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Abstract—Residential networks are difficult to secure
due to resource constraints and lack of local security
expertise. These networks primarily use consumer-grade
routers that lack meaningful security mechanisms, provid-
ing a safe-haven for adversaries to launch attacks, includ-
ing damaging distributed denial-of-service (DDoS) attacks.
Prior efforts have suggested outsourcing residential net-
work security to experts, but motivating user adoption has
been a challenge. This work explores combining residential
SDN techniques with prior work on collaborative DDoS
reporting to identify residential network compromises. This
combination provides incentives for end-users to deploy the
technique, including rapid notification of compromises on
their own devices and reduced upstream bandwidth con-
sumption, while incurring minimal performance overheads.

Keywords-Software-defined networking, residential net-
work security, distributed denial-of-service attacks.

I. INTRODUCTION

Modern residential network security faces multiple
challenges: a lack of security expertise in each home,
a rising number of consumer-grade Internet of Things
(IoT) devices, and capacity improvements that make res-
idential networks ripe for attack. Internet-connected em-
bedded devices pose a unique challenge since they may
be deployed for long periods but without maintenance
from either the end-user or manufacturers. Attackers
have recognized the potential of these devices, including
in the Mirai botnet that launched distributed denial-of-
service attacks in excess of 1 Tbps [1].

Residential networks typically lack dedicated secu-
rity hardware. Instead, they typically leverage network
address translation (NAT), which has the side-effect of
blocking in-bound connections by default, as a security
measure [2]. However, NAT was not designed for se-
curity and has substantial limitations when used in this
fashion [3]. Further, attackers are well aware of NAT
implementations and design their attacks to circumvent
them [4].

The presence of vast swaths of insecure networks
makes the Internet, as a whole, less secure. Mobile
devices may be compromised on residential networks
and later physically move into corporate networks where
the contamination spreads [5]. Insecure networks also

offer opportunities for adversaries to anonymize their
traffic and attack with impunity.

Although distributed denial-of-service (DDoS) attacks
are a challenge for residential networks, they also rep-
resent an opportunity to inform home users that their
security has been breached. Typically, residential users
are unaware when their devices are compromised. Own-
ers of devices participating in the Mirai botnet had no
way of knowing their systems were attacking others
on the Internet. If informed of a compromised device,
many owners would remediate the issue to avoid nega-
tive consequences for themselves and others. In DDoS
attacks, a victim learns the IP addresses of a large set
of attacking hosts, which are typically compromised
machines organized in a botnet. If victims could easily
report these attacks, the device owners could learn about
the compromise and remediate the devices, lessening the
flood and preventing the devices from being involved in
future attacks.

To address these problems, the research community
has explored ways to connect experts with home net-
works. Feamster [6] recommends outsourcing all secu-
rity and network management to experts. With Project
BISmark [7], a remote service provider is able to period-
ically measure network performance across a collection
of residential networks. Taylor et al. [8] found that cloud-
based software-defined network controllers would have
acceptable latency for the vast majority of residential
networks in the United States even when deploying fine-
grained flow control. This suggests external providers
could feasibly manage network access control for resi-
dential networks.

In their Active Internet Traffic Filtering (AITF)
work [9], Argyraki and Cheriton proposed a cooperative
filtering scheme in which victims could issue filtering
requests to Internet Service Providers (ISPs) close to
attacking hosts, preventing unwanted traffic from saturat-
ing bottleneck network links. A significant challenge for
the AITF work was a lack of incentives for deployers:
the filtering ISPs would have to modify their routing
infrastructure to support AITF, but those ISPs did not
directly receive benefits in return.

In this work, we explore opportunities to provide all



deployers with incentives to participate. We combine
fine-grained SDN access control with AITF’s cooper-
ative traffic filtering techniques. We explore a system
where SDN controllers from different service providers,
which can either be hosted by ISP or third party, could
automatically discover each other, report attacks, and
cooperate on network filtering. In doing so, we make
the following contributions:

« Exploration of Incentives: We examine how each
of the stakeholders in the system benefit from this
approach. These stakeholders include the owners
of compromised devices, the attacked victims, and
SDN service providers for both the attackers and
victims (Section IV).

o Architecture Design and Implementation: We
provide an overview of how the approach works,
a protocol that allows the SDN controllers and
consumer-grade residential routers to identify and
verify each other, and implement a distributed at-
tack reporting system (Sections III and V).

o Security and Performance Evaluation: We eval-
uate the approach’s reporting from a security per-
spective and analyze the performance at each device
(Section VI). We find that the approach can report
and verify a compromised host within seconds
and introduces few performance overheads in the
controllers and routers.

