazon.com,
chase.com, and hotmail.com, have established the TLS
protection after the client has downloaded the page, but before
submitting the form data. This practice, called secure post, is
typically used by organizations which have a high volume of
user traffic that never signs into a form on the page. This
is particularly common when the form appears on the main
page of a site. These organizations use secure post to avoid
the performance overheads associated with TLS for the non-
authenticating clients. Unfortunately, this practice provides an

opening for attackers to impersonate the Web sites and launch
a man-in-the-middle attack on the Web clients.

To examine the extent of these poor security practices, we
implemented a Web crawler and examined HTML forms on
4.3 million Web pages. We made several key observations
from this analysis. First, 31-36% of Web pages do not use
TLS at all when they should. To address this issue, we
have implemented a browser extension that warns users about
entering SSNs and credit card numbers on Web pages that do
not use TLS in addition to identifying fields asking sensitive
data. This results in fewer, but more accurate warnings. In
manually evaluating the effectiveness of the extension, we
found no false positives and two possible false negatives.
Second, we find that of insecure pages that had forms, 1.65%-
4.49% had at least one form that was submitted via HTTPS,
resulting in the secure post vulnerability. If exploited, the in-
secure entry points can lead to fraud, possibly with significant
financial repercussions for the users and the vulnerable sites.
We propose a browser extension that attempts to verify these
entry points using TLS before submitting sensitive data and
issue a warning if such verification fails.

The rest of this paper is structured as follows. In Section II,
we discuss our data collection and methodology. In Section III,
we examine sites that offer no TLS protection with sensitive
data and suggest some precautions users can take. In Sec-
tion IV, we analyze sites that misuse TLS and suggest client-
based strategies to correct the problem. We review related
work in Section V and conclude in Section VI.

II. DATA COLLECTION AND METHODOLOGY

To gain insights on TLS usage, we performed large-scale,
Internet-wide Web crawls. We divided our crawls into four
data sets, which were selected to capture different types of
Web pages: popular pages, those visited by machines on our
network, and those selected randomly.

In the first data set, which we refer to as the DMOZ
Breadth data set, we obtained a list of URLs from the
DMOZ Open Directory Project [2]. The DMOZ project con-
sists of user-submitted links that form a directory for finding
data, rather than using a searching approach. The data set,
collected on February 13, 2008, contained 9,165,163 links. Of
these, 4,025,911 links were unique. Most of these links used
HTTP, not HTTPS, implying that they did not use TLS. A total
of 2,312 links used TLS. We eliminated these TLS-protected
links from further consideration since any forms on these
pages will be transmitted securely by default. Over the course

TABLE I
OVERVIEW OF DATA SETS

Total Pages with Total Insecure Secure
Data Set Pages Forms Forms Forms Forms
DMOZ Breadth 3,213,764 692,869 (21.55%) 1,710,819 1,656,047 (99.67%) 54,772 (0.33%)
DMOZ Depth 78,726 37,879 (48.11%) 66,506 64,213 (96.55%) 2,293 (3.45%)
Alexa 344,868 269,600 (78.17%) 702,325 674,831 (96.09%) 27,494 (3.91%)
DNS 642,013 448,015 (69.78%) 967,990 938,555 (96.96%) 29,435 (3.04%)

of a few weeks, we were able to retrieve a total of 3,213,764
pages from the DMOZ links. This breadth-based crawl was
superficial; it only examined the page directly linked from
DMOZ. While this strategy allowed our crawler to examine
pages from a large number of domains, it would not capture
forms on secondary pages.

For the remaining data sets, we performed more detailed
crawling. For each of these data sets, we obtained a URL
for a top page, downloaded that page and any page linked
from that page that was within the same DNS domain as the
original page. This more detailed crawling limits the breadth
of domains, while finding forms that are directly linked from
the main page. Some URLs may be present in multiple data
sets. Due to its unique crawling methodology, we allow the
DMOZ Breadth data set to overlap with the remaining three
without attempting to eliminate overlaps.

