
Inspecting Traffic in Residential Networks with
Opportunistically Outsourced Middleboxes

Shuwen Liu, Yu Liu and Craig A. Shue
Worcester Polytechnic Institute
{sliu9, yliu25, cshue}@wpi.edu

Abstract—Home networks lack the powerful security tools and
trained personnel available in enterprise networks. This compli-
cates efforts to address security risks in residential settings. While
prior efforts explore outsourcing network traffic to cloud or
cloudlet services, such an approach exposes that network traffic
to a third party, which introduces privacy risks, particularly
where traffic is decrypted (e.g., using Transport Layer Security
Inspection (TLSI)). To enable security screening locally, home
networks could introduce new physical hardware, but the capital
and deployment costs may impede deployment.

In this work, we explore a system to leverage existing available
devices, such as smartphones, tablets and laptops, already inside
a home network to create a platform for traffic inspection. This
software-based solution avoids new hardware deployment and
allows decryption of traffic without risk of new third parties.
Our investigation compares on-router inspection of traffic with
an approach using that same router to direct traffic through
smartphones in the local network. Our performance evaluation
shows that smartphone middleboxes can substantially increase
the throughput of communication from around 10 Mbps in the
on-router case to around 90 Mbps when smartphones are used.
This approach increases CPU usage at the router by around 15%,
with a 20% CPU usage increase on a smartphone (with single
core processing). The network packet latency increases by about
120 milliseconds.

I. INTRODUCTION

Residential networks have grown increasingly complicated.
While end-point solutions, such as anti-virus and software
firewalls, are effective for some devices, they are not available
for others. Embedded devices associated with the Internet
of Things may have varying security, but lack mechanisms
to install additional security features. Residential users have
expressed concern about the risks on their networks. In a study
of fifteen people with smart home tools, eleven participants
indicated they were worried about physical risks of these de-
vices and five participants were concerned about the associated
privacy risks [1].

In-network security controls, such as screening on routers
or middleboxes, can help protect these devices from network-
borne threats, but current consumer-grade routers do not
effectively manage network risk [2]. Such consumer-grade
routers have hardware with limited computational capabilities.
While prior work has proposed lightweight functionality on
residential routers [3], there are inherent limits on the tasks
these routers can perform. As an example, efforts to profile and
examine encrypted traffic using machine learning [4] would
exceed the resources of many such routers.

With the limitations of residential routers, prior work has
explore mechanisms to shift the computational tasks associ-
ated with network screening to remote servers. Feamster [5]
proposed using software-defined networking (SDN) techniques
to allow home networks to outsource their security and
management functionality to cloud-hosted servers. Likewise,
TLSDeputy [6] uses remote servers to validate the TLS
certificates and protocol settings associated with home network
connections to ensure the authenticity of communicating end-
points. However, both techniques allow the operators of cloud
infrastructure to have insight into the activities of a home
network, introducing new privacy risks. They also expand
the trusting computing base (TCB) to include servers and
personnel outside the home.

In contrast to prior efforts, we consider mechanisms to
deploy home network traffic inspection in an opportunistic
fashion. We explore mechanisms to leverage existing devices
in a home network when they are available to screen commu-
nication. In doing so, we ask the following research questions:

• To what extent can we utilize current resources within a
home network to build real-time packet inspection?

• To what extent would such a packet inspection system
influence the performance of the home network, in terms
of traffic latency, resource consumption, and throughput?

Our approach uses devices such as smartphones, tablets,
laptops and desktops to perform traffic analysis. These devices
can operate as security proxies when they are available,
enabling detailed analysis. In pursuing this direction, our work
makes the following contributions:

• Creation of Router and Middlebox Support: We intro-
duce a mechanism that forwards network traffic from a
router to a middlebox to leverage the spare computational
resources. We use open source firmware on a consumer-
grade residential router. We use simple IP-address based
screening as conservative example of the computational
requirements of security tools. We build tools to screen
traffic locally on a consumer-grade router to establish a
baseline. We then implement a technique to transparently
direct traffic through a smartphone middlebox using net-
work address translation (NAT) rules on the router.

• Performance Evaluation of Deployment Options: We
compare the baseline on-router inspection with diverting
traffic through a smartphone that performs inspection.
Our evaluation shows that on-router inspection has a

throughput of around 10 Mbps whereas outsourcing the
inspection to a smartphone achieves roughly 90 Mbps
throughput. The smartphone middlebox approach adds
around 15% CPU usage to the router and 20% CPU
usage to a smartphone (with single core processing). It
introduces 120 milliseconds of round trip time (RTT)
delay to network traffic.