II. BACKGROUND AND RELATED WORK

In this section, we provide background and discus-
sion on distributed denial-of-service (DDoS) attacks,
software-defined networking (SDN), and efforts to pro-
tect residential networks.

A. Distributed Denial-of-Service (DDoS) Attacks

DDoS attacks, in which attackers exhaust a victim’s
resources through a large volume of requests, are a com-
mon and on-going phenomenon [10]. Botnets of compro-
mised machines can be large, encompassing millions of
machines [11]. A recent botnet, Mirai, is designed to run
on compromised Internet of Things (IoT) devices [1] and
continues to evolve [10].

The research community has explored methods to
detect and mitigate DDoS attacks. Prior detection efforts
have included statistical and mathematical methods to
distinguish DDoS traffic from benign traffic [12]-[14],
an analysis of network distance between the destination
and origin [15], the application of deep learning [16],
and even entropy comparisons of flows [17]. Some
approaches have looked at ISP-wide data to detect
botnets [18], though botnets typically operate globally
across ISPs [19].

Once an attack is detected, defenders can try to
mitigate it. Some endpoint filtering approaches have used

IP history and reputation to determine malicious and
legitimate senders [20], [21]. However, with IP rotation
and sharing in DHCP and NAT environments, IP history
and reputation may have limited value. Other endpoint
solutions include the work by Buragohain et al. [22],
which performs flow-modeling on a SDN controller, and
the work by Rebecchi et al. [23], which performs stateful
anomaly detection on traffic at a router. A common
limitation for these approaches is that filtering at the
endpoint, or at network devices in the same LAN as
the endpoint, is ineffective when the saturated bottleneck
network link is between the LAN and its ISP. Such “last
mile” bottleneck links are common on the Internet.
Other approaches have sought to employ packet filter-
ing before the traffic reaches the victim’s bottleneck link.
Weniger et al. [24] propose a “moving target” mecha-
nism in which ISP customers have multiple addresses
and can unsubscribe from an address upon detecting an
attack. This allows the upstream ISP to filter traffic to
an unsubscribed address. Mahajan et al. [25] propose a
method to send filtering requests to upstream routers.
Likewise, in their work on AITF, Argyraki et al. [9]
designed a filtering protocol for routers at both the vic-
tim and attacker networks to cooperatively filter traffic.
These approaches have powerful filtering capabilities,
but they require cooperation from a set of ISP routers,
ideally some at high-traffic peering points. The reliance
on ISP cooperation and lack of incentives for ISPs to
deploy this approach have resulted in little adoption of
these techniques. In this work, we shift the filtering load
to SDN controllers operated by any service providers
who have incentives to report and filter malicious traffic.

B. OpenFlow and Software-Defined Networking

The software-defined networking (SDN) paradigm
separates control decisions from data plane processing,
allowing a remote control system to manage the rules
cached in network switches and routers. The Open-
Flow [26] protocol allows routers and switches to elevate
packets that do not match any locally cached rules
to an OpenFlow controller. The controller can respond
by providing new rules and instructions on how to
handle each packet. Unlike the routers and switches,
the controller has visibility across the network and runs
on standard computer hardware, allowing it to perform
more sophisticated traffic analysis. The flow rules can
specify each criteria for the fields in common layer 2, 3,
and 4 network headers along with an associated action.
These fields can be wildcarded or require specified
values for matching purposes. A flow rule is considered
“fine-grained” if it fully specifies a flow consisting of
the source and destination IP addresses, the transport
layer protocol, and the source and destination transport
layer ports. With careful caching strategies, OpenFlow



controllers can gain visibility into network traffic while
limiting overheads with rule caching so that traffic is
processed quickly.

