
Malicious Hubs: Detecting Abnormally Malicious
Autonomous Systems

Andrew J. Kalafut
School of Informatics and Computing

Indiana University at Bloomington

akalafut@cs.indiana.edu

Craig A. Shue
Computational Sciences and Engineering

Oak Ridge National Laboratory

shueca@ornl.gov

Minaxi Gupta
School of Informatics and Computing

Indiana University at Bloomington

minaxi@cs.indiana.edu

Abstract—While many attacks are distributed across botnets,
investigators and network operators have recently targeted ma-
licious networks through high profile autonomous system (AS)
de-peerings and network shut-downs. In this paper, we explore
whether some ASes indeed are safe havens for malicious activity.
We look for ISPs and ASes that exhibit disproportionately high
malicious behavior using 12 popular blacklists. We find that
some ASes have over 80% of their routable IP address space
blacklisted and others account for large fractions of blacklisted
IPs. Overall, we conclude that examining malicious activity at
the AS granularity can unearth networks with lax security or
those that harbor cybercrime.

I. I NTRODUCTION

The Internet is plagued by malicious activity, from spam
and phishing to malware and denial-of-service (DoS) attacks.
Much of it thrives on armies of compromised hosts, orbotnets,
which are scattered throughout the Internet. However, mali-
cious activity is not necessarily evenly distributed across the
Internet: some networks may employ lax security, resultingin
large populations of compromised machines, while others may
tightly secure their network and not have any malicious activ-
ity. Further, some networks may exist solely to engage in ma-
licious activity. Several recent ISP enforcements, such asthe
Atrivo and McColo autonomous system (AS) de-peerings [1],
[2] and the FTC closure of Pricewert networks [3], highlight
that there are networks that exist simply to launch attacks.
In this paper, we examine whether we can find malicious
networks in a systematic manner using existing blacklists.

A systematic detection of disproportionately malicious net-
works can be used to build metrics offering several practical
benefits. As an example, provider ISPs may require their
customers to limit the amount of malicious activity in their
networks to avoid harboring criminals. ISPs could also use the
metrics to determine the effectiveness of their efforts to combat
abuse and compare themselves with other networks. Also,
when receiving traffic, a destination network could prioritize
traffic based on the cleanliness of ASes. This would allow a
network under attack to prioritize traffic that is less likely to be

Portions of this manuscript have been authored by UT-Battelle, LLC, under
Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow others to do so,
for United States Government purposes.

associated with attackers. Finally, such metrics could also aid
spam filtering programs in their scoring of email messages.

To determine which ASes are malicious, we use 12 of the
most commonly-used blacklists for spam, phishing, malware
and botnet activities for a period of a month. These blacklists
contain host names or IP addresses to be blacklisted. For host
name-based blacklists, we first determine the IP addresses for
each blocked host. We then use BGP routing tables to group
these IP addresses into their originating ASes. Upon grouping
these addresses by AS, we compare ASes by the percent of
infected machines and the rate at which they are cleaned up.
The key findings of our study are:

• Many ASes have a large fraction of their IP address range
engaged in malicious behaviors: Two ISPs from Ukraine,
one from Iran, and one from Belarus have over 80%
of their IP addresses blacklisted. This raises red flags
regarding their existence.

• Many ASes account for significant fractions of black-
lists: Four ASes, three of which are US-based hosting
providers, account for over 6% of at least one of the
blacklists we tested.

• Many providers either harbor malicious activities or fail
to consider them when peering: We find 22 providers
with 100% of their customer ASes engaged in significant
malicious activity.

Overall, these results confirm that examining malicious
activity at the AS granularity can find networks with lax
security or ones that harbor cybercrime.

II. DATA COLLECTION

To create a comprehensive evaluation of ASes, we use a
diverse set of data sources. Each of our data sources list
machines reported as engaging in some form of malicious
activity. Before we describe the data sets themselves, we note
their limitations: some data sets may list many IP addresses
for the same compromised machine because of DHCP effects
while others may group multiple compromised machines under
the same address due to NAT. While important considerations,
we note that these concerns are common across all networks
and our analysis compares equivalently sized networks. Ac-
cordingly, while these unavoidable effects are present, they
should not significantly affect our analysis.

