
1

Whole Home Proxies: Bringing Enterprise-Grade Security

to Residential Networks

Curtis R. Taylor, Craig A. Shue and Mohamed E. Najd

Worcester Polytechnic Institute

{crtaylor, cshue, menajd}@cs.wpi.edu

ABSTRACT

While enterprise networks follow best practices and

security measures, residential networks often lack these

protections. Home networks have constrained resources

and lack a dedicated IT staff that can secure and manage

the network and systems. At the same time, homes must

tackle the same challenges of securing heterogeneous

devices when communicating to the Internet. In this

work, we explore combining software-defined network-

ing and proxies with commodity residential Internet

routers. We evaluate a “whole home” proxy solution for

the Skype video conferencing application to determine

the viability of the approach in practice. We find that we

are able to automatically detect when a device is about

to use Skype and dynamically intercept all of the Skype

communication and route it through a proxy while not

disturbing unrelated network flows. Our approach works

across multiple operating systems, form factors, and

versions of Skype.

I. Introduction

While there are many more residential networks than

enterprise networks, most network security measures

are directed at enterprises. Residential networks have

constrained resources, in hardware, connectivity, IT

expertise, and funding, that limit the viability of most

protective measures for these networks. While some

security measures are straightforward in an enterprise

network, they can be challenging to execute across

residential networks.

One example class of applications is that of a “whole

home” proxy solution that is tailored to specific ap-

plications. Enterprises often employ proxies to detect

and block access to potentially malicious destinations or

content. By employing this protection at the perimeter,

enterprises can provide protection to many hosts at once.

This goal is shared by residential networks. In particu-

lar, residential networks have numerous heterogeneous

devices, including desktop and laptop computers, mo-

bile devices, and embedded devices (e.g televisions,

receivers, and video game consoles). Some devices,

particularly for mobile or embedded devices, may not

have options to allow users to configure proxy settings

or other advanced networking features.

Residential users have limited options for a whole

home proxy solution. Many commodity routers lack

options for setting up proxy servers or site-to-site VPN

end-points in their manufacturer-provided firmware.

Even if users replace their routers with high-end devices

or install custom after-market firmware (which can be

daunting even for technical users [14]), the controls

are too coarse grained. Many VPN setups allow the

tunneling of all network or none at all. “Split tunnel”

VPNs can allow partial rerouting of traffic, but those

tunnels are created on a per-destination basis rather than

on a per-flow basis. Finally, the complexity of managing

these VPN tunnels may be cumbersome for users.

We propose to change the network model. Rather

than require home users to become experts, we focus

on outsourcing security management to expert service

providers. We explore modifications to commodity res-

idential routers to allow them to export management to

a remote controller, using the OpenFlow protocol [18],

and a series of device proxies. Unlike traditional Open-

Flow, we will examine the payload of network traffic

and use remote cloud nodes to protect residential users.

In exploring this concept, we focus on the Skype

video conferencing application. Skype is commonly

used, with over 300 million users worldwide [2], with

support on devices ranging from computers to mobile

devices and video game consoles. Skype uses a peer-to-

peer connection between communicating parties which

can reveal the IP address of a Skype user to others,

whether they are aware of an established connection or

not [17]. Some blackmarket providers offer to denial-of-

service attack users when provided with a target Skype



2
username since the Skype directory service leaks the IP

addresses of connecting parties [4]. We believe Skype

is a particularly good example application because it is

known for breaking through common network barriers

(like firewalls), uses a proprietary protocol that cannot

be altered, and has complex infrastructure. Simply put,

a technique that works for Skype will likely work for

many simpler network applications.

We make the following contributions:

1) Proxies on a per-flow basis: We combine an

OpenFlow approach with proxies and a tunneling

agent on the router to proxy communication on a

per-flow basis.

2) Demonstration of a utility of an application-

specific proxy: We create an SDN controller appli-

cation, agent at the router, and proxy configuration

for Skype that demonstrates the viability of per-

flow proxies that are tailored to applications in a

residential network.

3) Evaluation of the effectiveness of the approach:

We evaluate the approach using 5 different devices

running Skype on a home network with a cloud-

based OpenFlow controller and proxy.