A significant amount of SDN research has focused on
data center or enterprise networks. However, residential
networks typically have different characteristics, includ-
ing network throughput, asymmetries between upload
and download bandwidth, and management practices.
While each residential network tends to be fairly small,
they play an important role on the Internet. Recent
surveys have shown that around 89% of households have
multiple computers at home and around 82% of US
households have Internet connections [27]. Around 76%
percent of US home networks use a wireless router [28]
to share network resources. These networks provide
connectivity to a range of Internet-enabled devices, with
some predictions of over 442 million connected home
devices by 2020 in the United States alone [28]. Internet
of Things devices represent a unique concern because of
their long deployment periods and the fact that they may
not be updated and patched as frequently as traditional
computers, tablets, or smartphones.

In a 2010 position paper, Feamster [6] proposed
outsourcing residential security management to services
operating in cloud infrastructure. Subsequent work ex-
plored the feasibility of doing so. Taylor et al. [8] found
that 90% of residential networks in the United States
were within a 50 millisecond round-trip of a public
cloud data center. Those results suggest that cloud-based
service providers could operate SDN controllers that
monitor network flows while causing little delay. Other
work examined the potential for ISP-hosted SDN con-
trollers [18] since they would introduce lower latency.
However, the reliance upon ISP cooperation has limited
the deployment of these proposed approaches.

In this work, we explore an approach that could
operate on an SDN controller in either public cloud
data centers or in ISP-provided data centers. This grants
independence from specific ISPs while still leveraging
close network proximity, where available.

III. ARCHITECTURE AND DESIGN

We now describe the architecture and components we
will use to combine SDN techniques with distributed
attack reporting. We describe the incentives for this
approach in Section IV and describe the implementation
details of this design in Section V.

In Figure 1, we show an example network configura-
tion. In this diagram, we have an attack target, which we
call the “victim host,” that is is connected via a router
to the Internet. The victim router can be a commodity
consumer-grade wireless router, such as the variety used
in 76% of households [28]. The router is configured
to run Open vSwitch [29], a popular OpenFlow agent

implementation. It communicates with an OpenFlow
controller, labeled the “victim controller,” which is run
by a security service provider. The victim controller
could run in a public cloud data center, ISP-hosted
data center, or other location. In our model, we assume
that the controller is not in the same LAN with the
victim host or router. The victim router and controller
are connected to the Internet via ISPs, which we merge
together in a simple box labeled “Internet.” We depict the
bottleneck bandwidth link as being between the victim
router and its ISP, since this is the common “last mile”
link that constrains throughput.

Since network attacks are illegal in many jurisdictions,
the actual perpetrator of a DDoS attack will often use
compromised systems to actually send the attack traffic
to the victim. We call the compromised device a “pawn”
to indicate that it is working for an attacker (though the
device owner is unaware that this is occurring). In our
example network, we show a pawn host connected to
its own router, which connects with its own controller.
The pawn could share an ISP with the victim or use
an ISP that is distant in the topology. Multiple pawns
could be working in concert as part of a botnet. We
consider the pawn to be fully controlled by the attacker.
However, the pawn’s router and pawn’s controller are
managed by a security service provider that works for a
legitimate device owner who does not realize the device
has been compromised. Accordingly, the pawn’s router
and controller may curtail the pawn’s activities upon
receiving evidence of a compromise.

In the event of an attack, the victim’s controller will
initiate communication with the pawn’s controller to
request filtering of the traffic. The two controllers may
filter the traffic with an OpenFlow flow modification
(FlowMod) message that indicates that packets match-
ing the unwanted flow’s IP addresses and ports should
be discarded. The mechanisms to discover and verify
the responsible controllers will be described later in this
section.

A. Threat Model

The defender’s goal is to report and stop unwanted
traffic as quickly as possible. We assume the defender
has an existing technique to determine which traffic
is unwanted. The victim can request filtering from the
victim router—explicitly or via continual connection re-
set messages—trusting the security service provider and
considering the victim router and victim controller to be
a trusted computing base (TCB).