II. BACKGROUND AND RELATED WORK

In this section we provide a background and describe prior
work on residential network computation and security.

A. Computation in Residential Networks

A 2015 survey found that 77% of US households subscribed
to broadband Internet service and 78% of homes have a desk-
top or laptop computer [7]. However, modern home networks
face many security challenges. Attackers can gain sensitive
information or directly control the devices and launch attack
on other devices, such eavesdropping, replay attack, network
scanning, and data theft [8], [9].

There are effective ways to detect these attacks, but they
require sufficient computational resources. Hafeez et al. [8]
find that machine learning methods can detect a series of
attacks with accuracy as high as 99%. Jan et al. [10] propose a
method to detect a compromised device that joins a botnet with
very limited data through a deep learning algorithm. In this
work, we create a platform using existing devices to enable
such traffic inspection in home networks.

B. Perimeter Defense for Home Networks

Perimeter defenses can be useful for residential networks.
While the basic NAT functionality on residential routers typ-
ically prevents unsolicited inbound communication, it is inef-
fective at detecting or stopping existing compromises within a
network or attacks that are launched via a connection initiated
from inside the network.

Li et al. propose applying deep learning anomaly detection
techniques for securing home networks; however, their method
runs on equipment with computational resources that may
not be available in many home networks [11]. ParaDrop [12]
proposes allowing third-party application providers to install
lightweight containers to provide a gateway for simple tasks.
However, ParaDrop does not have sufficient resources to run
resource-consuming tasks like intrusion detection. Another
work [13] adds plug-and-play devices to a consumer-grade
router, which enables the router to work as an intelligent IoT
gateway that can inspect traffic; however, it incurs capital costs
and requires hardware modifications inside consumer routers
that are likely beyond the technical abilities of many home
users.

Shirali-Shahreza et al. [14] summarized commercial home
network firewall products. Each requires the installation of
additional devices in the network with an initial cost of at least
$200 and with ongoing monthly service costs. These devices
may augment or replace existing home routers. Some use
virtual private network (VPN) techniques to tunnel traffic to a

remote VPN server that inspects and analyzes home network
traffic en route to the destination. These methods introduce
additional costs and equipment for users.

To simplify home network management while retaining
security capabilities, Feamster proposed to outsource security
needs to a remote cloud server using an SDN architecture [5].
This approach allows experts and security professionals to
manage the network remotely. Since cloud servers have greater
computational resources, they can run controller modules that
improve analysis while gaining a cross-network perspective.
Other efforts explore firewall modules for such SDN con-
trollers [8], [14]–[18]. Most of these efforts use the router as
an OpenFlow switch in the home network. Others propose
to use a locally-available device, such as a Raspberry Pi,
instead. However, these outsourcing methods require users to
trust a third-party provider. This may raise significant privacy
concerns, particularly when network traffic must be decrypted
to provide security services.

C. Edge Computing in Local Networks

The edge computing paradigm builds decentralized com-
puting pools for processing jobs from clients, bringing the
computation closer to the source of data [19]. Cloudlet [20]
is a popular edge computing prototype that offloads tasks to
nodes that can scale. These nodes can be hosted by ISPs or
other providers. Drop computing [21] builds a collaborative
computing cloud using mobile devices in which one device
can offload tasks to other devices. When there is no available
device, the system seeks help from cloud servers. This method
is designed for ad hoc networks, which lack reliability since
devices may enter and leave the network frequently. Similarly,
Verbelen et al. [22] split tasks and offload them to a virtualized
environment, either on mobile devices or on cloud servers.
Gedeon et al.propose to use a more reliable device, such as
a home network gateway, run a broker to coordinate tasks.
The gateway seeks available cloudlet nodes to help with its
tasks [23]. This method outsources computation to third-party
platforms, which can raise privacy concerns. Their use of a
broker on a residential router, and their finding that it does
not introduce significant overhead, is inspiration for our own
approach.

III. APPROACH

Recognizing the computational constraints in residential
routers, our approach compares on-router inspection with tech-
niques that offload this work to other devices in the local net-
work. In doing so, our hypothesis is that redirecting network
traffic to a locally-available device with greater computational
resources while limiting the router’s work to traffic forwarding
may yield better performance than attempting to perform the
inspection on the router itself. This led us to develop the
approach of on-phone inspection via NAT redirection.