II. Related Work

Our approach is related to work in detecting if a network

flow is associated with the Skype protocol, to measures

that influence Skype privacy, and to work in residential

network innovation using software-defined networking

techniques. We now describe each of these areas.

A. Distinguishing Skype Network Traffic

Skype has a complex peer-to-peer (P2P) infrastruc-

ture with supernodes (which are used for routing),

ordinary nodes (such as end-user machines), and a login

server [7]. Many researchers have tried to characterize

and understand how the underlying Skype protocols

work [7], [21], while others have focused on detecting

Skype traffic in networks [8], [9], [19].

Since we do not decode Skype’s proprietary protocol

in this work, we must simply detect and proxy all

messages associated with the Skype program to ensure

the user’s real IP address is not leaked. SkyTracer [26]

has a similar goal of detecting Skype traffic at the

flow-level. SkyTracer uses a mixture of flow tuple and

byte-level packet characteristics to identify Skype traffic

within the first few packets. While such approaches may

work well for identifying ongoing or new Skype calls,

we must be able to detect Skype activity before the

associated network traffic leaves the network. We must

proxy all communication to Skype servers, supernodes,

and ordinary nodes to hide the user’s IP address.

B. IP Address Privacy in Skype

Since Skype uses a P2P connection to directly estab-

lish a connection between communicating hosts, each

host naturally learns the IP address of its communicating

counterpart during a call. However, Le Blond et al. [17]

describe a method to passively obtain the IP addresses

of thousands of Skype users without alerting the user.

They further describe linking a user’s IP address to other

Internet activity such as BitTorrent traffic. While Le

Blond proposes infrastructure changes, their approach

does not completely address the issue. The Skype client

(SC) application could simply only allow added contacts

to establish direct connections; however, this is only en-

abled on the iPhone and not any of the other devices we

tested. The Xbox One likewise only allows immediate

contacts to connect, but it does so without determining

whether a connection is direct or not. These features

could easily be undermined with a social engineering

attack in which the attacker is added as a contact.

In other work, Ehlert et al. [11] found that even when

manually configuring Skype to use a proxy server in the

client’s settings, Skype will still try to establish a direct

connection with the peer and will only use the proxy as

a last resort if the earlier efforts fail. As a result, users

may believe they are masking their actual IP addresses

behind a proxy only to have Skype bypass the proxy.

C. Residential Network Innovations

Feamster [12] noted that residential networks are

well-known for being insecure and hard to manage.

In a position paper, he proposed outsourcing home

network security to a third party. Yiakoumis et al. [25]

suggested “slicing” home networks to allow indepen-

dent third-parties to manage individual slices. In later

work, Yiakoumis et al. [24] took a different approach to

empower users to control the network. In that work, they

create an agent, called Skype+, to implement quality

of service for Skype. Kim et al. [15] implemented

an extension to the Project BISMark suite [23] that

enforces data caps on residential networks. Kumar et

al. [16] explored an approach where residential users

adjust their network experience by manipulating ISP-

owned OpenFlow switches and controllers.

While these prior efforts have focused on outsourcing

network management, they do not address significant

security concerns. In particular, they have not con-

sidered approaches to outsource security controls in

an incrementally deployable way, nor approaches that

allow users to be self-sufficient in doing so. In this

work, we instead focus on using SDNs to create an im-

mediately deployable solution for specific applications.

By sharing these applications and tools, we demonstrate

that experts can create and share security tools with less

technologically sophisticated users.



3
III. Approach: Tailored Proxying

A user may run many programs, each with their own

workflow and associated security concerns and goals. To

ensure these security goals are met, we enable security

experts to write tailored control applications to manage

the network traffic of the user’s applications. We then

create a general platform and an API that allows those

experts to run their control application across many

different types of residential networks.

Our general platform consists of four components: a

commodity residential router running custom firmware,

a cloud-based OpenFlow controller that directs the

router’s behavior, a cloud-based proxy/middlebox that

monitors traffic, and a GRE tunnel between the router

and proxy. These components are common across appli-

cations and services. To tailor the system to a particular

user program, a security expert will create a custom

application on the OpenFlow controller to manage the

features. Further, the expert may run custom software

on the proxy/middlebox to enforce these goals.

We instantiate this general approach with a specific

application for the Skype video conferencing applica-

tion. We now describe each of the components in the

general platform and the customizations needed to meet

Skype’s security goals.

