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Abstract—While many attacks are distributed across botnets, associated with attackers. Finally, such metrics could ald
investigators and network operators have recently targeted ma spam filtering programs in their scoring of email messages.
licious networks through high profile autonomous system (AS) To determine which ASes are malicious. we use 12 of the
de-peerings and network shut-downs. In this paper, we explore . L
whether some ASes indeed are safe havens for malicious activity.mOSt CommonI.yI-Lljsed blackl|§ts for spam, phishing, malwgre
We look for ISPs and ASes that exhibit disproportionately high and botnet activities for a period of a month. These blatklis
malicious behavior using 12 popular blacklists. We find that contain host names or IP addresses to be blacklisted. For hos
some ASes have over 80% of their routable IP address spacename-based blacklists, we first determine the IP addresses f
blacklisted and others account for large fractions of blacklisted each blocked host. We then use BGP routing tables to group

IPs. Overall, we conclude that examining malicious activity at th P add into their originating AS U .
the AS granularity can unearth networks with lax security or ese I addresses Into their originating Ases. Upon gngupt

those that harbor cybercrime. these addresses by AS, we compare ASes by the percent of
infected machines and the rate at which they are cleaned up.
I. INTRODUCTION The key findings of our study are:

o Many ASes have a large fraction of their IP address range
engaged in malicious behaviors: Two ISPs from Ukraine,
one from Iran, and one from Belarus have over 80%
of their IP addresses blacklisted. This raises red flags
regarding their existence.

o Many ASes account for significant fractions of black-
lists: Four ASes, three of which are US-based hosting
providers, account for over 6% of at least one of the
blacklists we tested.

o Many providers either harbor malicious activities or fail
to consider them when peering: We find 22 providers
with 100% of their customer ASes engaged in significant

The Internet is plagued by malicious activity, from spam
and phishing to malware and denial-of-service (DoS) agack
Much of it thrives on armies of compromised hostsbotnets
which are scattered throughout the Internet. However, -mali
cious activity is not necessarily evenly distributed asrtse
Internet: some networks may employ lax security, resultmg
large populations of compromised machines, while otheng ma
tightly secure their network and not have any maliciousvacti
ity. Further, some networks may exist solely to engage in ma-
licious activity. Several recent ISP enforcements, suckhas
Atrivo and McColo autonomous system (AS) de-peerings [1],
[2] and the FTC closure of Pricewert networks [3], highlight malicious activity
that there are networks that exist simply to launch attacks. ' i . .

In this paper, we examine whether we can find malicious Overall. these results confirm that examining malicious
networks in a systematic manner using existing blacklists. aCtivity at the AS granularity can find networks with lax

A systematic detection of disproportionately malicious neSecurity or ones that harbor cybercrime.
works can be used to build metrics offering several praktica [1. DATA COLLECTION

benefits. As an example, provider ISPs may require theiry, create a comprehensive evaluation of ASes, we use a

customers to limit the amount of malicious activity in theifi,arse set of data sources. Each of our data sources list
networks to avoid harboring criminals. ISPs could also bse tmachines reported as engaging in some form of malicious
metrics to determine the effectiveness of their effortsoimbat activity. Before we describe the data sets themselves, e no

abuse anq compare themsellves. with other netWOfk_S- .Al?ﬂeir limitations: some data sets may list many IP addresses
whe'n receiving traffic, a dgstlnatlon network'could priget ¢o; the same compromised machine because of DHCP effects
traffic based on the cleanliness of ASes. This would allow\gjje others may group multiple compromised machines under
network under attack to prioritize traffic that is less ke be 6 same address due to NAT. While important considerations,

) ) ) we note that these concerns are common across all networks
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TABLE |
OVERVIEW OF DATA SETS

