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ABSTRACT

Moving target systems can help defenders limit the utility of
reconnaissance for adversaries, hindering the effectiveness of
attacks. While moving target systems are a topic of robust
research, we find that prior work in network-based mov-
ing target defenses has limitations in either scalability or
the ability to protect public servers accessible to unmodi-
fied clients. In this work, we present a new moving target
defense using software-defined networking (SDN) that can
service unmodified clients while avoiding scalability limita-
tions. We then evaluate this approach according to seven
moving-target properties and evaluate its performance. We
find that the approach achieves its security goals while in-
troducing low overheads.

1. INTRODUCTION
With moving target defenses, an organization can limit

the ability of adversaries to perform reconnaissance on the
assets within the organization’s network. This information
disadvantage can force adversaries to attack blindly, which
may be intractable with a large search space or easily noticed
with proper defensive instrumentation. The moving target
concept has created a rich body of research [14], with work
spanning from the popular ASLR strategy [17] to network-
based defenses.

With network-based defenses, a few prominent classes of
protections have emerged: techniques which modify both
communicating end-hosts to coordinate their movements,
such as the MT6D approach [6], and techniques that modify
network infrastructure, including the DNS capabilities [18]
and OpenFlow Mutation [9] approaches. Each of these ap-
proaches come with inherent tradeoffs. For example, when
both end-hosts must be modified, organizations cannot pro-
tect public-facing server infrastructure without requiring
clients to install software. In network-centric approaches,
it can be difficult to distinguish between legitimate and ma-
licious clients. Further, the infrastructure necessarily be-
comes stateful, introducing possible denial-of-service risks.
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To focus our work, we ask two research questions: 1) How
can we provide both a scalable and flexible moving-target sys-
tem? and 2)What features can assist a moving target system
with distinguishing trustworthy and untrustworthy clients?

To answer these questions, we embrace the “dumb net-
work, smart hosts” paradigm. We take the functional-
ity from the DNS capabilities and OpenFlow mutation ap-
proaches and integrate it into server infrastructure. We then
accept two types of clients: unmodified clients and those
that can employ additional measures to facilitate the ap-
proach. In doing so, we allow a deploying organization to
protect publicly available servers while providing heightened
protections for internal traffic and for remote trusted clients.

Our contributions are the following:

• Host-Based Moving Target Defense: We describe
and implement our approach to hinder adversarial re-
connaissance with moving targets at the datalink, net-
work, and transport layers. The approach is scalable
and effective with unmodified clients, but provides ad-
ditional security features when both hosts deploy it.

• A Security and Performance Evaluation of the

Defense: We evaluate our approach according to
seven security properties and determine the perfor-
mance of our proof-of-concept implementation. Our
results show the approach provides each of the secu-
rity properties and yields performance overheads that
are acceptable for practical deployment.

2. BACKGROUND AND RELATED WORK
We now provide background on the software-defined net-

working (SDN) paradigm and the OpenFlow protocol. We
then describe other work to hinder attacker reconnaissance
and how our work differs.

2.1 SDN and OpenFlow
The SDN paradigm creates a separation between data-

plane processing, which forwards packets, from control-plane
processing, which determines how to populate forwarding
tables. The OpenFlow protocol [12] acts as an API be-
tween network switches and a logically centralized decision
maker, called the OpenFlow controller. In this model, net-
work switches cache data-plane flow rules. When a switch
receives a packet and does not know how to forward it ac-
cording to its cached rules, the switch sends an “elevation”
request containing the original packet and a request for guid-
ance to the controller. The controller examines the packet
and sends a set of rules that the switch should add to the
data plane cache for use in forwarding packets.



The OpenFlow Mutation [9] approach uses fine-grain flow
rules, which match only a single connection between a source
and destination host, to perform network address trans-
lations on each packet’s source and destination addresses.
The approach can obscure the real IP addresses of the
hosts on the network, preventing network mapping. Un-
fortunately, prior work has shown that fine-grain flows in
OpenFlow’s data plane controls do not scale to large net-
works [5]. Studies on OpenFlow-compatible switches show
that some switches are only able to handle 150 new flows
per second while others handle 750 flows per second [20].
Other work has found that some commonly-used switches
have high-speed TCAM memory limits of 2000-4000 entries
and that, in some cases, memory swapping between TCAM
and slower-speed memory can reduce the switch’s new flow
capacity to only 12 flows per second [11]. These limitations
can cause performance bottlenecks and denial-of-service con-
ditions even with benign traffic; further, adversaries can in-
duce switch thrashing to create network outages [16].