The owner of the compromised device likewise trusts
the security service provider operating the pawn router
and pawn controller and considers them in a TCB.
The pawn’s owner wants to know if the pawn is ever
compromised and to prevent it from engaging in attacks.
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Fig. 1. An overview of the components in our system. The victim and
pawns are connected via their respective routers and managed by their
respective controllers. The black dots represent measurement points in
our evaluation.

The pawn’s owner does not consider anyone else to be
trusted. If a given destination will block communication
with its own hosts anyway, the pawn’s owner gains
upload bandwidth capacity by filtering that traffic at its
local router when participating in an attack.

The security service providers for the victim and pawn
may be mutually distrusting. In that case, the providers
will need a way to securely identify and verify each
other. A service provider only needs to confirm that
the other service provider is an agent for the remote
communicating party. In other words, if the other service
provider can prove it can intercept packets destined to the
remote communicating party, then it is allowed to request
that filtering be done closer to the source. The service
providers assume the links between the two controllers,
between the two routers, and between the routers and
controllers are uncompromised. If this assumption is
violated, fake reports and filtering requests could be
introduced. However, those on-path adversaries would
already have the capability of simply discarding traffic.

B. Protocol Design

In Figure 2, we provide a sequence diagram of com-
munication between a pawn and a victim. When the
pawn initiates its connection to the victim, the request
reaches the pawn’s router. Since this is the first entry in
the flow, and because the pawn’s router uses fine-grained
flow entries, the pawn router does not find a matching
flow entry and elevates the request to the pawn controller.
The pawn controller decides whether to allow the traffic
or not. If it is allowed, the pawn controller generates
a special value, SRC_COOKIE, that can be used by
recipients or other controllers to prove that it received the
packet. The controller then sends the packet back to the
pawn router using a standard OpenFlow PacketOut
along with any F1owMod messages needed to authorize
the flow.
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Fig. 2. A sequence diagram overview of the reporting protocol

Before transmitting the packet as ordered, the pawn
router first inspects the message in the PacketOut to
search for any cookie values the controller may have
inserted. If it finds one, it stores the SRC_COOKIE in a
local database for future consultation. It then transmits
the packet towards its destination.

The packet is then transmitted across the Internet
until it reaches the victim router. The victim router
detects any new flows and searches for any cookie values
associated with them. If one is detected, it records the
SRC_COOKIE to a local database. If it ever determines
that the flow needs to be filtered in the future, it can use
the SRC_COOKIE as an authenticator value.

When a victim router recognizes that traffic should
be filtered for a victim host, it first filters the packet
locally by adding a drop rule. It then contacts the
victim controller and reports the filtering request, along
with the SRC_COOKIE, if any, that the victim router
previously stored when the flow was being created. The
filtering request contains the full flow information (the IP
addresses of the pawn and victim, the transport protocol
and associated transport layer ports). The victim router
sends this request to a pre-defined port on the victim
controller.

The victim controller listens for filter requests on its
pre-defined port. It examines each part of the filtering



request and then attempts to contact the controller asso-
ciated with the pawn. It does so by sending a packet
to the pawn’s public IP address using another pre-
defined, globally-known port value for filtering requests.
The victim controller supplies all the information it
received from the victim router and generates its own
value, DST_COOKIE, that will serve as a nonce and
authenticator for the pawn controller. It then sends the
request to the pawn router.

The pawn router listens for filtering requests on the
well-known request port. If it sees requests to its own
IP address (if the router uses NAT) or to IPs associated
with its own hosts (when NAT is not in use), it extracts
the packet and determines whether it is a valid filtering
request. It examines the packet to determine the flow that
should be filtered and the associated SRC_COOKIE. If it
finds the extracted cookie in its database, and the cookie
is associated with the indicated flow values, it knows
the filtering request is valid and sends it on to the pawn
controller. If there is a mismatch in cookie value and
flow, or if either of the fields is invalid, the router simply
drops the filter request packet.

