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Abstract—The security of residential networks can vary
greatly. These networks are often administrated by end-
users who may lack security expertise or the resources
to adequately defend their networks. Insecure residential
networks provide attackers with opportunities to infiltrate
systems and create a platform for launching powerful
attacks. To address these issues, we introduce a new
approach that uses software-defined networking (SDN) to
allow home users to outsource their security maintenance to
a cloud-based service provider. Using this architecture, we
show how a novel network-based two-factor authentication
approach can be used to protect Internet of Things devices.
Our approach works without requiring modifications to
end-devices. We further show how security modules can
enforce protocol messages to limit the attack surface in
vulnerable devices. Our analysis shows that the system is
effective and adds less than 50 milliseconds of delay to the
start of a connection with less than 100 microseconds of
delay for subsequent packets.

Keywords-software-defined networking; residential net-
works; two-factor authentication

I. INTRODUCTION

Most residential networks are created and managed
by end-users that may lack computer security expertise.
These users may employ weak security practices, such
as not changing default usernames and passwords on
devices, which allow attackers to easily compromise
systems on the network. Further, the end-devices them-
selves may introduce weaknesses, such as failing to
encrypt traffic or to patch vulnerabilities. This is a
particular challenge in Internet-enabled embedded de-
vices, commonly referred to as “Internet of Things”
(IoT) devices, in which only the device manufacturer
can deploy updates. As a result, residential networks
may also be home to compromised devices that enable
attackers to persist, pivot to other devices, and control
the home’s environment.

One way to combat the insecurity of residential net-
works is to outsource the security management to ex-
perts. We envision a service provider that hosts systems
outside the network, potentially in a cloud data center,
to manage the devices inside the residential network.
With recent developments in software-defined network-
ing (SDN), it is now possible for an off-site controller
to remotely manage a network’s infrastructure [12].
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To capitalize on the benefits of outsourced network
management, we need new approaches to distinguish
legitimate traffic from potentially malicious activity. In
this work, we examine whether 1) the initiator is an
authorized party 2) the exchanged messages conform
to expectations (i.e., they follow protocol and historical
interactions). When properly implemented, these require-
ments could greatly reduce a network’s attack surface.

Our work revolves around two research questions:
What mechanisms can effectively authenticate client
communication without requiring changes to server or
client applications? What are the performance over-
heads associated with implementing this in consumer-
grade hardware? We explore these questions by in-
stalling OpenFlow software on an existing consumer-
grade router and install custom modules on an OpenFlow
controller to implement device-agnostic, network-level
multi-factor authentication and strict enforcement of IoT
device communication using a historically-derived rules.

We make the following contributions in this work:

1. Enable Device-Agnostic Authentication: We link
the Google Authenticator verification system with an
OpenFlow controller module so that clients that suc-
cessfully authenticate are granted temporary network
access to IoT devices. Unauthenticated devices lack
network access to reach the destination resources, thus
preventing attacks that, for example, could subvert built-
in authentication checks. For devices with their own
authentication systems, our approach essentially adds
a second factor of authentication (the possession of
a shared key). The approach is effective at blocking
attackers and, for roughly 90% of new connections, the
approach adds less than 50 ms of delay.

2. Enforce IoT Device Protocols: IoT devices are
typically purpose-built and provide a small set of ser-
vices via relatively simple protocols. As a result, we
can exhaustively enumerate the packets used by these
IoT devices during standard operation. We build a state
machine model of each protected device and only allow
packets to the device in which the payload follows
known transitions within that state machine. This pre-
vents attacks such as buffer overflows or other specially-



crafted messages that could exploit a vulnerability on the
device. The approach can detect and discard packets that
violate the protocol, preventing attacks from reaching the
device, usually with less than 200 ms of delay.

II. RELATED WORK

The security challenges of IoT devices have been
explored from many angles. Babar ef al. [1] explored
the security model of IoT devices and the threats that
they face. Zhang et al. [18] explore the challenges for
IoT device research and the privacy challenges that
some devices introduce. Kolias et al. [6] investigated the
role that vulnerable IoT devices can play in large-scale
attacks, such as those enabled by the Mirai botnet. While
the topic of IoT device security is being studied by the
community, little work focuses on residential networks.