Label Description Duration (days)| Unique IP Addresses Unique ASes
APWG Phishing URLs from the Anti-Phishing Working Group 30 9,560 1,803
Bot C&C Botnet command and control IPs from the ShadowServer Fowmdati 30 1,986 611
CleanMX Malware serving sites from the CleanMX VirusWatch mailinsf li 30 2,974 687
eSoft Malware serving sites from eSoft, Inc. 30 8,000 1,196
Local Spam URLs from spam messages received by the IU CS Department 30 5,495 1,024
Malware Patrol | MalwarePatrol's block list for malware-serving sites 30 871 368
PhishTank Phishing URLs from PhishTank 28 7,143 1,580
Spamhaus SBL| Verified spam sources from Spamhaus.org Block List 29 6,422 2,005
Spamhaus XBL| Hijacked machines from Spamhaus.org Exploit Block List 29 29,585,604 13,580
Sl-Feed URLs and IP addresses from spam emails from Support Intetige| 30 7,591 1,420
SI-DNS IP addresses from DNS resolutions on @le- Feed data set 30 4,448 911
SURBL Host names appearing in spam messages from SURBL 30 29,324 2,739

these data sources in Table I, and describe them below. widely-used blacklist in this context, the SBL [8]. The SBL
1) Phishing Sites:Phishing web sites attempt to collectcontains IP addresses of machines verified as spam senders.
sensitive data, such as login credentials, from users bgimpThis list can be queried by mail servers when they receive
sonating legitimate organizations. The Anti-Phishing Milag connections to block known spammers. We obtain a copy
Group (APWG) [4] and PhishTank [5] have among the largesf this blacklist every hour, and extract the IP addresses to
data feeds listing such phishing sites. We have accessdo ttrieate theSpamrhaus SBL data set. Data collection for the
data and use it to create aPWG andPhi shTank data sets, Spanmhaus SBL data set started a day later than the others,
respectively. Both of these feeds contain URLs of phishirfgeginning on June 2, 2009.
sites, along with other metadata. On an hourly basis, waeixtr 4) Exploited Hosts: Spamhaus also maintains a second
host names from the URLSs currently in the feed, and perforibtacklist, known as the XBL [9]. This list contains IP pre-
DNS resolutions in each host name to get lists of IP addres$iees (often individual IP addresses) of hosts infected with
associated with these feeds. The PhishTank data set had a ®wploits often used to send spam. This includes open proxies
day outage on June 20 and June 21 causing us to only hawenputers infected with viruses that are known to send spam,
28 days of data for that data set. and other exploits. This data is updated every half hour, and
2) Spam/Scam SiteSimilar to their phishing site brethren,is labeledSpanhaus XBL. Data collection for this data set
scam sites are often advertised in unsolicited messageseThstarted a day later than the others, beginning on June 2, 2009
spam-advertised sites may actually be phishing sites, be in5) Malware Downloads:Malicious software, omalware
volved in some other type of scam, or provide actual legitémaincluding viruses, worms, and trojans, have harmful effect
products or services. Two of the major providers of lists ahe computers they infect. Three of our data sets list weds sit
such sites, Support Intelligence [6] and SURBL [7], haverhich host malware downloads.
granted us access to them. The Clean-MX Viruswatch mailing list [10], eSoft [11], and
We receive the feed from Support Intelligence every siMalware Patrol [12], independently collect URLs which host
hours. This feed contains URLs from spam as well as assogialware. The Viruswatch mailing list periodically sends ou
ated IP addresses. We use these IP addresses 8s-0beed emails indicating newly discovered URLs with viruses. We
data set. Not every URL in this feed has an associated igteive mails from eSoft with new URLS containing malware,
address, and for some that do, when we resolve the associatiethg with a malware sample, as they are discovered. We
host names we get different addresses. Therefore, we use download new URLSs from Malware Patrol every hour. In each
own resolutions of these as another data Sket,DNS. case, we extract host names and perform DNS resolutions to
SURBL also collects domain names from URLs containeabtain the set of IP addresses we use. We label these data sets
in spam. Although they typically only allow users to perfornCl eanMX, eSof t , andMal war e Pat r ol , respectively.
look-ups on the domain names in their list, we have also6) Bot Command and ControlBotnets consist of groups
arranged to receive the associated IP addresses from thefmicompromised machines used for malicious purposes on
These IP addresses are those associated with the doméin itgige Internet. Miscreants often use them for sending spam
and with the domain witkmw prepended. We receive this feecand for hosting phishing and scam sites. While we do not
once per day, and refer to it &JRBL. have any direct sources of botnet IP addresses, many of the
Finally, we harvest URLs from spam sent to the Computexidresses in our other data sources are likely to be bots
Science at Indiana University (IU) and use it to create thence bots are commonly used for malicious activity. Howeve
Local Spamdata set. We receive the list of URLS appearingotnets must get their instructions from their bot mast&iten
in spam on a daily basis and extract the host names ahebugh command and control servers, which distributerstde
perform DNS resolutions to obtain the IP addresses. The ShadowServer Foundation [13] provides lists of botnet
3) Spam SendersA popular anti-spam approach, IP blackeommand and control servers along with their IP addresses.
listing, is often used at mail servers to prevent comprochis&Ve have access to this data and update it hourly. We refer to
machines from sending mail directly. Spamhaus runs the mdsis data set aBot C&C.