For each data set, the data was collected from June 1, 2009
to June 30, 2009 unless otherwise indicated. We summarize
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TABLE I
OVERVIEW OF DATA SETS

Label Description Duration (days) Unique IP Addresses Unique ASes
APWG Phishing URLs from the Anti-Phishing Working Group 30 9,560 1,803
Bot C&C Botnet command and control IPs from the ShadowServer Foundation 30 1,986 611
CleanMX Malware serving sites from the CleanMX VirusWatch mailing list 30 2,974 687
eSoft Malware serving sites from eSoft, Inc. 30 8,000 1,196
Local Spam URLs from spam messages received by the IU CS Department 30 5,495 1,024
Malware Patrol MalwarePatrol’s block list for malware-serving sites 30 871 368
PhishTank Phishing URLs from PhishTank 28 7,143 1,580
Spamhaus SBL Verified spam sources from Spamhaus.org Block List 29 6,422 2,005
Spamhaus XBL Hijacked machines from Spamhaus.org Exploit Block List 29 29,585,604 13,580
SI-Feed URLs and IP addresses from spam emails from Support Intelligence 30 7,591 1,420
SI-DNS IP addresses from DNS resolutions on theSI-Feed data set 30 4,448 911
SURBL Host names appearing in spam messages from SURBL 30 29,324 2,739

these data sources in Table I, and describe them below.
1) Phishing Sites:Phishing web sites attempt to collect

sensitive data, such as login credentials, from users by imper-
sonating legitimate organizations. The Anti-Phishing Working
Group (APWG) [4] and PhishTank [5] have among the largest
data feeds listing such phishing sites. We have access to this
data and use it to create ourAPWG andPhishTank data sets,
respectively. Both of these feeds contain URLs of phishing
sites, along with other metadata. On an hourly basis, we extract
host names from the URLs currently in the feed, and perform
DNS resolutions in each host name to get lists of IP addresses
associated with these feeds. The PhishTank data set had a two-
day outage on June 20 and June 21 causing us to only have
28 days of data for that data set.

2) Spam/Scam Sites:Similar to their phishing site brethren,
scam sites are often advertised in unsolicited messages. These
spam-advertised sites may actually be phishing sites, be in-
volved in some other type of scam, or provide actual legitimate
products or services. Two of the major providers of lists of
such sites, Support Intelligence [6] and SURBL [7], have
granted us access to them.

We receive the feed from Support Intelligence every six
hours. This feed contains URLs from spam as well as associ-
ated IP addresses. We use these IP addresses as ourSI-Feed
data set. Not every URL in this feed has an associated IP
address, and for some that do, when we resolve the associated
host names we get different addresses. Therefore, we use our
own resolutions of these as another data set,SI-DNS.

SURBL also collects domain names from URLs contained
in spam. Although they typically only allow users to perform
look-ups on the domain names in their list, we have also
arranged to receive the associated IP addresses from them.
These IP addresses are those associated with the domain itself,
and with the domain withwww prepended. We receive this feed
once per day, and refer to it asSURBL.

Finally, we harvest URLs from spam sent to the Computer
Science at Indiana University (IU) and use it to create the
Local Spam data set. We receive the list of URLs appearing
in spam on a daily basis and extract the host names and
perform DNS resolutions to obtain the IP addresses.

3) Spam Senders:A popular anti-spam approach, IP black-
listing, is often used at mail servers to prevent compromised
machines from sending mail directly. Spamhaus runs the most

widely-used blacklist in this context, the SBL [8]. The SBL
contains IP addresses of machines verified as spam senders.
This list can be queried by mail servers when they receive
connections to block known spammers. We obtain a copy
of this blacklist every hour, and extract the IP addresses to
create theSpamhaus SBL data set. Data collection for the
Spamhaus SBL data set started a day later than the others,
beginning on June 2, 2009.

4) Exploited Hosts: Spamhaus also maintains a second
blacklist, known as the XBL [9]. This list contains IP pre-
fixes (often individual IP addresses) of hosts infected with
exploits often used to send spam. This includes open proxies,
computers infected with viruses that are known to send spam,
and other exploits. This data is updated every half hour, and
is labeledSpamhaus XBL. Data collection for this data set
started a day later than the others, beginning on June 2, 2009.

5) Malware Downloads:Malicious software, ormalware,
including viruses, worms, and trojans, have harmful effects on
the computers they infect. Three of our data sets list web sites
which host malware downloads.