2.2 Network-Based Anti-Reconnaissance
Reconnaissance is the first phase in any network intru-

sion [4]. By denying an adversary the ability to gather in-
formation on potential targets, defenders can hinder the ad-
versary’s efforts to spread to other hosts in the network.

One technique is network address space randomization
(NASR) [2]. Similar to the address space layout randomiza-
tion (ASLR) technique used to protect against buffer over-
flow attacks [17], NASR works by changing the address of
a machine randomly. This limits or removes an adversary’s
ability to build up knowledge of IP address over time, and
has been shown to negatively impact scanning malware [1].
NASR can be implemented in several different ways, de-
pending on the type of desired randomization.

Prior work focused on defeating hit-list scanning malware
utilized DHCP to change the IP address of the host over
time [3]. However, this change can disrupt existing con-
nections. The authors suggested placing an intermediate
NAT-like box in the network to transparently transition to
the new address over time. The NAT-like device provided
similar address translating behavior, with additional logic
to preserve old addresses while they are still in use by pre-
viously established connections.

Our own work utilized DNS capabilities and an intermedi-
ary NAT device [18]. Rather than changing out the DHCP
lease to achieve randomization, we randomly rotated the IP
address contained in the DNS reply and notified the NAT
device. The NAT device then allows new connections with
that IP to reach the requested host by mapping it to the
host’s fixed internal address. This approach reuses proven
technology and avoids the need for special tools.

Our approach is distinct from each of these in that it
does not require mapping state in network switches or NAT
devices, eliminating potential scalability concerns. This is
particularly important for a security approach where adver-
saries may intentionally try to induce a denial of service
condition by targeting resource-constrained infrastructure.

2.3 Host-Based Anti-Reconnaissance
Dunlop et al. [6] created the MT6D (“Moving Target IPv6

Defense”) system in 2011. In it, the client and target share a
symmetric key out-of-band and use these keys to determine
the IPv6 addresses the hosts will use. To compose their

IPv6 addresses, the hosts construct a hash using the shared
key, a value derived from the host’s MAC address, and a
timestamp. The MT6D approach is only effective when both
the client and the server can be modified, which prevents its
use when protecting public infrastructure for legacy clients.

At a lower level, the wireless frequency hopping strategy
used to avoid jammers [13] is an example of a moving tar-
get defense. This approach attempts to evade an adversary
that cannot feasibly block all frequencies simultaneously and
uses channel hopping to avoid the active blocking attempts.
While this strategy uses a different entropy space and iden-
tifiers (namely a chosen frequency within the range of avail-
able 802.11 frequencies), its considerations are quite similar
to the MT6D approach, which also requires agreement be-
tween hosts on hopping patterns.

The port knocking approach [10] is designed to allow a
defender to only authorize connections to a server after a
special sequence of packets, to specified ports, are received
from a client. The approach essentially uses transport layer
ports as moving target space for establishing a connection.
This approach requires both the client and the server to
previously share a key (in this case, used to determine the
ports to knock) to establish a connection. Accordingly, the
approach can be analyzed similarly to the MT6D approach.

In cases where both the client and server deploy our ap-
proach, we achieve similar outcomes to the MT6D and the
others. However, our approach allows a legacy mode that
supports unmodified clients while still providing a moving
target defense. This allows the approach to be deployed on
public-facing systems.

3. THREAT MODEL
We include the SDN controller, the DNS server, and

the operating system and hardware of the protected infras-
tructure in our trusted computing base (TCB). In cases
where the client deploys the approach, such as communi-
cation within a LAN, we also include the client’s hard-
ware and operating system in the TCB. This prohibits any
administrative-level compromises, which reflects the best
practice of “least user privilege” [15] under which adver-
saries will only be able to run within a compromised ac-
count’s privileges. This is a common assumption among
host-based defense systems, such as anti-virus, firewall, and
host-based intrusion detection software. Finally, we exclude
active man-in-the-middle attackers which could hijack an
authorized connection.