I1l. DEGREE OFAUTONOMOUSSYSTEM MALICIOUSNESS in them.While a majority of them have little to no malicious

From the IP addresses from our data sets, we can deternfiféVity, & small number of ASes have as much as 0.5-10% of
the originating AS for each, and use this to group hosts at tHi€ir IPS engaged in maliciousneds. fact, in theSI - Feed
AS granularity. In order to map IP addresses to an AS, \fata set, one AS had 9.25% of !ts addresses in the data set.
used a June 15, 2009 BGP routing table from the RouteViefy® other AS had 5% or more of its addresses in any of these
Project [14]. We chose this date because it is in the middf@ta sets.
of our data collection and is expected to give us the best . ... . . .
estimate of the routing information from that duration. We o
loaded each advertised BGP prefix and originating AS from ¢ -
the RouteViews data into a trie data structure commonly used & 1.000% - ghg
by the routers in deciding the next interface to use to fodwar 2
packets. We then performed longest prefix matches on each g 0.100%
IP address to determine the AS associated with the address.2
Using the AS information corresponding to each malicious S o.010%
IP, we examined the extent of AS maliciousness from two «

o

perspectives: the percentage of IP address space for an ASE 0.001%

found to be blacklisted and the percentage of the blacklist o
each AS constitutes. We now describe both approaches anda o XY o
. . . 0, 1 Il PREF oA APV D G B
their results in detalil. 0.000% 10 100 1000 10000 100000
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T
APWG --%--
Bot C&C --%-
CleanMX £
eSoft — &
Local Spam
Malware Patrol -- @ --
PhishTank -—4—
Spamhaus SBL ---4---
Sl-Feed v -
SI-DNS ---6--
SURBL *