The second data set (DMOZ Depth) again uses links from
the DMOZ Open Directory Project. However, rather than
conduct a full sweep, we randomly selected 16, 500 unique
links to perform our crawl. This allows us to directly compare
the strategy of superficial crawls verses detailed crawls in
finding forms. We obtained 78, 726 Web pages from this crawl.

In our third data set (Alexa), we analyzed popular Web
sites. We used the Alexa Web Information Service [3], which
ranks the most popular Web sites on the Internet, to obtain the
1, 000 most popular sites in each of 16 top level categories,
as well as the top 500 most popular sites overall. Some sites
were present in multiple categories; upon removing duplicates,
we found 15, 341 unique Web sites. We used each of the sites
obtained from Alexa as starting pages for Web crawling. This
crawl resulted in 344, 868 Web pages.

In the final data set (DNS), we focused on actual user
behavior. To create this data set, we captured all the DNS
queries issued on our departmental network for a one-week
period. We used the host names contained in the A (Address)
record queries as the base for URLs for Web crawling. This
data contained 164, 145 unique host names. From this crawl,
we obtained 642, 013 Web pages.

For each data set, we parsed the HTML code of each page
we downloaded. We used the form HTML tag to identify
requests for data. For each form, we extracted the address of
the page serving the form, the destination of the form, as well
as each of the associated input fields. From this data, we could
characterize the type of data being transmitted and whether the
data requested from the user would be transmitted securely.

We examined 4.3 million Web pages. Not all the pages we
examined contained forms. However, many pages contained

multiple forms, as shown in Table I. For example, in the DMOZ
Breadth data set, we found that a total of 692,869 (21.55%)
pages contained a total of 1,710,819 forms. Using the action
attribute in each form tag, we inferred if TLS was being used
by looking for the presence of HTTPS. Otherwise, we inferred
that the form was transmitted insecurely. In each data set, over
95% of the pages with forms contained only HTTP (insecure)
forms. A relatively small number, 1.65%-4.49%, contained
only forms submitted via HTTPS. We note that popular pages,
those in the Alexa data set, had a higher percentage of pages
with forms and a higher number of forms per page. Less
popular pages had far lower rates of form usage. Collectively,
our data contained 3, 333, 646 (96.69%) insecure forms and
113, 994 (3.31%) secure forms. In the next two sections, we
examine the insecure and secure forms separately.

III. TLS IN SENSITIVE DATA REQUESTS

The first question we sought to answer was: Are there sites
on the Web that are not using TLS when they should? We
analyzed all the 3.33 million forms transmitted insecurely
toward this goal. To characterize the type of data transmitted
by the form, we inferred usage from the name attribute
on each form input tag as well as the type attribute
of the HTML tag being used. For example, in the HTML
code example below, the third line contains an input tag
with the type attribute of “password,” which is likely to be
considered sensitive to the Web user. We note that lines 3
and 5, “Username:” and “Password:” are simply labels for the
end-user to know what data to enter in the field; for technical
reasons, these are not currently included in our heuristics.
<form action="http://www.example.com"

method="post">
Username: <input type="text"

name="user">

Password: <input type="password"

name="pass">

<input type="submit" name="page"

value="Login">
</form>

We applied two simple heuristics to classify material as
sensitive. In the first, we examined whether any input HTML
fields were of type “password.” The other heuristic was
to examine the name attribute of any form-related tags in
order to infer their usage. For example, input fields with
“user” as the name attribute could be inferred to stand for
“username,” a piece of data we consider sensitive. Fields with
“query” or “search” as the name attribute are more likely

to be involved in Web searches; we do not consider this
data to be sensitive. We develop patterns to match the value
associated with name attribute in form fields to determine
the data requested. We classify data that pertains to a user’s
identity or accounts as sensitive. Accordingly, we consider
user names, passwords, account numbers, addresses, (credit)
card numbers, email addresses, real names, cities, and phone
numbers to be sensitive data. Some of this information is
considered to be more sensitive than other data. For example,
credit card information is likely to be more sensitive than an
email address. However, an email address is tied to a user’s
identity and could be used for tracking purposes. Some may
consider their home city to be sensitive data while others may
not. In this analysis, we focus on a few pieces of sensitive
data to determine the number of requests for that data rather
than create an exhaustive set of sensitive data.