This threat model does allow normal user-level accounts
on client machines and protected infrastructure to be com-
promised. It further allows passive network monitoring out-
side of a host, such as hosts that promiscuously tap network
connections. However, we note that adversaries that have
compromised an account on a modified client or server will
not have access capture network packets on that machine,
since that action requires administrative privileges.

4. APPROACH
Once an adversary establishes a foothold within an organi-

zation, the adversary’s goal is to perform network reconnais-
sance [4]. Adversaries can use the knowledge gained from
reconnaissance to pivot from their foothold and compromise
more hosts. Adversaries can identify hosts within a network
using IP addresses and MAC addresses. Our approach op-



erates by utilizing synthetic addressing information in place
of the real addressing information at the data link and net-
work layers. This synthetic information can be considered
to be chosen at random within certain validity constraints.
By creating a MTD that protects both these values, we can
prevent the adversary from progressing through the cyber
security kill chain [8] and contain breaches.

Client Application Server
1. Application requests to access

   host www.example.com.

(www.example.com)

2. DNS library performs DNS 

   query for www.example.com.

5. Application issues connect()

   call on destination IP address.

6. Host ARPs for masked IP

   address.
8. Initiates connection using 

   real client MAC and IP 

   addresses as source,

   server's synthetic MAC and

   IP addresses as destination.

3. Creates NAT rules to map 

   new synthentic MAC and IP 

   addresses to real values.

4. Creates NAT rules to map 

   real source MAC and IP 

   addresses to synthetic values.

9. Applies NAT rules to rewrite

   client's real MAC and IP 

   addresses to client's synthetic

   MAC and IP addresses.

7. Uses ARP proxy rules to 

   answer request with 

   synthetic MAC.

11. Uses NAT rules to rewrite

     destination addresses from

     synthetic MAC and IP to real

     server's MAC and IP address

12. Delivers packet to server 

     application.

10. Sends packet to server.

Defender's

DNS Server

SDN Controller

Elevates

DNS reply

packet

Changes DNS

reply IP to a

synthetic value

Figure 1: Anti-reconnaissance process. Steps 4 and

9, in blue, are optional and are used only when the

client has been modified to employ the approach.

To avoid mapping system scalability concerns in network-
centric MTD systems, we use a host-based approach. We es-
sentially create an OpenFlow agent on the responding host,
typically a server, that will perform packet elevation and
apply rules like a normal OpenFlow agent. This provides
the benefits of network-based systems while enabling scal-
ability, since the hosts must already manage per-flow state
to manage the connection, as in TCP connections. Clients
may optionally deploy the approach as well, which helps
distinguish between trustworthy and untrustworthy clients.
Even when clients do not employ the approach, we can still
effectively achieve the goals of a MTD.

In Figure 1, we visually depict the steps in our approach.
The process begins when the client application requests a
DNS resolution of a host name to an IP address. A DNS
library on the client requests the resolution from its config-
ured DNS resolver. Eventually, the resolution request will
reach the defending organization’s authoritative DNS server.
The DNS server application will answer the response, as
usual, and will set an extremely low time-to-live (TTL) value
on the response (e.g., five seconds or less). However, before
the server’s operating system transmits the packet back to
the requestor, the DNS server diverts the response to the
SDN controller for consideration.

The SDN controller then generates a synthetic IP address
and MAC address for the server associated with the re-
quested host name to use. It orders that application server
to install NAT rules that 1) translate the synthetic IP ad-
dress into the server’s real IP address and 2) translate the
synthetic MAC address into the real MAC address for the
host. If the client deploys the approach as well, the SDN
controller will likewise generate synthetic IP and MAC ad-
dresses for the client and send similar NAT rules to the client
that will take effect when the client attempts to communi-
cate to the specified synthetic server addresses. The SDN
controller then rewrites the IP address in the DNS reply to

reflect the server’s synthetic IP address. The SDN controller
returns the DNS reply packet to the DNS server, which then
returns it to the DNS resolver that issued the query.

The client delivers the DNS response to the client ap-
plication. That application then attempts to establish a
connection, which creates a packet that is transmitted to
the client’s operating system. The client’s operating system
then sends the packet to the default gateway, if the server
is outside the subnet, or otherwise uses the address resolu-
tion protocol (ARP) to determine the destination machine’s
MAC address. The server responds to the ARP query with
its synthetic MAC address due to the rules it previously
installed when ordered by the SDN controller. Upon receiv-
ing the ARP response, the client prepares to transmit the
packet using its own real MAC address and IP address for
the source and using the synthetic MAC and IP addresses it
learned as the destination fields. If the client deploys the ap-
proach and received an order from the SDN to create NAT
rules, the client applies the NAT rules. Those rules rewrite
the source MAC and IP addresses to the synthetic variants
that the SDN controller created for the client. The client
then sends the packet.