In a position paper, Feamster [3] proposed outsourc-
ing residential network security to cloud-based service
providers. He recognized the challenges of educating
all residential users on how to properly secure their
networks and proposed using OpenFlow to secure these
devices. Later work explored the potential for such func-
tionality, but focused on scenarios that require Internet
Service Provider support [5], [11]. Unfortunately, few
ISPs have offered such support for customers and the
reliance on their support may limit deployability. We use
existing consumer routers and cloud-hosted OpenFlow
controllers to eliminate a reliance on ISP support.

Other work has focused on enterprise-centric solutions
for outsourcing network management. Sherry et al. [10]
introduced APLOMB, an approach that used a special-
ized network router to redirect traffic to cloud-hosted
middleboxes. APLOMB’s need for specialized hardware,
the retransmission of each network packet received to a
middlebox, and the need for DNS modifications make
the approach infeasible in many residential networks.
With residential networks, such proxying is not needed.

The most closely related work is our own prior work
in which we introduced a mechanism for residential
users to communicate through a cloud-based server to
avoid exposing their IP addresses while using voice-
over-IP software, like Skype [15]. That approach helped
to protect users from crippling denial-of-service attacks
while engaged in other activity, such as competitive
online gaming. In our TLSDeputy project [14], we built
upon that infrastructure and focused on how to protect
communication when using the TLS protocol. That sys-
tem examined server TLS certificates and checked for
revocations, a step omitted by some browsers at the time.
In this paper, we focus on protecting [oT devices.

III. THREAT MODEL

Residential IoT devices may have unpatched vulner-
abilities, default passwords, or simply weak passwords.

These devices may have built-in authentication mecha-
nisms; however, we consider these built-in mechanisms
to be second-factor authentication which may offer only
limited security benefits in practice. Further, within the
LAN, some devices may implicitly trust all other devices
and communicate without any authentication mechanism
at all. This approach is common for IoT devices and
video players, in which physical presence and/or knowl-
edge of wireless network keys is considered sufficient
evidence of authorization.

We assume our router is directly connected to each
end-point device and there are no routes to these devices
which bypass our router. We consider our authentication
server, OpenFlow controller, and modified router to be
part of the trusted computing base (TCB). All other
devices on the network are considered untrusted and
potentially compromised.

IV. BACKGROUND

Multi-factor authentication requires two or more sepa-
rate forms of authentication information as proof of iden-
tity. Common forms of authentication include passwords,
possession of random values from previous interactions
(e.g., web browser cookies), possession of cryptographic
keys, possession of specific hardware security tokens, or
information transmitted out-of-band, such as messages to
another computing device. In our approach, the second
factor is similar to the possession of a cryptographic key
since authentication requests require appropriate keying
data to be present on the initiating client.

Our approach uses software-defined networking
(SDN), in which routing decisions can be made in
software programmatically rather than using a pre-
defined look-up table. In our scenario, each device is
connected to a consumer-grade router running Open
vSwitch (OVS) [7], a popular OpenFlow switch imple-
mentation. The OVS router locally maintains a flow table
consisting of a five-tuple (IPg,.c, IPgs:, Portg,.c, Portygs,
and transport protocol) along with the associated action
(e.g., drop or forward to a given interface port). If a
packet arrives with fields that do not match an existing
entry, the OVS router elevates new connection requests
to a cloud-hosted OpenFlow controller. The controller
runs software modules that can be used to make the
appropriate decision and return the instructions to the
OVS router. The controller is typically involved only in
the initial packets in a given flow. However, in some
circumstances, the controller may direct the OVS router
to tunnel packets associated with a given flow through a
middlebox, which is a hardware or software system that
can perform arbitrary inspection and manipulation of a
packet while en route to the destination. For convenience,
we co-locate the middleboxes and controller in our
experiments.
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Fig. 1. The OVS router enforces two-factor authentication. A client
must send an authentication request to the authentication server before
interacting with an IoT device. The authentication server sends the
result to the SDN controller, which adds flows to the OVS router
to allow or deny the subsequent request. The traffic may traverse a
middlebox that can ask for additional flow changes.
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V. APPROACH: VETTING NEW FLOWS

Our approach of vetting new flows can enhance se-
curity in multiple ways. We provide an example of
second-factor authentication for IoT devices and protocol
enforcement of IoT device communication. These ap-
proaches do not require modifications to the IoT devices,
which may be impractical in some settings.