In Table II, we list the categories of sensitive data re-
quested by insecure forms. Each input field is categorized
exclusively through a series of rules. For example, a field
with “password” as the type attribute is classified only as
a “password field,” regardless of any other matches on the
name attribute. However, a page can have multiple categories
of sensitive form fields, in which case it is counted under each
type. Overall, we found that 31.39%-36.00% of pages with
insecure forms contained at least one sensitive field. Specifi-
cally, we found that over 240,000 Web pages contain insecure
forms that have input tags with “password” for the type
attribute. Each of these password fields cause Web browsers to
obscure the text entered into the field, to prevent others from
seeing the data entered on the user’s screen. Clearly, the Web
sites consider this data to be somewhat sensitive, yet do not
provide real protection for it. For the rest of the field categories
listed in Table II, we searched for patterns in the name
attribute of the input tag to infer the type of data requested.
For example, “account” and “acct” are both substrings that
we classify as requesting “account” information. The most
commonly inferred requests were for email addresses, in which
over 215,000 pages requested this information. As one may
expect, data that is of extreme sensitivity, such as account and
card numbers, is seen less frequently, appearing on less than
1,100 pages. While some categories may swap places in these
data sets, they typically do so with neighboring categories. We
do not notice any discernable correlation between popularity
and type of sensitive information requested.

A. Browser Extension to Help Users Avoid Sending Sensitive
Data through Insecure Forms

While Web servers may request that users submit sensitive
data through insecure forms, Web browsers can advise their
users about the risks of doing so. To some extent, such a
protection already exists in many popular Web browsers: they
warn users whenever they send any form data through an
insecure medium. Unfortunately, the power of these warnings
is diluted by the fact that they are indiscriminate. For example,
being required to acknowledge the insecurity of each Web
search performed would be an annoyance to most users

TABLE II
THE NUMBER OF PAGES WITH DIFFERENT CATEGORIES OF SENSITIVE

DATA REQUESTED BY INSECURE WEB FORMS

DMOZ DMOZ
Field Type Breadth Depth Alexa DNS
Password Fields 120,541 4,645 51,907 66,622
Inferred Email 97,413 6,356 40,127 72,204
Inferred User Name 75,262 2,965 40,383 45,283
Inferred Real Name 60,230 3,170 19,791 40,936
Inferred Address 21,180 994 5,785 10,305
Inferred Phone Number 7,278 714 1,979 4,614
Inferred City 6,605 492 3,316 5,781
Inferred Password 3,073 82 1,085 1,290
Inferred Account 477 16 235 353
Inferred Card Number 282 27 230 155

while simultaneously encouraging users to always ignore such
warnings.

Our solution is to use more fine-grained warnings. By
eliminating overly broad warnings, users may be more likely to
heed the warnings that remain. We implemented and released
an extension to the Mozilla Firefox Web browser that performs
heuristics on the forms completed by the user and the data
that they entered1. The extension examines each form field to
determine if sensitive data is being communicated. If so, the
extension displays a warning to the end-user. For example,
if a form uses an input tag with “password” as the type,
the extension will create a targeted alert message if the form
is being submitted without TLS protection. In the alert, the
extension describes the sensitive information being entered
to encourage users to consider what information they are
submitting. As with our heuristics for finding sensitive data,
the extension also searches for patterns matching sensitive data
in the value of the name attribute for each input tag in the
HTML document. We use the same patterns of sensitive data
described in the previous section.