A. Platform: Router, Controller, Proxy

We modify a consumer-grade router to support the

OpenFlow protocol by installing the OpenWrt’s [5]

firmware and enabling the Open vSwitch [20] module.

Unlike prior work, we control the router remotely

with an OpenFlow controller that is hosted at a cloud

provider. This controller has the ability to vet all of

the new connections established through the router,

including traffic within the LAN and Internet traffic. The

router establishes a connection to the controller upon

boot and requests instruction for new network flows.

Host1

Skype1

Host2

Skype2

SkyP

FGFC

Fig. 1. Overview of how our Skype proxy approach works using
multiple cloud providers for controlling OpenFlow and proxying
traffic. Our controller uses fine-grained flow control (FGFC) and the
Skype Proxy (SkyP) module to detect Skype calls and update the
route agent to send traffic through the proxy.

We then create a cloud virtual machine that operates

as a middlebox or proxy server. In its most basic

form, the proxy simply uses network address translation

(NAT) and forwards packets from the consumer’s router

to the requested destination and vice versa. To facilitate

communication with the proxy, the router creates a GRE

to a list of eligible proxies upon booting. When ordered

to do so by the OpenFlow controller, the router simply

uses the appropriate GRE tunnel as the destination for

selected flows, causing them to be sent via the proxy.

B. Tailored Control: The SkyP Module

While the basic platform provides a mechanism to

send arbitrary traffic via a cloud-based proxy, there must

be a module or application that indicates which traffic

should be sent to the proxy and what the proxy should

do with the traffic once it receives it. This module may

be different for each type of application protocol to

provide tailored control.

For Skype traffic, we create a custom controller ap-

plication, which we call the SkyP Module. This module

uses Skype network characteristics to detect what traffic

is likely associated with Skype and directs that traffic

via the proxy. Since Skype is a complex proprietary

protocol, we do not know which messages are used to

register the user’s IP address in the Skype directory. To

prevent the user’s real address from being leaked, our

SkyP Module must take a series of steps to determine

what traffic is Skype-related.

There are two main features the SkyP module must

consider: 1) communication with known Skype infras-

tructure or 2) direct P2P communication. We use DNS

features and IP ownership to identify and proxy the

connections to the Skype infrastructure. However, for

P2P communication, we leverage the fact that the client

initiates its P2P connections using a randomly-generated

port number that is created upon installation of the

client. Using a few approaches, we can learn the client’s

P2P source port. Once we have done so, we watch for

any peers the client contacts using the the P2P source

port and proxy all traffic to those discovered peers (since

traffic subsequent to the rendezvous may communicate

using random ports). We now describe each of these

approaches and features in detail.

1) Skype DNS Requests: When the Skype client (SC)

first starts, it initiates a series of DNS requests to

hardcoded domain names that are included as part of

the Skype executable. Some DNS host names, such

as ui.skype.com, are fixed while others, such as

dns13.d.skype.net, appear to be members of a

load balancing group that the SC may rotate amongst.

To create a complete list of DNS host names associated

with Skype, we examined a diverse set of devices and

operating systems as shown in Table I.



4
TABLE I

LIST OF DEVICES USED IN OUR EXPERIMENTS

Device Operating System SC Version

iPhone iOS 8.4 6.1.0.210

Macbook Pro OS X 10.10.5 7.10

Dell Laptop Windows 7 7.10.0.101

Dell Laptop Ubuntu 14.04.3 4.3.0.37

Xbox One Xbox OS 6.2.13332.0 1.9.0.1003

For each device, we launch the SC, initiate a roughly

five second long voice call, and close the SC. We

repeated this process 20 times for each application,

flushing the device’s DNS cache. Each client was behind

a NAT device since Skype is known to exhibit different

behave when operating behind NAT [7].

From these trials, we created a list of 32 host

names that appeared to be related to Skype. Of the

32 host, 6 had distinct patterns that could be gener-

alized into a regular expression. For example, there

are 18 different host names that match the pattern

dsn[0-17].d.skype.net [21], allowing us to eas-

ily construct a regular expression to match the hosts.

We combine our empirically discovered addresses with

important host names discovered in prior work [21].