A client must send a request and resource-specific au-
thentication token, potentially via a separate application,
before connecting to a given IoT device, as shown in
Figure 1. If the authentication server is able to verify the
client’s token, it notifies the OpenFlow controller of the
result. When the client attempts to access the IoT device,
the OVS router elevates the request to the controller. If
the controller has received an authentication notification
from the server, it orders the OVS router to cache a rule
allowing that client IP address to temporarily reach the
IoT device. Otherwise, it orders the OVS router to drop
the flow’s packets.

Some IoT devices have a more restricted API than
generic computing devices. This restricted API allows
us to enhance our middleboxes to implement com-
munication models for each IoT device type and use
these models to restrict the type of messages allowed
when communicating with each IoT device. We build
regular expressions for matching the packet payload
that constrain the messages to the small set that we
observed during a training phase. These expressions
allow the variability needed for session-specific values.
In Figure 2, we provide an example of this approach for
the payload between a smartphone and an IoT device.
The request orders the device to activate or deactivate.

Content-Type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1
#SetBinaryState"
Content-Length: 383
Host: 192.168.3.157:49153
User—-Agent: CyberGarage—-HTTP/1.0
<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.
org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/">
<s:Body>
<u:SetBinaryState xmlns:u="urn:Belkin:
service:basicevent:1">
<BinaryState>1</BinaryState>
<Duration></Duration>
<EndAction></EndAction>
<UDN></UDN>
</u:SetBinaryState>
</s:Body>
</s:Envelope>

Fig. 2. Example payload from the tested Smart Switch (some line-
wraps were added to fit within a column). The interaction is via a
SOAP request using XML encoding allowing the payload and structure
to easily be enforced programmatically.

Our regular expressions allow these two states and allows
variation in the content length associated with the packet.
The expressions require other fields to remain static. This
approach enables the middlebox to allow only authorized
messages and to easily detect unauthorized messages. In
the instance an unauthorized message is detected, the
middlebox can discard the packet and alert the OpenFlow
controller. The controller can then alter the flow entry at
the OVS router to discard subsequent packets in the flow.

VI. IMPLEMENTATION

We implement our system using a TP-LINK Archer
C7 consumer-grade router to directly connect our pro-
tected end-points. We install OpenWrt [16] with Open
vSwitch (OVS) [8] on the router. The router commu-
nicates via the OpenFlow protocol to a local controller
running the Floodlight [9] Java-based OpenFlow con-
troller software. The controller runs on Mac laptop that
is connected to one of the OVS router’s LAN ports.
The controller laptop has four 2.6GHz cores and 16
GB RAM. We add a custom module to the Floodlight
controller that subscribes to all packets processed at the
controller.

When hosts communicate within the same subnet,
the OVS router normally connects the two using its
hardware switch, bypassing the need for the packet
to be examined in software. However, our approach
requires that each flow be examined in order to provide
access control, so we needed to avoid this behavior.
We configured the router to place each of its physical
interface ports on a separate virtual LAN (VLAN) and
allowed the router’s main processor to route packets
across VLANs. We likewise use wireless isolation to
VLAN radio communication [17].



Our two-factor authentication server uses the Google
Authenticator library [4] in a C program that runs on an
Ubuntu 14.04 laptop that is connected via Ethernet to
the OVS router. That laptop has four 2GHz cores and
8GB of RAM. Using a one-way hash function based
on the current time and a pre-shared secret, the server
dynamically generates one-time use secret tokens for
each registered device. Each registered device obtains a
copy of the pre-shared secret. With this value, the client
can use the current time and pre-shared secret to compute
its own version of the hash output and send it to the
server, which can verify its authenticity by comparing
it with its own locally computed value. Upon successful
verification, the authentication server communicates with
the controller over a network socket to send the client’s
IP address and authorized destination. The controller
stores a record for the authentication result to authorize
subsequent flows to that destination for a short period.

A. Protecting loT Devices

In our experiments on IoT devices, we focus on the
Belkin WeMo Smart Switch [2]. The Smart Switch
is a electrical power outlet adapter that plugs into a
standard electrical outlet and exposes another outlet that
devices, such as a lamp, can use. The Smart Switch can
be controlled through a smartphone application in both
the iOS and Android operating systems. Through the
smartphone application, a user can activate or deactivate
the power flow, gaining the ability to control the power
to the connected device remotely.

In testing, we use the WeMo smartphone application
and manually toggle the switch setting 1,000 times. For
the two-factor authentication system, we automated our
experiments using a Python script using Google Authen-
ticator on a wirelessly-connected Mac Mini, which had
two 2.6 GHz cores and 8 GB of RAM.