Our browser extension goes beyond examining the HTML
document to find sensitive fields. It also examines the user’s
input to determine what type of information is being entered.
We have implemented two heuristics for this: one to detect
United States Social Security Numbers (SSNs) and one to
detect credit card numbers. If the user enters a nine digit
number separated into a sequence of three digits, two digits,
and then four digits, we flag the number as a SSN and declare
it sensitive. If the user enters a 15-16 digit number (after
removing any spaces), we supply the number to the Luhn
algorithm [4], a scheme that serves as a checksum on credit
card numbers. If the algorithm indicates the number could be a
valid credit card number, we flag the data as sensitive. If either
heuristic flags sensitive data, we issue a warning if TLS is not
in use. These two examples illustrate how browser extensions
can leverage both the data requested by forms as well as the
data supplied by the user to develop effective heuristics for
detecting sensitive data.

In order to evaluate the effectiveness of our implementation,

1This extension is available at http://www.cs.indiana.edu/
cgi-pub/cshue/research/formcheck.php.

we manually examined Web pages not contained in our data to
characterize whether they contained forms requesting sensitive
data and whether our heuristics for identifying them will flag
them as such or not. To do so, we randomly selected 43 Web
pages from the Alexa service that were not included in our pre-
vious data sets for generating the heuristics. Collectively, these
Web pages contained 100 forms which we examined manually.
From this inspection, we found 22 forms which requested
sensitive data, all of which were detected by the heuristics in
our implementation. An additional 2 forms requested location
information which could be considered sensitive. Neither of
these were detected by the heuristic; however, adding the term
“location” as a keyword in the heuristic would have caused
them to be detected. In no cases did the heuristic indicate
data was sensitive when it was not.

Our heuristics for identifying sensitive data are based on the
observation that Web sites typically use certain conventions
and key words in naming fields in their forms. While our
tests show that leveraging those conventions works well in
practice, a Web site determined to not be flagged while asking
its clients for sensitive data insecurely can defeat them. This
can sometimes happen without adversarial intentions as well.
For example, our heuristics currently leverage the English
language to look for input fields requesting sensitive data;
however, other languages may be used by the Web site, causing
our heuristic to miss some fields. Other factors used by our
heuristics are not so easily foiled. The use of “password” as a
type for input fields is standardized in HTML; replicating
the obscuring functionality of a password field is unlikely to
happen accidentally. However, adversarial sites could still use
rich media to emulate such behavior without being detected.

IV. INCORRECT TLS USAGE IN FORMS

The second question we sought to answer was: Do sites
that use TLS do so correctly? Many Web sites contain forms
on their main pages. These pages are sometimes delivered
without using TLS to avoid paying the performance overhead
of TLS connection establishment in cases where users do not
log on. Instead, they only use TLS for the actual submission
of the form, a practice called secure post. Unfortunately, by
not authenticating the original form page, the contents of the
page can be altered by an attacker before it is delivered to the
user. Thus, an attacker can change the form’s destination or
embed client-side scripts that will leak sensitive data. This can
lead to identity theft, with significant costs for both consumers
and institutions. Browsers typically indicate when a page is
secure by showing a “lock” icon or using color highlighting.
However, under secure post, neither of these indicators are
present, since the form page is not transmitted under TLS.

Any time a page is delivered through HTTP and contains
a form transmitted through HTTPS, secure post is a concern.
Our data contained many such instances. Of insecure pages
that had forms, 1.65%-4.49% had at least one form that
was submitted via HTTPS. However, secure post is only
problematic when sensitive data is being transmitted through
the form. Accordingly, we examine how often secure post is

an issue when sensitive data is being transmitted. We use the
same heuristics to identify sensitive data as in Section III.
In Table III, we show the various types of data requested in
forms with the secure post problem. Passwords dominated, as
they did with insecure forms. However, unlike insecure forms,
where user name was the third most popular field, user name
was the second most popular field in secure post forms in most
of the data sets. Account number and credit card number were
still not requested as frequently as the other data types in most
data sets. However, in the popular sites, account numbers were
requested more than phone numbers or inferred passwords.
With other fields, we noticed no considerable differences in
the types of data requested.