Our research compares two approaches: on-router inspection
via NFQUEUE and on-phone inspection via NAT redirection.
We start by introducing the threat model and scope we assume
in this work. Then, we illustrate the process of on-router

inspection. Finally, we describe the functionalities of each
component of the phone-based inspection platform and how
they work together.

A. Threat Model and Scope

When exploring technologies related to security, a model
of the assumed threats can determine the applicability of the
work and its scope. In this work, we construct a platform
that is designed to enable inspection of traffic that crosses
the boundary of a home network. Our platform’s goal is to
provide computational resources for inspection tools while
achieving reasonable performance. We do not seek to develop
a new detection algorithm or technique. Instead, we use a
particularly lightweight filter, one based on packet addresses,
to demonstrate the minimal overhead costs associated with
each.

A trusted computing base (TCB) is the set of devices that
must operate correctly to achieve the desired security goals.
Our TCB includes the residential router and any smartphones
hosting middleboxes that proxy traffic. We do not need to trust
the communicating endpoint device, the remote machine it is
communicating with, or other infrastructure associated with
the Internet. Unlike approaches that outsource communication,
our TCB does not include third-party cloud servers or the
personnel associated with cloud data centers.

B. On-Router Inspection via NFQUEUE

We create an approach that is designed to provide efficient
on-router traffic inspection. We implement a basic C++ pro-
gram that we compile to natively run on the router to inspect IP
addresses. The program uses the iptables packet inspection
tool and the netfilter_queue library (often referred to
as NFQUEUE) to inspect traffic. Essentially, the iptables
tool operates on each packet processed by the Linux stack
on the router. This action occurs when packets cross from
the LAN interfaces to the WAN interface associated with the
Internet. The iptables program sets an NFQUEUE judgment
for all packets, causing them to enter a kernel queue data
structure. The C++ program extracts the packets from that
queue, inspects the destination network address, and returns
the packets to the kernel queue for transmission. This program
represents the minimum inspection required for a general-
purpose user-space inspection program on the router.

C. On-Phone Inspection via NAT Redirection

There are two components that support our traffic inspection
on a separate smartphone. The first is a set of NAT rules
on the router that will appropriately forward the traffic. For
this, we use the iptables program, which can manage IP
packet rules in the Linux kernel. We use the iptables NAT
table to implement translation rules that transform the original
destination IP address of the packets from the server to the IP
address of the smartphone. This causes the traffic sent from
the client to be redirected to the smartphone. In the example
shown in Figure 1, we first apply a DNAT rule as iptables
-t nat -A PREROUTING -p tcp -s 192.168.1.2

-d 172.16.1.2 --dport 6666 -j
DNAT --to-destination 192.168.1.3:6666 and
an SNAT rule as iptables -t nat -A POSTROUTING
-p tcp -s 192.168.1.2 -d 192.168.1.193
--dport 6666 -j
SNAT --to-source 192.168.1.1 to forward traffic to
the smartphone. The smartphone can then work as a proxy
that receives packets and sends them back to the router
after inspection. When these packets return to the router, the
router transforms their destination IP address to the original
server destination IP address based on another DNAT rule,
such as iptables -t nat -A PREROUTING -p tcp
-s 192.168.1.3 -d 192.168.1.1 --sport 7777
-j DNAT --to-destination
172.16.57.216:6666. Since these NAT rules function
bidirectionally, the packets sent from the server will traverse
the reverse path through the smartphone. Rather than process-
ing traffic as an arbitrary user space program in the router’s
Linux stack, our method forwards them using kernel data
structures. This feature avoids potentially costly transitions to
user space on the router.

The second component in our approach is the proxy soft-
ware and service that runs on the smartphone. We implement
a Java program that uses TCP to accept traffic for inspection
on a pre-defined port. Figure 1 shows how the phone accepts
traffic from the router using a new TCP connection. Since the
smartphone is on the network path between the communicating
endpoints, it receives the raw payload of every network packet.
While we only apply IP list filtering in our tests, more
advanced inspection can be deployed in our method, such as
TLS inspection. The following performance evaluations show
even this common lightweight operation saturates the router
with on-device inspection whereas our NAT approach provides
headroom. This approach can support more computationally
demanding use cases without requiring new physical hardware
deployments.