To model the types of communication between the
smartphone and IoT device, we consider a state machine.
To move from the initial state, the smartphone must send
one of a small set of valid messages. Upon receiving
such a message, we advance the state of the device
and consider the new messages available. By continually
repeating this process, we are able to block any messages
that are not valid for the given state and prevent any
malicious messages from arriving. We build our state
machine over a series of runs with an uncompromised
device and then use the state machine in a middlebox to
enforce its actions. Each path through the state machine
can be considered a packet sequence and each transition
is determined by matching the payload of a given packet
with a known regular expression for that packet.

In Figure 2, we provide an example of an initial
request with HTTP payload. It begins with the HTTP
header, followed by the envelope structure. The content-
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device traffic. These results are from 67,335 packets produced during
1,000 trials. We omitted 30 outliers (0.04% of data) for readability.

length, HOST, and BinaryState fields may vary across
devices and actions. We build regular expressions that
match these dynamic parts while requiring exact matches
for the static components. When a packet matches a
sequence, we push the packet information plus a time
stamp into a packet list. The timestamp allows us to
reset our state machine after a timeout occurs.

VII. SECURITY AND PERFORMANCE EVALUATION

To evaluate the security of our approach, we made
connections to our Smart Switch IoT device. To create
legitimate behavior, we followed the protocol of pro-
viding two-factor authentication connections and then
connected to the device. Likewise, the interactions with
the WeMo device conformed to the protocol expected for
that device. In the two-factor authentication approach,
we create malicious connections simply by initiating a
connection without completing the two-factor authenti-
cation steps. In the protocol enforcement experiment, we
send packets that contained random bytes as payload to

TABLE 1
SECURITY EVALUATION RESULTS FOR EACH APPROACH

[ Approach [ Request | Trials [ Allowed | Blocked ]
Two-Factor legitimate 20 20 0
Authentication malicious 20 0 20
IoT Protocol legitimate 20 20 0
Enforcement malicious 20 0 20




create malicious packets. Each approach was tested in
isolation, with only one module active.

In Table I, we show the results of these experiments.
In each case, the approach allowed the authorized con-
nections and denied the connections that were malicious.
These results show that each of these approaches can
offer significant security advantages. While the IoT pro-
tocol enforcement system must be customized to each
type of IoT device, the two-factor authentication are
more generally applicable.

For our performance evaluation, we consider the per-
formance of the two-factor authentication system and
the IoT protocol enforcement module. We consider the
performance of each individually. Our results are for a
controller and middlebox in the LAN. Additional propa-
gation delays would be incurred for remote deployments.

To determine the timing overheads of the two-factor
authentication system, we used a script on the client that
recorded the results of the time.time () function in
Python, which returns the current Unix epoch time with
microsecond resolution. We measured the time before we
issued the request to the authentication server and after
we received the server’s response. By subtracting these
values, we could determine the amount of time elapsed.
In Figure 3, we see that the majority of requests are
satisfied within approximately 30 milliseconds and 90%
are satisfied within about 50 milliseconds. These delays
are unlikely to be noticeable to an end user.

For all the modules running on the controller, in-
cluding the IoT protocol enforcement, we used the
System.nanotime () function in Java to record the
timestamp when the module started and when it ended
and calculated the overhead as the difference.

For the IoT protocol enforcement, we show our results
in Figure 4. We see the system processed over 99% of
packets in less than 100 microseconds. This process is
particularly fast since there are significant static elements
to the packets that can be used to distinguish legitimacy.

VIII. DISCUSSION

Our work uses a controller and middlebox located
in the LAN. When these components are further away,
latency could become a concern. However, our prior
work has explored residential connectivity with public
cloud data centers and found that over 90% of residential
networks in the United States were within 50 millisec-
onds of a public data center [12]. That study found such
latency would have only a small impact on the user
experience, even in applications like web browsing.

The two-factor authentication system could be auto-
mated using a resource like the netfilter_queue
library which could intercept a packet, send the authen-
tication request, and requeue the packet. Prior work has

used a similar technique [13]. This would essentially
create a device-level authorization system.

Our IoT device state machine was based off of a
Smart Switch with a limited API. Other IoT devices may
have more functionality and require more involved state
machines to replicate their protocols. However, other
modern IoT devices may have constrained behavior.
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