The Clean-MX Viruswatch mailing list [10], eSoft [11], and
Malware Patrol [12], independently collect URLs which host
malware. The Viruswatch mailing list periodically sends out
emails indicating newly discovered URLs with viruses. We
receive mails from eSoft with new URLs containing malware,
along with a malware sample, as they are discovered. We
download new URLs from Malware Patrol every hour. In each
case, we extract host names and perform DNS resolutions to
obtain the set of IP addresses we use. We label these data sets
CleanMX, eSoft, andMalware Patrol, respectively.

6) Bot Command and Control:Botnets consist of groups
of compromised machines used for malicious purposes on
the Internet. Miscreants often use them for sending spam
and for hosting phishing and scam sites. While we do not
have any direct sources of botnet IP addresses, many of the
addresses in our other data sources are likely to be bots
since bots are commonly used for malicious activity. However,
botnets must get their instructions from their bot masters,often
through command and control servers, which distribute orders.
The ShadowServer Foundation [13] provides lists of botnet
command and control servers along with their IP addresses.
We have access to this data and update it hourly. We refer to
this data set asBot C&C.
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III. D EGREE OFAUTONOMOUSSYSTEM MALICIOUSNESS

From the IP addresses from our data sets, we can determine
the originating AS for each, and use this to group hosts at the
AS granularity. In order to map IP addresses to an AS, we
used a June 15, 2009 BGP routing table from the RouteViews
Project [14]. We chose this date because it is in the middle
of our data collection and is expected to give us the best
estimate of the routing information from that duration. We
loaded each advertised BGP prefix and originating AS from
the RouteViews data into a trie data structure commonly used
by the routers in deciding the next interface to use to forward
packets. We then performed longest prefix matches on each
IP address to determine the AS associated with the address.
Using the AS information corresponding to each malicious
IP, we examined the extent of AS maliciousness from two
perspectives: the percentage of IP address space for an AS
found to be blacklisted and the percentage of the blacklist
each AS constitutes. We now describe both approaches and
their results in detail.

A. Examination of ASes by Fraction of Advertised IP Space

Given the number of malicious IP addresses associated
with an AS, the most straight-forward approach to evaluating
the ASes for maliciousness would be to simply order the
ASes by number of malicious IP addresses. However, such
an analysis would penalize the larger ASes: they simply
have more addresses so they have more hosts that could be
compromised and blacklisted. Accordingly we must consider
the overall size of the AS as a factor when looking for ASes
that are disproportionately bad.

There are no direct sources that help estimate the size
of an AS. However, the prefixes advertised by an AS can
be used to determine the maximum number of routable IP
addresses associated with the AS. While ASes often have
unused IP addresses in each of their prefixes, and it is difficult
to determine just how many addresses are unused, this allows
us to obtain a rough upper bound for the AS size. We again
extracted the prefix and originating AS information from the
June 15, 2009 BGP RouteViews routing table. We loaded
this information into a trie data structure as before. For each
prefix associated with an originating AS, this allowed us to
determine the number of IP addresses associated with the
prefix. In the process, we were careful to exclude any sub-
prefixes associated with other ASes. After adding together the
address space from each of the prefixes for each AS, we had
the total number of IP addresses advertised by each AS.

With our information about the number of unique machines
found in at least one of our data sets and the rough size of each
AS, we can determine the rough percentage of each AS that
appears in each data set. In Figure 1, we show the percentage
of badness for each AS present in our data sets, excluding the
Spamhaus XBL data set. We separated out theSpamhaus
XBL due to its much larger size which made the other results
difficult to read. This Figure shows several interesting results.
First, a total of 31,263 ASes were advertised in our BGP
routing data and 46.8% of these had at least one malicious IP

in them.While a majority of them have little to no malicious
activity, a small number of ASes have as much as 0.5-10% of
their IPs engaged in maliciousness.In fact, in theSI-Feed
data set, one AS had 9.25% of its addresses in the data set.
No other AS had 5% or more of its addresses in any of these
data sets.
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Fig. 1. Percentage of badness for each AS. The AS indices are sorted from
the most malicious AS to the least malicious for each data set.
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Fig. 2. Percentage of badness for each AS in theSpamhaus XBL blacklist
and across all blacklists combined.