We configured the SkyP module to monitor DNS

requests for these host names. Since the SkyP mod-

ule can receive all packets elevated to the OpenFlow

controller, including DNS packets, it can analyze these

requests and their responses. Each time a client initiates

a DNS request, OpenFlow controller sends a copy of the

DNS response to the SkyP module. The SkyP module

searches the DNS response for replies containing any

of these known host names. If an entry is found, the

module extracts the all of the IP addresses and directs

the router to send all traffic to those IP addresses via

the proxy.

2) Skype’s Use of NAT-PMP: When the SC is first

installed, it randomly generates a port number that it

will use when it later attempts to create P2P con-

nections [7]. To facilitate communication even through

NAT middleboxes, the SC uses the NAT Port Mapping

Protocol (NAT-PMP) [10] to request that certain ports

be mapped to the SC via the NAT device’s public

IP address. By simply monitoring for these NAT-PMP

requests, which are elevated to the SkyP module, we

can learn what port the SC uses for P2P connections

and subsequently direct any traffic originating from the

host using that port to be sent via the proxy. Since

other unrelated applications could also initiate NAT-

PMP requests, we only learn ports from NAT-PMP if

they are within a delta of 4 seconds of a SC-related

DNS request. This approach was effective for each of

the devices in Table I across 80 call sessions, excluding

the Xbox One (which does not use NAT-PMP).

3) Skype’s Interactions with Supernodes: Since some

devices, such as the Xbox One, do not use NAT-PMP,

we use another SC characteristic to learn the SC’s

P2P port. When started, the SC makes multiple con-

nections to supernodes. The first such connection uses

the SC’s dedicated port. Accordingly, by knowing the

identity of all supernodes, or features associated with

those supernodes, we can watch for any connections

to those supernodes to learn the SC’s P2P port. Prior

work found that connections to supernode IP addresses

typically use the port range 40001-40047 [21]. Further,

all supernodes are now operated by Microsoft [1] [3],

so we can examine whether the destination IP address

belongs to Microsoft-owned IP space to determine if the

connection is to a supernode.

IV. Implementation

We implement our approach using a consumer-grade

router and elevating flows to a remote OpenFlow con-

troller on a server in a cloud data center. We flash a TP-

LINK TL-WR1043ND v2 router with a custom build of

the OpenWrt (Chaos Calmer 15.05) image. To enable

OpenFlow support, we selected the kernel-level Open

vSwitch package.

To ensure continued operation in the event of con-

nectivity issues when reaching the cloud controller, we

ran NAT, a recursive DNS resolver, and DHCP services

locally along with OpenFlow. We had to create a virtual

interface to act as an intermediary between the router’s

WAN interface and the router’s internal LAN. To enable

NAT functionality, we created static rules in iptables

for masquerading. We did not have to make any special

changes for the DHCP or DNS services. When used

for production, we will conceal these complex routing

configurations by including them inside the firmware.

We then created two cloud virtual machines (VMs) to

host the OpenFlow controller and anonymizing proxy.

Each VM was an Ubuntu 14.04 Linux server micro-

VM instance in the Amazon EC2 compute cloud and

was eligible for Amazon’s free tier. Each VM has a

single 2.5 GHz core with 1 GByte of RAM and uses

a dynamic global IP address. We ran a script to install

and launch the POX OpenFlow controller with our own

fine-grain flow control and SkyP modules.

The anonymizing proxy is configured to implement a

source NAT using iptables. With this configuration,

the proxy automatically translates and forwards traffic

to and from the GRE tunnel connected to the home

router. It only performs network-layer translations, so

the Skype P2P port will be exposed in network com-

munication. We did not explore performing port address

translation at the proxy.



5

PacketIn

DNS

Packet

Yes NoDNS

Response
No

Send

PacketOut

Skype 

domain

Yes

No

Add route to IP(s)

NAT-PMP

Within

�T

Yes

Flow using

Skype Port

No

Yes

Supernode

connection

Yes

Log Skype port

Yes

NoNo No
Yes

Send

PacketOut

Add route to IP(s)

Log Skype port

Fig. 2. The above diagram shows the decision-making process in the SkyP module for proxying traffic.

V. Evaluating SkyP

We evaluated our approach by performing Skype voice

calls and verifying functionality using third-party Skype

IP address lookup applications, such as Skype Re-

solver [4], and via Wireshark captures. The specific

devices and software versions are listed in Table I.