Once the server receives the client’s packet, it uses the
NAT rules from the SDN controller’s previous order to trans-
late the synthetic MAC and IP addresses into their real
equivalents for the host. The packet is then delivered to
the server’s application. If the server application chooses to
reply, it will reverse the source and destination addresses for
its reply packet. The server will then apply the inverse of the
NAT rules, rewriting the source addresses from the server’s
real values back to their synthetic equivalents. It will then
send the packet using the client’s supplied address. If the
client is modified, it will employ the inverse of its NAT rules
to translate the destination addresses from the synthetic val-
ues back to the client’s real values and supply them to the
client application. Subsequent messages in the connection
will follow the same NAT’ing pattern for communication.

This approach achieves a powerful outcome: each client
receives synthetic addresses for the server, which the SDN
controller can rotate for each new DNS resolution. This al-
lows the SDN controller to provide a different, moving IP
address for each client and the short TTL for the client en-
sures that the client will re-issue DNS requests for new con-
nections, allowing the server to again change the addresses.

In the case where the client deploys the approach, the
client also uses synthetic addresses, preventing an adver-
sary on the server from being able to learn the identities of
deploying clients. Further, when both systems deploy, the
SDN controller can update both the client and server NAT
rules to transition the connection to a new IP address and
MAC address combination, preventing an adversary from
being able to track flows across movements, providing both
anonymity and unlinkability1. These properties are similar
to the MT6D approach, but avoid the need for IP tunneling.

5. IMPLEMENTATION
Our reference implementation uses Python scripts on the

Ubuntu Linux operating system. While the details of the ap-
proach will vary across operating systems, the concepts are
consistent and similar functionality may be available. To

1Similar transport layer translations can prevent adversaries
from distinguishing connections by inspecting ports.



enable communication between agents and the controller,
we used asynchronous messaging with the Twisted frame-
work [19]. These components were not optimized for per-
formance and thus are conservative estimates of what would
be possible in a production implementation.

Our DNS server is a standard BIND9 installation on an
Ubuntu server with a sample DNS zone to be queried. To
enable diversion to the SDN controller, we created a program
that uses the Linux kernel’s netfilter_queue library to tell
the kernel that it should intercept any DNS response packets
originating locally. That program then transmits a copy of
the DNS response packet to the SDN controller for review
via a separate connection to the controller. When the agent
receives the SDN controller’s response, it instructs the kernel
to re-queue the packet, but specifies the modified packet
rather than the original packet, queuing the altered version.

Our SDN controller is a Python script that receives these
messages from the DNS and parses them. It then generates
random IP and MAC addresses for the client and server and
sends orders to the those machines to install the appropriate
rules for handling the packets. It then replies to the DNS
server with alterations to the responses.

The client and server run agents as root that await com-
mands from the SDN controller. To implement the NAT
rules supplied by the network controller, the agents use
iptables for network layer translations and ebtables for
datalink layer translations.

This approach provides a basic moving target defense that
forces clients to engage with the DNS server to actually
reach the legitimate server. The approach provides mali-
cious clients with no persistent knowledge about the server
and prevents a network observer from being able to under-
stand the activity on the network. However, a malicious
application running at the user-level on the client or server
could learn the synthetic addresses of the communicating
counterpart and attempt to establish a concurrent connec-
tion in order to launch an attack. In the Linux operating
system, unprivileged users can use the netstat tool to dis-
cover established connections.

6. EVALUATION
To determine the viability of our approach, we evaluate

the security properties of the system and performance char-
acteristics of the reference implementation.

6.1 Security Evaluation
We evaluate the moving target defense using the proper-

ties identified by Green et al. [7]:

Unpredictability: The defense must move its protected
assets so that a client cannot guess the new destination of
any given asset unless the client has an active authorization
to that asset. We achieve this using a cryptographically
sound pseudorandom number generator for the lower-order
bits in the IP prefix.