A. Examination of ASes by Fraction of Advertised IP Space

Given the number of malicious IP addresses associafg 1. Percentage of badness for each AS. The AS indicesoaersiron
. . . the most malicious AS to the least malicious for each data set.
with an AS, the most straight-forward approach to evalgatin
the ASes for maliciousness would be to simply order the
ASes by number of malicious IP addresses. However, such 100.000% A —
an analysis would penalize the larger ASes: they simply £
have more addresses so they have more hosts that could be 10.000%
compromised and blacklisted. Accordingly we must consider %
the overall size of the AS as a factor when looking for ASes £ 1.000%
that are disproportionately bad. é’
There are no direct sources that help estimate the size
of an AS. However, the prefixes advertised by an AS can £
be used to determine the maximum number of routable IP 5 %%
addresses associated with the AS. While ASes often have§ ,
unused IP addresses in each of their prefixes, and it is difficu 5 0.001%
to determine just how many addresses are unused, this allows* 0000 et e B
us to obtain a rou_gh upper pouqd for the AS size. We again Aultonomojg Syster%ofndex (é%or(t)ed b}}%oeofcemlgg%o)o
extracted the prefix and originating AS information from the
June 15, 2009 BGP RouteViews routing table. We loadgg; > percentage of badness for each AS ingpamthaus XBL blacklist
this information into a trie data structure as before. Farheaand across all blacklists combined.
prefix associated with an originating AS, this allowed us to
determine the number of IP addresses associated with thén Figure 2, we show the same results for Sgamhaus
prefix. In the process, we were careful to exclude any sukBL data set and the combination of each data set. We note
prefixes associated with other ASes. After adding togeter tthat the two lines are very similar and almost completely
address space from each of the prefixes for each AS, we lm@rlap because of the size of ti®@panmhaus XBL data
the total number of IP addresses advertised by each AS. set. We found 58 ASes with over 100,000 compromised
With our information about the number of unique machinemachines in this data set. Additionally, 255 ASes had batwee
found in at least one of our data sets and the rough size of ed€h000 and 100,000 machines blacklisted. When looking at the
AS, we can determine the rough percentage of each AS tiparcentage of each AS’s advertised address space marked as
appears in each data set. In Figure 1, we show the percentagdicious, we found thafour ISPs, two from Ukraine, one
of badness for each AS present in our data sets, excluding ftzen Iran, and one from Belarus, had at least 80% of their
Spamhaus XBL data set. We separated out tBepamhaus advertised IP space blacklisteAnother 49 in theSpamhaus
XBL due to its much larger size which made the other resud8L data set had 50-80% of their addresses listed. Further, 556
difficult to read. This Figure shows several interestingultss ASes had at least 10% but less than 50% of their IP addresses
First, a total of 31,263 ASes were advertised in our BGIkted. This indicates that some ASes have either too lax a
routing data and 46.8% of these had at least one maliciouss€urity policy or may be intentionally harboring cybenuei.

0.100%




TABLE I
NUMBER OF ASES IN EACH DATA SET CONTAINING THE GIVEN PERCENTAGE OF ALUP ADDRESSES IN THE DATA SET

Percent of IPs | APWG | Bot C&C | G eanMX | eSoft Local Mal war e | Phi shTank | Sparmhaus | Spanmhaus | Sl-Feed | SI-DNS | SURBL
Spam Pat r ol SBL XBL
> 10%
[9%, 10%) 1
8%, 9%) 1
7%, 8%) 1
6%, 7%) 1
5%, 6%) 1 1
4%, 5%) 1 1 2 1 1 1
3%, 4%) 3 1 il T 2
2%, 3%) 2 2 2 3 2 1 1 3 1 2
1%, 2%) 5 5 3 7 1 6 3 7 5 10 8
[0.50%, 19%) 12 10 16 6 19 16 11 16 20 19 14
[0.25%, 0.50%)| 20 26 27 25 20 18 18 18 18 27 33 38
B. Examination of ASes by Proportion of Data Set fraction of malicious hostsThese ASes may harbor malicious

) o ) . activity and should be investigated similarly to Atrivo or
While examining the percentage of an AS that is blacklistqg.cqlo [1], [15]. We believe that legitimate ISPs with dis-

can highlight ASes with disproportionately high concentrg, oo, tignately high malicious activity need to providghtier
tions of blacklisted hosts, it requires large data sets. 8hié ..o nt controls, or seek opportunities to provide antis/or
Spanmhaus XBL data set shows this clearly, other data Sefﬁewalling services to prevent malicious activity.