In Figure 2, we show the same results for theSpamhaus
XBL data set and the combination of each data set. We note
that the two lines are very similar and almost completely
overlap because of the size of theSpamhaus XBL data
set. We found 58 ASes with over 100,000 compromised
machines in this data set. Additionally, 255 ASes had between
10,000 and 100,000 machines blacklisted. When looking at the
percentage of each AS’s advertised address space marked as
malicious, we found thatfour ISPs, two from Ukraine, one
from Iran, and one from Belarus, had at least 80% of their
advertised IP space blacklisted. Another 49 in theSpamhaus
XBL data set had 50-80% of their addresses listed. Further, 556
ASes had at least 10% but less than 50% of their IP addresses
listed. This indicates that some ASes have either too lax a
security policy or may be intentionally harboring cybercrime.
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TABLE II
NUMBER OF ASES IN EACH DATA SET CONTAINING THE GIVEN PERCENTAGE OF ALLIP ADDRESSES IN THE DATA SET.

Percent of IPs APWG Bot C&C CleanMX eSoft Local Malware PhishTank Spamhaus Spamhaus SI-Feed SI-DNS SURBL
Spam Patrol SBL XBL

≥ 10%
[9%, 10%) 1
[8%, 9%) 1
[7%, 8%) 1
[6%, 7%) 1
[5%, 6%) 1 1
[4%, 5%) 1 1 2 1 1 1
[3%, 4%) 3 1 1 1 2
[2%, 3%) 2 2 2 3 2 1 1 3 1 2
[1%, 2%) 5 5 3 7 11 6 3 7 5 10 8

[0.50%, 1%) 12 10 16 6 19 16 11 16 20 19 14
[0.25%, 0.50%) 20 26 27 25 20 18 18 18 18 27 33 38

B. Examination of ASes by Proportion of Data Set

While examining the percentage of an AS that is blacklisted
can highlight ASes with disproportionately high concentra-
tions of blacklisted hosts, it requires large data sets. While the
Spamhaus XBL data set shows this clearly, other data sets
are not large enough to distinguish atypically malicious net-
works. However, rather than consider the AS to be malicious
based on the percentage of its blacklisted address space, we
can instead examine the percentage of a data set that an AS
represents. This can be used to highlight ASes with a large
number of blacklisted hosts.

We begin by finding the number of ASes containing at least
0.25% of the IP addresses in each data set. These results
are shown in Table II. In doing so, we wanted to avoid
penalizing large ASes that advertise large address spaces and
do not necessarily account for a disproportionate amount of
maliciousness in that data set. Toward that goal, we first find
the percent of data set belonging to each AS. Then we find
the fraction of IP address space this AS has with respect to
all ASes represented in the data set. If the first is a factor
of 10 greater than the second, we take the AS into account.
Otherwise, we ignore it. For example, if an AS contained
exactly 0.25% of the IPs in the data set, we would list it if
it accounted for less than 0.025% of the address space of all
ASes in the data set, but ignore it otherwise.

We see from the table that some ASes have high con-
centrations of malicious activity.For example, in theBot
C&C data set, we see that one AS contains 9.11% of the IP
addresses in the data set, yet its advertised address space
represents only 0.002% of the address space advertised by
all ASes in the data set. The next AS in this data set, with
8.66% of the listed IP addresses represents only 0.006% of
the advertised addresses in the listed ASes. Of these two
ASes, one is a large broadband ISP from Turkey and the
other is a hosting service provider from the US. Incidentally,
the US-based hosting provider also accounts for 7-8% of all
blacklisted IPs. Further, inSpamhaus XBL and SI-Feed
data sets, we find two more US-based hosting providers that
account for over 6-8% of these blacklists.

Overall, a small number of ASes have a disproportionate

fraction of malicious hosts. These ASes may harbor malicious
activity and should be investigated similarly to Atrivo or
McColo [1], [15]. We believe that legitimate ISPs with dis-
proportionately high malicious activity need to provide tighter
account controls, or seek opportunities to provide anti-virus or
firewalling services to prevent malicious activity.