A. Evaluation Setup

Our evaluation setup is shown in Figure 3. We

position the client using our whole home proxy in a

residential network behind NAT. In our evaluation, the

call initiator and responder are already contacts.

Host1

Skype

Host2

Skype

POX

Controller

Proxy

ISP

Amazon

Fig. 3. Our evaluation setup for testing SkyP on different devices.

For each device except the Xbox One, we performed

the following steps. First, the SC using SkyP (Host1 in

Figure 3) attempted a voice call to Host2. After estab-

lishing the call, Host1 sent a chat message, transmitted

an image file 3 MBytes in size and ended the call after

approximately 2 minutes. We then had Host2 attempt a

voice call to Host1 to ensure the proper IP address was

used to establish the P2P connection through the proxy.

Since the Xbox One’s version of Skype does include

chat or file transfer, we only tested VoIP calls on it.

B. Verification

We verified our approach works in two ways. First,

we used an online third-party tool, Skype Resolver [4],

to ensure the only IP address associated with our

username was the IP address of the proxy. Because

hosts can be associated with multiple IP addresses at

once, such as a mobile device and an office computer,

we waited until no IP addresses were cached.

We performed packet captures at each host to verify

correct proxying. For each device being tested, we

verified each packet capture individually to ensure our

IP address was never leaked to Host2. We observed

that all VoIP call, chat, and file transmission traffic

established connections to Host2 using our cloud proxy

or were transmitted via an anonymizing supernode (for

chat and file transmission). The Skype Resolver only

learned the proxied IP address; it was never able to

detect the real IP address of the proxied user.

VI. Discussion and Future Work

Performance and security are two important consider-

ations for deploying systems that leverage SDN and

the cloud. Existing research focuses on the OpenFlow

protocol and relevant performance considerations such

as the controller placement problem [13]. In our experi-

mentation, there was no noticeable delay in call setup or

call quality. Other research has considered performance

of proxies and proxies within the cloud [6]. OpenFlow

controller security [22] is also an important area of

research that lies outside the scope of our work.

In evaluating our Skype setup, we found an inter-

esting edge case. When the two communicating par-

ties are not already contacts in the Skype system, a

direct connection can occur if the adversary uses an

unrestricted publicly routable address. In this case, the

adversary sends a request through the Skype supernode

to the internal host. That request causes the internal

host to directly connect to the adversary. This particular

workflow bypasses DNS, NAT-PMP, and supernodes

and thus we do not proxy the connection correctly.



6
This approach, of requesting the other party to initiate

the connection, is particularly useful for Skype to bypass

NAT. Since one of the machines uses a publicly routable

address, it can act as a server to have the other machine

connect. By sending a request to this effect via the

Skype supernode, the machines establish a connection.

Since the Skype protocol is encrypted, we cannot

detect the IP address for these new requests and simply

proxy all connections to that IP address. However, the

connection request packet appears to use a packet size

in the range of [329-339] bytes. As a workaround, we

add a function not shown in Figure 2 to proxy any new

network flows that occur within 200 milliseconds of

these requests. As such, the requirement of peers being

pre-existing contacts is no longer necessary.

VII. Conclusion

We proposed an approach that uses network function

virtualization to enable a “whole home” proxy for

residential networks. Using a cloud-based controller and

proxy, we are able to control traffic on a per-flow

basis that is immediately deployable. Using Skype as a

motivating example, we found that even a complicated

proprietary protocol can be singled out and selectively

proxied. In doing so, we have highlighted the potential

and discussed other applications for application-specific

cloud-based proxies in residential networks.

Acknowledgments

This material is based upon work supported by the

National Science Foundation under Grant No. 1422180.

Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the

authors and do not necessarily reflect the views of the

National Science Foundation.

References

[1] Skype at 10: How an Estonian startup transformed itself (and the
world). https://www.microsoft.com/en-us/stories/skype/skype-
chapter-4-are-you-smoking.aspx. Accessed: 2015-09-13.

[2] Skype audience stats - Microsoft advertising.
https://advertising.microsoft.com/en-us/WWDocs/User/display/
cl/brand subproperty/1589/global/Skype-Audience-Stats.pdf.
Accessed: 2015-10-09.