Upon receiving the filter request packet from the
pawn router, the pawn controller also verifies the
SRC_COOKIE and flow details match. If so, it sends an
OpenFlow FlowMod to the pawn router that discards
any subsequent packets in the flow. It then uses the
victim controller’s IP address, which is the source of
the request, to send an acknowledgement of the filtering
request. By including the DST_COOKIE that the victim
controller supplied, the pawn controller confirms its
agency for the pawn. When the victim controller receives
this acknowledgment, it can verify the DST_COOKIE
and know that the pawn controller has received the report
and may start filtering the traffic.

IV. EXPLORATION OF INCENTIVES

While residential users care and are willing to make
sacrifices to improve their computer security [30], [31],
they need tangible benefits to encourage their use of
security technology. For security service providers to
help these residential users, they need a way to prove
their value to these end users to justify their service
charges. In this section, we explore the incentives for
both these stakeholders.

A. Incentives for Residential Users

Home users want to have confidence that they can trust
their computing devices (i.e., they are not compromised).
With our approach, any victim under attack has an au-
tomated way to report the incident. This allows security
service providers to link attack reports and inform device
owners of any allegations. In essence, this model crowd-
sources attack intelligence and can quickly notify device
owners about problems.

Home users also want high bandwidth network con-
nections so they spend less time waiting for online
services. When a device is compromised and participates
in a DDoS attack, it uses upstream bandwidth, which
tends to be more limited for residential users [32].
With filtering requests from victims, the attacker’s router
blocks the traffic from compromised systems locally, pre-
venting the attacks from consuming upstream capacity
between the user’s router and ISP.

While it may also appear that a victim of a DDoS
attack would gain all the benefits of remote filtering
(a goal of the original AITF paper), that outcome is
spoiled by any pawns that do not deploy the technique.
Unfortunately, perfect deployment may be elusive on
the Internet. Instead, the costs of a DDoS attack will
become higher for adversaries as adoption expands,
since more bots will be blocked by source filtering
and the unfiltered bots will command a price premium.
Over time, organizations may begin prioritizing traffic
for hosts that operate in compliant networks, further
incentivizing adoption. This may affect the economics
of DDoS attacks as a whole, but are unlikely to yield
tangible benefits for the victim of any given attack.

B. Incentives for Security Service Providers

Service providers need ways to provide evidence that
their services are worthwhile to customers. With dis-
tributed attack intelligence, they can show customers the
number of remote parties each device interacted with and
the number of parties that deploy the technique. They
can report problems and track the number of reported
issues. By showing users they are collecting reports, they
assure users that compromises are likely to be identified
quickly.

If a device does become compromised and the service
provider must filter its flows, the service provider can
provide meaningful feedback about who is reporting
the attack, the device involved, and the number of
complaints. End-users may have difficulty understanding
the technical details of a compromise or network attack,
but quantified data about the number and variety of
reports may be more intuitive and compelling. Service
providers can then provide guidance on remediation
and an analysis on whether other devices may have
likewise been compromised. Further, service providers
can use attack reports to identify the command-and-
control infrastructure of botnets by analyzing traffic that
precedes an attack and to perform detailed analysis on
traffic when reports are received.

V. IMPLEMENTATION

To explore the distributed reporting approach, we
create an implementation on consumer-grade residential
network routers. We flash three TP-Link Archer C7
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number of resets (line 11), the router likewise requests a filter request
(lines 12, 6, 7). When processing a filter request, the controller inserts
a DST_COOKIE and reports the attack to the pawn controller (lines 8
and 9).

v2.0 routers with the OpenWrt [33] firmware, which
is a popular open source router operating system. We
configure two of the three router to run the Open vSwitch
(OVS) OpenFlow agent. We host the pawn controller
and victim controller in VMs on a laptop running OS X.
That laptop has four cores and 16GBytes RAM. Each
controller runs POX [34], a Python-based OpenFlow
controller and stores records using a MySQL database.