IV. IMPLEMENTATION

We implement our method in a lab environment. We run the
OpenWrt 21.02.2 operating system (OS) on a consumer-grade
TP-LINK AC1750 Wireless Dual Band Gigabit Router. We
simulate a home network user with a client on a laptop with
four cores and 16 GBytes of memory, running the Windows
OS. We simulate a server outside of the home network on a
laptop with four cores and 16 GBytes of memory, running the
Ubuntu 20.04 OS. We use a smartphone with eight 2.0 GHz
cores and 4 GBytes of memory, running the Android 11 OS
as the proxy device.

For the network configuration, as shown in Figure 2, we
create two VLANs: one is on interface eth0 and the other
is on interface eth1. We assign the LAN ports and wireless
radio to the eth0 VLAN and assign the WAN port to the
eth1 VLAN. The client connects to a LAN port via a
category 6 Ethernet cable that supports full-duplex gigabit
throughput. The server also connects to the WAN port using
a category 6 cable. For the radio, we build an access point on

Fig. 1. An example of packet forwarding via NAT rules. As the client sends
the original packet to the server, the router modifies the packet and forwards it
to the smartphone. After the smartphone performs packet inspection, it sends
the packet back to the router. Then the router forwards it to the server. Since
all of the NAT rules work bidirectionally, the packets sent from the server
will follow the reverse path.

5.785 GHz using a Qualcomm Atheros QCA 9880 802.11ac
adapter. We connect the smartphone to this access point at a
distance of 3 feet with an unobstructed, line-of-sight path.

After configuring the home network, we add three NAT
rules to iptables in the router, as described in Section III.
These rules include SNAT and DNAT rules and have the
capability of redirecting traffic between the client and the
server to traverse the smartphone. On the smartphone side, we
use Android Studio to build a Java application that performs
packet inspection based on a malicious IP block list and hosts
a proxy service.

Fig. 2. The network configuration for our experiments

V. PERFORMANCE EVALUATION AND RESULTS

An on-router inspection module is straightforward since
it uses a device that is already physically on the network
path between communicating endpoints. To justify the added
complexity of opportunistic middleboxes, we explore the
performance implications of using such commodity devices.
We first establish a baseline for the performance of the
home network. We use a typical network setting, without the
use of inspection functionality, to establish the baseline. We
then explore on-router inspection using a simple block-listing
application on a router. Finally, we examine an inspection
method in which NAT rules are used to reroute traffic to a
middlebox, using both a smartphone emulator and a physical
commodity smartphone for analysis.

In examining these scenarios, we evaluate the performance
of each using four metrics: flow throughput, end-to-end round
trip time (RTT), the CPU usage at the router, and the CPU
usage of the smartphone when it is in use. We note that there is
performance improvement in using on-phone inspection after
comparing the three scenarios with these four metrics.

A. The Baseline: LAN to WAN traffic

Our baseline scenario connects a client to a server though a
residential router. Often, the WAN port is used on the router
to connect to upstream networks, such as the Internet, and
the servers available through those networks. Therefore, we
connect an Ubuntu server to the WAN port of the router using a
full-duplex category 6 Ethernet cable. The server uses a gigabit
Ethernet card. We statically configure the IP addresses of the
server and the router’s WAN port within a subnet that is only
used by those two devices.

We begin by exploring the case in which the client is
connected to a LAN port on the router via a category 6
Ethernet cable. We use the router’s built-in DHCP server,
which assigns an address to the client in a subnet that the
router and client share, yet is disjoint from the subnet used
by the server. We use the router’s default NAT capabilities
to translate across the subnets, which is a common deploy-
ment scenario in homes. Using the iperf3 benchmarking
tool [24], we test a TCP connection between the client and
the server. We configure iperf3 to attempt to maximize
throughput in the channel and observe it for 1,100 seconds.
We conducted 3 trials and measured the throughput for 1,000
seconds after an initial delay of 100 seconds to accommodate
TCP’s slow-start behavior. As we see in the right-most two
lines in Figure 3, the median download throughput is around
440 Mbps and the median upload throughput is around 254
Mbps, with tight distributions (the standard deviation is 4.90
Mbps for download throughput and 3.27 Mbps for upload
throughput).