[3] Skype ditched peer-to-peer supernodes for scalability, not
surveillance. http://www.zdnet.com/article/skype-ditched-peer-
to-peer-supernodes-for-scalability-not-surveillance/. Accessed:
2015-09-13.

[4] Skype resolver. http://mostwantedhf.info/. Accessed: 2015-09-
13.

[5] OpenWrt wireless freedom. https://openwrt.org, 2014.
[6] J. Almeida and P. Cao. Measuring proxy performance with the

wisconsin proxy benchmark. Computer Networks And ISDN

Systems, 30(22):2179–2192, 1998.

[7] S. A. Baset and H. Schulzrinne. An analysis of the skype peer-
to-peer internet telephony protocol. arXiv preprint cs/0412017,
2004.

[8] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi. Detailed
analysis of skype traffic. Multimedia, IEEE Transactions on,
11(1):117–127, 2009.

[9] P. A. Branch, A. Heyde, and G. J. Armitage. Rapid identification
of skype traffic flows. In Proceedings of the 18th international

workshop on Network and operating systems support for digital
audio and video, pages 91–96. ACM, 2009.

[10] S. Cheshire and M. Krochmal. NAT Port Mapping Protocol
(NAT-PMP). RFC 6886 (Informational), Apr. 2013.

[11] S. Ehlert, S. Petgang, T. Magedanz, and D. Sisalem. Analysis
and signature of skype voip session traffic. 4th IASTED

International, 2006.

[12] N. Feamster. Outsourcing home network security. In Proceed-

ings of the 2010 ACM SIGCOMM workshop on Home networks,
pages 37–42. ACM, 2010.

[13] B. Heller, R. Sherwood, and N. McKeown. The controller
placement problem. In Proceedings of the first workshop on Hot

topics in software defined networks, pages 7–12. ACM, 2012.
[14] M. Horowitz. A router firmware update goes bad.

http://www.computerworld.com/article/2692514/a-router-
firmware-update-goes-bad.html, October 2014.

[15] H. Kim and N. Feamster. Improving network management with
software defined networking. Communications Magazine, IEEE,
51(2):114–119, 2013.

[16] H. Kumar, H. H. Gharakheili, and V. Sivaraman. User control of
quality of experience in home networks using sdn. In Advanced
Networks and Telecommuncations Systems (ANTS), 2013 IEEE

International Conference on, pages 1–6. IEEE, 2013.

[17] S. Le Blond, C. Zhang, A. Legout, K. Ross, and W. Dabbous. I
know where you are and what you are sharing: exploiting p2p
communications to invade users’ privacy. In Proceedings of

the 2011 ACM SIGCOMM conference on Internet measurement

conference, pages 45–60. ACM, 2011.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer

Communication Review, 38(2):69–74, 2008.

[19] M. Perényi, A. Gefferth, T. D. Dang, and S. Molnár. Skype
traffic identification. In Global Telecommunications Conference,

2007. GLOBECOM’07. IEEE, pages 399–404. IEEE, 2007.

[20] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker. Extending networking into the virtualization layer.
In Hotnets, 2009.

[21] P. Qi, C. Du, Y. Ren, and Y. Xue. The secrets of skype login.
2013.

[22] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yeg-
neswaran, J. Noh, and B. B. Kang. Rosemary: A robust,
secure, and high-performance network operating system. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 78–89. ACM, 2014.

[23] S. Sundaresan, S. Burnett, N. Feamster, and W. De Donato.
Bismark: a testbed for deploying measurements and applications
in broadband access networks. In 2014 USENIX Conference on
USENIX Annual Technical Conference (USENIX ATC 14), pages
383–394, 2014.

[24] Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown, K.-K. Yap,
and R. Johari. Putting home users in charge of their network.
In Proceedings of the 2012 ACM Conference on Ubiquitous

Computing, pages 1114–1119. ACM, 2012.

[25] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKe-
own. Slicing home networks. In Proceedings of the 2nd ACM
SIGCOMM workshop on Home networks, pages 1–6. ACM,
2011.

[26] Z. Yuan, C. Du, X. Chen, D. Wang, and Y. Xue. Skytracer:
Towards fine-grained identification for skype traffic via sequence
signatures. In Computing, Networking and Communications

(ICNC), 2014 International Conference on, pages 1–5. IEEE,
2014.