TABLE III
THE NUMBER OF PAGES WITH DIFFERENT CATEGORIES OF SENSITIVE

DATA REQUESTED BY UNAUTHENTICATED HTTPS FORMS

DMOZ DMOZ
Field Type Breadth Depth Alexa DNS
Password Fields 8,871 419 4,666 7,927
Inferred User Name 4,185 195 2,100 3,699
Inferred Address 2,826 39 1,878 1,096
Inferred Email 2,825 104 1,590 3,881
Inferred Real Name 2,768 46 859 2,321
Inferred City 1,644 18 453 774
Inferred Password 154 1 215 116
Inferred Phone Number 123 10 50 301
Inferred Account 76 2 297 18
Inferred Card Number 13 4 5 73

A. Browser Extensions to Overcome Incorrect TLS Usage

One approach to avoid the pitfalls of secure post is to verify
the original HTTP page containing the HTTPS form before
submitting any data through the form. This validation would
authenticate the Web server and ensure that the original page
was not modified. Once this verification is done, TLS usage
in the form would ensure the confidentiality of data.

To validate the original HTTP page via an HTTPS con-
nection, we implemented an extension to the Mozilla Firefox
Web browser. In our implementation, before submitting any
form data, the client establishes a TLS connection with the
server providing the page, obtaining the server’s certificate and
authenticating the server. The extension then requests the sign-
in page through the TLS connection; if the HTML code for the
original sign-in page exactly matches the code provided by the
unprotected page, the extension submits the completed form
to the server. Otherwise, the extension warns the user that the
page could not be validated and explains the risks involved.
This approach has the advantage of not requiring modifications
on the Web server and is a fairly light-weight implementation
on the client. To evaluate the approach, we examined 32,230
sites that used secure post in our Web crawling. We obtained
each page using an unprotected HTTP connection and then
attempted to download the same page using a TLS-protected
HTTPS connection. About 71% of Web servers did not have
an HTTPS server running, causing the approach to fail. Of
the remaining 29% of sites, the pages matched 8% of the time
and did not match 92% of the time. From a manual inspection

of a subset of the sites that do not match, many seem to be
blank pages or indicate the server is not configured to display
a Web site. These results show that while a fully client-side
solution may help in some cases, it currently does not seem
to be effective for the vast majority of sites.

An alternate approach we propose is for Web servers to hash
and sign their login page in advance and provide its signature
while serving the page. Before submitting forms on the page,
the client would establish a TLS connection with the Web
server, obtain the server’s certificate, verify the certificate to
authenticate the server, and then use the server to authenticate
the Web page’s signature. If the signature is successfully
verified, the client will then submit the form contents supplied
by the user to the server. Otherwise, the user would be warned
that the signature did not match and the submission would
be canceled. The hash and sign approach would be sufficient
for static Web servers; however, each time the server changes
the content on its main page, a new signature would need to
be generated. To avoid this, the signature could be designed
to cover the form on the Web page as well as any client
side scripts that would interact with the form. The rest of the
page could be altered without requiring a new signature. This
approach would require support from both the Web servers
and clients.

The proposed approaches provide the Web servers with a
means to avoid unnecessary TLS transactions and the asso-
ciated performance overheads while still providing end-users
with authenticity when obtaining forms. However, neither
approach is a complete solution: if an attacker simply changes
the destination of the form to a non-TLS server and strips
any Web server signatures (for the second approach), the
client may not be able to detect that the page should be
further authenticated. Additionally, an attacker could bypass
the sensitive data checking from Section III-A by obfuscating
the page to avoid detection. To close this attack vector, a third-
party could create and sign a list of sites known to employ
secure post. This list could be periodically obtained by the Web
browser and an alert raised if a page classified as using secure
post instead begins submitting pages without any protection.
While this approach would not cover all sites, it could be used
to decrease the risk to many Web users.