C. ASes with Unruly Children

Our data establishes that malicious activity is often dispro-
portionately clustered at a small number of ASes. We now look
at whether ASes with disproportionate malicious activity are
tightly clustered. We begin by labeling as malicious any AS
with at least 1% of its IP addresses appearing in any blacklist.
We then examine each of the BGP updates for June 2009
to find provider-customer (or parent-child) relationships. For
each provider AS, we consider the extent to which its customer
ASes have been found to be malicious. In the second column
of Table III, we show the number of provider ASes with at
least three children that have the indicated percentage of its
children as malicious.We see 22 ASes with 100% of their
customers classified as malicious. A total of 194 providers
have at least 50% malicious customer ASes.

TABLE III
PERCENTAGE OF MALICIOUS CUSTOMERASES FOR PROVIDERS WITH

MORE THAN THREE CUSTOMERS.

Percent of Malicious Number of Provider ASes
Customer ASes Fraction of Advertised Proportion of

IP Space Data Set
100% 22

[90%, 100%) 2
[80%, 90%) 8
[70%, 80%) 17
[60%, 70%) 72 3
[50%, 60%) 73 2
[40%, 50%) 78 5
[30%, 40%) 202 24
[20%, 30%) 239 45
[10%, 20%) 204 78

We repeated this analysis using the definition of malicious-
ness from Section III-B: the AS must have at least 0.25% of
the malicious IPs in a data set. We show these results in the
third column of Table III.Five providers have at least 50% of
their customer ASes labeled as malicious.
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This analysis shows that there are dense clusters of mali-
cious activity in the Internet. This may be an indication that
there are upstream providers that are willing to peer with any
customer, regardless of whether it harbors malicious activity.
We hope that studies similar to ours would put pressure
on provider ASes to extensively screen their customers and
require their customers to limit malicious activity as partof
their peering agreements.

IV. RELATED WORK

Some previous works attempt to locate malicious behavior
at granularities other than ASes. In their study of spyware,
Moshchuk et al. [16] find that certain categories of web
sites contain more spyware than others. Similarly, work by
Provoset al. [17] finds that 67% of malware download sites
in drive-by downloads are hosted in a single country, China.
While there is insight to be gained by examination at these
other granularities, we focus solely on the AS location of
malicious behavior in the paper.

Other work touches on AS locations of malicious behav-
iors on the Internet. In a paper on spammers’ behaviors,
Ramachandranet al. [18] find that a small number of ASes are
responsible for sending a large amount of spam, with 36% of
all spam coming from just 20 ASes. Konteet al. [19] examined
scam hosting infrastructure. Among their findings was that
for the spam campaigns they examined there was almost no
overlap in the ASes of the spamming machines and the ASes
where the scam web sites were hosted. However, none of these
papers focus on the AS locations of the behavior.

Numerous studies have focused on accurately determining
types of AS relationships, including those by Di Battistaet
al. [20], Dimitropouloset al. [21], Gao [22], and Subrama-
nian et al. [23]. Where we deal with connections between
ASes, we are most concerned just with if a malicious AS is
related to other malicious ones. Therefore to infer the typeof
relationship, we use a simple algorithm similar to the one Gao
describes as her basic algorithm.

V. CONCLUSION

In this preliminary work, we examined whether some
networks serve as safe harbors for malicious activity. We
found that several ASes have high concentrations of malicious
IPs while others represent disproportionately higher malicious
activity than their equivalently sized peers. This shows that
while botnets are commonly being used to launch attacks,
malicious hosts may still be clumped by network providers.
In spite of these results, traffic cannot simply be declared
malicious based solely on its originating AS even for ASes
with the high degree of maliciousness, as this would have
extensive collateral damage, penalizing legitimate traffic as
well. However, identifying if traffic is coming from ASes
known to be malicious can be used as one component to help
make such a decision.

There are several interesting open questions about malicious
ASes which we plan to address in future work. First, we took
two approaches towards identifying malicious ASes. Other

approaches are possible and should be explored. Additionally,
we plan on examining other characteristics of malicious ASes
such as their BGP behaviors. A more in-depth analysis to be
able to understand the motivation behind these AS behaviors.
It will also help differentiate ones that actually belong to
miscreants from those that just ignore malicious activity.We
expect that our analysis to increase ISP accountability. Itcan
become part of a mechanism to combats malicious activity. By
providing a comparison with equivalently-sized networks,we
can highlight ASes in most need of attention. This information
can also be used in peering agreements to place pressure on
ISPs to respond to malicious activity.
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