are not large enough to distinguish atypically malicious ne
works. However, rather than consider the AS to be malicio& ASes with Unruly Children
based on the percentage of its blacklisted address space, Weur data establishes that malicious activity is often dispr
can instead examine the percentage of a data set that anpdRionately clustered at a small number of ASes. We now look
represents. This can be used to highlight ASes with a largewhether ASes with disproportionate malicious activitg a
number of blacklisted hosts. tightly clustered. We begin by labeling as malicious any AS
We begin by finding the number of ASes containing at leagtith at least 1% of its IP addresses appearing in any blacklis
0.25% of the IP addresses in each data set. These resWs then examine each of the BGP updates for June 2009
are shown in Table Il. In doing so, we wanted to avoitb find provider-customer (or parent-child) relationshipsr
penalizing large ASes that advertise large address spacks @ach provider AS, we consider the extent to which its custome
do not necessarily account for a disproportionate amount ASes have been found to be malicious. In the second column
maliciousness in that data set. Toward that goal, we first fiofl Table 11, we show the number of provider ASes with at
the percent of data set belonging to each AS. Then we filehst three children that have the indicated percentagesof i
the fraction of IP address space this AS has with respectdoildren as maliciousWe see 22 ASes with 100% of their
all ASes represented in the data set. If the first is a factoustomers classified as malicious. A total of 194 providers
of 10 greater than the second, we take the AS into accounave at least 50% malicious customer ASes
Otherwise, we ignore it. For example, if an AS contained TABLE Il
exactly 0.25% of the IPs in the data set, we would list it if percenTaGE OF MALICIOUS CUSTOMERASES FOR PROVIDERS WITH

it accounted for less than 0.025% of the address space of all MORE THAN THREE CUSTOMERS
ASes in the data set, but ignore it otherwise. . Percent of Malicious Number of Provider ASes
We see from the table that some ASes have high con- Customer ASes | Fraction of Advertised| Proportion of

centrations of malicious activityFor example, in theBot — P Space Data Set

C&C data set, we see that one AS contains 9.11% of the IP [90%, 100%) 2

addresses in the data set, yet its advertised address space %gfﬁ:' ggzﬁg 2

represents only 0.002% of the address space advertised by (60%, 70%) 72 3

all ASes in the data seffhe next AS in this data set, with 5822' ggg;g; ;g g

8.66% of the listed IP addresses represents only 0.006% of (30%, 40%) 202 24

the advertised addresses in the listed ASes. Of these two (20%, 30%) 239 45
[10%, 20%) 204 78

ASes, one is a large broadband ISP from Turkey and the

other is a hosting service provider from the US. Incidegtall

the US-based hosting provider also accounts for 7-8% of allwe repeated this analysis using the definition of malicious-

blacklisted IPs. Further, iSpanhaus XBL and Sl - Feed ness from Section Ill-B: the AS must have at least 0.25% of

data sets, we find two more US-based hosting providers thiaé malicious IPs in a data set. We show these results in the

account for over 6-8% of these blacklists. third column of Table IIl.Five providers have at least 50% of
Overall, a small number of ASes have a disproportionatbeir customer ASes labeled as malicious



This analysis shows that there are dense clusters of mapproaches are possible and should be explored. Addiyonal
cious activity in the InternetThis may be an indication thatwe plan on examining other characteristics of malicious ASe
there are upstream providers that are willing to peer with asuch as their BGP behaviors. A more in-depth analysis to be
customer, regardless of whether it harbors malicious i&gtiv able to understand the motivation behind these AS behaviors
We hope that studies similar to ours would put pressulewill also help differentiate ones that actually belong to
on provider ASes to extensively screen their customers amiscreants from those that just ignore malicious activitie
require their customers to limit malicious activity as paft expect that our analysis to increase ISP accountabilityart
their peering agreements. become part of a mechanism to combats malicious activity. By
providing a comparison with equivalently-sized netwonks,
can highlight ASes in most need of attention. This inforiomti

Some previous works attempt to locate malicious behavican also be used in peering agreements to place pressure on
at granularities other than ASes. In their study of spywarkSPs to respond to malicious activity.
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