V. RELATED WORK

The security underlying the SSL and TLS protocols has
been scrutinized from a variety of angles. The TLS protocol
was originally specified in RFC 4346 [1]. Wagner et al.
examined the security of the SSL v3.0 protocol and found a
few weaknesses in the protocol, but propose simple corrections
to overcome them [5]. Netcraft performed a survey of systems
using TLS and found that only about 27% of sites used TLS
certificates that would not cause a warning [6]. A large portion
of the other certificates were either self-signed or did not
match the host providing the certificate. Extended validation
has been introduced to provide a higher standard of trust
that the certificate holder is a legally established and verified
organization [7]. Unfortunately, in a study by Jackson et

al. [8], extended validation did not decrease the susceptibility
of subjects to different types of attacks. In the work by
Schechter et al. [9], the authors examine the response by users
to missing security indicators and the presence of warning
messages. In this study, the authors found that few subjects
(4%) did not submit their credentials after some security
indicators were missing (no lock icon, missing “https” in the
URL, and removal of a site-authentication image). However,
when a warning message was present, 44% of subjects did
not enter their credentials. With more accurate and context-
sensitive warnings, we suspect that fewer participants will
submit sensitive data. However, a user study on the topic would
be warranted to determine its effectiveness.

VI. CONCLUSION

In this work, we examined the usage of the TLS protocol
on 4.3 million Web pages and found that more than a third
either do not use TLS when they should or use it incorrectly.
The first is the most common case. We developed client-side
solutions that can help the users when Web sites shirk their
duties. While these heuristics are imperfect, they at least can
warn users of the risks from these insecure Web sites.

Ultimately, the Web site operators are responsible for re-
questing sensitive data in a secure way. Some sites shirk this
responsibility, often unintentionally. In these cases, automated
Web crawling, like the kind we perform, can be used to alert
Web site operators about their insecure practices. Others may
continue to disregard their responsibility due to the perfor-
mance and administrative overheads associated with secure
Web practices. In the past, organizations have used “name
and shame” campaigns to effect change. For example, the
StopBadware project [10] solicits and publishes reports on
bad software in order to encourage the software producers to
change their practices. A similar model could be used for sites
that do not provide proper protections for their users. These
organizations may be more likely to employ proper security
when the alternative is a decrease in customer trust.

REFERENCES

[1] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol,”
IETF RFC 4346, Apr. 2006.

[2] DMOZ, “Open directory project,” http://www.dmoz.org/.
[3] Amazon.com, Inc, “Alexa web information service (AWIS),” 2008, http:

//aws.amazon.com/awis.
[4] H. P. Luhn, “Computer for verifying numbers,” U.S. Patent 2,950,048,

Aug. 1960.
[5] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” in

USENIX Workshop on Electronic Commerce, 1996.
[6] Netcraft, “Secure server survey,” 2006, http://news.netcraft.com/

SSL-Survey/.
[7] T. C. . Browser Forum, “Guidelines for the issuance and manage-

ment of extended validation certificates,” 2007, http://cabforum.org/
EV Certificate Guidelines.pdf.

[8] C. Jackson, D. Simon, D. Tan, and A. Barth, “An evaluation of extended
validation and picture-in-picture phishing attacks,” in Usable Security
(USEC), 2007.

[9] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The emperor’s
new security indicators: An evaluation of Website authentication and
the effect of role playing on usability studies,” in IEEE Symposium on
Security and Privacy, 2007.

[10] Berkman Center for Internet and Society, “Stopbadware,” http://www.
stopbadware.org/.