Since the communication throughput via Ethernet appears
to be less than the medium’s theoretical maximum, we explore
whether the router could be causing a bottleneck. In particular,
we examine the CPU of the router. While we test the maximum
throughput, we use the top tool to record the CPU usage of
the router for 1000 seconds. As shown in Table I, the CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

Throughput (Mbps) of connection via Ethernet

NAT down

NAT up

NFQUEUE down

NFQUEUE up

Baseline down

Baseline up

Fig. 3. Results from throughput tests when the client connects to the router
via a category 6 Ethernet cable. The green lines show upload and download
throughput under a baseline setting. The red lines show the throughput after
applying on-router inspection via NFQUEUE library. The blue lines show the
throughput after applying on-phone inspection using NAT redirection rules.

usage of the router is at its limit more than 90% of the time
when testing maximum throughput. These results suggest that
the CPU of our router acts as a performance bottleneck when
throughput is high.

TABLE I
CPU USAGE OF THE ROUTER WHILE TESTING THE MAXIMUM

THROUGHPUT IN SIX SCENARIOS.

Percentile of Trials 10th 50th 90th
CPU Usage in Baseline Upload 100% 100% 100%
CPU Usage in Baseline Download 100% 100% 100%
CPU Usage in NAT Upload 98% 100% 100%
CPU Usage in NAT Download 97% 100% 100%
CPU Usage in NFQUEUE Upload 100% 100% 100%
CPU Usage in NFQUEUE Download 100% 100% 100%

To determine the added CPU usage from different traffic
inspection methods, we need to measure the router’s CPU
usage in a moderate throughput scenario, rather than when
throughput is maximized. We thus evaluate the scenario in
which the TCP connection throughput is reduced to 10 Mbps
of randomized payload to the server. We also record the CPU
usage of the router for 1,000 seconds. The green line in
Figure 4 shows that the median CPU usage of the router is
9.00% with standard deviation of 1.58%.

While throughput is an important metric, the end-to-end
round trip time (RTT) is also important for understanding
the delay introduced by the network paths and the router. To
test this, we construct an echo program on the server and a
recording device on the client to measure the time difference
between the client sending a specific payload and receiving
a reply. Across 1,000 trials, we see that the left-most line
in Figure 5 has a median RTT of 1.12 ms with a standard
deviation of 0.12 ms.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

CPU Usage (%) of Router

NAT

NFQUEUE

Baseline (no inspection)

Fig. 4. CPU usage of the router when applying on-phone inspection using
NAT redirection rules, applying on-router inspection via NFQUEUE library,
and a baseline without inspection when throughput is limited to 10 Mbps.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 100

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

RTT (milliseconds) in connection via Ethernet

NAT − Moto G power

NAT − Pixel 2

NFQUEUE

Baseline (no inspection)

Fig. 5. RTT with a log scale in milliseconds between the client and the server
when the client connects to the router via Ethernet. The leftmost green line
shows baseline result. The middle red line shows the result after applying
on-router inspection via the NFQUEUE library. The two rightmost blue lines
show the results with two separate phones after applying on-phone inspection
using NAT redirection rules.

B. On-Router Inspection via NFQUEUE

To explore whether the router itself can feasibly inspect
traffic, we implement a basic C++ program, that is compiled
to run natively on the router, to inspect IP addresses. The
program’s details are described in Section III-B.

We explore the throughput, RTT, and router CPU metrics
of the on-device inspection program using the same tools and
settings used in Section V-A. In the two left-most lines of
Figure 3, we see the upload and download throughput after
applying this inspection approach. We conducted 3 trials and
measured the throughput for 1,000 seconds after an initial de-
lay of 100 seconds to accommodate TCP’s slow-start behavior.
As we seen in the right-most two lines in Figure 3, the median
download throughput is 9.62 Mbps, and the median upload

throughput is 8.40 Mbps (standard deviation of 3.91 Mbps for
download and 3.93 Mbps for upload). Given this substantially
decreased throughput from the baseline, we hypothesize that
the change introduces a bottleneck on the router.

When we examine the CPU usage of the router, we confirm
that this resource is exhausted. In Figure 4, we see that the
baseline CPU usage is around 9% when throughput is limited
to 10 Mbps, but is 100% when the router performs packet
inspection. The process elevates all traffic to the router’s
Linux user space environment, which requires significant
computational resources on the router. Such routers tend to be
manufactured with lower-end CPUs for economic reasons [25]
and there appears to be little headroom for this additional
operation. However, when the router is not overwhelmed, as
in the simple echo server RTT tests, we see that the on-device
router introduces minimal RTT increases over the baseline.
These results are shown by the red line in Figure 5, which is
close to the baseline results.