To model an upstream ISP router, we place the router
that is not running OVS in the center of the network to
link the other two via LAN ports. We further connect
the laptop running the controller VMs to a LAN port on
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Fig. 5. The victim router’s attack report (line 1) is sent to the pawn
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the SRC_COOKIE in the request and compares it to the supplied flow
information. If the request is valid, the router sends the request to the
pawn controller (lines 3 and 4). The pawn controller again verifies the
SRC_COOKIE and flow information. If valid, the controller records
the report and pushes a F1lowMod to the pawn router to filter the flow
(lines 5 and 6). Meanwhile, it sends an acknowledgment to the victim
controller (lines 7 and 8). Subsequent packets to the victim from the
pawn are thus dropped due to the new rule (lines 9 and 10).
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the ISP router. This upstream ISP router is configured
so that each physical LAN port is on a separate VLAN
and we use the t ¢ command to constrain the downsteam
bandwidth to 5Mbps to allow attack modeling without
any testing hardware being a limiting factor. We manu-
ally configure the IP addresses, subnets, and routes on
the routers and configure IP aliases on the pawn host
to enable a single system to simulate multiple attacking
hosts.

One of the two remaining TP-Link routers is desig-
nated as the pawn’s router and the other is designated as
the victim’s router. The pawn’s router elevates new flows
to the pawn controller to obtain the SRC_COOKIE as
described in Section III-B. Upon receiving a response,
the pawn router stores the SRC_COOKIE locally in
memory and then sends the packet on to the victim
(Steps 2-6 in Figure 3).

The victim router is configured to examine incoming
packets for IP options that could be associated with a
SRC_COOKIE. Using the 1ibpcap library, the router
identifies cookies and associates them with flow data,
including the source IP address, the transport layer pro-
tocol, and the transport layer source port. To test our sys-
tem, we implemented an anomaly detection program that
runs on the victim router. The program monitors packets
to identify any indications the traffic is unwanted, such
as ICMP errors or TCP reset packets, and filters the flow
when a threshold is reached (e.g., 20 rejections/second in
our experiments). Prior work analyzing TCP reset rates
by Arlitt et al. [35] and Bilal et al. [36] shows some
variation in reset rates based on client activity, but a
high volume of resets when bandwidth is saturated is a
potential attack indicator.



While the victim router’s downstream bandwidth may
be saturated during a DDoS attack, the victim router
can control the upstream channel and prioritize attack
reports over any other messages. Accordingly, the victim
router can locally filter the unwanted flow and send
a request to the victim controller to filter the traffic
at the source, if possible. To do so, the victim router
supplies the controller with the SRC_COOKIE that it
previously logged, if any, along with details about the
flow, including addresses, ports, transport protocol.

Upon receiving a filtering request, the victim con-
troller crafts an UDP packet with the pawn’s IP address
as the destination and a globally-known filter service
port as the destination port. In the UDP packet, the
victim controller provides the pawn’s IP address and port
(which may be empty for ICMP), the victim’s IP address,
the transport layer protocol, and the SRC_COOKIE. The
victim controller also generates and includes a random
nonce value, the DST_COOKIE, that can be used to
acknowledge the filter request. The victim router caches
this information in a local database and then sends the
UDP packet towards the pawn.

The pawn router monitors traffic on its globally-known
filter request port. If it receives a request, it determines
if the contained SRC_COOKIE is valid and matches the
flow, and if so, elevates it to the controller, as shown in
Step 4 in Figure 5. The pawn controller again verifies the
request, and if authentic, sends an OpenFlow F1owMod
message to the pawn router to deny traffic associated
with the flow’s IP addresses, ports, and protocol. The
pawn controller then sends a message to the victim
controller to acknowledge the request, as shown in Steps
7 and 8 in Figure 5. Once the pawn router applies the
FlowMod rule, the attack traffic is filtered in the pawn’s
LAN.

VI. EVALUATION

We evaluate our system from both a security effec-
tiveness and a performance perspective. From a security
standpoint, the approach must rapidly respond to attack
reports in a manner that ensures the reports are authentic.
From a performance perspective, the approach must
minimize overheads and ensure it can scale in the event
of an attack.

A. Security Effectiveness

We begin by examining the size of reporting packets
that are sent from the victim router to the victim con-
troller. Each report is 100 bytes, of which 58 bytes is
the payload of the filtering request. Accordingly, even a
5Mbps upload bandwidth capacity would allow a victim
router to report roughly 6,250 unique malicious flows
per second. This would allow a victim to identify and
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traffic spikes and saturates the link between the victim router and its
ISP. When pawn routers and controllers respond to source filtering
requests, the attack traffic quickly drops off, despite the continued
transmissions from the pawn host.

report a large number of compromised machines while
a DDoS attack is ongoing.