Vastness: The destination space of the defense must be
sufficiently large so that it is intractable for a client to gain
access to an asset by exhaustively enumerating all possible
destinations. Since the protected hosts do not listen for con-
nections on its real IP address, and synthetic IP addresses
are created on demand and only allow a single remote IP
address to access them at a time, an attacker will not gain
access by exhausting the IP space.

Periodicity: The assets must be moved with enough regu-
larity that any reconnaissance collected by untrusted clients
expires quickly. We provide this property by using a short
DNS TTL and changing the addresses for each DNS lookup.

Uniqueness: The defense must individually authorize a
client and prevent that authorization from being shared with
any other client. We simply delete the synthetic record (or
specific flows associated with the record) to remove access.

Revocability: The defense must be able to terminate or ex-
pire a prior authorization without causing collateral damage
or disruption to other clients. Our removal of flow-specific
and client-specific records meets the revocability property.

Availability: The defense must not introduce any new
availability constraints or denial-of-service vulnerabilities
that would prevent an authorized client from reaching a pro-
tected asset. Since our approach uses state already present
on end-hosts, we introduce no new availability constraints
and thus meet the availability property.

Distinguishability: The defense must distinguish trust-
worthy clients from untrustworthy clients in order to
only authorize the former. We can provide distinguisha-
bility by essentially encoding passwords (e.g., [pass-

word].example.com) inside the host names that the clients
must provide in their DNS queries. By sharing the pass-
word only with legitimate users, organizations can ensure
distinguishability.

From this evaluation, we have determined the approach
meets the required properties of a moving-target defense.

6.2 Performance Evaluation
The approach reuses existing infrastructure, such as the

DNS and NAT processes, that are already commonly used
in the Internet and yield acceptable performance. Accord-
ingly, we only need to evaluate the performance of two new
elements: 1) the time required to divert a packet from an
end-host to the SDN controller, which captures the overhead
of the communication between the DNS server and the SDN
controller, and 2) the time required for a host to apply NAT
rules in an order from the SDN controller. Accordingly, we
evaluate each of these overheads empirically.

Our experiments run on a VM server running a KVM hy-
pervisor with 16 cores operating at 2.8 GHz and 64 GBytes
of RAM. It runs two VMs: a VM representing the SDN con-
troller and a VM representing the controller’s counterpart,
which is the DNS server in the first experiment and is the
application server in the second experiment. The SDN con-
troller has two cores and 2 GBytes of RAM and the applica-
tion server has a single core and 512 MBytes of RAM. Both
machines run the Ubuntu 14.04 Server OS. We use NTP to
synchronize the VM clocks for timing analysis. The hosts
ignore ICMP redirect messages to ensure proper packet es-
calation to the SDN controller. We conducted 1, 000 trials
of each experiment.

In the first experiment, we measure the time to intercept a
packet, divert it to a controller, make a decision at the con-
troller, and return the packet to the DNS server. Across our
1, 000 trials, the median latency of this process was 12.74
milliseconds with roughly a 1 millisecond standard devia-
tion. This short delay is unlikely to be noticed by users.

Our second experiment measures the time to apply a set
of NAT rules using the iptables command. The median



latency was 3.98 milliseconds, with a 0.49 millisecond stan-
dard deviation. As a result, the SDN controller could order
the server (and, in parallel, the client, if it implements the
approach) to apply NAT rules while only introducing a small
delay. The rules for the NAT entries, using ebtables, would
likely take the same amount of time. With kernel libraries,
such as libiptc, the hosts could directly manipulate the
kernel’s NAT entries and avoid the substantial overhead of
forking a new process to execute the iptables command.

From these experiments, we note that all the manipula-
tions required would take around 20 milliseconds to per-
form and these overheads would only occur during the DNS
lookup process. After the connection is established, the ap-
proach only introduces the minimal time to perform NAT
translations on packets. As a result, we find that the perfor-
mance of the approach would be barely perceptible to users.

7. CONCLUSION
We explored techniques to provide a scalable moving tar-

get system that supports unmodified clients while distin-
guishing trustworthy clients from untrustworthy ones. We
proposed a new moving target defense using SDN techniques
that provides key security properties while yielding accept-
able performance. Our approach allows defenders to dis-
tinguish between trustworthy and untrustworthy clients us-
ing pre-shared keys, using cryptographic MACs, or simply
embedding passwords in to standard hostnames to provide
access control for legacy clients.
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