C. On-Phone Inspection via NAT Redirection

With the CPU limitations of residential routers, we explore
the potential of re-routing packets via a smartphone to inspect
traffic. As described in Section III, we add three different NAT
rules via iptables on the router to cause traffic to be sent
via the phone. An example of traffic forwarding, after applying
NAT rules, is shown in Figure 1.

Using the same settings as in the two prior sections, we ex-
plore the throughput when traffic is directed through the Moto
G Power smartphone. In the middle two lines of Figure 3,
we see that the median download throughput is 94.80 Mbps
and the median upload throughput is 70.10 Mbps, with tight
distributions (standard deviation of 4.32 Mbps for download
and 2.87 Mbps for upload). The throughput is substantially
higher than the on-router inspection approach in Figure 3. In
effect, the processing of the NAT rules on the router may incur
less computational overhead than the full process of inspecting
the traffic. Since the router’s CPU was the bottleneck in the on-
router inspection scenario, this adjustment increases the rate
traffic can flow.

In Figure 4, we can confirm that the NAT-based approach
yields significantly lower CPU utilization than on-device in-
spection when throughput is limited to 10 Mbps. The middle
line in that graph shows that the NAT approach has a median
of 24.0% CPU utilization with a standard deviation of 2.61%.

The insertion of another device on the network path through
a loop will necessarily increase the packet’s propagation delay
and may be observable in the overall end-to-end RTT. This
is apparent in Figure 5, with the RTT of the NAT approach
represented by the two right-most lines. We see patterns where
20% of traffic has an RTT less than 30.44 ms while 75% of
traffic has an RTT over 120.17 ms. This is significantly higher
than either the baseline scenario or when on-router inspection
occurs. Importantly, this experiment uses a simple echo server
approach and does not tax the CPU of the router. The on-router
scenario would incur greater RTT delays when the CPU is a
bottleneck due to processing delay.

Our last metric explores the energy usage of the proxy appli-
cation on the phone. We run the application while maximizing
throughput transmission from the client to the server, with a
music-playing application in the background for comparison.
We then record the CPU usage of the proxy application and
the music application for 1,000 seconds using the top tool in
the phone. We monitor the idle percentage of the 8 cores in the
proxy device. In Table II, we show the CPU usage of the proxy
application and the music application, along with the time for
which the CPU core is idle. In this table, 100% represents
the full utilization of a single core on the device and 800%
represents the full utilization of all eight device cores. The
first row in Table II represents the proxy application, which
uses only about 21% of a single core verses the roughly 107%
CPU usage of the music application in the median case. We
see that the majority of the device’s computational resources
are unused. Even in lower-end smartphones, the CPU impact
of the proxy was about 20% of a single core. As a result,
we anticipate that the CPU-based energy consumption of the
device would be a small fraction of a music application. Since
phones are regularly used for music playing without signifi-
cant power-related disruptions to end-users, it is likely that
the proxy application would likewise represent a reasonable
workload on phones.

TABLE II
CPU USAGE OF THE SMARTPHONE FOR DIFFERENT APPLICATIONS WHEN

MAXIMIZING THROUGHPUT WHILE APPLYING ON-PHONE INSPECTION.

Percentile of Trials 10th 50th 90th
CPU Usage of Proxy App 18% 21% 24%
CPU Usage of Music App 98% 107% 114%
CPU Idle 535% 560% 584%

VI. CONCLUSION

While residential networks need traffic inspection and anal-
ysis tools to protect their traffic, existing residential routers
lack the computational resources for on-router inspection.
Even a straightforward, IP address-based inspection tool on
such a router can greatly limit the throughput the router can
support. However, with carefully-crafted NAT rules, a router
can redirect communication through another device, such as a
smartphone, to inspect traffic. This opportunistic outsourcing
of inspection to in-network devices avoids the privacy concerns
associated with outsourcing such services to cloud providers.

In our experiments, we find that NAT-based diversion
through a smartphone can substantially raise the commu-
nication throughput from around 10 Mbps in an on-router
implementation to around 90 Mbps through a smartphone.
The router can periodically examine its ARP and DHCP
data structures to detect the availability of a phone in the
LAN, contact an application on the phone to configure proxy
services, and then divert traffic through the phone to enable
outsourced inspection. With such an approach, residential
networks can opportunistically use available smartphones as
middleboxes to enable higher-throughput traffic inspection.