We next empirically examine the potential attack traf-
fic reduction possible if pawns perform source filtering.
For our pawn host, we use a Thinkpad S3 machine with
4 cores and 8 GBytes RAM. We configure the pawn with
five IP aliases to simulate multiple attackers that must be
filtered individually. On the pawn, we use the hping3
tool to launch a TCP SYN flood attack at the public
IP address of the victim router. Since the victim router
does not run public services, the router OS will send
back a TCP RST packet in response. We use a separate
hping3 process for each IP alias on the pawn and we
set each hping3 process to send 2 Mbps of attack traffic
in order to saturate the bottleneck link between the ISP
router and the victim router.

We monitor the traffic volume at multiple points
between the pawn and the victim router, as represented
by the black dots in Figure 1. These measurement points
include a sample on the pawn’s network interface, the
pawn-connected interface on the ISP router, the victim-
connected interface on the ISP router, and the victim’s
interface.

In Figure 6, we show the results of our filtering
experiments when all five pawns launch an attack si-
multaneously. The pawn traffic starts around the 1.5
second mark, averaging around 10Mbps (represented
by the black line). A queue builds at the pawn router,
leading to bursty results (represented by the blue line).
The ISP router constrains the throughput of the traffic,
which averages around 5 Mbps, as expected (represented
by the green line). The victim router quickly notices
the attack and applies filters locally, preventing the
victim from ever experiencing the full bandwidth of the
attack (represented by the red line). The victim router
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Fig. 7. The delay between a skeleton OpenFlow implementation and
our distributed reporting averages only 3ms across our 1000 trials. This
overhead is less than 10% of the overhead associated with basic flow
elevation.

elevates the requests to the victim controller, which starts
implementing the filters around 5.5 seconds into the
experiment, resulting in a rapid drop of traffic volume at
the ISP router on both the victim and attacker interfaces,
despite steady out-bound traffic at the pawn host. The
outbound queue causes some residual traffic to be sent
to the victim router around the 6 second mark.

B. Performance evaluation

We measure the overhead introduced by our system
from different viewpoints. We first measure how much
overhead is introduced by inserting cookies into the first
packet of each flow. On the pawn machine, we create a
UDP client program that sends UDP packets with dif-
ferent source ports to ensure that each packet represents
a new flow that is elevated by the router’s OVS agent
to the pawn’s controller. We implement a UDP server at
the victim router to echo back each requested packet. We
then measure the round trip time (RTT) of 1,000 UDP
packets when both the pawn router and pawn controller
are processing packets. We configure the controller to
create PacketOut messages immediately upon receiv-
ing a packet without any packet processing. Accordingly,
the RTT includes the bidirectional propagation time plus
two packet elevations to the attacker controller since
both the outbound packet and its reply are elevated to
the controller. In Figure 7, the RTT is represented by
the green line. We see that 90% of packets have an
RTT of less than 60 milliseconds. We compare this with
the OVS router and OpenFlow running our distributed
reporting approach, depicted by the blue line in Figure 7.
These results show minor differences between the two
OpenFlow implementations, with the version running
our code taking approximately 3 milliseconds longer
than a skeleton OpenFlow elevation. While OpenFlow
naturally introduces delays with reactive flow elevation,

the delays are only on the first packet in a flow and
can be accommodated in production environments. The
small differences in RTT introduced by our approach are
dwarfed by the base OpenFlow delay and are unlikely
to be apparent to an end-user.

VII. CONCLUSION

This work introduced a distributed reporting approach
that allows third-party service providers to detect and
filter DDoS traffic for residential users. This model
incentivizes each stakeholder in the system: residential
users save bandwidth when under attack and learn about
compromised systems quickly, while security service
providers respond rapidly to events and provide notifica-
tion to residential customers. With incremental deploy-
ment and immediate incentives, collaborative filtering
can motivate users to adopt a platform for security
providers to host residential SDN security applications.
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