REFERENCES

[1] E. Zeng, S. Mare, and F. Roesner, “End user security and privacy
concerns with smart homes,” in Symposium on Usable Privacy and
Security (SOUPS 2017), 2017, pp. 65–80.

[2] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things
(IoT) security: Current status, challenges and prospective measures,” in
International Conference for Internet Technology and Secured Transac-
tions (ICITST). IEEE, 2015, pp. 336–341.

[3] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[4] B. Anderson and D. McGrew, “Identifying encrypted malware traffic
with contextual flow data,” in ACM Workshop on Artificial Intelligence
and Security, 2016, pp. 35–46.

[5] N. Feamster, “Outsourcing home network security,” in ACM SIGCOMM
Workshop on Home Networks. ACM, 2010, pp. 37–42.

[6] C. R. Taylor and C. A. Shue, “Validating security protocols with
cloud-based middleboxes,” in IEEE Conference on Communications and
Network Security (CNS). IEEE, 2016, pp. 261–269.

[7] C. Ryan and J. M. Lewis, “Computer and internet use in the united states:
2015,” https://www.census.gov/content/dam/Census/library/publications/
2017/acs/acs-37.pdf.

[8] I. Hafeez, M. Antikainen, A. Y. Ding, and S. Tarkoma, “Iot-
keeper: Securing iot communications in edge networks,” arXiv preprint
arXiv:1810.08415, 2018.

[9] Z. A. Almusaylim and N. Zaman, “A review on smart home present
state and challenges: linked to context-awareness internet of things (iot),”
Wireless networks, vol. 25, no. 6, pp. 3193–3204, 2019.

[10] S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath,
“Throwing darts in the dark? detecting bots with limited data using
neural data augmentation,” in IEEE Symposium on Security and Privacy
(IEEE SP), 2020.

[11] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[12] D. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: a multi-tenant plat-
form to dynamically install third party services on wireless gateways,” in
ACM workshop on Mobility in the evolving internet architecture, 2014,
pp. 43–48.

[13] A. Wieczorek and B. Markowski, “Intelligent iot gateway on
openwrt,” https://elinux.org/images/4/41/Intelligent IoT Gateway on
OpenWrt.pdf, 2015.

[14] S. Shirali-Shahreza and Y. Ganjali, “Protecting home user devices with
an sdn-based firewall,” IEEE Transactions on Consumer Electronics,
vol. 64, no. 1, pp. 92–100, 2018.

[15] M. Nobakht, V. Sivaraman, and R. Boreli, “A host-based intrusion de-
tection and mitigation framework for smart home iot using openflow,” in
International conference on availability, reliability and security (ARES).
IEEE, 2016, pp. 147–156.

[16] R. F. Moyano, D. F. Cambronero, and L. B. Triana, “A user-centric sdn
management architecture for nfv-based residential networks,” Computer
Standards & Interfaces, vol. 54, pp. 279–292, 2017.

[17] K. Xu, F. Wang, and X. Jia, “Secure the internet, one home at a time,”
Security and Communication Networks, vol. 9, no. 16, pp. 3821–3832,
2016.

[18] M. Boussard, D. Thai Bui, R. Douville, P. Justen, N. Le Sauze, P. Peloso,
F. Vandeputte, and V. Verdot, “Future spaces: Reinventing the home
network for better security and automation in the iot era,” Sensors,
vol. 18, no. 9, p. 2986, 2018.

[19] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things, vol. 3, no. 5, pp. 637–646,
2016.

[20] M. Satyanarayanan, “Cloudlet-based edge computing,” http://elijah.cs.
cmu.edu.

[21] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis,
and G. Mastorakis, “Drop computing: Ad-hoc dynamic collaborative
computing,” Future Generation Computer Systems, vol. 92, pp. 889–
899, 2019.

[22] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in ACM Workshop on Mobile
Cloud Computing and Services, 2012, pp. 29–36.

[23] J. Gedeon, C. Meurisch, D. Bhat, M. Stein, L. Wang, and
M. Mühlhäuser, “Router-based brokering for surrogate discovery in
edge computing,” in International Conference on Distributed Computing
Systems Workshops (ICDCSW). IEEE, 2017, pp. 145–150.

[24] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu, “iperf -
the ultimate speed test tool for tcp, udp and sctp,” https://iperf.fr/, 2020.

[25] Hall, Michael, and R. Jain, “Performance analysis of openvpn on a
consumer grade router,” cse. wustl. edu, 2008.

